
Chunity: Integrated Audiovisual Programming in Unity

Jack Atherton
CCRMA, Stanford University
Stanford, CA, United States

lja@ccrma.stanford.edu

Ge Wang
CCRMA, Stanford University
Stanford, CA, United States

ge@ccrma.stanford.edu

Figure 1: Chunity is a programming environment for the creation of interactive audiovisual software. It combines the
strongly-timed audio synthesis of the ChucK language with the high-performance graphics of the Unity game engine.

ABSTRACT
Chunity is a programming environment for the design of in-
teractive audiovisual games, instruments, and experiences.
It embodies an audio-driven, sound-first approach that inte-
grates audio programming and graphics programming in the
same workflow, taking advantage of strongly-timed audio
programming features of the ChucK programming language
and the state-of-the-art real-time graphics engine found in
Unity. We describe both the system and its intended work-
flow for the creation of expressive audiovisual works. Chu-
nity was evaluated as the primary software platform in a
computer music and design course, where students created
a diverse assortment of interactive audiovisual software. We
present results from the evaluation and discuss Chunity’s
usability, utility, and aesthetics as a way of working. Through
these, we argue for Chunity as a unique and useful way to
program sound, graphics, and interaction in tandem, giving
users the flexibility to use a game engine to do much more
than “just” make games.

Author Keywords
audiovisual interaction, ChucK, Unity, programming

CCS Concepts
•Applied computing→ Sound and music computing;
•Human-centered computing → Interaction design;
•Software engineering → Domain specific languages;

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’18, June 3-6, 2018, Blacksburg, Virginia, USA.

1. INTRODUCTION
This paper describes the Chunity project, which combines
the audio programming language ChucK with the game en-
gine Unity for the creation of artful and interactive audiovi-
sual applications. Chunity is both a tool and a workflow for
creating tools, games, toys, instruments, and experiences.

As music researchers who work with the interplay be-
tween sound and graphics, we seek to create tools that pri-
oritize audio and allow systems to be audio-driven when
helpful (e.g. for precise, musically-timed graphics).

We chose to work with ChucK and Unity to combine
the respective affordances of each. For example, ChucK is
designed to enable a temporally deterministic way to con-
trol sound synthesis, whereas Unity is designed for high-
level control over real-time graphics and physics simula-
tions. Chunity creates a single environment combining the
capabilities of both tools.

Tools, and new tools especially, always suggest particular
ways of working. While we find it important to design tools
with usability in mind, we believe it is equally important
to examine the aesthetics of using the tool: what ways of
working does it encourage? What are the specific ways in
which it allows you to accomplish certain tasks? How does
using it make you feel? In this context, Chunity is both a
tool as well as the paradigmatic ways of working with that
tool; the sum of these parts implicitly shapes what one can
create with it. As such, we have evaluated Chunity by ex-
amining how students use it to create interactive audiovisual
applications of their own design.

In the rest of this paper, we outline various related ap-
proaches to audiovisual programming. We articulate a de-
sign ethos in creating Chunity and discuss its workflow,
highlighting a few concrete examples, as well as providing
notes on Chunity’s implementation. Finally, we present our
qualitative evaluation and discuss its implications.

Add ChuckInstance,
new Unity Class
to GameObject

Edit Unity Class

Add / Edit
ChucK Code

Add / Edit
Unity Code

Test in Play Mode

Figure 2: Workflow: (1) Users make changes in the Unity Scene, (2) Unity C# code, and (3) ChucK code, then test their
game to see how it currently looks and sounds (4, 5). §4.1 Runtime: (1) The Player object collides into another game
object. (2) The OnCollisionEnter Unity callback is called. The ChucK float impactIntensity is set, then the ChucK
Event impactHappened is broadcast. (3) The ChucK code listening for impactHappened sporks the ChucK function
PlayImpact. (4) This function prints to the Unity console, and (5) plays an impact sound according to the intensity.

2. RELATED WORKS
In contextualizing this work, we have identified three main
approaches for creating interactive audiovisual applications.
The first approach involves programming audio and graph-
ics in a low-level language like C++. This approach uses
tools with basic affordances, such as callback functions that
directly compute audio samples [12] and low-level graphics
primitives like the OpenGL API [10]. Audiovisual appli-
cations created with this approach can be expressive, but
often require a lot of work or the use of external libraries
to assert high-level control over audio and graphics. Exam-
ples of this approach also include works using the Synthesis
ToolKit, OpenFrameworks, and Cinder [4, 6, 9, 2, 3].

The second approach involves working in a game engine
such as Unity or Unreal Engine. Game engines have pow-
erful tools for interactive graphics such as physics engines,
but usually limit audio programming to the playback of au-
dio files through a few simple filters [14, 7]. This approach
is used by independent (“indie”) video games with musical
aspects, such as Night in the Woods and Sentris [15, 1, 16].

The third approach involves linking an audio engine to a
graphics engine via a network communication protocol such
as Open Sound Control [18]. This approach enables the in-
tegration of audio programming languages like ChucK, Su-
perCollider, and Pure Data with game engines, as in UDK-
OSC [5]. Using the network is flexible, but can introduce
new complexities (e.g. scheduling granularity, distributed
mindset) that make tight integration of audio and graphics
difficult. This approach is used in works by the Virtual Hu-
man Interaction Lab, the Stanford Laptop Orchestra, and
many works in the NIME community [11, 17, 4, 6].

There are existing environments that combine elements
of these approaches. For example, Max/MSP/Jitter cou-
ples high-level control of audio with graphics in a tight in-
tegration that does not rely on network communication [8].
While Max/MSP lends itself to certain ways of working, its
graphical patching paradigm does not inherently support
clear reasoning about time and sequential operations.

3. APPROACH AND DESIGN ETHOS
In creating Chunity, we were guided by two main principles.
First, that tools should be audio-driven. Audio should be
prioritized as a first-class component, enabling implemen-
tation of complex synthesis techniques and other high-level
controls. In such a regime, audio can drive graphics events
as needed to achieve robust, precise control over time.

Second, that audio and graphics should be as tightly inte-
grated as possible. The two should be programmed together
in the same context in the programmer’s workflow; commu-
nication between them should be reliable and fast.

4. WORKFLOW
Since Chunity is used to design graphics and audio in tan-
dem, a typical workflow involves iteration and testing on
graphics and audio together. Figure 2 shows how a user
would program and test the code example of Section 4.1.

4.1 Physics-Driven Procedural Audio
This code plays a ChucK function to generate the sound for
a collision, informed by the speed of that collision.

1 public class PlayCollisions : MonoBehaviour {
2 private ChuckSubInstance myChuck;
3

4 // Initialization
5 void Start() {
6 myChuck = GetComponent<ChuckSubInstance>();
7 myChuck.RunCode(@"
8 fun void PlayImpact(float intensity) {
9 // play a collision sound...

10 }
11

12 global float impactIntensity;
13 global Event impactHappened;
14

15 while(true) {
16 impactHappened => now;
17 spork ~ PlayImpact(impactIntensity);
18 }
19 ");
20 }
21

22 // Run on every Unity physics collision
23 void OnCollisionEnter(Collision collision) {
24 // first, set ChucK intensity value
25 myChuck.SetFloat("impactIntensity",
26 collision.relativeVelocity.magnitude);
27

28 // next, signal to ChucK to PlayImpact
29 myChuck.BroadcastEvent("impactHappened");
30 }
31 }

Every time a Unity physics collision occurs, this script
sets the value of the float impactIntensity, then broad-
casts the event impactHappened (lines 25-29), which sig-
nals to ChucK to spork (run concurrently) a function that
plays a sound using the value of impactIntensity (line 17).

4.2 ChucK as Strongly-Timed Clock
This code rotates an object every 250 ms, with the timing
being generated exactly via ChucK.

1 public class EventResponder : MonoBehaviour {
2 private ChuckSubInstance myChuck;
3

4 void Start() {
5 myChuck = GetComponent<ChuckSubInstance>();
6

7 // broadcast "notifier" every 250 ms
8 myChuck.RunCode(@"
9 global Event notifier;

10 while(true) {
11 notifier.broadcast();
12 250::ms => now;
13 }
14 ");
15

16 // create a ChuckEventListener
17 ChuckEventListener listener = gameObject
18 .AddComponent<ChuckEventListener>();
19

20 // call MyCallback() during Update()
21 // after every broadcast from "notifier"
22 listener.ListenForEvent(myChuck, "notifier",
23 MyCallback);
24 }
25

26 void MyCallback() {
27 // react to event (rotate my object)
28 transform.Rotate(new Vector3(5, 10, 15));
29 }
30 }

Every time the notifier Event is broadcast (line 11),
the ChuckEventListener (lines 17-23) stores a message
on the audio thread that the broadcast happened. Then, the
user’s callback MyCallback (line 26) is called on the next
visual frame. ChuckEventListener is part of a grow-
ing body of helper components that encapsulate basic pat-
terns using global variables. Note also that this architecture
works for Events that fire on any schedule, not just a simple
regular schedule as defined in the above ChucK code.

5. IMPLEMENTATION
Chunity is a C++ Unity Native Audio Plugin that is ac-
cessed via C# scripts. Figure 3 shows how user-written
classes and the Unity audio engine interact with Chunity.

5.1 Global Variables
We have added the new global keyword to enable inte-
grated communication between ChucK code and the out-
side environment that ChucK is embedded in (the embed-
ding host). The global keyword is used when declaring the
type of a variable, such as in Section 4.2 (line 9). The main
guiding principle in the design of this keyword is that it is
not necessary for ChucK to know anything about the em-
bedding host, or whether it is embedded at all. Instead,
global variables appear like normal variables within their
own ChucK script, but can be inspected, edited, or listened
to by other ChucK scripts or by the embedding host.

So far, the global keyword is enabled for three types
of variables. The first type of global variable is primitives:
ints, floats, and strings. The embedding host can
get and set their values. The get operation requires the use
of a callback because the embedding host often runs on a
different thread than the audio thread.

The second type of global variable is Events. ChucK
Events are used to pause execution in a ChucK script until
the Event signals that it has occurred. The embedding host
can signal or broadcast a global Event (i.e. trigger one or
all ChucK scripts waiting on the event). The embedding

Chunity
Interface

User Class
(Unity Engine
Interaction)

Chunity
Interface ChucK Core

User Class
(ChucK/Unity

Callbacks)
Unity

AudioMixer

ChucK Core ChuckInstance

Graphics Thread Audio Thread

C# (Unity) C++ DLL
(ChucK)

Figure 3: The architecture of Chunity. Users write
classes in C# that send code and global variable requests
to the Chunity interface, which passes them on to ChucK.
When necessary, ChucK calls callbacks in the user class
from the audio thread. The Unity AudioMixer and Chuck-
Instance classes call ChucK’s audio callback, causing sound
to be computed and time to be advanced.

host can also register a C# callback to be called every time
a global Event is broadcast, as in Section 4.2 (line 22). This
callback to user code occurs on the audio thread and thus
is timed with sample-level accuracy; a tighter integration of
timing between audio and visuals is not achievable.

The third type of global variable is UGens (unit gener-
ators). ChucK UGens are signal processing elements that
generate streams of audio. The embedding host can fetch a
global UGen’s most recent samples.

5.2 Internal Rearchitecture
The desire to embed ChucK in Unity motivated the wider
libChucK rearchitecture project, which enables ChucK to
act as an embeddable component in any C++ project.

The ChucK source was separated into core and host code-
bases. The core comprises the language parser, which com-
piles code, and virtual machine (VM), which translates au-
dio inputs to outputs. One embeds ChucK in a new project
by simply writing a new host that calls these functions.

The rearchitecture allowed multiple VMs to exist in the
same address space (useful for contexts where the number
of channels is limited and multiple outputs are desired, such
as in a digital audio plugin or Unity’s spatial audio system).
It also enabled the redirection of all ChucK error messages
to an optional callback (e.g. the Unity debug console).

5.3 Interface with Unity
Chunity can be added to a Unity project in two ways: as a
channel strip plugin, or placed directly on a game object.

As a plugin, a ChucK VM acts as a digital effect. This
method is efficient, implemented entirely in C++, but each
plugin must be added manually, and plugins cannot receive
both microphone input and data for sound spatialization.

Through a ChuckInstance C# component on a game
object, a ChucK VM acts as a virtual sound source that can
be spatialized within the game world. This method also en-
ables new ChucK VMs to be constructed programmatically
with the use of Unity prefabs (archetypes of objects).

To address the inefficiency of including multiple ChucK
VMs just to spatialize audio from multiple locations, we in-
troduced ChuckMainInstance and ChuckSubInstance.
A ChuckMainInstance fetches microphone input from Unity
and advances time in its VM. Each ChuckSubInstance has
a reference to a shared ChuckMainInstance and fetches its
output samples from a global UGen in that VM, perhaps
spatializing the result along the way. This way, many spa-
tialized ChucK scripts can all rely on the same VM and
microphone, saving some computational overhead.

Figure 4: Student work. A: MandalaBox. B: Keyboreal. C: Sequentris. D: Stroquencer. E: Music and Evolution:
From Grunts to Songs. F: Vessel: Liquid Choreography. G: Unblind. (See video at https://vimeo.com/263613454.)

6. EVALUATION
Chunity is both a tool and a way of working. The success
of such a tool lies in what people can create with it. There-
fore, we believe that the best evaluation of this project is a
qualitative one wherein users engage with the tool and its
workflow to realize projects they have designed themselves.

A class of 24 students used Chunity to design projects
throughout a ten-week course at Stanford University, in-
cluding a step sequencer assignment and a final project, for
which they created any interactive audiovisual software of
their own design. Below are some examples of the students’
work; see also Figure 4 for screenshots and video.

6.1 Student Work
MandalaBox (Figure 4A). Users manipulate an ornate ar-
tifact covered in mandalas to sequence the intricate pat-
terns of a Balinese gamelan. Different mandalas control the
base melody, the percussive rhythm, and ornamentations
on top of the melody. The MasterMandala acts as a meta-
sequencer, allowing the user to program switches between
different patterns they have saved.

Keyboreal (Figure 4B). A tool for keyboard recording
and playback. Users play a 3D keyboard in real time, then
edit individual notes, scroll through the recording at their
own speed, set loop boundaries, and quantize. Here, ChucK
affords flexible timing, as the recording can be scrubbed
through in real time and played back at any rate.

Sequentris (Figure 4C). A sequencer game where melody,
bassline, and percussion are set by clearing a row from a
game of Tetris. Users select the pitch or timbre of each
block before placing it in their game. The game also features
alternate timing modes like “Jazz Mode” (swung timing).

Stroquencer (Figure 4D). Users arrange lines on a grid
to represent different sounds, then draw paths across the
lines. Small sprites travel along the paths at the same speed
they were drawn. The sprites stroke each line they cross to
play its sound. The position of the line crossing is mapped
to pitch, and the color of the line is mapped to a variety of
timbres in ChucK or to sounds recorded by the user.

Music and Evolution: From Grunts to Songs (Fig-
ure 4E). A game and interactive “essay” exploring how mu-
sic might have driven pre-humans to evolve their minds.
Players interact with other apes to compete in music con-
tests (and acquire “complex emotion: shame”), communi-

cate (“musilanguage”), and make music together (“pattern
sense”). Unity and ChucK are used in tandem to create
fluid animations tightly coupled to generative soundtracks.
For example, once the player has acquired “rhythm sense”
and “pitch sense”, each step their ape avatar takes is accom-
panied by a note and percussive sound from a melody.

Vessel: Liquid Choreography (Figure 4F). An arti-
fact where the user guides a sentient liquid through a se-
ries of obstacles. This exploration of the aesthetics of fluid
modeling links complex Unity fluid simulations to a granu-
lar synthesis algorithm in ChucK, allowing virtual space to
“choreograph” the simulated liquid. If the user is lucky, the
liquid may tell them “Good night!” during the experience.

Unblind (Figure 4G). A game in which the protago-
nist sees through sending out integrated audiovisual sound
waves to interact with the world. The narrative follows the
protagonist’s journey through five levels to reintegrate with
their community following the loss of their vision. Abilities
in addition to seeing through sound waves include “Reso-
nance” (only see similar objects), “Beacon” (several objects
remain lit) and “Concentration” (slow time).

6.2 Reported Workflow
The students volunteered their thoughts on using Chunity
in an extended, qualitative, open-ended questionnaire.

Most students preferred to work in an integrated way, as
described in Figure 2.

• “Usually I want to wrap all the ChucK code in C# func-
tions as quickly as possible so I can abstract away all
the nitty-gritty audio details.”

• “I normally start with a big idea, and start building the
gameflow chronologically. Then I hit walls or discover
cool tools or functions within Chunity. Then the small
parts within the big picture get changed. There are a
lot of improvisations on the way to a finished design.”

Mean ± S.D. [Min,Max]
Years Music Training 10.02± 6.30 [0, 23]

Years Programming 5.30± 2.96 [2, 14]
Years ChucK 0.34± 0.52 [0, 2]
Years Unity 0.28± 0.51 [0, 2]

Table 1: Student Demographics. Students had consid-
erable training in music and programming, but most were
new to ChucK and Unity.

A number of students preferred to prototype the initial
version of their interactive audio in miniAudicle, the in-
tegrated development environment (IDE) for ChucK [13].
Then, they would move this first version into Chunity and
work in an integrated way from there.

• “I tinker and make desired sounds and code logic in mini-
Audicle, write it in Chunity, then test, iterate, and
refine within Chunity.”

A couple students preferred to prototype their visuals first.

• “I build my environment first, and then create my sound
objects with a hierarchy designed to streamline ChucK
as much as possible. However, the sound (ChucK) is
usually secondary to visual / mechanical concerns.”

6.3 Reported Experience
The students found it satisfying that Chunity enabled one
to start working quickly,

• “It just ‘works’ – like sound spatialization comes with it,
it’s not too hard to set up, and it’s fun.”

that it was straightforward to connect Unity and ChucK,

• “The ability to control the audio content in exact relation
to the visuals, programmatically, is great.”

• “I liked the overall simplicity of mapping interaction /
behavior of game elements to sound.”

• “Setting ChucK values from Unity was straightforward.
Getting ChucK values was usually satisfying.”

that Chunity could be used for timing graphical events,

• “It’s nice to have a separate, strongly-timed assistant. I
don’t like relying on frame rate.”

• “As an audio mechanism, it was amazing for getting pre-
cise timing.”

• “Made it easy to trigger events and time Unity move-
ments.”

that Chunity enabled access to procedural audio,

• “It is very useful if you want to create some arbitrary
sounds or dynamic melodies because you don’t need
to pre-record them.”

• “I liked creating a class and being able to spawn many
versions of the class and get cool sounds!”

that Chunity enabled on-the-fly addition of new audio code,

• “I liked the ability to use a RunCode to insert a line in
a ChucK instance at any time.”

and that Chunity fostered a well-integrated workflow be-
tween ChucK and Unity.

• “I once connected Supercollider and Unity using OSC
messages to create a simple audio puzzle game, and
Chunity was much easier to use. Using OSC made me
go back and forth between Unity and Supercollider,
but with Chunity, I only had to worry about Unity.”

Students had a number of requested features for the fu-
ture of the tool, including improved error messages,

• “Chunity’s ChucK error messages were fairly vague, mak-
ing debugging difficult.”

• “I debugged ChucK code separately in miniAudicle since
it’s easier there.”

global array variables,

• “Getting ChucK values was a bit cluttered when many
values were being polled.”

• “Doesn’t support global array”

• “Want arrays!”

improved performance,

• “Instantiating multiple VMs quickly chewed up CPU
resources, although ChuckMainInstance and Chuck-
SubInstance helped.”

and better ways to code ChucK in-line in the Unity editor.

• “Writing ChucK code inline was sometimes painful.”

• “Code editor in Unity doesn’t highlight errors or useful
things, and errors are a little ambiguous to know what
line they refer to.”

Overall, the students generally appreciated Chunity as a
tool, even despite its current limitations.

• “It is a great tool that enables you to break down audio
and make it your own.”

• “I feel like I’m starting to get good at it! And I feel more
powerful.”

• “I was ok with some of the bugs / lacks of functionality
(i.e. no global arrays) because it forced me to think
in different ways / learn deeply. :)”

• “It’s amazing. Even though it does sometimes crash, I
would be much worse off without it.”

• “ChucK → Chunity
Batman → Batmobile.”

• “Don’t really know if I like what I made, but I made it.”

• “There is definitely a learning curve, since you need to
know ChucK. But if I had to write the audio / timing
code from scratch, it would be a lot worse.”

Meanwhile, other students noted that Chunity did not fully
support their own preferred ways of working; this may be
attributed to the idiosyncrasies of both Unity and ChucK.

• “It mostly meshes well with Unity’s aesthetics, but I also
don’t really care for Unity’s aesthetics.”

• “If the aesthetic of your product works well with ChucK-
generated sound, it’s excellent. If the aesthetic is dif-
ferent, it works, but can be challenging.”

The questionnaire also contained a series of statements where
the students marked “Strongly Disagree - Disagree - Neu-
tral - Agree - Strongly Agree”. We codified these responses
to represent numbers 1 through 5. This was not intended
as a quantitative assessment, but rather as another useful
qualitative way to gauge how people felt in using the tool.

• 4.59/5: I felt empowered to make things I wouldn’t have
otherwise

• 4.54/5: I had new opportunities to express myself

• 4.50/5: I was proud of what I made

• 4.50/5: I improved my ability to be creative

• 4.09/5: UGens were satisfying to use

• 4.05/5: Controlling audio timing was satisfying

• 3.68/5: Chunity allowed me to prototype quickly

• 3.09/5: Controlling graphical timing was satisfying

Ultimately, our students seemed empowered by this tool.
At the same time, it is clear that much can be improved
both in terms of existing features and in terms of making
Chunity more satisfying to use. We will consider both of
these takeaways as we continue to evolve Chunity.

7. DISCUSSION
So far, we have presented Chunity’s approach, workflow, im-
plementation, and evaluation as an environment for creat-
ing interactive audiovisual artifacts. It embodies an audio-
first, strongly-timed, and high-level ethos integrated into
the workflow of a high-performance game development tool.

We have seen people make diverse use of Chunity to cre-
ate sophisticated and artful systems. In this section, we
discuss some aesthetic considerations of designing an inte-
grated tool like Chunity.

Through this process, we sought both to create a new
tool and also to understand its implications. Since all tools
encourage particular ways of working (often resulting from
values embedded in the design of the tool), our evaluation
attempted to better understand the ways of working that
an unconventional hybrid such as Chunity suggests.

Understanding the ways of working encouraged by such a
large system is not straightforward, for it is not always read-
ily reducible to (or susceptible to study from) its constituent
parts. Such understanding involves the overall aesthetics of
using the tool, what it allows one to do, and the manners
in which it suggests itself, as well as the domain(s) it en-
gages with. Interactive audiovisual design is an inherently
complex and messy domain. It entails working simulta-
neously with interaction, sound, and graphics to create a
single coherent experience. It asks the designer to recon-
cile their conceptions and intentions with the idiosyncrasies
of the underlying tools, while working with two different
programming paradigms.

As a programming paradigm, Unity encourages ways of
working that mesh well with its conception as a state-of-
the-art graphics engine and game development platform.
Unity’s workflow, while complex, has become something of
an industry standard that is widely used and understood.
Meanwhile, ChucK provides a specific way of thinking about
time and concurrency as musical constructs. In our design
of Chunity, we wanted to find an amalgam that takes ad-
vantage of Unity and ChucK’s respective ways of working
instead of creating something entirely new.

In thinking critically about Chunity as such a hybrid tool,
we have observed both limitations and useful and expressive
affordances not found elsewhere. The inherent tension and
sense of complexity in mixing two disparate paradigms (e.g.,
graphics/game vs. audio; GUI+C# vs. text-based/ChucK)
is evident in the students’ feedback. In spite of this tension,
the integration of ChucK into Unity allowed people to craft
audio synthesis code from the ground up, and to program-
matically use it to drive graphics and interaction.

More importantly, Chunity’s affordances empowered de-
velopers to create artful systems that interoperated tightly,
and to reason about such systems as one cohesive entity.
The “inline” integration of ChucK and Unity was valuable
in this regard because it allowed users to work in a way
previously not possible — this is a clear break from the
distributed computing model used by solutions that link
two engines together with network communication. In par-
ticular, users of Chunity were able to adopt an audio-first,
strongly-timed workflow in places where it served their need
(e.g., “I want my ape’s animations to be tightly coupled to
the generated music!”), while continuing to take advantage
of more “traditional” Unity workflows. These affordances
were not originally present in Unity alone, which has no
means to synthesize audio on-the-fly and relies on the graph-
ics frame rate and system timers as timing mechanisms.

Presently, we have begun to address known limitations
of Chunity by adding features to improve efficiency (e.g.,
ChuckMain / SubInstance for better spatial audio perfor-
mance) and ease of use (e.g., the helper component Chuck-
EventListener of Section 4.2 for abstracting away commu-
nication complexities between audio and graphics threads).
Moving forward, we hope to better visualize internal Chu-
nity state in real-time (such as the values of global vari-
ables); we also hope to further improve the quality of life of
writing ChucK code embedded in another context.

Ultimately, as we continue to explore its design and im-
plications, we see Chunity as two things: a unique tool for
integrating sound, graphics, and interaction — and a new
way of working that gives users the flexibility to use a game
engine to do much more than “just” make games.

Download Chunity and view further documentation at
http://chuck.stanford.edu/chunity/.

8. ACKNOWLEDGEMENTS
Thanks to all the students of Music 256A / CS 476A at
Stanford University. We would also like to thank Spencer
Salazar and Romain Michon for their support. This mate-
rial is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No.
DGE-1656518.

9. REFERENCES
[1] L. Alexander. Art and tech come full-circle in Sentris.

In Gamasutra, 2014.

[2] Cinder. https://libcinder.org/. Accessed:
2018-01-11.

[3] P. R. Cook and G. P. Scavone. The Synthesis ToolKit
(STK). In ICMC, 1999.

[4] N. Correia and A. Tanaka. Prototyping audiovisual
performance tools: A hackathon approach. In NIME,
June 2015.

[5] R. Hamilton. UDKOSC: An immersive musical
environment. In International Computer Music
Conference, Aug. 2011.

[6] J. Hochenbaum, O. Vallis, D. Diakopoulos, J. W.
Murphy, and A. Kapur. Designing expressive musical
interfaces for tabletop surfaces. In NIME, 2010.

[7] M. Lanham. Game Audio Development with Unity
5.X. Packt Publishing Ltd, June 2017.

[8] Max Software Tools for Media | Cycling ’74.
https://cycling74.com/products/max/. Accessed:
2018-01-11.

[9] openFrameworks. http://openframeworks.cc/.
Accessed: 2018-01-11.

[10] OpenGL - The Industry Standard for High
Performance Graphics. https://www.opengl.org/.
Accessed: 2018-01-11.

[11] R. S. Rosenberg, S. L. Baughman, and J. N.
Bailenson. Virtual Superheroes: Using Superpowers in
Virtual Reality to Encourage Prosocial Behavior.
PLOS ONE, 8(1):e55003, Jan. 2013.

[12] The RtAudio Home Page.
https://www.music.mcgill.ca/~gary/rtaudio/.
Accessed: 2018-01-11.

[13] S. Salazar, G. Wang, and P. R. Cook. miniAudicle
and ChucK Shell: New Interfaces for ChucK
Development and Performance. In ICMC, 2006.

[14] Unity - Audio.
https://unity3d.com/learn/tutorials/s/audio.
Accessed: 2018-01-11.

[15] Unity awards 2017. https://awards.unity.com/.
Accessed: 2018-01-11.

[16] Unreal Engine. https://www.unrealengine.com.
Accessed: 2018-01-17.

[17] G. Wang, N. Bryan, J. Oh, and R. Hamilton.
Stanford Laptop Orchestra (SLOrk). In International
Computer Music Conference, Jan. 2009.

[18] M. Wright. Open Sound Control: an enabling
technology for musical networking. Organised Sound,
10(3):193–200, 2005.

