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ABSTRACT

This reader contains an overview of physical-modeling méshfor stringed instruments. It should be entirely self-
contained, including external links to labs and more dethdontent on relevant subjects. By thoroughly understendi
this reader, you should be well equipped to tackle the egsaiivanced labs in the RealSimple tree.
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1. INTRODUCTION

In this reader, we discuss methods for real-time synthefsirimged instruments. Interest in this topic is wide and
varying, as both studio and performance uses for realigtigal stringed instruments are becoming increasinglysjize
with gains in computing power.

Having a high-fidelity physics-based virtual stringed instent model is useful for many applications. Current s@ampl
based synthesizers, which are based on audio recordingsmtddlow fine control of the excitation of the strings of the
instrument. Synthesizers based on physical models, irastnjpromise unlimited control over the expressive nuance
of string excitation. The synthesis parameters are alsermuitive, since they have corresponding meanings in the
physical world. Changing intuitive parameters can resuitbre realistic changes to the sound produced.

Another of many applications includes automatic trangiipand resynthesis of old recordings. Given that there is
a mechanism for processing old recordings and mapping tbemw they were played on the instrument, with a high-
fidelity synthesis model and the necessary performanceness, resynthesis of old recordings can be made to sound
like what they would, had they been made with today’s teabgwl Figure 1 shows the block diagram of such a system.
The focus of this reader is on the third circled block, thegibgl model of the plucked stringed instrument.

The goal of this reader is to outline procedures for makingtaal stringed musical instrument based on a combination
of physical theory and laboratory measurements from a refiment. Since this topic is too large to be covered in
the available space, we will make extensive use of pointersupporting information. In addition to the traditional
bibliographic citations, we will refer the reader to addital online books, related websites, and laboratory exesci
covering elementary models and techniques used. Our gtainake it possible to follow links in this reader in order
to flesh out the complete details of the theory and practeciiniques summarized here. For the advanced reader (such
as a seasoned graduate student working in the area of winusital instrument design), this reader will hopefullyy®o
sufficiently self-contained to be used as a laboratory guide

In the following sections, we briefly review elementary campnts of stringed musical instruments and how they may
be modeled efficiently for real-time digital synthesis aggtions. We then summarize practical measurement and cali
bration techniques for various instrument modeling congms. Finally, we discuss methods specifically for estinati
parameters of aluckedstringed instrument.

A useful abstraction that illustrates our modeling apphofar virtual stringed instruments is shown in Figlre 2.
Not only is this decomposition useful for compartmentaigzifrom a modeling perspective, it is useful in performing
measurements on the instrument as well as following theipalylow of how a stringed instrument is played: energy
injected into the system to how energy reaches our ears Isgyre waves created by the vibration of the instrument’s
body.

2. ELEMENTSOF STRINGED INSTRUMENTS

In all stringed instruments, the strings are put into motignan external force typically applied by a finger, plectrum
(“pick™), hammer, or bow. The vibrating string transferseegy into the body/resonator of the instrument, which imtur
produces pressure waves in the air that propagate to our ears

2.1. Vibrating String

In this section, we briefly describe the physics of the steng its corresponding virtual representation. We desdrdve
this model of the string is analogous to its physical coyggrand describe various initial-conditions for the diéfiet
ways the string can be set into motion. We then discuss marglex modeling techniques for the vibrating string,
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Figure 3. t=0, Figures$ 3 to 10 show an example of the traveling wavetiel to a string that is displaced to an amplitude

of 2 at time t=0. We note that the string is held in place at thréatppP1, P2 and P3 at t=0. The top plot of each figure
shows the right traveling wave, the middle plot the left &livg wave and the bottom plot the physical displacement,
equal to the sum of the top and middle pld®ots generated using scripts developed by Ed Berdahl.

initial pitch shifts, the coupling of multiple strings anlget vibration of the string in two orthogonal planes and hoahsu
modeling techniques can describe natural phenomena suslvatage decay.

2.1.1. D’Alembert’'s Wave Equation

The formulation of the Wave Equation and its solution by @#lbert in 1747 [1] is the theoretical starting-point for
physical stringed models. The wave equation, written as

0%y 0%y
K5x2 ~ o @
where K is the string tensions is the linear mass density andt, =) is the string displacement as a function of time
(t) and position along the string:). It can be derived directly from Newton’s second law apglie a differential string
element. In addition to introducing the 1D wave equatiodleimbert introduced its solution in terms of traveling wave

y(t.w) =y, (t= 2) it + ) @)

wherec = /K/e denotes the wave propagation speed. Though each individwaling wave is unobservable in the
physical world, we use their constructs for modeling thegitsd behavior of the string, whose displacement is equal to
the sum of the two traveling waves. Figures 3 to 10 show howyaiphl string’s displacement, initially displaced to a
triangular pulse, is equal to the sum of its left and righvétang waves at timeé = 0. The blue arrows in Figufe 3 show
the points of displacement at timtle= 0. Subsequent frames are shown, as the bottom plot of eacle framesponds
to the physical displacement of the string. The top and bofpiots correspond to the right and left traveling waves,
respectively. For a detailed derivation of the solutionite Wave Equation, we refer readers to
http://ccrma.stanford.edu/ jos/pasp/TravelMWgve Solutionl.html.

D’Alembert’s solution to the wave equation serves as thertécal foundation of which physical models for stringed
instruments are based upon.

2.1.2. The Delay Line

In this section we present the fundamental computing bleeldun physical modeling. We present different views of this
data structure and use it for building string models for #mmainder of this reader.

The data structure of the delay line naturally arose fronitaligomputing. From a Computer Science perspective, the
delay line is simply a vector of values. In the musical acesstommunity, the delay line is the digital implementation
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of simulating propagation distance. Figure 11 shows an ekaof a lengtht delay line, where at each time slice, values
are shifted right. The input signal, into the delay linec{g), such that the values input into the system are the first six
non-zero numbers of the Fibonacci sequence.

As shown in Figuré 111, the vector of values is used to reptesgace. At each tick, or change in time, the values shift
right representing propagation of values. For the remainfi¢he reader, we assume that a delay line represents space
and changes occur to its values through time. For simpliinatve draw a delay line as a box with the negative exponent
to thez being the length of the delay. Thecorresponds to the variable of theransform, where a single unit delay is
271 [2]/3]. We denote this equivalence in Figlre 12.

For the musical acoustics community, such a data strucsuirszaluable in modeling propagation. In reverberation,
delay lines can be used to simulate the indirect paths ofreakjd, 5]. Two online labs are available to help the readér ga
familiarity with delay lines and how they are used in modglpmopagation distance in a basic feed-forward block diagra
and in more elaborate virtual reverberation algorithmseyiéan be found at http://ccrma.stanford.edu/realsirtgitede ladder/
and http://ccrma.stanford.edu/realsimple/reverbfeetively.

2.1.3. Digital Waveguide Models

Observing the solution to the Wave Equation in Equation & displacement of a string is the sum of two traveling waves
moving in opposite directions. We model each traveling Vimpeopagation path with a delay line. As Figlrg 13 shows,
the data-structure of two delay lines in series in a loop nwtiee physical behavior of the vibrating string as the ttu
implementation of the theoretical solution of the sum of tvaveling waves.

To cement these abstractions, we present an example of hdwading string is modeled with the digital waveguide
with initial conditions of a triangular pulse near the middif the string. Since the sum of the left and right traveliveye
components always equals the displacement of the phydioad,swe initialize each delay line with a triangular pulse
with half the amplitude of the physical string such that thensf corresponding values from both delay lines equals the
amplitude of the pluck for the physical string.

At t = 0, we allow values to propagate. Depending on what the sampdite is, the physical length of each sample in
the delay lines is set assuming a constant propagation speed

As Figures 3 td 10 show, the string is held in place at paifits P2 and P3. At ¢ = 0, we release the string at these
points. What we obtain from our virtual model is two traveliwgves moving in opposite directions such that the sum of
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Figure 11. An example of a delay line and how it is used.

Figure 12. Equivalence between a vector of values and a delay lin&aizgram.
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Figure 13. A digital waveguide consisting of two delay lines in seiiies loop. Note that the inverters between the delay
lines are only present when acceleration, velocity andiaégment of the string is modeled.

corresponding values always equals the displacement ghtyrgical string [6].

We now relate the parameters of the digital waveguide to iphiysharacteristics of the string. Our simple digital
waveguide, shown in Figure 13, consists of two delay linehed lengthM. The frequency of the digital waveguide is
directly related to the sampling-rate of our system and ¢ngth of the delay lines\/.

Assuming a sampling raté;, we can determine how long it would take for an impulse todtdw both ends of the
string and back. If an impulse is placed in the first samplédneffirst delay line, we confirm that it tak@d/ samples of
propagation for the impulse to return to its original pasiti which is equivalent td" = 2 seconds. Therefore, in our
lossless string-model, a traveling-wave takeseconds to reflect from one end and back. Inverfingve now know that
the virtual string oscillates at a fundamentalfepf= % Hz.

Since each delay line corresponds to one direction of altraye/ave of the string, we have an intuitive physical map-
ping between the digital waveguide and the physical stindzigure 13, we have inverters between the two delay lines.
The inverter on the left of the figure corresponds to the “mitthe instrument and the second inverter the “bridge” of the
instrument. Note that the inverters are only present in ayitad waveguide when acceleration, velocity and dispiaeet
waves are modeled with the waveguide. For a more detailedisi#on on alternative wave variables modeled in digital
waveguides, we refer readers to http://ccrma.stanfoud jed/pasp/AlternativaVave Variables.html.

2.1.4. Natural Decay of the String

If a physical string is tied to two rigid ends, energy injetiato the string remains within the string. However, it does
eventually stop motion. The tension of the string, frictieith the air and various effects cause the string’s motion to
eventually stop [7]. By inserting a low-pass filter into thigithl waveguide, as shown in Figure 14, we can model the
string’s decay properties in our virtual model [8]. Comgtithe loop filter's coefficients is discussed in Section2}.2.

Extending our simple digital waveguide, as shown in Figufewke add the string’s damping into the Waveguide's
feedback loop. This maps physically to energy loss in thagtirom friction, the string’s properties and other more
minute, time-invariant effects.

We use a frequency all-pass filtHi;, (w) to calibrate our Waveguide to match the decay as measuneddimeal guitar
string. In the context of a digital waveguidd,, (w) is called the loop filter.

2.1.5. Modeling Two Planes of Vibration

In the physical world, the strings of an instrument vibratevivo orthogonal planes. In previous sections, we discussed
modeling vibrations of the string with a single digital wauéde. To a first approximation, the single digital waveguid
representing the transverse motion of the string is aceud most energy transferred to the body of the instrument
occurs in a single plane. However, to capture more peculi@anpmena, it is necessary to use two digital waveguides,
each representing two orthogonal planes of motion. Withdigital waveguides and a full covariance-matrix correlgti
both waveguides, effects such as Two-Stage Decay and gesffacts can be correctly modeled [9]. Figlre 15 shows
the block diagram of two linearly coupled digital wavegsd®©ne digital waveguide, denoted by the vertical direction
corresponds to the direction of motion transverse to thieuntent’s body. The second digital waveguide, denoted by th
horizontal direction corresponds to the direction of motarallel to the instrument’s body. Therefore, as a singaltfon,

we often ignore the direct effects of the bridge on the hariabplane of motion by not having,, (w) in Figure 15.


http://ccrma.stanford.edu/~jos/pasp/Alternative_Wave_Variables.html

Nut

H, (o)

Figure 14. An extension of our simple digital waveguide by includingd through a loop filter. Note that the inverters
between the delay lines are only present when acceleratogity and displacement of the string is modeled.

Two-stage decay is clearly present in many stringed ingntsr Though excitation is mechanically controlled in the
piano, two-stage decay is also observed as the strings fimgée sote are carefully tuned to exhibit what is deemed
psychoacoustically pleasing for the instrument. With tvigitel waveguides, each having different loop-filters fack
digital waveguide, one can be set to decay at a faster ratethgaother, such that the two-stage decay phenomenon
is modeled. In Section 4.2.2, we discuss how to measure tbaydsf the string from different recordings and tune
loop-filters to match the two different decay-rates.

Another phenomenon observed in physical instrumentstiglipitch shifts that differ for each plane of vibration [JLO
This phenomenon can be modeled using two digital wavegpieiestring with different time-varying lengths as discukse
in Section 2.1.6.

2.1.6. Varying the Digital Waveguide

In Section 2.1.3, we discussed how digital waveguides moaglagation of traveling waves along a physical string. The
single parameter that can change is the total delay in the IBimce the described system is linear and time-invarzjnt [
the digital waveguide’s delay lines, presented in Sec¢tidn3?2 can be lumped into one delay line with delsly= 21.
Figuré 16 shows such a simplification. Though this simplifiesblock-diagram of a digital waveguide, it loses its direc
physical mapping: viewing the delay-lines as traveling @gamoving in opposite directions. However, the systems are
equivalent. For our discussion on time-varying lengthsdigital waveguides, we discuss digital waveguide’s with a
single delay line, and thus with a single delay length.

Once reduced to this form, the digital waveguide has a sipgiiameter, its total delay. By changingV through time,
the digital waveguide effectively models a changing pratiag distance. The most notable physical everyday oceoere
of such an effect occurs whenever an ambulance or police itlaite/sirens on passes us. The pitch of the siren increases
on approach and decreases upon passing. This phenomeoam &a the Doppler Effect [11], is the foundation behind
many effects and sounds in the musical community such asahgdt and the Leslie [12, 13]. In the digital domain,
however, changes in the delay line length occurs in naturaibers. Fractions of samples in computers do not exist.
Therefore, in order to account for varying delay line lersgtmany interpolation algorithms have been studied to peovi
a smooth change in delay line lengths according to the sampite used [14, 15, 16, 17, 18]. For a detailed overview of
various interpolation methods, we refer the reader to ktipma.stanford.edu/ jos/pasp/Delaine_Interpolation.html.

An online lab that steps the reader through digital impletagons of the Doppler, Flanger and Leslie can be found at
http://ccrma.stanford.edu/realsimple/doppl@ngetleslie/.

2.2. Pluckingthe String

Returning to our two delay line implementation of the dibitaveguide, we show how to excite our virtual string model
with a clear mapping to the physical world. Figlre 17 showsgital waveguide where for each delay line, we have
tapped into theXth sample. Here we input at each time-slice our excitationaigfn ).
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Figure 16. Combining the delay lines in the Digital Waveguide and singva fraction sample.
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Figure 17. Tapping into theX'th sample where the excitation signal is fed into the digitaveguide.

2.2.1. Theoretical Plucks

If we want an impulse at the sampling distance of where thekphosition of the guitar would be, we calculakesuch
that the samples for each delay line tapped into correspotitetsame physical location of the instrument [19]. We then
sete(0) = 1 ande(n) = 0 forall n > 0.

As Karplus-Strong discussed, exciting a digital waveguiitb an impulse is psychoacoustically plain, whereas excit
ing the digital waveguide with random values results in aersatisfying sound [20].

With delay lines modeling displacement, we can linearkgifipolate between the pluck-point to the two ends of the
string for both traveling waves for an excitation that désyds the string at a single point causing the remainder of the
string to displace linearly to the ends of the string. Fumiare, if the delay lines represent acceleration or curegtu
this ideal-pluck is a single non-zero sample in each delag. liNote, since the digital waveguide is a sampled model
of a continuous system, band-limiting conditions need lmoated for. A detailed description of such can be found in
http://ccrma.stanford.edu/ jos/pasp/Id@dlicked String.html.

2.2.2. Complexities of Real Plucks

For theoretical plucks, exponentially-decaying shorisaebursts produce the psychoacoustically richest sogndigital
waveguides for plucked stringed instruments. Howeverjsmidsed later in Section 4.1, the pluck itself is psychaoatio
cally significant. As any plucked-stringed instrument ngigsi would attest to, reproducing the exact same pluck by han
is extremely difficult if not impossible. Studies have beead® to study guitar plucks [21]. In such research, elaborate
devices have been constructed to reproduce the exact sacle gls shown later in Section 4.1, plucks are more than
short bursts of white-noise. Each pluck has unique chaiiatitss to its particular occurrence.

With coverage of idealized plucks and digital waveguideg, can now build an electric guitar using digital waveguides
An online laboratory outlining the steps for doing so canduend at
http://ccrma.stanford.edu/realsimple/eleciyigitar/.

2.3. Body Resonance

This section describes the integration of the instrumenmtykiato our digital waveguide model. We extend our digital
waveguide string model with the instrument’s driving-pgoadmittance. With the inclusion of the instrument body’s
resonator, we can attach multiple instantiations of ouitaligraveguide model to account for multiple strings couide
the bridge of the instrument [22].

2.3.1. Driving-Point Admittance

The driving-point admittance of the body of the instrumentaracterizes linear-interactions between the stringtaed
body in both directions: meaning energy transferred frorthisiring to body and body to string. The driving-point
admittance is defined as follows:

Viw)
Nw)=—=—+= 3
©) = ) ©
where for a given frequenay, the ratio between the Fourier Transform of the velocity &rde is known. A physical
explanation of the driving-point admittance is to view thterattance as a measure of how readily force exerted at the
contact point at a certain frequency results in motion at faeme frequency [23]. Since the body of the guitar is a
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Figure 18. Convolving the physical output of the digital waveguidéhwthe driving-point admittance.

rigid structure that exhibits standing waves at particédequencies, known as the modes of the guitar, the bodyteibra
naturally at these frequencies. Notable modes includeithreade and the first few body modes.

A brief overview of the mechanics of our physical model thas fthe string vibrates upon excitation. Its end is
connected to the body of the instrument at the bridge, exganergy from the initial pluck at the fundamental frequenc
and its harmonic series. According to the driving-point éthnce, the force applied at the bridge by the string result
in motion of the bridge and top-plate. The resulting motisrdépendent upon the construction of the top-plate of the
instrument which determines its modes of vibration. Theuatio instrument then propagates pressure waves according
to its top-plate movement, thereby coloring the resultirespure waves heard by our ears.

2.3.2. Filtering with the Driving-Point Admittance

The simplest extension of our current digital waveguide eldglto use the driving-point admittance of the instrument i
a convolutory way. A discussion of what measurements netdedmpute the driving-point admittance can be found in
Section 3.2.

In Figure[ 18 the output of the digital waveguide is convolweith the driving-point admittance. Since the virtual
instrument described up to this point is linear and timeafrant, the driving-point admittance of the instrument b&n
used to excite the digital waveguide by commuting the aémdtt with the digital waveguide. Though this is unrealieabl
in the physical world, the two systems are the same. Thisodethusing the driving-point admittance to drive the digita
waveguide is known asommuted syntheﬁsﬁ

2.3.3. Bi-directional Interaction

In the physical world, the motion of the string exerts a foocethe bridge resulting in a velocity at the point of contact.
In Section 2.3.2 from a physical perspective, only energgsipay from the string to the body is modeled. However, we
can extend our current model to account for not only the imibeeof the string to the bridge, but also the influence of the
bridge to the string. Network theory applied to this junati@sults in a bi-directional model [24, 25, 26]. Figure 19us
illustration of six strings attached to a common bridge. $hmeplifying assumption is that all strings move at the same
velocity as the bridge at the bridge.

2
~ Ry(s)+ Ry +Ra+ ...+ Rg

WhereRy(s) = ﬁ(s) wherel',(s) is the driving-point admittance of the bridge afglis the wave impedance of string
1. Furthermore, each string’s wave impedance can be comjusied its physical characteristics through the following
equation:

Hp(w)

K;
RZ' = Kl'EZ' = — = &;C;
Ci
wherekK; is the string tensiorg; is the string’s linear mass density ands the speed at which waves on the string travel
both left and right. For more information on Network theondahow it applies to musical acoustics, we refer readers to
http://ccrma.stanford.edu/ jos/pasp/IntroductlarmpedModels.html.

L http://ccrma.stanford.edu/jos/pasp/CommuBaahthesisStrings.html
2 An online laboratory for creating an acoustic guitar phgsimodel using commuted synthesis is available in the Real@ioglection3]


http://ccrma.stanford.edu/~jos/pasp/Introduction_Lumped_Models.html
http://ccrma.stanford.edu/~{}jos/pasp/Commuted_Synthesis_Strings.html
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Figure 19. An illustration of six strings attached at the bridge of thetrument. The simplifying assumption is that all
strings move at the same velocity of the bridge at the bridge.
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Figure 20. A block diagram of multiple strings of an instrument conteglcat a single scattering junction with the body
of the instrument.

2.3.4. String-Body Scattering Junction

Continuing our discussion in Section 2.3.3, to model mstitinged instruments, we naturally extend our model so that
each digital waveguide, models a string of the instrumeiith @il strings attached to a scattering junction with a load
bearing at the junction, representing the mass of the im&ni's bridge and top-plate. Figure 19 shows a diagram of our
virtual model of a multi-string instrument with all stringsupled at the bridge.

With such a model, we are able to physically model certai@ratttions occurring at the bridge between the strings and
body of the instrument. In the case of the acoustic guiththalstrings are coupled at the bridge such that energyfeens
from one string to another through the bridge. This effesteisy prominent, in that musicians change their technique to
account for “leakage” of energy. Guitar players refer tasthhenomenon as open-string noise, which typically occurs
when a guitar player plays on higher strings without mutiogydr strings, resulting in lower strings vibrating without
being plucked. This is especially problematic for musisiataying microphoned acoustic instruments which oftenltes
in unwanted feedback. For electric guitar players, whemg#ie of the pickups are amplified to create distortion, uredn
vibrating strings obscure the sounds of the actual strifageol.

Figure 20 shows a block-diagram modeling an instrument withstrings with a string-body scattering junction. The
digital waveguides representing each string are simplifiedat they move only in the transverse plane. As showngsner
from one string can cause excitation of another string [F{]rthermore, the resulting output contains the effect ef th



body with the driving-point admittance acting as a mass htate junction. The digital waveguides used in Figure 20 can
be easily replaced with the digital waveguide in Figure 1&hsihat the output off,,,(w) from each digital waveguides’
transverse loop feeds into a summer irtdl, (2) of Figure 20. The output of Hy(z) is then fed back into each digital
waveguide’s transverse plane loop [28].

2.4. Pressure Radiation

This section describes two radiation models for the guitarthe first approach, the sound pressure is synthesized at
any number of virtual microphone positions by means of a fiag Kirchhoff-Helmholtz integral over the radiating
surfaces determined by the modal state [29]. The secondagipris a simplified point-to-point method which uses
recorded input/output signals to compute a transfer fonchietween the string-bridge junction to the position of the
output-recording microphone.

2.4.1. Integrating over Radiating Surface Areas

Soon to come!

2.4.2. Point-to-Point Modeling

This method of modeling uses a single transfer function,ctvidan be either computed analytically or measured to
compute what the resulting pressure waves at a given poispdce from the point of vibration are from acceleration
waves. The limitations of this method, compared with Sec#at.1 is that pressure waves can be computed for only one
point in space, relative to the vibrating source. Where asrit®=d in Section 2.4.1, the radiation of sound is computed
for the source’s surrounding space. Though this method umeasadiation for the source’s surrounding space, it comes
with a higher computation cost. In real-time synthesisppto-point modeling is the preferred method as computirgg t
entire radiating surfaces of a source is too costly to be dlomeal-time. Furthermore, for a stationary binaural liste

only two transfer functions for a stereo signal need be cdethu

3. MEASUREMENTS

This section reviews techniques for guitar measuremeevaet to building a virtual guitar.

3.1. String Vibration

String vibration measurement has been studied and usedsasdly in the music industry in the form of amplifying
guitars, resulting in the electric guitar. In the traditidrsingle-coil magnetic pickup, a strong magnet is woundhwit
copper wire. This acts as a sensor as the motion of the stainges a change in the magnetic field and as a result a change
in the current through the copper wire. This signal, projpoil to the movement of the string, is then amplified. For
some guitars, such as Gibson’s Les Paul, the guitar is ctobeinhg purely electric, in that energy is maintained within
the vibration of the string to drive the pickups that ampiifyy sound. The guitar body is literally a block of solid wood
meant to not resonate or color the timbre of the guitar’s dptimereby minimizing energy tranferred to the guitar boaly t
create longer sustain in the string.

Another method for measuring a string’s displacement iswise of a light-emitting-diode (LED) and a photo-
transistor. The photo-transistor measures the amourgtufieceived from the LED as light is obstructed by the movame
of the string. This sensor is an inexpensive method for nrgagthe motion of the string in two-orthogonal planes.

Vibrometry is another method used for measuring the motfangiring as it measures the frequency shift of the back-
scattered light reflected from the measured surface to cterthe changing distance between the laser and the vibrating
string at high sampling rates.

3.2. BridgeForce

Measuring the driving-point impedance of a stringed inseat’s body is key in obtaining its acoustic charactersstic
[30,/31]. To obtain the driving-point impedance of the guliady, an impedance head accelerometer is placed in contact
with the guitar on or close to the bridge. This sensor outflutsaccleration at its point of contact. Accelerometers are
typically very low load bearing thereby obtaining accunaiteasurements up to very high frequencies.

As defined in Sectidn 2.3.1, the velocity and force are usedmputing the driving-point-impedance. In the following
subsection, we present two methods for exciting the motfadhe guitar bridge. With each method, the force signal is
measured and used in conjunction with the accelerationuneds$o compute the driving-point impedance of the bridge.



3.2.1. Excitation Force

We present two methods for exciting the bridge for measurgseOne uses a shaker and the other an impulse-force
hammer.

The shaker is placed in contact with the bridge with as littled mass from the shaker. A signal, typically white
noise is input to the shaker. Both the force signal from trekehand accelerometer signals are recorded to compute the
driving-point admittance.

With the impulse-force hammer, an individual strikes thielpe with a short, single instance to excite the bridge. The
impulse-force hammer outputs the force signal applied éotésting body, and the accelerometer signal measures the
movement of the bridge. With both signals, similar to thekelnand accelerometer method, the driving-point admittanc
is computed.

There are benefits and disadvantages to both excitationoattSince transfer function computation is statistical in
nature, in that the transfer function is computed using thexpower spectral density, and since the signal usedve dri
the shaker is white noise, the measured signals can be extordefinitely. Therefore, the resulting transfer funitis
less susceptible to experimental noise. However, the drakvito the shaker is its hefty mass relative to the impulseefo
hammer. Obtaining an accurate response at higher frecegeiscmore difficult with a shaker.

The benefit of the force-impulse hammer is that the mass ofiinemer is not as much of an issue as the shaker in
exciting the body of the instrument. Therefore, the higigfrency components of the resulting transfer function aneem
accurate. However, the drawback with the force-hammer isidifficulty in reproducing the exact same measurement.
It is difficult if not impossible to strike the body of the imsment with the same force by hand. Furthermore, the regplti
signals are short compared to what can be obtained when arskalsed.

3.3. Body Vibration

Understanding the movement of the main resonating surfae@ instrument, in the case of a guitar, its top-plate, is
essential in understanding the instrument’s ability tqoaigate sound at all frequencies. Viewing the frequencieh

the modes occur helps explain the timbre of the acoustiGbditeristics of the instrument. A scanning-point vibreene
for example by Polytec, measures the movement of a surfatgiges its users three-dimensional software views of its
structural motion.

3.4. Pressure Radiation

To measure a point-to-point transfer function for pressadiation, the instrument is taken into an anechoic chanamer
excited with a shaker with white noise as input or with a felheenmer, in which case the force input into the system is
close to an impulse. The signal generated from the motiohefristrument is recorded using a microphone a distance
away from the instrument. With the acceleration and pressignals recorded, a transfer function is computed [32].

4. PARAMETER ESTIMATION

This section reviews methods for calibrating the model eletm discussed in Sectibh 2 to match measurements discussed
in Section 3.

4.1. Excitation

As discussed in Section 2.2, the excitation to our virtuatrimment is a signal, taken from a wave-table used to drive
our digital waveguide models. In the literature there areesd methods for computing excitation signals from actual
recordings. Extracting excitations from actual recordid guitar plucks result in the best, psychoacousticallynsiing
models|[33].

In recent years, two fundamentally different approacheslitaining excitation signals from recordings have emérge
inverse-filtering and constant overlap-add (COLA) methls briefly describe the problem and give an overview of the
various methods.

Figures 21 and 22 show a recorded guitar note on the guitiats'B’ string and its Short-Time-Fourier-Transform
(STFT), respectively. As shown, upon the onset of the ndté&eguencies have energy. After the inital attack, most of
the energy remains at the harmonic frequencies of the fuerdtah The goal of excitation extraction is to remove the
tonal components that ring after the initial onset and taucedthe energy during the onset at those components to match
the general energy levels at other frequencies.

With the problem now graphically represented, we descrie the two different methods approach removal of har-
monic peaks shown in the STFT. The inverse-filtering methedwove the harmonic peaks by inverse-filtering the signal
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Figure 21. Time-domain plot of a recorded guitar tone on the open higjistring.
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Figure 22. Spectrogram of a recorded guitar tone on the open highrieigst
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Figure 23. Spectrogram of a recorded guitar tone on the open highrieigsfrom timet = 0s to timet = 0.5s
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Figure 24. Time-domain plot of the same recorded guitar tone with toarim peaks removed resulting in an excitation
signal for physical model use.
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Figure 25. Spectrogram of the same recorded guitar tone with harmueadks removed resulting in an excitation signal
for physical model use.

Figure 26. Spectrogram of the same recorded guitar tone with harmueadks removed resulting in an excitation signal
for physical model use from time= 0s to timet = 0.5s.
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Figure 27. Plot of the original recorded guitar tone’s first FFT framihafocus on the peak ne&60Hz. Circle dots are
FFT values to be used for statistics collecting.

with a comb-filter with peaks at the harmonic frequenciese TOLA methods remove the harmonic peaks by applying
non-linear averaging to the magnitudes at each STFT frartteeafignal.

The first method is the Matrix-Pencil Inverse-Filtering mmad [34]. It computes the sinusoidal components of a
signal, using the Matrix-Pencil method, and performs igeefiltering with the sinusoidal components to remove the
tonal components leaving the excitation [35].

The second method, the Sines-Plus-Noise Inverse-Fijteniethod is similar to the Matrix-Pencil method, in that sinu
soidal components of a model are computed, but instead 10§ tise Matrix-Pencil method for computing the sinusoidal
components, a generative sinusoidal model is used [36, 8#ksidual signal is computed from subtracting from the
original recording the sinusoidal signal. Inverse-filtgyiis then performed on the recording using a Digital Wavegui
tuned for the recording where scaled versions of the resahsinusoidal signals are added together to help remedy th
notches created from inverse-filtering [38].

The third method, the Magnitude Spectrum Smoothing, us€s$Ffocessing. Within each FFT window, a low-pass
filter is applied to the magnitude spectrum of the window. THI€T is then taken where the resulting time-signal is stored
in a buffer for overlap-add [39].

The last method, the Statistical Spectral Interpolatiotho@, similar to the MSS method, performs STFT processing
and COLA reconstruction, but removes harmonic peaks by Bagipew spectral magnitudes at the peaks according to
a normal distribution with mean and covariance equal toglafsnagnitudes in the values surrounding the peak for each
FFT frame [33].

As the literature shows, SSI produces the best psycho-ticallg sounding excitations. Here, we present the method
in detail.

From a high-level viewpoint, the SSI method only modifies ti@gnitudes of the STFT of the guitar tone without
affecting phase information. The method collects statistin the magnitudes of frequencies surrounding harmomikge
and uses these statistics to generate non-deterministicganges for the magnitudes at these peaks, without gingif
the phase. With inverse-filtering methods, modifying phaseitably introduces artifacts. Thus, this method’s paimn
goal is to minimally-alter the original tone.

The STFT is used for analyzing and modifying the originabreled tone. The STFT can be seen as a sliding window
that takes at each sample-window a FFT of the windowed sidia transform of that windowed portion is then modified,
and the iFFT is then taken and saved in a buffer. The windoheis slid according to how much overlap is wanted. The
parameters for the STFT are the type of window used, the teoigthe window and the number of samples the window
slides by. Sample parameters for the method are a Hammindpwinf length2!? samples with).9 overlap (hop size of
410 samples). Though'? samples with a sampling-rate #4, 100 Hz is long & 100 ms), pre-echo-distortion artifacts
are remedied by starting the algorithm during the onset@efétorded tone.

Actual processing occurs at each window of the STFT. Congideh FFT window taken to be a frame for processing.
Within each frame, the harmonic peaks of the recorded toaeatienuated. Harmonic peaks can be found using the
Quadratically Interpolated FFT (QIFFT) method [40].
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Figure 28. Plot of the original recorded guitar tone’s first FFT framighafiocus on the removed peak ne&#i0Hz. Circle
dots are FFT values to be used for statistics collecting.

Assuming that the fundamental frequency of the recorded tsrat f; in Hz. A bandwidthi¥,, in Hz is specified,
indicating the width of the peak. Another bandwidil, in Hz is specified indicating the width of the interval used fo
statistics collecting with respect to the fundamentaldigngy f;. In using the SSI method for the recording in Figure 21,
Wy, =0.3- fi andW,, = 0.75 - f;. These values ensure that the points used for statistitectioh do not reach into the

next harmonic peak but are large enough to obtain a reasenaddn and standard deviation.
For each harmoni¢with frequencyy;, the following is defined and used for processing.
Define a set of indiceq,, whose frequency values satisfy the following:

wherer;, corresponds to the frequency in Hz of thilh FFT bin. The values il correspond to indices within the current
frame whose frequencies lie within the specified b&¥g but outside the bantV,, centered around;. See the circled

points in Figure§ 27 and 28.
The mean and standard deviation of the magnitude of valueBTnbins inI" are computed as follows:

1
- X; 5
o |F|§\ | (5)

iel

a—\/ngumuf (6)
i€l

Define the set of indiceg), whose frequency values satisfy the following:

Vo e A lvs — fil < W, (7
The values inA correspond to indices within the current frame whose fregies lie within the specified banid’,
centered around;. The magnitudes at these frequencies are changed to refmeygeak. See the starred points in

Figures 27 and 28.
Thus, for all bins with indices im\, magnitude values are modified to remove the observed pée@iis. occurs as

follows:
For eachh € A, generate a valug ~ N (i, o).

P
Xsi= i Xs. 8)

Figures 27 and 28 shows the points the algorithm uses fastitatcollecting and the points with gains altered. As
shown, the peak &60Hz is entirely removed.
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Figure 29. Digital Waveguide model with one single delay line and Iditipr.

4.2. String
4.2.1. Single Plane of Vibration
4.2.2. Loop Filter Estimation

As discussed in Section 2.1.4, the loop filter gives the BigNaveguide frequency-dependent damping. Similar to what
is used in Artificial Reverbation, the time for frequenciegdecay50dB, known asg, is used to determine the gains of
the filter. We defineg, to be the time in seconds for a signal to deéagB. For obtaining gains for the fundamental
and harmonics of our loop filter, we computg for each of these frequencies over time using the Energy YoRedief
(EDR) [36, 41].

For the remainder of this section, we commute the second/digla shown in Figure 14 with the loop filter and
combine the delay lines. The resulting system, shown infgi@9 is equivalent to the one shown in Figure 14 as the
delay line and loop filter components are linear and timesiiant.

Similar to the STFT, the EDR shows the spectral componemstowe of a given signal. The single difference between
the STFT and the EDR is that the square magnitudes of the FE&alf frame is used instead of the magnitudes. With
the EDR, the amount of energy in each FFT bin is given over.tidue advantage of using the EDR over the STFT is
that energy decreases monotonically, whereas magnitadassed by the STFT, may increase and decrease resulting in
noisier data for decay estimation.

The EDR is defined as follows

M
EDR(tn, fx) = Y [H(m, k)| €)

whereH (m, k) corresponds to theth FFT bin at framen of the EDR.M corresponds to the total number of frames in
our EDR. ThusEDR(t,, fr) represents the total amount of energy remaining in the sigrtamet = ¢,, for frequency
f- Figuré 30 shows a three-dimensional plot of the EDR ovee tamd frequency.

Since the displacement of the string decreases exporgntiewing its motion and EDR in log space, we expect
linear decays, as Figure 130 shows for a plucked guitar stratg.

For each frequency, in the set of frequencies closest to the fundamental anddv@mirequencies, we fit a line to
the time-decay of its EDR. The primary parameter for estiomais the slope of the line. Figures|31[/to 36 show EDR
plots for the fundamental frequency and five harmonics. TB& Eor each frequency over time is plotted in blue. The
estimated line is shown in red. The estimation used only¢henents of the EDR for which the red line overlaps the blue.
As shown, the line estimated nearly matches exactly theeswh&£DR points used.

Given the estimated slopey,, for frequencyfy, teo(k) = :n—ﬁf. With ¢¢0(k) computed for the fundamental and
harmonic frequencies, we now relate the decay times to tims géthe loop filter.

G(wi)| 7 = 0.001 (10)
where|G(wy)| corresponds to the per sample desired gain of our filter. A& ahve the relation that

[H (wr)] = |Glwr) M (11)

|H(wr) |7 = |G (wy)] (12)
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Figure 30. Plot of the Energy Decay Relief of a plucked guitar note.
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Figure 31. EDR over time at frequency bi322.998Hz. The overlapping red segments were fitted with the undegly
blue points and plotted using the estimated slopes.
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Figure 32. EDR over time at frequency bi#00.5273Hz. The overlapping red segments were fitted with the undwegly
blue points and plotted using the estimated slopes.
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Figure 33. EDR over time at frequency bi813.5254Hz. The overlapping red segments were fitted with the undegly
blue points and plotted using the estimated slopes.
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Figure 34. EDR over time at frequency bit608.1055Hz. The overlapping red segments were fitted with the undwegly
blue points and plotted using the estimated slopes.
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Figure 35. EDR over time at frequency bir256.6895Hz. The overlapping red segments were fitted with the undegly
blue points and plotted using the estimated slopes.
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Figure 36. EDR over time at frequency bit0874.2676Hz. The overlapping red segments were fitted with the undwegly
blue points and plotted using the estimated slopes.

where|H (wy) 1| is the desired loop filter gain. This relates our per sampie géth the desired loop filter gain in series
with a length)M delay line. SubstitutingFl (wy) 1| for |G (wy)| in Equation 10, we obtain

| H (wi)| %7 = 0.001 (13)
Taking 20 log,, of both sides yields

MT
teo(k)

To specify gains at frequencies between the fundamentahandonics, we linearly interpolate between points for
which we have gains for. In specials cases, the gains at D(htiptloe fundamental frequency are set to the value of
the gain computed at the fundamental. For frequencies leetwee last harmonic and half the sampling-rate, the gains
decrease at an arbitrary slope.

With the gains specified for the loop filter, a complex speuntwith minimum-phase is computed [42]. A least-squares
fit or the Steiglitz-McBride iteration is used to compute tuefficients for an arbitrary order filter [42, 43].

Figures 37 and 38 show the desired gains computed for a re¢quitar note. The fundamentald80Hz. Gains for
the fundamental and harmonic frequencies are circled in&#dther points are linearly interpolated between theaimg
and the constants we set for DC and half the sampling-ratéisGelow the fundamental to DC are set to the value of
the gain at the fundamental frequency. The gain at half thepag-rate was arbitrarily set te 4.08dB. Figure 37 shows
gains from DC up t&kHz.

201logo |H (wi)| = —60 (24)

4.2.3. Two Orthogonal Planes of Vibration

Soon to come!

4.3. Body Resonator

From our synthesis model, the body resonator has a drivaigt pdmittance that filters the output of the string model to
transform force waves along the string into accelerationvesat the bridge [44]. Taking the inverse-FFT of the meakure
driving-point admittance, we obtain the impulse resporfsb@body of the instrument. This time-domain signal can be
stored as a wavetable for convolution with the output of $hettsesis string-model. Figures|39,/40, 41 and 42 show the
time-domain signal and spectrum (both magnitude and plediseneasured guitar’'s body impulse response, respectively
As shown, the impulse response lasts well gi@mns long. Viewing its spectrum in Figure 41, we note peaks deatir
near120 and250Hz.
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Figure 37. Estimated gains from a guitar’s high 'e’ string. Only freeies belowskHz are shown. The fundamental
frequency is330Hz. Circled points correspond to gain values for the fundatadeand harmonic frequencies. All other
points were linearly interpolated. The gain at DC was setetdhie same as that of the fundamental. The gain at half the
sampling-rate was set arbitrarily te4.08dB.
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Figure 38. Estimated gains from a guitar’s high 'e’ string. The fundanal frequency i830Hz. Circled points corre-
spond to gain values for the fundamental and harmonic fregjas. All other points were linearly interpolated. Thergai
at DC was set to be the same as that of the fundamental. Thatgzéif the sampling-rate was set arbitrarily-td.08dB.
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Figure 39. Measured body response from a gypsy guitar. The plot shogvsignal from time) to 50ms.
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Figure 40. Measured body response from a gypsy guitar. The plot shieavsignal from time to 1s.
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Figure 41. Measured body admittance from a gypsy guitar. The plot shaeth the magnitude and phase at frequencies
betweerb0Hz to 500Hz.
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Figure 42. Measured body admittance from a gypsy guitar. The plot shueth the magnitude and phase at frequencies
betweerb0Hz to 2000Hz.
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Figure 43. Time-domain signal of body response with peak2iHz removed.

4.3.1. Low-Order Filter Implementations

When latency and time-efficiency is a concern, the length@bitdy’s impulse response becomes an issue. Therefore, in
these systems, the impulse response of the body is appredmaing lower-order filters and a modal synthesis model.
To effectively shorten the body’s impulse response foraystrequiring low-latency and low-memory needs, methods
for removing the peaks are applied to leave a residual signdla low-cost representation for the removed resonating
peaks. This reduces the length of the original impulse nespavhile representing the primary modes parametricatyg T
two general approaches for dealing with spectral peak rafinoglude subtraction and inverse-filtering methods.
The two basic methods are as follows:

1. Complex Spectral Subtraction
bo —+ blzfl

H, =H(z)—
r(2) (2) 14+ a1z71 +agz—2

(15)

where H,.(z) corresponds to the shortened body impulse response Wiite corresponds to the measured body
impulse response. The parameters to be estimated are thredseder filter coefficientsy,b;,a; andas.

Complex Spectral Subtraction requires careful estimatibthe phase, amplitude, frequency and bandwidth for
peak removal. Furthermore, the resonators must run inlpaweith the residual. Therefore, advantages obtained
from Commuted Synthesis are lost as the approximated bogulse response model is not readily commutable
with the string component of our physical model [45].

2. Inverse-Filtering
Ho(2) = HZ)(1+a1z7 ! +agz7?) (16)

where H,.(z) again corresponds to the shortened body impulse resportse(t) equal to the measured body
impulse response. In this form, the residual signal is fgadimmutable with the string component of our physical
model as resonators are factored instead of subtractethdfomore, estimating the coefficients of the filter for peak
removal requires only the frequency and bandwidth of thekeal not the amplitude and phase as is required for
Complex Spectral Subtraction [28].

Applying inverse-filtering as described above, we take thgimal body response shown in Figures 39 and 40, and
remove the peak centered arourzDHz with a bandwidth ofilOHz. The residual, shown in Figure 43, is significantly
shorter than the original response. Whereas in Figure 33emonse lasts for well ovéHms, in the residual signal, its
amplitude oscillates near the noise floor at arogfhs. Figuré 44 shows the spectrum, both magnitude and phiabe, o
response after inverse-filtering. Compared with Figuretdd peak at 20Hz is completely removed.
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Figure 44. Spectral view, magnitude and phase, of body response witk at120Hz removed. Note that the response is
now shorter compared with the original body response in fei@9.

4.4. Radiated Sound Pressure

Using the measurements made in Sedtion 3.4, we compute itietpgpoint transfer function from the bridge to a single
point in space. The resulting response is shown in Figure Bte spectrum of the response is shown in Figure 46.
Observing Figure 45, the length of the response is cloge tong. Similar to the issues addressed with the body regpons
having to store the entire radiation response is costly.réfbee, the methods discussed for removing spectral peaks f
the body response can be directly applied to the radiatispaese.

Similar to how the driving-point admittance is used to mathel transfer of energy from the string to the bridge and
vice-versa, the transfer function from a point-to-pointasgrement of acceleration of the top-plate to a point in sjéc
pressure waves is used to affect the final sound output framploygsical model.

4.4.1. Low-Order Filter Implementations

Using the same techniques described in Section 4.3.1, atiedun the length of the resulting transfer function can
be made by factoring out frequency components of the sigithl tive most energy and replacing them with low-order
resonators. Both Complex Spectral Subtraction and invilteeng methods can be used. However, as done for the
body response, we opt to use inverse-filtering. Figures 474 show the results of removing the peak centered around
127Hz with a bandwidth oflOHz. Similar to the results obtained in Section 4.3.1, théatiwh response is significantly
shortened. As Figufe 47 shows, the residual signal appesaclvithin 0.1s. Whereas, as shown in Figlre 45 shows, the
radiation response lasts for well oves. Furthermore, the peak in the spectral domain is entingibved. As shown in
Figurée 48, the peak is close 60dBs lower than the peak a27Hz in the original radiation response shown in Figure 46.

4.4.2. Interpolating Between Measurements

Because multiple plucks and excitations of a guitar can bdenia one lab session, every note on the guitar can be
recorded, thereby obtaining acceleration of the top-pla@surements and corresponding pressure waves for each not
For each note, computing the transfer function resultiognficorresponding measurements yields correct radiatitan fil
characteristics at the fundamental and harmonics of the. nbherefore, to obtain an averaged measurement radiation
filter, using points from each notes’ transfer functionsresponding to the fundamental frequency and harmonics, and
interpolating between these known points also yields alpsyacoustically accurate radiation filter.
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Figure 45. Measured radiation response from a gypsy guitar. The plotvs the signal from timé to 3s. Note the
recordings were made in an anechoic chamber as describedtiin 3.4.
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Figure46. FFT of measured radiation response from a gypsy guitarpldteshows the magnitude at frequencies between
50Hz to 500Hz.
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Figure 47. Removing the peak of the measured radiation responsbiz. The plot shows the signal from tindeo 3s.
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Figure 48. FFT of the measured radiation response with the pedR@tz removed. The plot shows the magnitude at
frequencies betweek0Hz to 500Hz.



5. REVIEW OF METHODS AND FINAL WORDS

In this reader, we discuss methods for decomposing a plusktedyed-instrument into modular components with in-
dividual properties that can be measured, modeled andratdih Within calibration, there are just a few overarching
themes that should be mentioned to add cohesion to the neegiiesented. Inverse-filtering, used to reduce the order of
measured body impulse responses and pressure radiatisfeirdunctions, is extrememly useful in removing unwanted
components within a given signal. However, there are canditwith which its method creates undesireable side-tffec
nulls within the spectrum. As discussed in obtaining esicites for the digital waveguide string models in Section, 4.1
using inverse-filtering causes nulls at the fundamentali@nidarmonics resulting in an anti-harmonic excitationncgi

the excitation of the string is flat-spectrummed, inverterfng methods for excitation extraction does not present
psycho-acoustically pleasing solution.
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