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Abstract

The Transfer Function Measurement Toolkit is a simple, convenient, and free open-source
solution for measuring impulse responses, magnitude spectra, and phase spectra of single-input,
single-output (SISO) linear systems. Two measurement methods are explained and demon-
strated. The Golay code measurement technique is particularly robust to additive white noise,
while the swept sine measurement technique is robust to a weakly nonlinear motor exciting the
linear system being measured. The toolbox source code is kept to a minimal length to facilitate
further modification by others.
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Figure 1: Linear system to be measured

∗Work supported by the Wallenberg Global Learning Network

1

http://ccrma.stanford.edu/
http://www.stanford.edu/group/Music/
http://ee.stanford.edu
http://www.stanford.edu/
http://www.wgln.org/


Contents

1 Summary Of Objectives 3

2 Installation 3

3 Linear System 3

4 Limitations Of Sound Interfaces 4

5 Minimum Phase Systems 6

6 Golay Code Theory 6

7 Golay Code Measurement Procedure 7

8 High Pass Filter Measurement 7

9 Sine Sweep Measurement Theory 9

10 Sine Sweep Measurement Procedure 11

11 Sine Sweep Measurement of a Weakly Nonlinear Loudspeaker Driver 12

2



1 Summary Of Objectives

• To provide a general framework for characterizing single-input, single-output linear systems.

• To explain and demonstrate how to measure the impulse response of a linear system using
Golay codes.

• To explain some of the limitations of making measurements using standard sound interfaces.

• To demonstrate how to find the minimum-phase spectrum corresponding to a complex spec-
trum.

• To explain how to measure the impulse response of a system even if the excitation source
motor is weakly nonlinear. This measurement technique uses a sine sweep test signal.

2 Installation

1. Install a sound card, sound interface, or other full-duplex data acquisition card.

2. Consider testing the data acquisition card viewing the soundcard set-up instructions.1

3. Install either MATLAB or Octave.

4. Install pd. (Alternatively, you may use other software that is capable of recording a system’s
output for a given input excitation signal. The software should also be capable of reading
and writing WAV files. For example, any multitrack recording software should be fine.)

5. Download tf meas.zip2 and unzip the contents into a conveniently located local directory.

3 Linear System

Consider the causal, single-input single-output (SISO) system shown in Figure 2. For simplicity,
we will take the system to be linear and discrete-time, so that it is characterized by its impulse
response h(n) or equivalently its transfer function H(z), which is the z transform of h(n).

h(n)←→ H(z) (1)

We will assume that both h(n) and H(z) exist so that we can discuss measuring them inter-
changeably. We will further assume that h(n) has finite length so that we can measure the response
to an input signal in a finite amount of time. The goal of this document is to explain how to excite
the system with a signal s(n), measure the response r(n), and use s(n) and r(n) to determine h(n)
(and equivalently H(z)). In particular, it is useful to pick a signal s(n) that contains a large amount
of energy so that measurement noise will not significantly corrupt the measurement results.

1http://ccrma.stanford.edu/realsimple/soundcard test/
2http://ccrma.stanford.edu/realsimple/imp meas/tf meas.zip
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Figure 2: Linear system

4 Limitations Of Sound Interfaces

Sound cards and sound interfaces are not designed for making transfer function measurements.
They merely provide a cost-effective solution since almost all computers have sound cards. We
demonstrate these weaknesses given measurements made on a PreSonus Firepod sound interface.
The output from channel 1 was directly connected to the line input on channel 1, and the sampling
rate was fS = 44.1kHz.

1. Sound interfaces attenuate frequencies near DC and near half of the sampling rate fS/2.
Figure 3 shows the measured magnitude response of the sound interface. Ideally it would be
constant for all frequencies. However, Figure 3 shows that the -3dB point for the DC blocker
lies near 5Hz. The anti-aliasing filters cause the magnitude to roll off sharply such that the
high frequency -3dB roll-off point is about 20.9kHz.
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Figure 3: Magnitude response of the PreSonus FirePOD sound interface when the channel
1 output is directly connected to the channel 1 line input

2. The same sound interface filters cause the phase response measurement to be incorrect as well.
Although ideally the phase response would be 0 radians for all frequencies, Figure 4 reveals
that the phase measurement is distorted in roughly the same regions where the magnitude
measurement is distorted.

3. Even when a computer is programmed to pass an input signal flowing into the sound interface
input out of the sound interface output as fast as possible, there is a delay or latency. This
delay is typically on the order of tens of milliseconds. Figure 5 shows the impulse response
measured on the PreSonus card. The latency is approximately 62ms. The latency could have
been decreased some by adjusting software settings in pd. The impulse response also rings
noticeably due to the anti-aliasing filters.
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Figure 4: Phase response of the PreSonus FirePOD sound interface when the channel 1
output is directly connected to the channel 1 line input
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Figure 5: Impulse response of the PreSonus FirePOD sound interface when the channel
1 output is directly connected to the channel 1 line input
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For reference, we provide the measured impulse response3 shown in Figure 5.

5 Minimum Phase Systems

One further consequence of the delay is that determining the phase response of the measured system
is more complicated. The delay is responsible for a linear phase term since δ(n−k)←→ e−j2πfk/fS .
If the delay is known (or measured), then it may be removed by multiplying the measured spectrum
by ej2πfk/fS . However, if the system being measured is known to be minimum phase, then this

method4 may be applied to find the minimum phase frequency response corresponding to the
measured frequency response.

The transfer function measurement toolbox assumes that the system being measured is min-
imum phase. This is a valid assumption in many cases. For instance, all strictly positive real
transfer functions are minimum phase. Dissipative systems are strictly positive real (and therefore
minimum phase) if the appropriate quantity is measured and the sensor and motor are collocated.
For example, if s(n) controls a motor exerting a force on a dissipative system, and r(n) is the ve-
locity at that same point, the corresponding transfer function will be minimum phase. This holds
for other dual variable pairs such as torque and angular velocity, voltage and current, and pressure
and fluid flow.

For systems that are not minimum phase, such as systems involving a transmission delay be-
tween the input and output quantities, the phase plotted by the transfer function measurement
toolbox is not the system phase response, but rather the minimum phase response corresponding
to the measured system phase response.

6 Golay Code Theory

The length L bilevel sequences a(n) and b(n) are Golay if and only if the following condition holds,
where ⋆ is the autocorrelation operator [1]:

a(n) ⋆ a(n) + b(n) ⋆ b(n) = 2Lδ(n) (2)

δ(n) is the Kronecker delta function. Recall that (2) can also be written using ∗, the convolution
operator.

a(−n) ∗ a(n) + b(−n) ∗ b(n) = 2Lδ(n) (3)

Given that aL(n) and bL(n) are Golay, it turns out that a2L(n) = [ aL(n) bL(n) ] and
b2L(n) = [ aL(n) −bL(n) ] are also Golay. This means that Golay sequences can be constructed
recursively given Golay seed sequences such as a2(n) = [ 1 1 ] and b2(n) = [ 1 −1 ]. See the
MATLAB/Octave source code generate golay.m5 for details. Notice also that the resulting bilevel
sequences consist of only 1’s and −1’s. This means that the signal contains the maximum possible
power level given that |s(n)| ≤ 1∀n. This property is helpful in combatting measurement noise.

3http://ccrma.stanford.edu/realsimple/imp meas/direct2ImpResp.wav
4http://ccrma.stanford.edu/˜jos/filters/Matlab listing mps m test.html
5http://ccrma.stanford.edu/realsimple/imp meas/generate golay.m
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Let ra(n) = a(n) ∗ h(n) be the response due to the Golay code input a(n), and let rb(n) =
b(n) ∗ h(n) be the response due to the Golay code input b(n). Due to (2), the impulse response
h(n) may be determined as follows:

h(n) =
1

2L
(a(n) ⋆ ra(n) + b(n) ⋆ rb(n)) (4)

See golay response.m6 for more details.

7 Golay Code Measurement Procedure

1. Generate the Golay codes golayA.wav7 and golayB.wav8 using generate golay.m9.

2. Open the pd patch golay.pd,10 in pd.

3. Ensure that the patch is not in editing mode, and check the “compute audio” box in the main
pd window.

4. Adjust the “Output Volume” so that when you click on “Record Response to Golay A”, the
system under test is behaving linearly (i.e. not clipping), but so that the input signal to the
sound interface is not too noisy.

5. If there is an input volume on the sound interface, adjust it so that the levels approximately
match those shown in Figure 6 when you click on “Record Response to Golay A” and “Record
Response to Golay B.” If the sound interface has no input volume, then you will need to adjust
the “Output Volume” accordingly.

6. Once you are satisfied with the results, click the “Write Responses to Disk” button.

7. pd will write the files RespA.wav and RespB.wav to disk. Rename these files so that the
names match the measurement you just made. For instance, you might rename them to
hpfRespA.wav11 and hpfRespB.wav12 if they corresponded to the measurement of a high-
pass filter.

8. Run golay response(’hpf’)13 in MATLAB or Octave to analyze the measured response. Plots
will be created, and the file hpfImpResp.wav14 will be written to disk.

8 High Pass Filter Measurement

The circuit shown in Figure 7 was measured to show how the sound interface non-idealities affect a
measurement. VIN was connected to the output of channel 1 of the PreSonus sound interface, and
VOUT was connected to the line input of channel 1 of the interface.

6http://ccrma.stanford.edu/realsimple/imp meas/golay response.m
7http://ccrma.stanford.edu/realsimple/imp meas/golayA.wav
8http://ccrma.stanford.edu/realsimple/imp meas/golayB.wav
9http://ccrma.stanford.edu/realsimple/imp meas/generate golay.m

10http://ccrma.stanford.edu/realsimple/imp meas/golay.pd
11http://ccrma.stanford.edu/realsimple/imp meas/hpfRespA.wav
12http://ccrma.stanford.edu/realsimple/imp meas/hpfRespB.wav
13http://ccrma.stanford.edu/realsimple/imp meas/golay response.m
14http://ccrma.stanford.edu/realsimple/imp meas/hpfImpResp.wav
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Figure 6: golay.pd after making a measurement with an appropriate input level
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Figure 7: High pass filter electrical circuit
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The analog transfer function H(f) can be determined analytically using the voltage divider
rule:

H(f) =
VOUT (f)

VIN (f)
=

R

R + 1

j2πfC

=
j2πfRC

j2πfRC + 1
(5)

In this case, R = 1kΩ and C = 0.47µF, so the -3dB point is about f3dB = 1

2πRC ≈ 340Hz.
Figure 8 and Figure 9 show that the frequency response is accurately measured in the range of
about 10Hz to about 9fS/20.
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Figure 8: Measured magnitude response of the high pass filter
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Figure 9: Measured phase response of the high pass filter

The ringing in the measured impulse response distracts from the more subtle characteristics of
the ideal high pass filter impulse response. For transfer functions that pass large amounts of energy
at high frequencies, it may be more instructive to inspect the frequency domain measurement
results.

9 Sine Sweep Measurement Theory

In some cases, it is desirable to relax the power-maximizing constraint |s(n)| = 1∀n in favor of
obtaining some other desirable measurement system properties. For example, we may care more
about the accuracy of the measurement at lower frequencies compared to higher frequencies, so we
would like the excitation signal s(n) to contain more energy at lower frequencies [1]. We might
also be measuring a mechanical or acoustical system in which the motor controlled by s(n) behaves
weakly nonlinearly. If the nonlinearity is memoryless and is NOT preceded by any filtering, then

9
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Figure 10: Impulse response

the system to be measured matches the Hammerstein model shown in Figure 11. The goal is
to measure h(n), independently of the motor nonlinearity f(s). Performing the measurement is
complicated by the fact that superposition no longer holds.

MEMORYLESS

s(n)
f(s) h(n)

f(s(n)) r(n)

NONLINEARITY
LINEAR
SYSTEM

Figure 11: Hammerstein Model

Mathematically, the Hammerstein system behaves as follows:

r(n) = (f(s) ∗ h)(n) (6)

It turns out that we can obtain both of these desirable measurement system properties by using
a new excitation signal s(n). This signal is a sine wave, whose frequency is exponentially increased
from ω1 to ω2 over T seconds [2].

s(n) = sin[K(e−n/Lfs − 1)] (7)

where K = ω1T
ln

ω2

ω1

and L = T
ln

ω2

ω1

. The MATLAB/Octave code generate sinesweeps.m15 gener-

ates the appropriate sine sweep.
The important property of s(n) is that the time delay ∆tN between any sample n0 and a later

point with instantaneous frequency N times larger that the instantaneous frequency at s(n0) is
constant:

∆tN = T
ln(N)

ln ω2

ω1

(8)

15http://ccrma.stanford.edu/realsimple/imp meas/generate sinesweeps.m
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This characteristic implies that after inverse filtering the measured response, the signals due to
the nonlinear terms in f(s) are located at specific places in the final response signal. Consequently,
the linear contribution to the response, which is proportional to h(n) can be separated from the
other nonlinear terms. We can thus measure a linear system even if it is being driven by a weakly
nonlinear motor.

Because the frequency of s(n) increases exponentially, the system is excited for longer periods
of time at lower frequencies. This means that the inverse filter averages measurements at lower
frequencies longer, so this measurement technique is better suited to especially low-pass noise
sources.

10 Sine Sweep Measurement Procedure

1. Generate the sine sweeps16 using generate sinesweeps.m17.

2. Open the pd patch sinesweeps.pd,18 in pd.

3. Ensure that the patch is not in editing mode, and check the “compute audio” box in the main
pd window.

4. Adjust the “Output Volume” so that when you click on “Record Response To The Sine
Sweeps,” the system under test is behaving linearly (i.e. not clipping), but so that the input
signal to the sound interface is not too noisy.

5. If there is an input volume on the sound interface, adjust it so that the levels approximately
match those shown in Figure 12 when you click on “Record Response To The Sine Sweeps.”
If the sound interface has no input volume, then you will need to adjust the “Output Volume”
accordingly.

6. Once you are satisfied with the results, click the “Write Responses to Disk” button.

7. pd will write the file Resp.wav to disk. Rename this file so that the name matches the
measurement you just made. For instance, you might rename it to nonlinear2Resp.wav19 if
it corresponded to the second time you measured the transfer function of a weakly nonlinear
system.

8. Run sinesweeps response(’nonlinear2, 100, 0.4’)20 in MATLAB or Octave to analyze
the measured response. This means that the inverse filter will be restricted to a dynamic range
of 100 (40 dB), which helps avoid exaggerating problems beneath ω1 and above ω2, where
the excitation signal has little energy. 0.4 refers to the length in seconds of the linear impulse
response term to be extracted. Plots will be generated, and the file nonlinear2ImpResp.wav21

will be written to disk.

16http://ccrma.stanford.edu/realsimple/imp meas/sinesweeps.wav
17http://ccrma.stanford.edu/realsimple/imp meas/generate sinesweeps.m
18http://ccrma.stanford.edu/realsimple/imp meas/sinesweeps.pd
19http://ccrma.stanford.edu/realsimple/imp meas/nonlinear2Resp.wav
20http://ccrma.stanford.edu/realsimple/imp meas/sinesweeps response.m
21http://ccrma.stanford.edu/realsimple/imp meas/nonlinear2ImpResp.wav
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Figure 12: sinesweeps.pd after making a measurement with an appropriate input level

11 Sine Sweep Measurement of a Weakly Nonlinear Loudspeaker

Driver

To exeraggerate the nonlinearity of a loudspeaker, we cut the cone of a mishandled driver as shown
in Figure 13. We monitored the sound pressure several centimeters in front of the dustcap using
an Audio Technica AT4049a microphone, which has a flat magnitude response to within 3dB from
100Hz to 5kHz. The output from channel 1 of the PreSonus sound interface was connected to
the speaker via a power amplifier, and the microphone was connected to the microphone input of
channel 1 on the sound interface. The following results are typical of sine sweep measurements
with a weakly nonlinear motor.

Inverse filtering the measured response results in Figure 14, which is a plot of nonlinear2ImpResp.wav22.
The linear contribution corresponds to the spike at the beginning, while the weakly nonlinear terms
are clustered closer to the end of the response.

The main linear contribution is cut out and plotted in Figure 15. The measurement was not
made in an anechoic chamber, so there is a reflection about 15ms after the main impact.

The nonlinear terms are shown magnified in Figure 16. The lower order nonlinear terms toward
the right have larger magnitude but overlap less in time (see Figure 16). Note that (8) implies that
the overlapping could be reduced by increasing the total length T of the sweep excitation signal.

The magnitude and phase responses corresponding to the linear impulse response term from
Figure 15 are shown in Figure 17 and Figure 18 in blue. For comparison, another sine sweep mea-
surement was made at a lower level so that the speaker behaved approximately linearly. Decreasing
the level also resulted in more noise and even some systematic error, as is evidenced by the red

curves in Figure 17 and Figure 18. This comparison demonstrates that making measurements at
larger levels can reduce the effects of noise, while nonlinear motor effects can be overcome with the

22http://ccrma.stanford.edu/realsimple/imp meas/nonlinear2ImpResp.wav
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Figure 13: Mishandled driver with additional cuts in the cone
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Figure 14: Full-length response
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Figure 15: Linear impulse response term
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Figure 16: Nonlinear response terms

sine sweep measurement technique.
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Figure 17: Proportional to magnitude response of h(n)
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Figure 18: Phase response of h(n)
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