
REALSIMPLE Basic Virtual Acoustic Guitar Lab

Nelson Lee and Julius O. Smith III

RealSimple Project∗

Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University

Stanford, California 94305

June 5, 2008

Abstract

This is the REALSIMPLE lab on estimating parameters for a physics-based guitar model
from measurements from your own guitar! We discuss various components of a physics-based
model, and methods for measuring these components and estimating parameters for correspond-
ing model components.

1 Introduction

As discussed in previous labs, there are three components to a phyicals-based guitar model: the exci-
tation, the string and the body. The string model, as reviewed in Electric Guitar Lecture: Simple Strings,
is based on the Digital Waveguide: a digital implementation of the solution to the Wave Equation.
The body of the guitar is implemented as a filter, which can be measured by striking the bridge
of your guitar with an impulse-force hammer. Lastly, we present simple methods for computing
excitation signals to drive your string-model.

2 Setting Up

In this laboratory you will estimate parameters for a physical-model guitar model based on mea-
surements of a real acoustic guitar.

Below are the steps to be taken, along with some illustrations of the kind of results you should
expect:1

2.1 Required Software

1. Matlab: Student versions of Matlab are available; the Signal Processing Toolbox is required.

2. CCRMA STK (C++ signal toolkit): the STK is free for download from the CCRMA home-
page.

∗Work supported by the Wallenberg Global Learning Network
1The figures in this laboratory were generated by Stanford Ph.D. student Nelson Lee, using software developed in

the course of his thesis research.

1

http://ccrma.stanford.edu/~{}nalee
http://ccrma.stanford.edu/~{}jos
http://ccrma.stanford.edu/realsimple/
http://ccrma.stanford.edu/
http://www.stanford.edu/group/Music/
http://www.stanford.edu/
http://ccrma.stanford.edu/realsimple/SimpleStrings/
http://www.wgln.org/

2.2 Required Hardware

1. Your guitar!

2. The guitar we used for this lab is a Selmer-Maccaferri copy, similar to the guitar Django
Reinhardt used throughout his career.

3. Our recording setup at CCRMA consisted of a Digidesign M-box 2, with two XLR input
jacks, and Digidesign’s recording software, Pro Tools 7.0. The guitar was equipped with a
Schertler DYN-G contact pickup that connected straight into the M-box.

3 Record a Note From Your Guitar

Record a note on your guitar. Figure 1 shows what your note might look like when plotted in the
time domain (highest open note on an acoustic steel-string manouche guitar).

0 1 2 3 4 5 6 7 8
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

seconds

am
pl

itu
de

original signal in time domain

Figure 1: Original signal in the time domain.

The following code segments shows basic usage of reading a file into Matlab and plotting the
data to obtain the results in Figure 1.

2

fileName = ’hard_long_1_16b.wav’;

[y,fs,bits]=wavread(fileName);

%% fs is the sampling rate of the recording

%% here we have fs = 44100

t=(0:length(y)-1)*1/fs;

figure;plot(t,y)

xlabel(’seconds’);

ylabel(’amplitude’);

title(’original signal in time domain’);

3

4 The String Model

In this section, we will use a metric commonly used in reverberation studies for estimating the
decay-rates/loop-filter parameters of your string model. The metric, Energy Decay Relief, shows
how the energy of a signal decays over time for different frequencies. In this section we will review
the Energy Decay Relief and then estimate parameters for your loop filter for your string-model.

4.1 Using the Energy Decay Relief (EDR)

Compute the Energy Decay Relief (EDR) [1] of the original signal. Here we use Matlab’s Signal
Processing Toolkit. The function spectrogram computes the Short-Time Fourier Transform (STFT)
of the signal. From the STFT, we compute the EDR. Figure 2 and Fig. 3 show EDRs for the recorded
note.

Figure 2: EDR of the signal truncated at -85 dB

We’ve provided the following code segments to demonstrate usage of the Signal Processing
Toolbox in Matlab, as well as three-dimensional plotting.

frameSizeMS = 30; % minimum frame length, in ms

4

http://ccrma.stanford.edu/realsimple/Reverb/Energy_Decay_Relief_EDR.html

Figure 3: EDR of the signal without truncation

5

overlap = 0.75; % fraction of frame overlapping

windowType = ’hann’; % type of windowing used for each frame

[signal,fs,bits] = wavread(fileName);

% calculate STFT frames

minFrameLen = fs*frameSizeMS/1000;

frameLenPow = nextpow2(minFrameLen);

frameLen = 2^frameLenPow; % frame length = fft size

eval([’frameWindow = ’ windowType ’(frameLen);’]);

[B,F,T] = spectrogram(signal,frameWindow,overlap*frameLen,2*STFT_Npt,fs);

[nBins,nFrames] = size(B);

B_energy = B.*conj(B);

B_EDR = zeros(nBins,nFrames);

for i=1:nBins

B_EDR(i,:) = fliplr(cumsum(fliplr(B_energy(i,:))));

end

B_EDRdb = 10*log10(abs(B_EDR));

% normalize EDR to 0 dB and truncate the plot below a given dB threshold

offset = max(max(B_EDRdb));

B_EDRdbN = B_EDRdb-offset;

B_EDRdbN_trunc = B_EDRdbN;

for i=1:nFrames

I = find(B_EDRdbN(:,i) < minPlotDB);

if (I)

B_EDRdbN_trunc(I,i) = minPlotDB;

end

end

figure(gcf);clf;

mesh(T,F/1000,B_EDRdbN_trunc);

view(130,30);

title(’Normalized Energy Decay Relief (EDR)’);

xlabel(’Time (s)’);ylabel(’Frequency (kHz)’);zlabel(’Magnitude (dB)’);

axis tight;zoom on;

6

4.2 Designing the loop filter for your guitar model

In this section we review Matlab calls for fitting filters to wanted magnitude responses. As using
such functions are not only useful for computing the loop-filter of your string-model, it should be
kept in mind that such methods are useful for general applications requiring filter-fitting.

4.2.1 Fitting Filters in Matlab

1. Measure the decay rate of each partial overtone, and calculate the desired amplitude response
for the loop filter in a digital waveguide model. Take the EDR, and using the rate of decay
of the signal, compute the necessary gains for the harmonic series of the signal. We will have
code samples for fitting a line to the dB decay of one frequency in a later section.

Figure 4 shows the resulting desired magnitude response of our loop filter as calculated from
the EDR..

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

dB

Hz

desired frequency response

Figure 4: Desired magnitude response of our loop filter.

7

2. Convert the desired amplitude response to minimum-phase form. This simplifies complex
behavior involving the phase of the excitation signal with the fitted filter. Figure 5 shows
the magnitude response after converting to minimum phase. Figure 6 shows the resulting

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

m
ag

ni
tu

de

Hz

magnitude response after converting to min phase

Figure 5: The desired magnitude response after converting to minimum phase

minimum-phase response.

8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

ra
di

an
s

Hz

angle response after converting to min phase

Figure 6: The phase response after converting to minimum phase.

9

3. Design the loop filter to approximate the minimum-phase frequency response. Figure 7 shows
the result obtained for this example using invfreqz in Matlab (or Octave Forge).

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

freqz of filter obtained using invfreqz

Figure 7: Magnitude and Phase responses of the fitted filter using invfreqz

The code segments demonstrates how we fitted a filter using invfreqz and stmcb.

% Note that Hmin corresponds to the response of the min-phase filter

% that we want to fit to obtain filter parameters using invfreqz

wH = (0:Npt/2)*2*pi/Npt;

wH(1) = wH(2);

wt = 1./wH;

[B,A] = invfreqz(Hmin(1:Npt/2+1),wH,25,25,wt);

figure;freqz(B,A)

title(’freqz of filter obtained using invfreqz’);

% % Obtain filter parameters using stmcb

hdesired = real(ifft(Hmin));

figure;plot((0:length(hdesired)-1)/fs,(hdesired));

10

title(’impulse response of min phase filter’)

xlabel(’seconds’);

ylabel(’amplitude’);

[stmb,stma] = stmcb(hdesired,40,40);

figure;freqz(stmb,stma)

title(’freqz of filter obtained using stmcb’);

Figure 8 shows the result obtained for this example using stmcb from the Matlab Signal
Processing Tool Box.

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

freqz of filter obtained using stmcb

Figure 8: Magnitude and phase response of the filter

Plotting the results in Matlab is simple, as the following code segments shows. Note that
Matlab’s freqz function takes as arguments the coefficients of a filter plots the magnitude
and phase responses of the described filter.

figure;freqz(B,A)

title(’freqz of filter obtained using invfreqz’);

11

figure;freqz(stmb,stma)

title(’freqz of filter obtained using stmcb’);

4.2.2 Viewing Magnitude Responses of the Fitted Filters and the Original Signal

Figure 9 shows an overlay of the original, invfreqz, and stmcb amplitude responses.

0 0.5 1 1.5 2

x 10
4

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

overlap of frequency response of stmcb filter, invfreq filter, and original signal

target
invfreqz
stmcb

Figure 9: Overlap of the fitted filter magnitude responses and the original signal

12

Figure 10 shows a close-up of the overlay of the previous figure.

0 500 1000 1500 2000 2500 3000 3500 4000
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

closeup of overlap of frequency response of stmcb filter, invfreq filter, and original signal

target
invfreqz
stmcb

Figure 10: Closeup of the overlap of the fitted filter magnitude responses and the original
signal

The following code segment was used to generate the above two plots:

figure;

plot(wH*fs/(2*pi),20*log10(abs(Hmin(1:Npt/2+1))));

hold on

plot(Finvf,20*log10(abs(Hinvf)),’r’)

plot(Fstm,20*log10(abs(Hstm)),’g’)

xlabel(’Frequency (Hz)’)

ylabel(’Magnitude (dB)’)

legend(’target’,’invfreqz’,’stmcb’)

title([’closeup of overlap of frequency response of stmcb filter,’,...

’ invfreq filter, and original signal]’);

axis([0 4000 -0.5 0])

13

5 Computing the Excitation Signal

Now that we have a string-model for our guitar model, we can use it along with the original recorded
guitar tone to compute the excitation signal using inverse-filtering.

1. Inverse filter to obtain the excitation signal. Here we make critical assumptions. 1) the
excitation signal can be removed from the original signal and 2) that this excitation signal
when fed into a filtered loop will respond as the original signal did. Therefore, in order
to obtain the excitation signal, we delay the original signal, run it through our filter, and
subtract the resulting signal from the original to obtain the excitation signal. Figure 11
shows the result obtained for this example.

0 0.5 1 1.5
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
computed excitation signal over original signal

seconds

am
pl

itu
de

Figure 11: Plot of the computed excitation signal over the original signal

The following code segment computes the excitation signal and writes it out to disk.

% find the excitation signal.

% FUND_F corresponds to the fundamental freq

N = round(fs/FUND);

14

del_y = [zeros(N,1);y(1:end-N)];

filt_y = filter(stmb,stma,del_y);

% filt_y = filter(B,A,del_y);

e_sig = y-filt_y;

wavwrite(e_sig,fs,bits,’../sound_files/e_sig.wav’);

2. The resulting excitation signal is ploted in Figure 12.

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
computed excitation signal

seconds

am
pl

itu
de

Figure 12: Computed excitation signal

15

3. Figure 13 shows the resulting excitation signal in dB.

0 0.5 1 1.5
−180

−160

−140

−120

−100

−80

−60

−40

−20

0
computed excitation signal

seconds

db

Figure 13: Computed excitation signal in dB

16

6 Finding the Desired Gains of the Loop Filter for Individual
Frequencies

In 4, we had a graph of a filter with corresponding gains that we had estimated from the EDR. In
this section, we go into detail as to how those gains were computed for filter-fitting from the EDR.

6.1 The Fundamental Frequency

Here we will elaborate on how to use the results of the EDR for each frequency to compute the
wanted gain at that frequency of our loop filter. For the fundamental, we want to match a straight
line to the linear decay (in dB) for the plot. As shown, the segment we highlighted in green marks
a good region for a linear fit. Since we know how many dBs the signal decays on this segment, we
can compute the desired gain. We have provided the code segment in our Matlab program that
does this:

%% here i corresponds to the index into our arrays for the fundamental freq (328.38Hz)

curr_vals = B_EDRdbN(i,:);

segmentFrames = startFrame:endFrame;

curr_region = curr_vals(segmentFrames);

P = polyfit(segmentFrames,curr_region,1);

slopes(i) = P(1);

offsets(i) = P(2);

RT(i) = -60*overlapSamp/(slopes(i)*fs);

g = 10.^(-3./(RT(i)*(FUND)));

gdb = 20*log10(g);

%% here gdb is in the format necessary for Matlab to fit a filter

%% to a desired magnitude response

17

Figure 14 shows the line fit to the decay of the original signal at the fundamental.

0 1 2 3 4 5 6 7 8
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0
328.3813 Hz

seconds

dB

Figure 14: Overlay of the fitted straight line with the decay in energy at the fundamental

18

Figure 15 shows the extrapolated delay beginning at 0dB to -100dB at the fundamental fre-
quency.

0 5 10 15 20 25 30
−60

−50

−40

−30

−20

−10

0
328.3813 Hz: decay over time from fitted region

seconds

dB

Figure 15: Extrapolation of our fitted decay at the fundamental frequency

19

6.2 Other harmonics

In this section we have provided overlays of our linear fits to other harmonics, as well as their
extrapolated decays. Note that in many of the plots, there is a two-stage decay. We want to find
the gain relative to the slope of the greater initial decay, rather than the second-stage decay.

1. The 2nd Harmonic

Figure 16 shows the linear fit and the region used for the 2nd harmonic.

0 1 2 3 4 5 6 7 8
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0
656.7627 Hz

seconds

dB

Figure 16: Linear fit and the region used for the 2nd harmonic

20

Figure 17 shows the extrapolated decay for the 2nd harmonic.

0 5 10 15 20 25 30
−60

−50

−40

−30

−20

−10

0
656.7627 Hz: decay over time from fitted region

seconds

dB

Figure 17: Extrapolated decay for the 2nd harmonic

21

2. The 3rd Harmonic

Figure 18 shows the linear fit and the region used for the 3rd harmonic.

0 1 2 3 4 5 6 7 8
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0
990.5273 Hz

seconds

dB

Figure 18: Linear fit and the region used for the 3rd harmonic

22

Figure 19 shows the extrapolated decay for the 3rd harmonic.

0 5 10 15 20 25 30
−60

−50

−40

−30

−20

−10

0
990.5273 Hz: decay over time from fitted region

seconds

dB

Figure 19: Extrapolated decay for the 3rd harmonic

23

3. At 3628Hz

Figure 20 shows the linear fit and the region used at 3628Hz.

0 1 2 3 4 5 6 7 8
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0
3628.3447 Hz

seconds

dB

Figure 20: Linear fit and the region used 3628Hz

24

Figure 21 shows the extrapolated decay at 3628Hz.

0 5 10 15 20 25 30
−60

−50

−40

−30

−20

−10

0
3628.3447 Hz: decay over time from fitted region

seconds

dB

Figure 21: Extrapolated decay at 3628Hz

25

4. At 12527Hz

Figure 22 shows the linear fit and the region used at 12527Hz.

0 1 2 3 4 5 6 7 8
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0
12526.9409 Hz

seconds

dB

Figure 22: Linear fit and the region used 12527Hz

26

Figure 23 shows the extrapolated decay at 12527Hz.

0 5 10 15 20 25 30
−60

−50

−40

−30

−20

−10

0
12526.9409 Hz: decay over time from fitted region

seconds

dB

Figure 23: Extrapolated decay at 12527Hz

27

5. At 21759Hz

Figure 24 shows the linear fit and the region used at 21759Hz.

0 1 2 3 4 5 6 7 8
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0
21759.3018 Hz

seconds

dB

Figure 24: Linear fit and the region used 21759Hz

28

Figure 25 shows the extrapolated decay at 21759Hz.

0 5 10 15 20 25 30
−60

−50

−40

−30

−20

−10

0
21759.3018 Hz: decay over time from fitted region

seconds

dB

Figure 25: Extrapolated decay at 21759Hz

7 Conclusions

In this laboratory, we discussed methods for estimating parameters of a physics-based guitar model
from a recorded guitar tone. Using the Energy Decay Relief, we computed the gains of our loop
filter for our string model. With the string-model estimated, we used inverse-filtering with the
original recorded guitar tone for estimating the excitation signal for our model.

References

[1] J. O. Smith, Physical Audio Signal Processing, http://ccrma.stanford.edu/~jos/pasp/, Aug. 2007,
online book.

29

http://ccrma.stanford.edu/~jos/pasp/

	Introduction
	Setting Up
	Required Software
	Required Hardware

	Record a Note From Your Guitar
	The String Model
	Using the Energy Decay Relief (EDR)
	Designing the loop filter for your guitar model
	Fitting Filters in Matlab
	Viewing Magnitude Responses of the Fitted Filters and the Original Signal

	Computing the Excitation Signal
	Finding the Desired Gains of the Loop Filter for Individual Frequencies
	The Fundamental Frequency
	Other harmonics

	Conclusions

