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ABSTRACT

This reader contains an overview of physical-modeling methods for stringed instruments. It should be entirely self-
contained, including external links to labs and more detailed content on relevant subjects. By thoroughly understanding
this reader, you should be well equipped to tackle the ensuing advanced labs in the RealSimple tree.
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Figure 1. Block diagram of a performance parameter estimation and resynthesis of old recordings application.

4 Parameter Estimation 17
4.1 Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 17
4.2 String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 23

4.2.1 Single Plane of Vibration . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 23
4.2.2 Loop Filter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 23
4.2.3 Two Orthogonal Planes of Vibration . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 27

4.3 Body Resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 27
4.3.1 Low-Order Filter Implementations . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 31

4.4 Radiated Sound Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 32
4.4.1 Low-Order Filter Implementations . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 32
4.4.2 Interpolating Between Measurements . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 32

5 Review of Methods and Final Words 35

6 References 35



Figure 2. Stringed instrument decomposition abstraction block diagram.

1. INTRODUCTION

In this reader, we discuss methods for real-time synthesis of stringed instruments. Interest in this topic is wide and
varying, as both studio and performance uses for realistic virtual stringed instruments are becoming increasingly possible
with gains in computing power.

Having a high-fidelity physics-based virtual stringed instrument model is useful for many applications. Current sample-
based synthesizers, which are based on audio recordings, donot allow fine control of the excitation of the strings of the
instrument. Synthesizers based on physical models, in contrast, promise unlimited control over the expressive nuances
of string excitation. The synthesis parameters are also more intuitive, since they have corresponding meanings in the
physical world. Changing intuitive parameters can result in more realistic changes to the sound produced.

Another of many applications includes automatic transcription and resynthesis of old recordings. Given that there is
a mechanism for processing old recordings and mapping them to how they were played on the instrument, with a high-
fidelity synthesis model and the necessary performance parameters, resynthesis of old recordings can be made to sound
like what they would, had they been made with today’s technology. Figure 1 shows the block diagram of such a system.
The focus of this reader is on the third circled block, the physical model of the plucked stringed instrument.

The goal of this reader is to outline procedures for making a virtual stringed musical instrument based on a combination
of physical theory and laboratory measurements from a real instrument. Since this topic is too large to be covered in
the available space, we will make extensive use of pointers to supporting information. In addition to the traditional
bibliographic citations, we will refer the reader to additional online books, related websites, and laboratory exercises
covering elementary models and techniques used. Our goal isto make it possible to follow links in this reader in order
to flesh out the complete details of the theory and practical techniques summarized here. For the advanced reader (such
as a seasoned graduate student working in the area of virtualmusical instrument design), this reader will hopefully prove
sufficiently self-contained to be used as a laboratory guide.

In the following sections, we briefly review elementary components of stringed musical instruments and how they may
be modeled efficiently for real-time digital synthesis applications. We then summarize practical measurement and cali-
bration techniques for various instrument modeling components. Finally, we discuss methods specifically for estimating
parameters of apluckedstringed instrument.

A useful abstraction that illustrates our modeling approach for virtual stringed instruments is shown in Figure 2.
Not only is this decomposition useful for compartmentalizing from a modeling perspective, it is useful in performing
measurements on the instrument as well as following the physical flow of how a stringed instrument is played: energy
injected into the system to how energy reaches our ears by pressure waves created by the vibration of the instrument’s
body.

2. ELEMENTS OF STRINGED INSTRUMENTS

In all stringed instruments, the strings are put into motionby an external force typically applied by a finger, plectrum
(“pick”), hammer, or bow. The vibrating string transfers energy into the body/resonator of the instrument, which in turn
produces pressure waves in the air that propagate to our ears.

2.1. Vibrating String

In this section, we briefly describe the physics of the stringand its corresponding virtual representation. We describehow
this model of the string is analogous to its physical counterpart and describe various initial-conditions for the different
ways the string can be set into motion. We then discuss more complex modeling techniques for the vibrating string,



Figure 3. t=0, Figures 3 to 10 show an example of the traveling wave solution to a string that is displaced to an amplitude
of 2 at time t=0. We note that the string is held in place at three points, P1, P2 and P3 at t=0. The top plot of each figure
shows the right traveling wave, the middle plot the left traveling wave and the bottom plot the physical displacement,
equal to the sum of the top and middle plots.Plots generated using scripts developed by Ed Berdahl.

initial pitch shifts, the coupling of multiple strings and the vibration of the string in two orthogonal planes and how such
modeling techniques can describe natural phenomena such astwo-stage decay.

2.1.1. D’Alembert’s Wave Equation

The formulation of the Wave Equation and its solution by d’Alembert in 1747 [1] is the theoretical starting-point for
physical stringed models. The wave equation, written as

K
∂2y

∂x2
= ε

∂2y

∂t2
(1)

whereK is the string tension,ε is the linear mass density andy(t, x) is the string displacement as a function of time
(t) and position along the string (x). It can be derived directly from Newton’s second law applied to a differential string
element. In addition to introducing the 1D wave equation, d’Alembert introduced its solution in terms of traveling waves:

y(t, x) = yr(t −
x

c
) + yl(t +

x

c
) (2)

wherec =
√

K/ε denotes the wave propagation speed. Though each individualtraveling wave is unobservable in the
physical world, we use their constructs for modeling the physical behavior of the string, whose displacement is equal to
the sum of the two traveling waves. Figures 3 to 10 show how a physical string’s displacement, initially displaced to a
triangular pulse, is equal to the sum of its left and right traveling waves at timet = 0. The blue arrows in Figure 3 show
the points of displacement at timet = 0. Subsequent frames are shown, as the bottom plot of each frame corresponds
to the physical displacement of the string. The top and bottom plots correspond to the right and left traveling waves,
respectively. For a detailed derivation of the solution to the Wave Equation, we refer readers to
http://ccrma.stanford.edu/ jos/pasp/TravelingWaveSolution I.html.

D’Alembert’s solution to the wave equation serves as the theoretical foundation of which physical models for stringed
instruments are based upon.

2.1.2. The Delay Line

In this section we present the fundamental computing block used in physical modeling. We present different views of this
data structure and use it for building string models for the remainder of this reader.

The data structure of the delay line naturally arose from digital computing. From a Computer Science perspective, the
delay line is simply a vector of values. In the musical acoustics community, the delay line is the digital implementation

http://ccrma.stanford.edu/~jos/pasp/Traveling_Wave_Solution_I.html
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Figure 10. t=35

of simulating propagation distance. Figure 11 shows an example of a length6 delay line, where at each time slice, values
are shifted right. The input signal, into the delay line isx(t), such that the values input into the system are the first six
non-zero numbers of the Fibonacci sequence.

As shown in Figure 11, the vector of values is used to represent space. At each tick, or change in time, the values shift
right representing propagation of values. For the remainder of the reader, we assume that a delay line represents space
and changes occur to its values through time. For simplification, we draw a delay line as a box with the negative exponent
to thez being the length of the delay. Thez corresponds to the variable of thez-transform, where a single unit delay is
z−1 [2, 3]. We denote this equivalence in Figure 12.

For the musical acoustics community, such a data structure is invaluable in modeling propagation. In reverberation,
delay lines can be used to simulate the indirect paths of a signal [4, 5]. Two online labs are available to help the reader gain
familiarity with delay lines and how they are used in modeling propagation distance in a basic feed-forward block diagram
and in more elaborate virtual reverberation algorithms. They can be found at http://ccrma.stanford.edu/realsimple/lattice ladder/
and http://ccrma.stanford.edu/realsimple/reverb/, respectively.

2.1.3. Digital Waveguide Models

Observing the solution to the Wave Equation in Equation 2, the displacement of a string is the sum of two traveling waves
moving in opposite directions. We model each traveling wave’s propagation path with a delay line. As Figure 13 shows,
the data-structure of two delay lines in series in a loop models the physical behavior of the vibrating string as the virtual
implementation of the theoretical solution of the sum of twotraveling waves.

To cement these abstractions, we present an example of how a vibrating string is modeled with the digital waveguide
with initial conditions of a triangular pulse near the middle of the string. Since the sum of the left and right traveling-wave
components always equals the displacement of the physical string, we initialize each delay line with a triangular pulse
with half the amplitude of the physical string such that the sum of corresponding values from both delay lines equals the
amplitude of the pluck for the physical string.

At t = 0, we allow values to propagate. Depending on what the sampling-rate is, the physical length of each sample in
the delay lines is set assuming a constant propagation speedc.

As Figures 3 to 10 show, the string is held in place at pointsP1, P2 andP3. At t = 0, we release the string at these
points. What we obtain from our virtual model is two travelingwaves moving in opposite directions such that the sum of

http://ccrma.stanford.edu/realsimple/lattice_ladder/
http://ccrma.stanford.edu/realsimple/reverb/


Figure 11. An example of a delay line and how it is used.

Figure 12. Equivalence between a vector of values and a delay line block diagram.



Figure 13. A digital waveguide consisting of two delay lines in seriesin a loop. Note that the inverters between the delay
lines are only present when acceleration, velocity and displacement of the string is modeled.

corresponding values always equals the displacement of thephysical string [6].
We now relate the parameters of the digital waveguide to physical characteristics of the string. Our simple digital

waveguide, shown in Figure 13, consists of two delay lines each of lengthM . The frequency of the digital waveguide is
directly related to the sampling-rate of our system and the length of the delay lines,M .

Assuming a sampling ratefs, we can determine how long it would take for an impulse to travel to both ends of the
string and back. If an impulse is placed in the first sample of the first delay line, we confirm that it takes2M samples of
propagation for the impulse to return to its original position, which is equivalent toT = 2M

fs

seconds. Therefore, in our
lossless string-model, a traveling-wave takesT seconds to reflect from one end and back. InvertingT , we now know that
the virtual string oscillates at a fundamental off1 = 1

T
Hz.

Since each delay line corresponds to one direction of a traveling wave of the string, we have an intuitive physical map-
ping between the digital waveguide and the physical string.In Figure 13, we have inverters between the two delay lines.
The inverter on the left of the figure corresponds to the “nut”of the instrument and the second inverter the “bridge” of the
instrument. Note that the inverters are only present in our digital waveguide when acceleration, velocity and displacement
waves are modeled with the waveguide. For a more detailed discussion on alternative wave variables modeled in digital
waveguides, we refer readers to http://ccrma.stanford.edu/ jos/pasp/AlternativeWaveVariables.html.

2.1.4. Natural Decay of the String

If a physical string is tied to two rigid ends, energy injected into the string remains within the string. However, it does
eventually stop motion. The tension of the string, frictionwith the air and various effects cause the string’s motion to
eventually stop [7]. By inserting a low-pass filter into the digital waveguide, as shown in Figure 14, we can model the
string’s decay properties in our virtual model [8]. Computing the loop filter’s coefficients is discussed in Section 4.2.2.

Extending our simple digital waveguide, as shown in Figure 14 we add the string’s damping into the Waveguide’s
feedback loop. This maps physically to energy loss in the string from friction, the string’s properties and other more
minute, time-invariant effects.

We use a frequency all-pass filterHL(ω) to calibrate our Waveguide to match the decay as measured from a real guitar
string. In the context of a digital waveguide,HL(ω) is called the loop filter.

2.1.5. Modeling Two Planes of Vibration

In the physical world, the strings of an instrument vibrate in two orthogonal planes. In previous sections, we discussed
modeling vibrations of the string with a single digital waveguide. To a first approximation, the single digital waveguide
representing the transverse motion of the string is accurate, as most energy transferred to the body of the instrument
occurs in a single plane. However, to capture more peculiar phenomena, it is necessary to use two digital waveguides,
each representing two orthogonal planes of motion. With twodigital waveguides and a full covariance-matrix correlating
both waveguides, effects such as Two-Stage Decay and beating effects can be correctly modeled [9]. Figure 15 shows
the block diagram of two linearly coupled digital waveguides. One digital waveguide, denoted by the vertical direction
corresponds to the direction of motion transverse to the instrument’s body. The second digital waveguide, denoted by the
horizontal direction corresponds to the direction of motion parallel to the instrument’s body. Therefore, as a simplification,
we often ignore the direct effects of the bridge on the horizontal plane of motion by not havingHhh(ω) in Figure 15.

http://ccrma.stanford.edu/~jos/pasp/Alternative_Wave_Variables.html


Figure 14. An extension of our simple digital waveguide by including loss through a loop filter. Note that the inverters
between the delay lines are only present when acceleration,velocity and displacement of the string is modeled.

Two-stage decay is clearly present in many stringed instruments. Though excitation is mechanically controlled in the
piano, two-stage decay is also observed as the strings for a single note are carefully tuned to exhibit what is deemed
psychoacoustically pleasing for the instrument. With two digital waveguides, each having different loop-filters for each
digital waveguide, one can be set to decay at a faster rate than the other, such that the two-stage decay phenomenon
is modeled. In Section 4.2.2, we discuss how to measure the decay of the string from different recordings and tune
loop-filters to match the two different decay-rates.

Another phenomenon observed in physical instruments is initial pitch shifts that differ for each plane of vibration [10].
This phenomenon can be modeled using two digital waveguidesper string with different time-varying lengths as discussed
in Section 2.1.6.

2.1.6. Varying the Digital Waveguide

In Section 2.1.3, we discussed how digital waveguides modelpropagation of traveling waves along a physical string. The
single parameter that can change is the total delay in the loop. Since the described system is linear and time-invariant [3],
the digital waveguide’s delay lines, presented in Section 2.1.3, can be lumped into one delay line with delayN = 2M .
Figure 16 shows such a simplification. Though this simplifiesthe block-diagram of a digital waveguide, it loses its direct
physical mapping: viewing the delay-lines as traveling waves moving in opposite directions. However, the systems are
equivalent. For our discussion on time-varying lengths fordigital waveguides, we discuss digital waveguide’s with a
single delay line, and thus with a single delay length.

Once reduced to this form, the digital waveguide has a singleparameter, its total delayN . By changingN through time,
the digital waveguide effectively models a changing propagation distance. The most notable physical everyday occurrence
of such an effect occurs whenever an ambulance or police car with its sirens on passes us. The pitch of the siren increases
on approach and decreases upon passing. This phenomenon, known as the Doppler Effect [11], is the foundation behind
many effects and sounds in the musical community such as the flanger and the Leslie [12, 13]. In the digital domain,
however, changes in the delay line length occurs in natural numbers. Fractions of samples in computers do not exist.
Therefore, in order to account for varying delay line lengths, many interpolation algorithms have been studied to provide
a smooth change in delay line lengths according to the sampling rate used [14, 15, 16, 17, 18]. For a detailed overview of
various interpolation methods, we refer the reader to http://ccrma.stanford.edu/ jos/pasp/DelayLine Interpolation.html.

An online lab that steps the reader through digital implementations of the Doppler, Flanger and Leslie can be found at
http://ccrma.stanford.edu/realsimple/dopplerflangerleslie/.

2.2. Plucking the String

Returning to our two delay line implementation of the digital waveguide, we show how to excite our virtual string model
with a clear mapping to the physical world. Figure 17 shows a digital waveguide where for each delay line, we have
tapped into theXth sample. Here we input at each time-slice our excitation signal e(n).

http://ccrma.stanford.edu/~jos/pasp/Delay_Line_Interpolation.html
http://ccrma.stanford.edu/realsimple/doppler_flanger_leslie/


Figure 15. Two linearly coupled digital waveguides. Each Waveguide represents one plane of motion of the string. The
vertical plane denotes the transverse direction with respect to the body of the instrument.Hvv corresponds to the strings
interaction with the instrument’s body.Hvh andHhv correspond to the coupling between the string in its two orthogonal
planes of motion.

Figure 16. Combining the delay lines in the Digital Waveguide and showing a fraction sample.



Figure 17. Tapping into theXth sample where the excitation signal is fed into the digitalwaveguide.

2.2.1. Theoretical Plucks

If we want an impulse at the sampling distance of where the pluck position of the guitar would be, we calculateX such
that the samples for each delay line tapped into correspond to the same physical location of the instrument [19]. We then
sete(0) = 1 ande(n) = 0 for all n > 0.

As Karplus-Strong discussed, exciting a digital waveguidewith an impulse is psychoacoustically plain, whereas excit-
ing the digital waveguide with random values results in a more satisfying sound [20].

With delay lines modeling displacement, we can linearly-interpolate between the pluck-point to the two ends of the
string for both traveling waves for an excitation that displaces the string at a single point causing the remainder of the
string to displace linearly to the ends of the string. Furthermore, if the delay lines represent acceleration or curvature,
this ideal-pluck is a single non-zero sample in each delay line. Note, since the digital waveguide is a sampled model
of a continuous system, band-limiting conditions need be accounted for. A detailed description of such can be found in
http://ccrma.stanford.edu/ jos/pasp/IdealPluckedString.html.

2.2.2. Complexities of Real Plucks

For theoretical plucks, exponentially-decaying short-noise-bursts produce the psychoacoustically richest sounding digital
waveguides for plucked stringed instruments. However, as discussed later in Section 4.1, the pluck itself is psychoacousti-
cally significant. As any plucked-stringed instrument musician would attest to, reproducing the exact same pluck by hand
is extremely difficult if not impossible. Studies have been made to study guitar plucks [21]. In such research, elaborate
devices have been constructed to reproduce the exact same pluck. As shown later in Section 4.1, plucks are more than
short bursts of white-noise. Each pluck has unique characteristics to its particular occurrence.

With coverage of idealized plucks and digital waveguides, one can now build an electric guitar using digital waveguides.
An online laboratory outlining the steps for doing so can be found at
http://ccrma.stanford.edu/realsimple/electricguitar/.

2.3. Body Resonance

This section describes the integration of the instrument body into our digital waveguide model. We extend our digital
waveguide string model with the instrument’s driving-point admittance. With the inclusion of the instrument body’s
resonator, we can attach multiple instantiations of our digital waveguide model to account for multiple strings coupled at
the bridge of the instrument [22].

2.3.1. Driving-Point Admittance

The driving-point admittance of the body of the instrument,characterizes linear-interactions between the string andthe
body in both directions: meaning energy transferred from both string to body and body to string. The driving-point
admittance is defined as follows:

Γ(ω) =
V (ω)

F (ω)
(3)

where for a given frequencyω, the ratio between the Fourier Transform of the velocity andforce is known. A physical
explanation of the driving-point admittance is to view the admittance as a measure of how readily force exerted at the
contact point at a certain frequency results in motion at that same frequency [23]. Since the body of the guitar is a

http://ccrma.stanford.edu/~jos/pasp/Ideal_Plucked_String.html
http://ccrma.stanford.edu/realsimple/electric_guitar/


Figure 18. Convolving the physical output of the digital waveguide with the driving-point admittance.

rigid structure that exhibits standing waves at particularfrequencies, known as the modes of the guitar, the body vibrates
naturally at these frequencies. Notable modes include the air mode and the first few body modes.

A brief overview of the mechanics of our physical model thus far: the string vibrates upon excitation. Its end is
connected to the body of the instrument at the bridge, exerting energy from the initial pluck at the fundamental frequency
and its harmonic series. According to the driving-point admittance, the force applied at the bridge by the string results
in motion of the bridge and top-plate. The resulting motion is dependent upon the construction of the top-plate of the
instrument which determines its modes of vibration. The acoustic instrument then propagates pressure waves according
to its top-plate movement, thereby coloring the resulting pressure waves heard by our ears.

2.3.2. Filtering with the Driving-Point Admittance

The simplest extension of our current digital waveguide model is to use the driving-point admittance of the instrument in
a convolutory way. A discussion of what measurements neededto compute the driving-point admittance can be found in
Section 3.2.

In Figure 18 the output of the digital waveguide is convolvedwith the driving-point admittance. Since the virtual
instrument described up to this point is linear and time-invariant, the driving-point admittance of the instrument canbe
used to excite the digital waveguide by commuting the admittance with the digital waveguide. Though this is unrealizable
in the physical world, the two systems are the same. This method of using the driving-point admittance to drive the digital
waveguide is known ascommuted synthesis. 1 2

2.3.3. Bi-directional Interaction

In the physical world, the motion of the string exerts a forceon the bridge resulting in a velocity at the point of contact.
In Section 2.3.2 from a physical perspective, only energy passing from the string to the body is modeled. However, we
can extend our current model to account for not only the influence of the string to the bridge, but also the influence of the
bridge to the string. Network theory applied to this junction results in a bi-directional model [24, 25, 26]. Figure 19 isan
illustration of six strings attached to a common bridge. Thesimplifying assumption is that all strings move at the same
velocity as the bridge at the bridge.

HB(ω) =
2

Rb(s) + R1 + R2 + ... + R6

WhereRb(s) = 1
Γb(s)

, whereΓb(s) is the driving-point admittance of the bridge andRi is the wave impedance of string
i. Furthermore, each string’s wave impedance can be computedusing its physical characteristics through the following
equation:

Ri =
√

Kiεi =
Ki

ci

= εici

whereKi is the string tension,εi is the string’s linear mass density andci is the speed at which waves on the string travel
both left and right. For more information on Network theory and how it applies to musical acoustics, we refer readers to
http://ccrma.stanford.edu/ jos/pasp/IntroductionLumpedModels.html.

1 http://ccrma.stanford.edu/˜jos/pasp/CommutedSynthesisStrings.html
2 An online laboratory for creating an acoustic guitar physical-model using commuted synthesis is available in the RealSimple collection.3

http://ccrma.stanford.edu/~jos/pasp/Introduction_Lumped_Models.html
http://ccrma.stanford.edu/~{}jos/pasp/Commuted_Synthesis_Strings.html


Figure 19. An illustration of six strings attached at the bridge of theinstrument. The simplifying assumption is that all
strings move at the same velocity of the bridge at the bridge.

Figure 20. A block diagram of multiple strings of an instrument connected at a single scattering junction with the body
of the instrument.

2.3.4. String-Body Scattering Junction

Continuing our discussion in Section 2.3.3, to model multi-stringed instruments, we naturally extend our model so that
each digital waveguide, models a string of the instrument, with all strings attached to a scattering junction with a load
bearing at the junction, representing the mass of the instrument’s bridge and top-plate. Figure 19 shows a diagram of our
virtual model of a multi-string instrument with all stringscoupled at the bridge.

With such a model, we are able to physically model certain interactions occurring at the bridge between the strings and
body of the instrument. In the case of the acoustic guitar, all the strings are coupled at the bridge such that energy transfers
from one string to another through the bridge. This effect isvery prominent, in that musicians change their technique to
account for “leakage” of energy. Guitar players refer to this phenomenon as open-string noise, which typically occurs
when a guitar player plays on higher strings without muting lower strings, resulting in lower strings vibrating without
being plucked. This is especially problematic for musicians playing microphoned acoustic instruments which often result
in unwanted feedback. For electric guitar players, when thegain of the pickups are amplified to create distortion, unwanted
vibrating strings obscure the sounds of the actual strings played.

Figure 20 shows a block-diagram modeling an instrument withtwo strings with a string-body scattering junction. The
digital waveguides representing each string are simplifiedin that they move only in the transverse plane. As shown, energy
from one string can cause excitation of another string [27].Furthermore, the resulting output contains the effect of the



body with the driving-point admittance acting as a mass loadat the junction. The digital waveguides used in Figure 20 can
be easily replaced with the digital waveguide in Figure 15 such that the output ofHvv(ω) from each digital waveguides’
transverse loop feeds into a summer into−Hb(z) of Figure 20. The output of−Hb(z) is then fed back into each digital
waveguide’s transverse plane loop [28].

2.4. Pressure Radiation

This section describes two radiation models for the guitar.In the first approach, the sound pressure is synthesized at
any number of virtual microphone positions by means of a simplified Kirchhoff-Helmholtz integral over the radiating
surfaces determined by the modal state [29]. The second approach is a simplified point-to-point method which uses
recorded input/output signals to compute a transfer function between the string-bridge junction to the position of the
output-recording microphone.

2.4.1. Integrating over Radiating Surface Areas

Soon to come!

2.4.2. Point-to-Point Modeling

This method of modeling uses a single transfer function, which can be either computed analytically or measured to
compute what the resulting pressure waves at a given point inspace from the point of vibration are from acceleration
waves. The limitations of this method, compared with Section 2.4.1 is that pressure waves can be computed for only one
point in space, relative to the vibrating source. Where as described in Section 2.4.1, the radiation of sound is computed
for the source’s surrounding space. Though this method measures radiation for the source’s surrounding space, it comes
with a higher computation cost. In real-time synthesis, point-to-point modeling is the preferred method as computing the
entire radiating surfaces of a source is too costly to be donein real-time. Furthermore, for a stationary binaural listener,
only two transfer functions for a stereo signal need be computed.

3. MEASUREMENTS

This section reviews techniques for guitar measurement relevant to building a virtual guitar.

3.1. String Vibration

String vibration measurement has been studied and used extensively in the music industry in the form of amplifying
guitars, resulting in the electric guitar. In the traditional single-coil magnetic pickup, a strong magnet is wound with
copper wire. This acts as a sensor as the motion of the string causes a change in the magnetic field and as a result a change
in the current through the copper wire. This signal, proportional to the movement of the string, is then amplified. For
some guitars, such as Gibson’s Les Paul, the guitar is close to being purely electric, in that energy is maintained within
the vibration of the string to drive the pickups that amplifyits sound. The guitar body is literally a block of solid wood
meant to not resonate or color the timbre of the guitar’s sound, thereby minimizing energy tranferred to the guitar body to
create longer sustain in the string.

Another method for measuring a string’s displacement is with use of a light-emitting-diode (LED) and a photo-
transistor. The photo-transistor measures the amount of light received from the LED as light is obstructed by the movement
of the string. This sensor is an inexpensive method for measuring the motion of the string in two-orthogonal planes.

Vibrometry is another method used for measuring the motion of a string as it measures the frequency shift of the back-
scattered light reflected from the measured surface to compute the changing distance between the laser and the vibrating
string at high sampling rates.

3.2. Bridge Force

Measuring the driving-point impedance of a stringed instrument’s body is key in obtaining its acoustic characteristics
[30, 31]. To obtain the driving-point impedance of the guitar body, an impedance head accelerometer is placed in contact
with the guitar on or close to the bridge. This sensor outputsthe accleration at its point of contact. Accelerometers are
typically very low load bearing thereby obtaining accuratemeasurements up to very high frequencies.

As defined in Section 2.3.1, the velocity and force are used incomputing the driving-point-impedance. In the following
subsection, we present two methods for exciting the motion of the guitar bridge. With each method, the force signal is
measured and used in conjunction with the acceleration measured to compute the driving-point impedance of the bridge.



3.2.1. Excitation Force

We present two methods for exciting the bridge for measurements. One uses a shaker and the other an impulse-force
hammer.

The shaker is placed in contact with the bridge with as littleload mass from the shaker. A signal, typically white
noise is input to the shaker. Both the force signal from the shaker and accelerometer signals are recorded to compute the
driving-point admittance.

With the impulse-force hammer, an individual strikes the bridge with a short, single instance to excite the bridge. The
impulse-force hammer outputs the force signal applied to the testing body, and the accelerometer signal measures the
movement of the bridge. With both signals, similar to the shaker and accelerometer method, the driving-point admittance
is computed.

There are benefits and disadvantages to both excitation methods. Since transfer function computation is statistical in
nature, in that the transfer function is computed using the cross power spectral density, and since the signal used to drive
the shaker is white noise, the measured signals can be recorded indefinitely. Therefore, the resulting transfer function is
less susceptible to experimental noise. However, the drawback to the shaker is its hefty mass relative to the impulse-force
hammer. Obtaining an accurate response at higher frequencies is more difficult with a shaker.

The benefit of the force-impulse hammer is that the mass of thehammer is not as much of an issue as the shaker in
exciting the body of the instrument. Therefore, the high-frequency components of the resulting transfer function are more
accurate. However, the drawback with the force-hammer is inits difficulty in reproducing the exact same measurement.
It is difficult if not impossible to strike the body of the instrument with the same force by hand. Furthermore, the resulting
signals are short compared to what can be obtained when a shaker is used.

3.3. Body Vibration

Understanding the movement of the main resonating surface of an instrument, in the case of a guitar, its top-plate, is
essential in understanding the instrument’s ability to propagate sound at all frequencies. Viewing the frequencies atwhich
the modes occur helps explain the timbre of the acoustical characteristics of the instrument. A scanning-point vibrometer,
for example by Polytec, measures the movement of a surface and gives its users three-dimensional software views of its
structural motion.

3.4. Pressure Radiation

To measure a point-to-point transfer function for pressureradiation, the instrument is taken into an anechoic chamber, and
excited with a shaker with white noise as input or with a force-hammer, in which case the force input into the system is
close to an impulse. The signal generated from the motion of the instrument is recorded using a microphone a distance
away from the instrument. With the acceleration and pressure signals recorded, a transfer function is computed [32].

4. PARAMETER ESTIMATION

This section reviews methods for calibrating the model elements discussed in Section 2 to match measurements discussed
in Section 3.

4.1. Excitation

As discussed in Section 2.2, the excitation to our virtual instrument is a signal, taken from a wave-table used to drive
our digital waveguide models. In the literature there are several methods for computing excitation signals from actual
recordings. Extracting excitations from actual recordings of guitar plucks result in the best, psychoacoustically sounding
models [33].

In recent years, two fundamentally different approaches for obtaining excitation signals from recordings have emerged:
inverse-filtering and constant overlap-add (COLA) methods. We briefly describe the problem and give an overview of the
various methods.

Figures 21 and 22 show a recorded guitar note on the guitar’s high ’e’ string and its Short-Time-Fourier-Transform
(STFT), respectively. As shown, upon the onset of the note, all frequencies have energy. After the inital attack, most of
the energy remains at the harmonic frequencies of the fundamental. The goal of excitation extraction is to remove the
tonal components that ring after the initial onset and to reduce the energy during the onset at those components to match
the general energy levels at other frequencies.

With the problem now graphically represented, we describe how the two different methods approach removal of har-
monic peaks shown in the STFT. The inverse-filtering methodsremove the harmonic peaks by inverse-filtering the signal
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Figure 21. Time-domain plot of a recorded guitar tone on the open high ’e’ string.
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Figure 22. Spectrogram of a recorded guitar tone on the open high ’e’ string.
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Figure 23. Spectrogram of a recorded guitar tone on the open high ’e’ string from timet = 0s to timet = 0.5s
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Figure 24. Time-domain plot of the same recorded guitar tone with harmonic peaks removed resulting in an excitation
signal for physical model use.
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Figure 25. Spectrogram of the same recorded guitar tone with harmonicpeaks removed resulting in an excitation signal
for physical model use.
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Figure 26. Spectrogram of the same recorded guitar tone with harmonicpeaks removed resulting in an excitation signal
for physical model use from timet = 0s to timet = 0.5s.
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Figure 27. Plot of the original recorded guitar tone’s first FFT frame with focus on the peak near660Hz. Circle dots are
FFT values to be used for statistics collecting.

with a comb-filter with peaks at the harmonic frequencies. The COLA methods remove the harmonic peaks by applying
non-linear averaging to the magnitudes at each STFT frame ofthe signal.

The first method is the Matrix-Pencil Inverse-Filtering method [34]. It computes the sinusoidal components of a
signal, using the Matrix-Pencil method, and performs inverse-filtering with the sinusoidal components to remove the
tonal components leaving the excitation [35].

The second method, the Sines-Plus-Noise Inverse-Filtering method is similar to the Matrix-Pencil method, in that sinu-
soidal components of a model are computed, but instead of using the Matrix-Pencil method for computing the sinusoidal
components, a generative sinusoidal model is used [36, 37].A residual signal is computed from subtracting from the
original recording the sinusoidal signal. Inverse-filtering is then performed on the recording using a Digital Waveguide
tuned for the recording where scaled versions of the residual and sinusoidal signals are added together to help remedy the
notches created from inverse-filtering [38].

The third method, the Magnitude Spectrum Smoothing, uses STFT processing. Within each FFT window, a low-pass
filter is applied to the magnitude spectrum of the window. TheiFFT is then taken where the resulting time-signal is stored
in a buffer for overlap-add [39].

The last method, the Statistical Spectral Interpolation method, similar to the MSS method, performs STFT processing
and COLA reconstruction, but removes harmonic peaks by sampling new spectral magnitudes at the peaks according to
a normal distribution with mean and covariance equal to those of magnitudes in the values surrounding the peak for each
FFT frame [33].

As the literature shows, SSI produces the best psycho-acoustically sounding excitations. Here, we present the method
in detail.

From a high-level viewpoint, the SSI method only modifies themagnitudes of the STFT of the guitar tone without
affecting phase information. The method collects statistics on the magnitudes of frequencies surrounding harmonic peaks
and uses these statistics to generate non-deterministic gain-changes for the magnitudes at these peaks, without modifying
the phase. With inverse-filtering methods, modifying phaseinevitably introduces artifacts. Thus, this method’s primary
goal is to minimally-alter the original tone.

The STFT is used for analyzing and modifying the original recorded tone. The STFT can be seen as a sliding window
that takes at each sample-window a FFT of the windowed signal. The transform of that windowed portion is then modified,
and the iFFT is then taken and saved in a buffer. The window is then slid according to how much overlap is wanted. The
parameters for the STFT are the type of window used, the length of the window and the number of samples the window
slides by. Sample parameters for the method are a Hamming window of length212 samples with0.9 overlap (hop size of
410 samples). Though212 samples with a sampling-rate of44, 100 Hz is long (≈ 100 ms), pre-echo-distortion artifacts
are remedied by starting the algorithm during the onset of the recorded tone.

Actual processing occurs at each window of the STFT. Consider each FFT window taken to be a frame for processing.
Within each frame, the harmonic peaks of the recorded tone are attenuated. Harmonic peaks can be found using the
Quadratically Interpolated FFT (QIFFT) method [40].
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Figure 28. Plot of the original recorded guitar tone’s first FFT frame with focus on the removed peak near660Hz. Circle
dots are FFT values to be used for statistics collecting.

Assuming that the fundamental frequency of the recorded tone is atf1 in Hz. A bandwidthWp in Hz is specified,
indicating the width of the peak. Another bandwidthWn in Hz is specified indicating the width of the interval used for
statistics collecting with respect to the fundamental frequencyf1. In using the SSI method for the recording in Figure 21,
Wp = 0.3 · f1 andWn = 0.75 · f1. These values ensure that the points used for statistics collecting do not reach into the
next harmonic peak but are large enough to obtain a reasonable mean and standard deviation.

For each harmonici with frequencyfi, the following is defined and used for processing.
Define a set of indices,Γ, whose frequency values satisfy the following:

∀γ ∈ Γ,Wp ≤ |νγ − fi| ≤ Wn (4)

whereνk corresponds to the frequency in Hz of thekth FFT bin. The values inΓ correspond to indices within the current
frame whose frequencies lie within the specified bandWn but outside the bandWp centered aroundfi. See the circled
points in Figures 27 and 28.

The mean and standard deviation of the magnitude of values inFFT bins inΓ are computed as follows:

µ =
1

|Γ|

∑

i∈Γ

|Xi| (5)

σ =

√

1

|Γ|

∑

i∈Γ

(|Xi| − µ)
2 (6)

Define the set of indices,∆, whose frequency values satisfy the following:

∀δ ∈ ∆, |νδ − fi| ≤ Wp (7)

The values in∆ correspond to indices within the current frame whose frequencies lie within the specified bandWp

centered aroundfi. The magnitudes at these frequencies are changed to remove the peak. See the starred points in
Figures 27 and 28.

Thus, for all bins with indices in∆, magnitude values are modified to remove the observed peaks.This occurs as
follows:

For eachδ ∈ ∆, generate a valueρ ∼ N (µ, σ).

Xδ :=
ρ

|Xδ|
Xδ. (8)

Figures 27 and 28 shows the points the algorithm uses for statistics collecting and the points with gains altered. As
shown, the peak at660Hz is entirely removed.



Figure 29. Digital Waveguide model with one single delay line and loopfilter.

4.2. String

4.2.1. Single Plane of Vibration

4.2.2. Loop Filter Estimation

As discussed in Section 2.1.4, the loop filter gives the Digital Waveguide frequency-dependent damping. Similar to what
is used in Artificial Reverbation, the time for frequencies to decay60dB, known ast60, is used to determine the gains of
the filter. We definet60 to be the time in seconds for a signal to decay60dB. For obtaining gains for the fundamental
and harmonics of our loop filter, we computet60 for each of these frequencies over time using the Energy Decay Relief
(EDR) [36, 41].

For the remainder of this section, we commute the second delay line shown in Figure 14 with the loop filter and
combine the delay lines. The resulting system, shown in Figure 29 is equivalent to the one shown in Figure 14 as the
delay line and loop filter components are linear and time-invariant.

Similar to the STFT, the EDR shows the spectral components over time of a given signal. The single difference between
the STFT and the EDR is that the square magnitudes of the FFT ofeach frame is used instead of the magnitudes. With
the EDR, the amount of energy in each FFT bin is given over time. An advantage of using the EDR over the STFT is
that energy decreases monotonically, whereas magnitudes,as used by the STFT, may increase and decrease resulting in
noisier data for decay estimation.

The EDR is defined as follows

EDR(tn, fk) =

M
∑

m=n

|H(m, k)|2 (9)

whereH(m, k) corresponds to thekth FFT bin at framem of the EDR.M corresponds to the total number of frames in
our EDR. Thus,EDR(tn, fk) represents the total amount of energy remaining in the signal at timet = tn for frequency
fk. Figure 30 shows a three-dimensional plot of the EDR over time and frequency.

Since the displacement of the string decreases exponentially, viewing its motion and EDR in log space, we expect
linear decays, as Figure 30 shows for a plucked guitar stringnote.

For each frequencyfk in the set of frequencies closest to the fundamental and harmonic frequencies, we fit a line to
the time-decay of its EDR. The primary parameter for estimation is the slope of the line. Figures 31 to 36 show EDR
plots for the fundamental frequency and five harmonics. The EDR for each frequency over time is plotted in blue. The
estimated line is shown in red. The estimation used only the segments of the EDR for which the red line overlaps the blue.
As shown, the line estimated nearly matches exactly the subset of EDR points used.

Given the estimated slope,mk, for frequencyfk, t60(k) = −60
mk

. With t60(k) computed for the fundamental and
harmonic frequencies, we now relate the decay times to the gains of the loop filter.

|G(ωk)|
t60(k)

T = 0.001 (10)

where|G(ωk)| corresponds to the per sample desired gain of our filter. We also have the relation that

|H(ωk)L| = |G(ωk)|M (11)

|H(ωk)L|
1

M = |G(ωk)| (12)



Figure 30. Plot of the Energy Decay Relief of a plucked guitar note.
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Figure 31. EDR over time at frequency bin322.998Hz. The overlapping red segments were fitted with the underlying
blue points and plotted using the estimated slopes.
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Figure 32. EDR over time at frequency bin990.5273Hz. The overlapping red segments were fitted with the underlying
blue points and plotted using the estimated slopes.
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Figure 33. EDR over time at frequency bin1313.5254Hz. The overlapping red segments were fitted with the underlying
blue points and plotted using the estimated slopes.
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Figure 34. EDR over time at frequency bin4608.1055Hz. The overlapping red segments were fitted with the underlying
blue points and plotted using the estimated slopes.
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Figure 35. EDR over time at frequency bin7256.6895Hz. The overlapping red segments were fitted with the underlying
blue points and plotted using the estimated slopes.
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Figure 36. EDR over time at frequency bin10874.2676Hz. The overlapping red segments were fitted with the underlying
blue points and plotted using the estimated slopes.

where|H(ωk)L| is the desired loop filter gain. This relates our per sample gain with the desired loop filter gain in series
with a lengthM delay line. Substituting|H(ωk)L| for |G(ωk)| in Equation 10, we obtain

|H(ωk)|
t60(k)

MT = 0.001 (13)

Taking20 log10 of both sides yields

20 log10 |H(ωk)| = −60
MT

t60(k)
(14)

To specify gains at frequencies between the fundamental andharmonics, we linearly interpolate between points for
which we have gains for. In specials cases, the gains at DC up until the fundamental frequency are set to the value of
the gain computed at the fundamental. For frequencies between the last harmonic and half the sampling-rate, the gains
decrease at an arbitrary slope.

With the gains specified for the loop filter, a complex spectrum with minimum-phase is computed [42]. A least-squares
fit or the Steiglitz-McBride iteration is used to compute thecoefficients for an arbitrary order filter [42, 43].

Figures 37 and 38 show the desired gains computed for a recorded guitar note. The fundamental is330Hz. Gains for
the fundamental and harmonic frequencies are circled in red. All other points are linearly interpolated between these gains
and the constants we set for DC and half the sampling-rate. Gains below the fundamental to DC are set to the value of
the gain at the fundamental frequency. The gain at half the sampling-rate was arbitrarily set to−4.08dB. Figure 37 shows
gains from DC up to5kHz.

4.2.3. Two Orthogonal Planes of Vibration

Soon to come!

4.3. Body Resonator

From our synthesis model, the body resonator has a driving-point admittance that filters the output of the string model to
transform force waves along the string into acceleration waves at the bridge [44]. Taking the inverse-FFT of the measured
driving-point admittance, we obtain the impulse response of the body of the instrument. This time-domain signal can be
stored as a wavetable for convolution with the output of the synthesis string-model. Figures 39, 40, 41 and 42 show the
time-domain signal and spectrum (both magnitude and phase)of a measured guitar’s body impulse response, respectively.
As shown, the impulse response lasts well over50ms long. Viewing its spectrum in Figure 41, we note peaks thatoccur
near120 and250Hz.
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Figure 37. Estimated gains from a guitar’s high ’e’ string. Only frequencies below5kHz are shown. The fundamental
frequency is330Hz. Circled points correspond to gain values for the fundamental and harmonic frequencies. All other
points were linearly interpolated. The gain at DC was set to be the same as that of the fundamental. The gain at half the
sampling-rate was set arbitrarily to−4.08dB.
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Figure 38. Estimated gains from a guitar’s high ’e’ string. The fundamental frequency is330Hz. Circled points corre-
spond to gain values for the fundamental and harmonic frequencies. All other points were linearly interpolated. The gain
at DC was set to be the same as that of the fundamental. The gainat half the sampling-rate was set arbitrarily to−4.08dB.
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Figure 39. Measured body response from a gypsy guitar. The plot shows the signal from time0 to 50ms.
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Figure 40. Measured body response from a gypsy guitar. The plot shows the signal from time0 to 1s.
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Figure 41. Measured body admittance from a gypsy guitar. The plot shows both the magnitude and phase at frequencies
between50Hz to500Hz.
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Figure 42. Measured body admittance from a gypsy guitar. The plot shows both the magnitude and phase at frequencies
between50Hz to2000Hz.
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Figure 43. Time-domain signal of body response with peak at120Hz removed.

4.3.1. Low-Order Filter Implementations

When latency and time-efficiency is a concern, the length of the body’s impulse response becomes an issue. Therefore, in
these systems, the impulse response of the body is approximated using lower-order filters and a modal synthesis model.

To effectively shorten the body’s impulse response for systems requiring low-latency and low-memory needs, methods
for removing the peaks are applied to leave a residual signaland a low-cost representation for the removed resonating
peaks. This reduces the length of the original impulse response while representing the primary modes parametrically. The
two general approaches for dealing with spectral peak removal include subtraction and inverse-filtering methods.

The two basic methods are as follows:

1. Complex Spectral Subtraction

Hr(z) = H(z) −
b0 + b1z

−1

1 + a1z−1 + a2z−2
(15)

whereHr(z) corresponds to the shortened body impulse response whileH(z) corresponds to the measured body
impulse response. The parameters to be estimated are the second-order filter coefficientsb0,b1,a1 anda2.

Complex Spectral Subtraction requires careful estimationof the phase, amplitude, frequency and bandwidth for
peak removal. Furthermore, the resonators must run in parallel with the residual. Therefore, advantages obtained
from Commuted Synthesis are lost as the approximated body impulse response model is not readily commutable
with the string component of our physical model [45].

2. Inverse-Filtering
Hr(z) = H(z)(1 + a1z

−1 + a2z
−2) (16)

whereHr(z) again corresponds to the shortened body impulse response with H(z) equal to the measured body
impulse response. In this form, the residual signal is readily commutable with the string component of our physical
model as resonators are factored instead of subtracted. Furthermore, estimating the coefficients of the filter for peak
removal requires only the frequency and bandwidth of the peak and not the amplitude and phase as is required for
Complex Spectral Subtraction [28].

Applying inverse-filtering as described above, we take the original body response shown in Figures 39 and 40, and
remove the peak centered around120Hz with a bandwidth of10Hz. The residual, shown in Figure 43, is significantly
shorter than the original response. Whereas in Figure 39, theresponse lasts for well over50ms, in the residual signal, its
amplitude oscillates near the noise floor at around30ms. Figure 44 shows the spectrum, both magnitude and phase, of the
response after inverse-filtering. Compared with Figure 41,the peak at120Hz is completely removed.
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Figure 44. Spectral view, magnitude and phase, of body response with peak at120Hz removed. Note that the response is
now shorter compared with the original body response in Figure 39.

4.4. Radiated Sound Pressure

Using the measurements made in Section 3.4, we compute the point-to-point transfer function from the bridge to a single
point in space. The resulting response is shown in Figure 45.The spectrum of the response is shown in Figure 46.
Observing Figure 45, the length of the response is close to2s long. Similar to the issues addressed with the body response,
having to store the entire radiation response is costly. Therefore, the methods discussed for removing spectral peaks for
the body response can be directly applied to the radiation response.

Similar to how the driving-point admittance is used to modelthe transfer of energy from the string to the bridge and
vice-versa, the transfer function from a point-to-point measurement of acceleration of the top-plate to a point in space of
pressure waves is used to affect the final sound output from our physical model.

4.4.1. Low-Order Filter Implementations

Using the same techniques described in Section 4.3.1, a reduction in the length of the resulting transfer function can
be made by factoring out frequency components of the signal with the most energy and replacing them with low-order
resonators. Both Complex Spectral Subtraction and inverse-filtering methods can be used. However, as done for the
body response, we opt to use inverse-filtering. Figures 47 and 48 show the results of removing the peak centered around
127Hz with a bandwidth of10Hz. Similar to the results obtained in Section 4.3.1, the radiation response is significantly
shortened. As Figure 47 shows, the residual signal approaches0 within 0.1s. Whereas, as shown in Figure 45 shows, the
radiation response lasts for well over1s. Furthermore, the peak in the spectral domain is entired removed. As shown in
Figure 48, the peak is close to60dBs lower than the peak at127Hz in the original radiation response shown in Figure 46.

4.4.2. Interpolating Between Measurements

Because multiple plucks and excitations of a guitar can be made in one lab session, every note on the guitar can be
recorded, thereby obtaining acceleration of the top-platemeasurements and corresponding pressure waves for each note.
For each note, computing the transfer function resulting from corresponding measurements yields correct radiation filter
characteristics at the fundamental and harmonics of the note. Therefore, to obtain an averaged measurement radiation
filter, using points from each notes’ transfer functions corresponding to the fundamental frequency and harmonics, and
interpolating between these known points also yields a psycho-acoustically accurate radiation filter.
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Figure 45. Measured radiation response from a gypsy guitar. The plot shows the signal from time0 to 3s. Note the
recordings were made in an anechoic chamber as described in Section 3.4.
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Figure 46. FFT of measured radiation response from a gypsy guitar. Theplot shows the magnitude at frequencies between
50Hz to500Hz.
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Figure 47. Removing the peak of the measured radiation response at127Hz. The plot shows the signal from time0 to 3s.
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Figure 48. FFT of the measured radiation response with the peak at127Hz removed. The plot shows the magnitude at
frequencies between50Hz to500Hz.



5. REVIEW OF METHODS AND FINAL WORDS

In this reader, we discuss methods for decomposing a pluckedstringed-instrument into modular components with in-
dividual properties that can be measured, modeled and calibrated. Within calibration, there are just a few overarching
themes that should be mentioned to add cohesion to the methods presented. Inverse-filtering, used to reduce the order of
measured body impulse responses and pressure radiation transfer functions, is extrememly useful in removing unwanted
components within a given signal. However, there are conditions with which its method creates undesireable side-effects:
nulls within the spectrum. As discussed in obtaining excitations for the digital waveguide string models in Section 4.1,
using inverse-filtering causes nulls at the fundamental andits harmonics resulting in an anti-harmonic excitation. Since
the excitation of the string is flat-spectrummed, inverse-filtering methods for excitation extraction does not presenta
psycho-acoustically pleasing solution.
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