Outline

- Ideal vibrating string
- Sampled traveling waves
- Terminated string
- Plucked and struck string
- Damping and dispersion
- String Loop Identification
- Nonlinear “overdrive” distortion

Wave Equation

\[Ky'' = ey \]

\[K \triangleq \text{string tension} \quad y \triangleq y(t, x) \]
\[\epsilon \triangleq \text{linear mass density} \quad \dot{y} \triangleq \frac{\partial}{\partial t} y(t, x) \]
\[y \triangleq \text{string displacement} \quad y' \triangleq \frac{\partial}{\partial x} y(t, x) \]

Newton’s second law

\[\text{Force} = \text{Mass} \times \text{Acceleration} \]

Assumptions

- Lossless
- Linear
- Flexible (no “Stiffness”)
- Slope \(y'(t, x) \ll 1 \)
String Wave Equation Derivation

Force diagram for length dx string element:

$$ f(x + dx/2) = K \sin(\theta_1) + K \sin(\theta_2) $$

$$ \approx K [\tan(\theta_1) + \tan(\theta_2)] $$

$$ \approx K [-y'(x) + y'(x + dx)] $$

$$ \approx K [-y'(x) + y'(x) + y''(x)dx] $$

$$ = Ky''(x)dx $$

Mass of length dx string segment: $m = \epsilon dx$.

By Newton’s law, $f = ma = m\ddot{y}$, we have

$$ Ky''(t, x)dx = (\epsilon dx)\ddot{y}(t, x) $$

or

$$ Ky''(t, x) = \epsilon \ddot{y}(t, x) $$

Traveling-Wave Solution

One-dimensional lossless wave equation:

$$ Ky'' = \epsilon \ddot{y} $$

Plug in traveling wave to the right:

$$ y(t, x) = y_r(t - x/c) $$

$$ \Rightarrow \quad y'(t, x) = -\frac{1}{c} \dot{y}(t, x) $$

$$ y''(t, x) = \frac{1}{c^2} \ddot{y}(t, x) $$

• Given $c = \sqrt{K/\epsilon}$, the wave equation is satisfied for any shape traveling to the right at speed c (but remember slope $\ll 1$)

• Similarly, any left-going traveling wave at speed c, $y_l(t + x/c)$, satisfies the wave equation (show)
• General solution to lossless, 1D, second-order wave equation:

\[y(t, x) = y_r(t - x/c) + y_l(t + x/c) \]

• \(y_r(\cdot) \) and \(y_l(\cdot) \) are arbitrary twice-differentiable functions (slope \(\ll 1 \))

• **Important point:** Function of two variables \(y(t, x) \) is replaced by two functions of a single (time) variable \(\Rightarrow \) **reduced computational complexity.**

• Published by d’Alembert in 1747 (wave equation itself introduced in same paper)

Infinitely long string plucked simultaneously at three points marked ‘p’

- Initial displacement = sum of two identical triangular pulses
- At time \(t_0 \), traveling waves centers are separated by \(2ct_0 \) meters
- String is not moving where the traveling waves overlap at same slope.
- Animation

[http://ccrma.stanford.edu/~jos/readmin/TravellingWaveApp.swf]
Sampled Traveling Waves in a String

For discrete-time simulation, we must sample the traveling waves

- Sampling interval ΔT seconds
- Sampling rate Δf_s Hz $= 1/T$
- Spatial sampling interval ΔX m/s $= cT$
 \Rightarrow systolic grid

For a vibrating string with length L and fundamental frequency f_0,

$$c = f_0 \cdot 2L \quad \left(\frac{\text{meters}}{\text{sec}} = \frac{\text{periods}}{\text{sec}} \cdot \frac{\text{meters}}{\text{period}}\right)$$

so that

$$X = cT = (f_0 2L)/f_s = L[f_0/(f_s/2)]$$

Thus, the number of spatial samples along the string is

$$L/X = (f_s/2)/f_0$$

or

Number of spatial samples $= \text{Number of string harmonics}$

Examples:

- Spatial sampling interval for (1/2) CD-quality digital model of Les Paul electric guitar (strings ≈ 26 inches)
 - $X = Lf_0/(f_s/2) = L82.4/22050 \approx 2.5$ mm for low E string
 - $X \approx 10$ mm for high E string (two octaves higher and the same length)
 - Low E string: $(f_s/2)/f_0 = 22050/82.4 = 268$ harmonics (spatial samples)
 - High E string: 67 harmonics (spatial samples)

- Number of harmonics $= \text{number of oscillators required in additive synthesis}$
- Number of harmonics $= \text{number of two-pole filters required in subtractive, modal, or source-filter decomposition synthesis}$
- Digital waveguide model needs only one delay line (length $2L$)
Examples (continued):

- Sound propagation in air:
 - Speed of sound $c \approx 331$ meters per second
 - $X = 331/44100 = 7.5$ mm
 - Spatial sampling rate $= \nu_s = 1/X = 133$ samples/m
 - Sound speed in air is comparable to that of transverse waves on a guitar string (faster than some strings, slower than others)
 - Sound travels much faster in most solids than in air
 - Longitudinal waves in strings travel faster than transverse waves
 * typically an order of magnitude faster

Sampled Traveling Waves in any Digital Waveguide

\[
x \rightarrow x_m = mX \\
t \rightarrow t_n = nT
\]
\[
\Rightarrow \\
y(t_n, x_m) = y_r(t_n - x_m/c) + y_l(t_n + x_m/c) \\
= y_r(nT - mX/c) + y_l(nT + mX/c) \\
= y_r[(n - m)T] + y_l[(n + m)T] \\
= y^+(n - m) + y^- (n + m)
\]

where we defined
\[
y^+(n) \overset{\Delta}{=} y_r(nT) \\
y^- (n) \overset{\Delta}{=} y_l(nT)
\]

- “+” superscript \implies right-going
- “−” superscript \implies left-going

- $y_r[(n - m)T] = y^+(n - m) =$ output of m-sample delay line with input $y^+(n)$
- $y_l[(n + m)T] \overset{\Delta}{=} y^- (n + m) =$ input to an m-sample delay line whose output is $y^-(n)$
Lossless digital waveguide with observation points at $x = 0$ and $x = 3X = 3cT$

\[y(t, x) = y^+(\frac{t - x/c}{T}) + y^-(\frac{t + x/c}{T}) \]
\[y(nT, mX) = y^+(n - m) + y^-(n + m) \]

- **Recall:**

- Position $x_m = mX = mcT$ is eliminated from the simulation
- Position x_m remains laid out from left to right
- Left- and right-going traveling waves must be summed to produce a physical output
 \[y(t_n, x_m) = y^+(n - m) + y^-(n + m) \]
- Similar to ladder and lattice digital filters

Important point: Discrete time simulation is exact at the sampling instants, to within the numerical precision of the samples themselves. To avoid aliasing associated with sampling:

- Require all initial waveshapes be *bandlimited* to $(-f_s/2, f_s/2)$
- Require all external driving signals be similarly bandlimited
- Avoid nonlinearities or keep them “weak”
- Avoid time variation or keep it slow
- Use plenty of lowpass filtering with rapid high-frequency roll-off in severely nonlinear and/or time-varying cases
- Prefer “feed-forward” over “feed-back” around nonlinearities and/or modulations when possible

Interactive Java simulation of a vibrating string:
http://www.colorado.edu/physics/phet/simulations/stringwave/-stringWave.swf
Other Wave Variables

Velocity Waves:

\[v^+(n) \triangleq \dot{y}^+(n) \]
\[v^-(n) \triangleq \dot{y}^-(n) \]

Wave Impedance (we’ll derive later):

\[R = \sqrt{K \epsilon} = \frac{K}{c} = cc \]

Force Waves:

\[f^+(n) \triangleq R v^+(n) \]
\[f^-(n) \triangleq -R v^-(n) \]

Ohm’s Law for Traveling Waves:

\[
\begin{align*}
 f^+(n) & = R v^+(n) \\
 f^-(n) & = -R v^-(n)
\end{align*}
\]

Rigidly Terminated Ideal String

- Reflection *inverts* for displacement, velocity, or acceleration waves (proof below)
- Reflection *non-inverting* for slope or force waves

Boundary conditions:

\[y(t, 0) \equiv 0 \quad y(t, L) \equiv 0 \quad (L = \text{string length}) \]

Expand into Traveling-Wave Components:

\[
\begin{align*}
 y(t, 0) & = y_r(t) + y_l(t) = y^+(t/T) + y^-(t/T) \\
 y(t, L) & = y_r(t - L/c) + y_l(t + L/c)
\end{align*}
\]

Solving for outgoing waves gives

\[
\begin{align*}
 y^+(n) & = -y^-(n) \\
 y^-(n + N/2) & = -y^+(n - N/2)
\end{align*}
\]

\[N \triangleq 2L/X = \text{round-trip propagation time in samples} \]
Moving Termination: Ideal String

Uniformly moving rigid termination for an ideal string (tension K, mass density ϵ) at time $0 < t_0 < L/c$.

Driving-Point Impedance:

\[y'(t, 0) = -\frac{v_0 t_0}{c t_0} = -\frac{v_0}{c} = -\frac{v_0}{\sqrt{K/\epsilon}} \]

\[\Rightarrow f_0 = -K \sin(\theta) \approx -K y'(t, 0) = \sqrt{K \epsilon v_0} \Delta R v_0 \]

- If the left endpoint moves with constant velocity v_0 then the external applied force is $f_0 = R v_0$
- $R \overset{\Delta}{=} \sqrt{K \epsilon} \overset{\Delta}{=} \text{wave impedance (for transverse waves)}$
- Equivalent circuit is a resistor (dashpot) $R > 0$
- We have the simple relation $f_0 = R v_0$ only in the absence of return waves, i.e., until time $t_0 = 2L/c$.

• Successive snapshots of the ideal string with a uniformly moving rigid termination
• Each plot is offset slightly higher for clarity
• GIF89A animation at http://ccrma.stanford.edu/~jos/swgt/movet.html
Waveguide “Equivalent Circuits” for the Uniformly Moving Rigid String Termination

- String moves with speed \(v_0 \) or \(0 \) only
- String is always one or two straight segments
- “Helmholtz corner” (slope discontinuity) shuttles back and forth at speed \(c \)
- String slope increases without bound
- Applied force at termination steps up to infinity
 - Physical string force is labeled \(f(n) \)
 - \(f_0 = Rv_0 = \text{incremental force per period} \)

Doubly Terminated Ideal Plucked String

A doubly terminated string, “plucked” at 1/4 its length.

- Shown short time after pluck event.
- Traveling-wave components and physical string-shape shown.
- Note traveling-wave components sum to zero at terminations. (Use image method.)
Digital Waveguide Plucked-String Model Using Initial Conditions

Initial conditions for the ideal plucked string.

- Amplitude of each traveling-wave = $1/2$ initial string displacement.
- Sum of the upper and lower delay lines = initial string displacement.

Acceleration-Wave Simulation

Initial conditions for the ideal plucked string: acceleration or curvature waves.

Recall:

$$y'' = \frac{1}{c^2} \hat{y}$$

Acceleration waves are proportional to “curvature” waves.
Ideal Struck-String Velocity-Wave Simulation

Initial conditions for the ideal struck string in a velocity wave simulation.

Hammer strike = momentum transfer = velocity step:

\[m_h v_h(0-) = (m_h + m_s) v_s(0+) \]

External String Excitation at a Point

“Waveguide Canonical Form”

Equivalent System: Delay Consolidation

Finally, we “pull out” the comb-filter component:
Delay Consolidated System (Repeated):

Equivalent System: FFCF Factored Out:

- Extra memory needed.
- Output “tap” can be moved to delay-line output.

Algebraic Derivation

By inspection:

\[F_o(z) = z^{-N} \left\{ F_i(z) + z^{-2M} \left[F_i(z) + z^{-N} H_l(z) F_o(z) \right] \right\} \]

\[\Rightarrow H(z) = \frac{F_o(z)}{F_i(z)} = z^{-N} \frac{1 + z^{-2M}}{1 - z^{-2M+2N}} \]

\[= \left(1 + z^{-2M}\right) \frac{z^{-N}}{1 - z^{-2M+2N}} \]
Damped Plucked String

Rigidly terminated string with distributed resistive losses.

- N loss factors g are embedded between the delay-line elements.

Equivalent System: Gain Elements Commuted

All N loss factors g have been “pushed” through delay elements and combined at a *single* point.

Computational Savings

- $f_s = 50kHz, f_1 = 100Hz \Rightarrow \text{delay} = 500$
- Multiplies reduced by two orders of magnitude
- Input-output transfer function unchanged
- Round-off errors reduced
Frequency-Dependent Damping

- Loss factors g should really be digital filters
- Gains in nature typically decrease with frequency
- Loop gain may not exceed 1 (for stability)
- Gain filters commute with delay elements (LTI)
- Typically only one gain filter used per loop

Simplest Frequency-Dependent Loop Filter

$$H_l(z) = b_0 + b_1 z^{-1}$$

- Linear phase $\Rightarrow b_0 = b_1$ (⇒ delay = 1/2 sample)
- Zero damping at dc $\Rightarrow b_0 + b_1 = 1$
 $\Rightarrow b_0 = b_1 = 1/2$
 \Rightarrow

$$H_l(e^{j\omega T}) = \cos \left(\frac{\omega T}{2} \right), \quad |\omega| \leq \pi f_s$$

Next Simplest Case: Length 3 FIR Loop Filter

$$H_l(z) = b_0 + b_1 z^{-1} + b_2 z^{-2}$$

- Linear phase $\Rightarrow b_0 = b_2$ (⇒ delay = 1 sample)
- Unity dc gain $\Rightarrow b_0 + b_1 + b_2 = 2b_0 + b_1 = 1$ \Rightarrow

$$H_l(e^{j\omega T}) = e^{-j\omega T} \left[(1 - 2b_0) + 2b_0 \cos(\omega T) \right]$$

- Remaining degree of freedom = damping control
Length 3 FIR Loop Filter with Variable DC Gain

Have two degrees of freedom for brightness & sustain:

\[g_0 \triangleq e^{-6.91P/S} \]
\[b_0 = g_0(1 - B)/4 = b_2 \]
\[b_1 = g_0(1 + B)/2 \]

where

\[P = \text{period in seconds (total loop delay)} \]
\[S = \text{desired sustain time in seconds} \]
\[B = \text{brightness parameter in the interval } [0, 1] \]

Sustain time \(S \) is defined here as the time to decay 60 dB (or 6.91 time-constants) when brightness \(B \) is maximum (\(B = 1 \)). At minimum brightness (\(B = 0 \)), we have

\[|H_l(e^{j\omega T})| = g_0 \frac{1 + \cos(\omega T)}{2} = g_0 \cos^2(\omega T) \]

Karplus-Strong Algorithm

- To play a note, the delay line is initialized with random numbers (“white noise”)

Output \(y(n) \)

\[N \text{ samples delay} \]

\[\frac{1}{2} \]

\[+ \]

\[\frac{1}{2} \]

\[z^{-1} \]}
Interpretations of the Karplus-Strong Algorithm

The Karplus-Strong structure can be interpreted as a

- pitch prediction filter from the Codebook-Excited Linear Prediction (CELP) standard (periodic LPC synthesis)
- feedback comb filter with lowpassed feedback
 used earlier by James A. Moorer for recursively modeling wall-to-wall echoes ("About This Reverberation Business")
- simplified digital waveguide model

KS Physical Interpretation

- Rigidly terminated ideal string with the simplest damping filter
- Damping consolidated at one point and replaced by a one-zero filter approximation
- String shape = sum of upper and lower delay lines
- String velocity = spatial integral of the difference of upper and lower delay lines:
 \[s \xleftarrow{\Delta} y' = \frac{1}{c} (v_l - v_r) \]
 \[\Rightarrow y(t, x) = \frac{1}{c} \int_0^x \left[v_l \left(t + \frac{\xi}{c} \right) - v_r \left(t - \frac{\xi}{c} \right) \right] d\xi \]
- Karplus-Strong string is both "plucked" and "struck" by random amounts along entire length of string!
KS Sound Examples

- "Vintage" 8-bit sound examples:
 - Original Plucked String: [AIFF] (MP3)
 - Drum: [AIFF] (MP3)
 - Stretched Drum: [AIFF] (MP3)
- STK Plucked String: [WAV] (MP3)
 - Plucked String 1: [WAV] (MP3)
 - Plucked String 2: [WAV] (MP3)
 - Plucked String 3: [WAV] (MP3)
 - Plucked String 4: [WAV] (MP3)

Extended Karplus-Strong (EKS) Algorithm

\[
H_p(z) = \frac{1 - p}{1 - p z^{-1}} = \text{pick-direction lowpass filter}
\]

\[
H_d(z) = 1 - z^{-\beta N} = \text{pick-position comb filter, } \beta \in (0, 1)
\]

\[
H_s(z) = \text{string-stiffness allpass filter (several poles and zeros)}
\]

\[
H_{\rho}(z) = \frac{\rho(N) - z^{-1}}{1 - \rho(N) z^{-1}} = \text{first-order string-tuning allpass filter}
\]

\[
H_L(z) = \frac{1 - R_L}{1 - R_L z^{-1}} = \text{dynamic-level lowpass filter}
\]

\[N = \text{pitch period (2}\times\text{ string length) in samples}\]
EKS Sound Example

Bach A-Minor Concerto—Orchestra Part: [WAV] [MP3]

- Executes in real time on one Motorola DSP56001 (20 MHz clock, 128K SRAM)
- Developed for the NeXT Computer introduction at Davies Symphony Hall, San Francisco, 1989
- Solo violin part was played live by Dan Kobialka of the San Francisco Symphony

Loop Filter Identification

For loop-filter design, we wish to minimize the error in

- partial decay time (set by amplitude response)
- partial overtone tuning (set by phase response)

Simple and effective method:

- Estimate pitch (elaborated next page)
- Set Hamming FFT-window length to four periods
- Compute the short-time Fourier transform (STFT)
- Detect peaks in each spectral frame
- Connect peaks through time (amplitude envelopes)
- Amplitude envelopes must decay exponentially
- On a dB scale, exponential decay is a straight line
- Slope of straight line determines decay time-constant
- Can use 1st-order polyfit in Matlab or Octave
- For beating decay, connect amplitude envelope peaks
- Decay rates determine ideal amplitude response
- Partial tuning determines ideal phase response
Plucked/Struck String Pitch Estimation

- Take FFT of middle third of plucked string tone
- Detect spectral peaks
- Form histogram of peak spacing Δf_i
- Pitch estimate $\hat{f}_0 \triangleq \text{most common spacing } \Delta f_i$
- Refine \hat{f}_0 with gradient search using harmonic comb:

$$\hat{f}_0 = \arg \max_{f_0} \sum_{i=1}^{K} \log |X(k_i \hat{f}_0)|$$

$$= \arg \max_{f_0} \prod_{i=1}^{K} |X(k_i \hat{f}_0)|$$

where

$K = \text{number of peaks, and}$

$k_i = \text{estimated harmonic number of } i\text{th peak}$

(valid method for non-stiff strings)

Must skip over any missing harmonics,
i.e., omit k_i whenever $|X(k_i \hat{f}_0)| \approx 0$.

References: For pointers to research literature, see

http://ccrma.stanford.edu/~jos/jnmr/Model_Parameter_Estimation.html

Nonlinear “Overdrive”

A popular type of distortion, used in *electric guitars*, is *clipping* of the guitar waveform.

Hard Clipper

$$f(x) = \begin{cases}
-1, & x \leq -1 \\
x, & -1 \leq x \leq 1 \\
1, & x \geq 1
\end{cases}$$

where x denotes the current input sample $x(n)$, and $f(x)$ denotes the output of the nonlinearity.
Soft Clipper

\[f(x) = \begin{cases}
 -\frac{2}{3}, & x \leq -1 \\
 x - \frac{x^3}{3}, & -1 \leq x \leq 1 \\
 \frac{2}{3}, & x \geq 1
\end{cases} \]

Amplifier Distortion + Amplifier Feedback

Simulation of a basic distorted electric guitar with amplifier feedback.

- Distortion should be preceded and followed by *EQ*
 - Simple example: integrator pre, differentiator post
- Distortion output signal often further filtered by an *amplifier cabinet filter*, representing speaker cabinet, driver responses, etc.
- In Class A tube amplifiers, there should be *duty-cycle modulation* as a function of signal level:
 - 50% at low levels (no duty-cycle modulation)
 - 55-65% duty cycle observed at high levels
 - even harmonics come in
 - Example: Distortion input can *offset by a constant* (e.g., input RMS level times some scaling)

\[\text{See } \text{http://www.trueaudio.com/at_tweet.htm} \text{ for further discussion.} \]