
The Synthesis ToolKit (STK)

Perry R. Cook1 and Gary P. Scavone2

1Department of Computer Science and 2Center for Computer Research in Music and Acoustics
Department of Music, Princeton University Department of Music, Stanford University
Princeton, New Jersey 08544-2087 USA Stanford, California 94305-8180 USA

prc@cs.princeton.edu gary@ccrma.stanford.edu

Abstract

This paper presents a cross-platform C++ programming environment designed for rapid prototyp-
ing of music synthesis and audio processing programs. The Synthesis ToolKit offers an array of
unit generators for filtering, input/output, etc., as well as examples of new and classic synthesis
and effects algorithms for research, teaching, performance, and composition purposes.

1 Introduction

A plethora of computer programming environments
and applications exist for music synthesis. For the
purpose of rapid prototyping of realtime synthesis
and audio processing algorithms, environments with
“drag and drop” graphical user interfaces (GUIs),
such as Max and SynthBuilder, have generally been
preferred. Such programs, however, often present
problems to users and programmers alike, includ-
ing cross-platform portability and user extensibili-
ty. Other non-GUI based environments, such as C-
Sound, present powerful but complex programming
paradigms that prove difficult for beginners to grasp.
Development of the Synthesis ToolKit (STK) was mo-
tivated in large part by these problems (Cook, 1996).

In particular, fundamental design goals of STK have
been:

• Cross-platform functionality
• Ease of use
• User extensibility
• Real-time synthesis and control
• Open source C and C++ code

Nearly all of STK is written in generic C and C++
and can be compiled on any system with a C++ com-
piler. Cross-platform functionality is further aided by
encapsulating operating system dependencies, such
as realtime sound and MIDI input/output, within a s-
mall number of classes. Portability problems are typi-
cally incurred with respect to GUI code. STK avoids
this by using Tcl/Tk, a simple text-based scripting
language that is freely available for nearly all cur-
rent computer operating systems. Finally, STK runs

completely on a computer’s host processor, avoiding
any specific hardware requirements other than a basic
sound card.

STK achieves programming clarity and ease of use
through an object-oriented structure. When conve-
nient, coding optimization issues are addressed. In
general, however, coding optimization is sacrificed for
the sake of programming clarity. Given the “rapid
prototyping” design goal, as well as the advent of gi-
gahertz host processor speeds, such a tradeoff seems
appropriate.

Realtime audio input/output and MIDI input func-
tionality are currently supported for Irix, Linux,
and Windows computer operating systems. Linux
realtime support is accomplished using the Open
Sound System (OSS) sound API, thus allowing fur-
ther portability to other OSS supported systems (So-
laris, HP-UX, etc.). Even when realtime support is
not available for a given computer platform, how-
ever, it is easy to compile STK for traditional non-
realtime functionality (the current level of NeXTStep
support).

All source code for STK is freely available for non-
commercial use, allowing full user extensibility and
customization of its behavior. As a testament to its
ease of use and pedagogical value, algorithms from
the Synthesis ToolKit have been ported to various
other sound synthesis systems such as Vanilla Sound
Server, RTCMix, CSound, MSP, and SuperCollider.

Finally, the Synthesis ToolKit is first and foremost
a set of C++ classes for music synthesis and digi-
tal audio programmers. A few example programs are

1



Presented at the 1999 International Computer Music Conference, Beijing, China 2

provided with the distribution for demonstration pur-
poses. However, these programs will most likely need
modification to meet specific user requirements. Like-
wise, Tck/Tk GUIs are simple and functional but not
necessarily robust. STK offers beginning and experi-
enced programmers alike a great start at developing
audio programs. STK is good for teaching and learn-
ing about synthesis algorithms. STK is an example
of fairly careful C++ program design. And STK of-
fers sound and MIDI support on lots of platforms.
But, use of STK requires a basic understanding of
C and C++ languages and a willingness to develop
programming solutions to specific user requirements.

2 The Environment

All Synthesis ToolKit classes inherit from the Object
master class. Object doesn’t provide any program
functionality but it does offer a convenient mean-
s for defining global program and operating system
parameters. For example, operating system #de-
fines in Object.h control proper byte swapping and
the correct selection of audio/MIDI application pro-
gramming interface (API) code during compilation.
Further, STK’s fundamental floating-point data pa-
rameter, MY FLOAT, can be defined in Object.h as
either a float or double value. Multi-channel data
can be passed with the MY MULTI parameter, which
is defined as a pointer to MY FLOAT.

All audio sample based STK classes implement a
tick() method which, depending upon the giv-
en context, takes and/or returns MY FLOAT or
MY MULTI data. Within this tick() method the
runtime calculations of a class take place. With this
structure, a soundfile can be read, delayed, and writ-
ten to realtime output with the following program
code:

SndWvIn *input = new SndWvIn("soundfile","oneshot");

DLineN *delay = new DLineN(maxLength);

RTWvOut *output = new RTWvOut(SRATE,channels);

input->normalize(); // normalize input data

delay->setDelay(50); // delay by 50 samples

while (!input->isFinished()) {

output->tick(delay->tick(input->tick()));

}

delete input;

delete delay;

delete output;

All objects which output audio samples implement a
method lastOut(), which returns the last computed

sample(s). This allows a single source to feed multiple
sample consuming objects without necessitating an
interim storage variable external to the object.

Currently, STK only implements single-sample
tick() functions. This allows minimum memory us-
age, the ability to modularly build short (one sam-
ple) recursive loops, and guaranteed minimum laten-
cy through the system. Single-sample unit genera-
tor calculations, however, are nearly guaranteed to
be sub-optimal in terms of computation speed. Vec-
torized unit generators take and/or yield pointers to
arrays of sample values and improve performance sig-
nificantly depending on the processor type and vector
size. Though no specific support is planned for vec-
torized STK classes, all unit generators have been
designed to allow easy conversion to vector function-
ality using arrays of MY FLOAT and MY MULTI
values.

2.1 Unit Generators

At its core, STK makes use of the traditional unit
generator paradigm originally introduced by Max V.
Mathews in the Music N languages (Mathews, 1969).
Current classes include envelopes, filters, noise gen-
erators, nonlinearities, and data input/output han-
dlers. These unit generators form the fundamental
building blocks for the various synthesis and audio
effects algorithms discussed below.

The complementary base classes, WvIn and WvOut,
and their associated subclasses handle data input and
output to .wav, .snd, .mat (Matlab MAT-file), and
.raw (STK raw) formatted files, as well as realtime
audio input and output. File input subclasses can be
configured for looping, oneshot, and/or interpolating
behavior.

2.2 Synthesis Algorithms

A large variety of classic and new music synthesis
algorithms are distributed with STK. These exam-
ple classes were motivated by research, teaching, and
music composition and performance demands, as well
as a desire to create a set of different synthesis tech-
niques which, wherever possible, share a common in-
terface while still allowing the unique features of each
particular algorithm to be exploited. Current sound
synthesis techniques demonstrated include oscillator-
based additive, subtractive, Frequency Modulation
(FM), modal, sampling (Roads, 1996), physical mod-
els of string and wind instruments (Computer Music



Presented at the 1999 International Computer Music Conference, Beijing, China 3

Journal, 1992-1993), and physically inspired statisti-
cal particle models (Cook, 1997). Several models of
the voice are provided and more vocal synthesis mod-
els are planned for the future. The particle-based
models, combined with modal and PCM wavetable
synthesis techniques, provide the framework for para-
metric synthesis of a large variety of real-world sounds
and sound effects.

2.3 Effects Algorithms

The Synthesis ToolKit includes several simple delay-
based effects algorithms for reverberation, chorus,
flanging, and pitch shifting. The RTDuplex class pro-
vides simultaneous realtime sound input and output
(when supported by hardware) for realtime effects
processing. A simple effects demonstration applica-
tion and control GUI are provided with the latest
version of STK.

3 Realtime Control

STK control sources connect to synthesis programs
via pipes and sockets, allowing for networked connec-
tions, and decoupling audio synthesis from control
generation. An input handler, MD2SKINI, converts
standard MIDI to SKINI (Synthesis toolKit Interac-
tive Network Interface). Using SKINI, any language,
system, or program capable of sending formatted text
across a socket can control STK instruments. Wher-
ever possible, STK algorithms share a common set
of controllers which are mapped to standard MIDI
controllers. This allows voicing and experimentation
using Tcl/Tk GUIs, and expressive control using s-
tandard MIDI control sources.

3.1 SKINI

SKINI was created for the Synthesis ToolKit as a
simple text-based extension to MIDI. SKINI supports
a unified control interface across multiple platforms,
multiple control signal sources such as GUIs of multi-
ple flavors, MIDI controllers and score files, and sim-
ple text-based connections between processes on a s-
ingle machine and across networks. SKINI extends
MIDI in incremental ways, specifically in represen-
tation accuracy by allowing for floating point note
numbers (micro-tuning for example), floating point
control values, and double precision time stamps and
delta-time values. Further, a text message basis for

the control stream is used to allow for easy creation
of SKINI files and debugging of SKINI control con-
sumers and providers. Finally, SKINI goes beyond
MIDI in that it allows for parametric control curves
and functions to be specified and used. This allows
continuous control streams to be potentially lower in
bandwidth than MIDI (hence part of the name SKI-
NI), yet higher in resolution and quality because the
control functions are “rendered” in the instrumen-
t and/or in a performer-expert class which controls
the instrument. Expressive figures like trills, drum
rolls, characteristic pitch bends, heavy-metal guitar
hammer-ons, etc. can all be specified and called up
using text messages. To support SKINI scorefiles, the
ToolKit provides SKINI11.cpp, which parses SKINI
control data.

3.2 GUI Support

A number of Tcl/Tk control scripts are provided with
the STK distribution. Tcl/Tk is a cross-platform
scripting language that offers a simple means for cre-
ating sliders, radio buttons, etc. which generate con-
trol data that can be piped or socketed to an STK
application. By formatting these control messages in
the form of standard MIDI control messages, MIDI
controllers can be exchanged for GUI control enabling
real-time expressive synthesis control.

4 Summary

The Synthesis ToolKit offers a fast prototyping envi-
ronment for audio DSP and computer music applica-
tions. STK’s cross-platform functionality and gener-
ic C/C++ development language minimize program
obsolescence issues. STK’s object-oriented program-
ming structure and “ease of use” design goals make
it useful as a teaching aid. And STK’s open-source
model allows for complete user extensibility. The
Synthesis ToolKit is probably not for those that feel
the need for GUI wrappers around their programs.
But the benefits gained by avoiding such platform-
dependent code far outweigh the inconvenience of
having to port your algorithms every five years.

References

Computer Music Journal (1992-1993). Computer
Music Journal. Special Issues on Physical Mod-
eling, 16(4) and 17(1).



Presented at the 1999 International Computer Music Conference, Beijing, China 4

Cook, P. R. (1996). Synthesis ToolKit in C++, Ver-
sion 1.0. In SIGGRAPH 1996, Course #17 &
18, Creating and Manipulating Sound to Enhance
Computer Graphics. Available from ACM SIG-
GRAPH.

Cook, P. R. (1997). Physically informed sonic model-
ing (phism): Synthesis of percussive sounds. Com-
puter Music J., 21(3):38–49.

Mathews, M. V. (1969). The Technology of Computer
Music. Cambridge, Massachusetts: MIT Press.

Roads, C., editor (1996). The Computer Music Tu-
torial. Cambridge: MIT Press.


