
Elementary Digital Waveguide Models for Vibrating Strings

Julius Smith and Nelson Lee

RealSimple Project∗

Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University

Stanford, California 94305

June 5, 2008

Outline

• Ideal vibrating string

• Sampled traveling waves

• Terminated string

• Plucked and struck string

• Damping and dispersion

• String Loop Identification

• Nonlinear “overdrive” distortion

∗Work supported by the Wallenberg Global Learning Network

1

http://ccrma.stanford.edu/~{}jos
http://ccrma.stanford.edu/~{}nalee
http://ccrma.stanford.edu/realsimple/
http://ccrma.stanford.edu/
http://www.stanford.edu/group/Music/
http://www.stanford.edu/
http://www.wgln.org/

Ideal Vibrating String

Position

y (t,x)

0 x

. . .

. . .
0

K
String Tension

ε = Mass/Length

Wave Equation

Ky′′ = ǫÿ

K
∆
= string tension y

∆
= y(t, x)

ǫ
∆
= linear mass density ẏ

∆
= ∂

∂ty(t, x)

y
∆
= string displacement y′

∆
= ∂

∂xy(t, x)

Newton’s second law

Force = Mass × Acceleration

Assumptions

• Lossless

• Linear

• Flexible (no “Stiffness”)

• Slope y′(t, x) ≪ 1

2

String Wave Equation Derivation

x x + dx
θ2

K K

stringf

K sin(θ2)
K sin(θ1) θ1

Force diagram for length dx string element

Total upward force on length dx string element:

f(x + dx/2) = K sin(θ1) + K sin(θ2)

≈ K [tan(θ1) + tan(θ2)]

= K [−y′(x) + y′(x + dx)]

≈ K [−y′(x) + y′(x) + y′′(x)dx)]

= Ky′′(x)dx

Mass of length dx string segment: m = ǫ dx.

By Newton’s law, f = ma = mÿ, we have

Ky′′(t, x)dx = (ǫ dx)ÿ(t, x)

or

Ky′′(t, x) = ǫÿ(t, x)

3

Traveling-Wave Solution

One-dimensional lossless wave equation:

Ky′′ = ǫÿ

Plug in traveling wave to the right:

y(t, x) = yr(t − x/c)

⇒ y′(t, x) = −1

c
ẏ(t, x)

y′′(t, x) =
1

c2
ÿ(t, x)

• Given c
∆
=

√

K/ǫ, the wave equation is satisfied for any shape

traveling to the right at speed c (but remember slope ≪ 1)

• Similarly, any left-going traveling wave at speed c, yl(t + x/c),

statisfies the wave equation (show)

4

• General solution to lossless, 1D, second-order wave equation:

y(t, x) = yr(t − x/c) + yl(t + x/c)

• yl(·) and yr(·) are arbitrary twice-differentiable functions (slope

≪ 1)

• Important point: Function of two variables y(t, x) is replaced

by two functions of a single (time) variable ⇒ reduced

computational complexity.

• Published by d’Alembert in 1747

(wave equation itself introduced in same paper)

5

Infinitely long string plucked simultaneously at three points

marked ‘p’

String Shape at
time t0String Shape at

time 0

c c

Traveling Wave
Components

at time t0

.

p

pp

• Initial displacement = sum of two identical triangular pulses

• At time t0, traveling waves centers are separated by 2ct0 meters

• String is not moving where the traveling waves overlap at same

slope.

• Animation1

1http://ccrma.stanford.edu/ jos/rsadmin/TravellingWaveApp.swf

6

http://ccrma.stanford.edu/~jos/rsadmin/TravellingWaveApp.swf

Sampled Traveling Waves in a String

For discrete-time simulation, we must sample the traveling waves

• Sampling interval
∆
= T seconds

• Sampling rate
∆
= fs Hz = 1/T

• Spatial sampling interval
∆
= X m/s

∆
= cT

⇒ systolic grid

For a vibrating string with length L and fundamental frequency f0,

c = f0 · 2L
(

meters

sec
=

periods

sec
· meters

period

)

so that

X = cT = (f02L)/fs = L[f0/(fs/2)]

Thus, the number of spatial samples along the string is

L/X = (fs/2)/f0

or

Number of spatial samples = Number of string harmonics

7

Examples:

• Spatial sampling interval for (1/2) CD-quality digital model of

Les Paul electric guitar (strings ≈ 26 inches)

– X = Lf0/(fs/2) = L82.4/22050 ≈ 2.5 mm for low E string

– X ≈ 10 mm for high E string (two octaves higher and the

same length)

– Low E string: (fs/2)/f0 = 22050/82.4 = 268 harmonics

(spatial samples)

– High E string: 67 harmonics (spatial samples)

• Number of harmonics = number of oscillators required in

additive synthesis

• Number of harmonics = number of two-pole filters required in

subtractive, modal, or source-filter decomposition synthesis

• Digital waveguide model needs only one delay line (length 2L)

8

Examples (continued):

• Sound propagation in air :

– Speed of sound c ≈ 331 meters per second

– X = 331/44100 = 7.5 mm

– Spatial sampling rate = νs = 1/X = 133 samples/m

– Sound speed in air is comparable to that of transverse waves

on a guitar string (faster than some strings, slower than

others)

– Sound travels much faster in most solids than in air

– Longitudinal waves in strings travel faster than transverse

waves

∗ typically an order of magnitude faster

9

Sampled Traveling Waves in any Digital
Waveguide

x → xm = mX

t → tn = nT
⇒

y(tn, xm) = yr(tn − xm/c) + yl(tn + xm/c)

= yr(nT − mX/c) + yl(nT + mX/c)

= yr [(n − m)T] + yl [(n + m)T]

= y+(n − m) + y−(n + m)

where we defined

y+(n)
∆
= yr(nT) y−(n)

∆
= yl(nT)

• “+” superscript =⇒ right-going

• “−” superscript =⇒ left-going

• yr [(n − m)T] = y+(n − m) = output of m-sample delay line

with input y+(n)

• yl [(n + m)T] ∆
= y−(n + m) = input to an m-sample delay line

whose output is y−(n)

10

Lossless digital waveguide with observation points at x = 0

and x = 3X = 3cT

(x = 0) (x = cT) (x = 2cT)

. . .

.

. . .

z 1-

z 1-

z 1-

z 1-z 1-

z 1-

y (n+2)-y (n+1)-

y (n-1)+ y (n-2)+

y (nT,3X)

y (n)-

y (n)+

y (nT,0)

y (n-3)+

(x = 3cT)

y (n+3)-

• Recall:

y(t, x) = y+

(

t − x/c

T

)

+ y−
(

t + x/c

T

)

↓
y(nT, mX) = y+(n − m) + y−(n + m)

• Position xm = mX = mcT is eliminated from the simulation

• Position xm remains laid out from left to right

• Left- and right-going traveling waves must be summed to

produce a physical output

y(tn, xm) = y+(n − m) + y−(n + m)

• Similar to ladder and lattice digital filters

Important point: Discrete time simulation is exact at the sampling

instants, to within the numerical precision of the samples themselves.

To avoid aliasing associated with sampling:

11

• Require all initial waveshapes be bandlimited to (−fs/2, fs/2)

• Require all external driving signals be similarly bandlimited

• Avoid nonlinearities or keep them “weak”

• Avoid time variation or keep it slow

• Use plenty of lowpass filtering with rapid high-frequency roll-off

in severely nonlinear and/or time-varying cases

• Prefer “feed-forward” over “feed-back” around nonlinearities

and/or modulations when possible

Interactive Java simulation of a vibrating string:

http://www.colorado.edu/physics/phet/simulations/stringwave/-

stringWave.swf

12

http://www.colorado.edu/physics/phet/simulations/stringwave/stringWave.swf

Other Wave Variables

Velocity Waves:

v+(n)
∆
= ẏ+(n)

v−(n)
∆
= ẏ−(n)

Wave Impedance (we’ll derive later):

R =
√

Kǫ =
K

c
= ǫc

Force Waves:

f+(n)
∆
= R v+(n)

f−(n)
∆
= −R v−(n)

Ohm’s Law for Traveling Waves:

f+(n) = R v+(n)

f−(n) = − R v−(n)

13

Rigidly Terminated Ideal String

(x = 0) (x = L = NX/2 = NcT/2)

N/2 samples delay

y (n+N/2)

-1 “Bridge”
Rigid Termination

y (n)+

 “Nut”
Rigid Termination

N/2 samples delay -y (n)-

-1

y (n-N/2)+

y (nT,ξ)

• Reflection inverts for displacement, velocity, or acceleration

waves (proof below)

• Reflection non-inverting for slope or force waves

Boundary conditions:

y(t, 0) ≡ 0 y(t, L) ≡ 0 (L = string length)

Expand into Traveling-Wave Components:

y(t, 0) = yr(t) + yl(t) = y+(t/T) + y−(t/T)

y(t, L) = yr(t − L/c) + yl(t + L/c)

Solving for outgoing waves gives

y+(n) = −y−(n)

y−(n + N/2) = −y+(n − N/2)

N
∆
= 2L/X = round-trip propagation time in samples

14

Moving Termination: Ideal String

y(t,x)

x=L

x

x=0

c
y ≡ 0Position at rest:

v0

x=c t0

Uniformly moving rigid termination for an ideal string

(tension K, mass density ǫ) at time 0 < t0 < L/c.

Driving-Point Impedance:

y′(t, 0) = −v0t0
ct0

= −v0

c
= − v0

√

K/ǫ

⇒ f0 = −K sin(θ) ≈ −Ky′(t, 0) =
√

Kǫv0
∆
= Rv0

• If the left endpoint moves with constant velocity v0

then the external applied force is f0 = Rv0

• R
∆
=
√

Kǫ
∆
= wave impedance (for transverse waves)

• Equivalent circuit is a resistor (dashpot) R > 0

• We have the simple relation f0 = Rv0 only in the absence of

return waves, i.e., until time t0 = 2L/c.

15

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

String Driven by Moving Termination

Position x

D
is

pl
ac

em
en

t y

• Successive snapshots of the ideal string with a uniformly moving

rigid termination

• Each plot is offset slightly higher for clarity

• GIF89A animation at

http://ccrma.stanford.edu/~jos/swgt/movet.html

16

http://ccrma.stanford.edu/~{}jos/swgt/movet.html

Waveguide “Equivalent Circuits” for the Uniformly Moving

Rigid String Termination

(x = 0) (x = L)

vRf 00 =

(x = 0) (x = L)

-1-1

v0

a)

b)

f(n)

a) Velocity waves b) Force waves

• String moves with speed v0 or 0 only

• String is always one or two straight segments

• “Helmholtz corner” (slope discontinuity) shuttles back and forth

at speed c

• String slope increases without bound

• Applied force at termination steps up to infinity

– Physical string force is labeled f(n)

– f0 = Rv0 = incremental force per period

17

Doubly Terminated Ideal Plucked String

x=0
x=L

c c
String Shape at

time t0

y(t0,x)

0

Traveling Wave
Components

Position x

A doubly terminated string, “plucked” at 1/4 its length.

• Shown short time after pluck event.

• Traveling-wave components and physical string-shape shown.

• Note traveling-wave components sum to zero at terminations.

(Use image method.)

18

Digital Waveguide Plucked-String Model Using Initial

Conditions

(x = 0) (x = L)

y (n+N/2)

-1“Bridge”

y (n)+

“Nut”

-y (n)-

-1

y (n-N/2)+

(x = Pluck Position)

Initial conditions for the ideal plucked string.

• Amplitude of each traveling-wave = 1/2 initial string

displacement.

• Sum of the upper and lower delay lines = initial string

displacement.

19

Acceleration-Wave Simulation

(x = 0) (x = L)

a (n+N/2)

-1“Bridge”

a (n)+

“Nut”

-a (n)-

-1

a (n-N/2)+
c

c

Initial conditions for the ideal plucked string: acceleration or

curvature waves.

Recall:

y′′ =
1

c2
ÿ

Acceleration waves are proportional to “curvature” waves.

20

Ideal Struck-String Velocity-Wave Simulation

(x = 0) (x = L)

v (n+N/2)

-1“Bridge”

v (n)+

“Nut”

-v (n)-

-1

v (n-N/2)+

(x = Hammer Position)

c

c

Initial conditions for the ideal struck string in a velocity wave

simulation.

Hammer strike = momentum transfer = velocity step:

mhvh(0−) = (mh + ms)vs(0+)

21

External String Excitation at a Point

(x = 0) (x = L)

f (n)+

“Agraffe”
Rigid

Termination

f (n)-

Del M

Del M

Delay N

Delay N

(x = striking position)

Hammer Strike f(t)

Example
Output

Filter
“Bridge”
Yielding

Termination

“Waveguide Canonical Form”

Equivalent System: Delay Consolidation

Del 2M Delay 2N

String Output

Filter

Hammer

Strike f(t)

Finally, we “pull out” the comb-filter component:

22

Delay Consolidated System (Repeated):

Del 2M Delay 2N

String Output

Filter

Hammer

Strike f(t)

Equivalent System: FFCF Factored Out:

Delay 2M+2N
Hammer

Strike f(t)

Filter

Del 2M

g(t)

Out (from Del N)

• Extra memory needed.

• Output “tap” can be moved to delay-line output.

23

Algebraic Derivation

f (n)+

“Agraffe”
Rigid

Termination

f (n)-

Del M

Del M

Delay N

Delay N

Fi(z)

Output
Fo(z)

Hl(z)
“Bridge”
Yielding

Termination

By inspection:

Fo(z) = z−N
{

Fi(z) + z−2M
[

Fi(z) + z−NHl(z)Fo(z)
]}

⇒ H(z)
∆
=

Fo(z)

Fi(z)
= z−N 1 + z−2M

1 − z−(2M+2N)

=
(

1 + z−2M
) z−N

1 − z−(2M+2N)

Delay 2M+2N
Hammer

Strike f(t)

Filter

Del 2M

g(t)

Out (from Del N)

24

Damped Plucked String

(x = 0) (x = L)

N/2 samples delay, N/2 loss factors g

y (n-N/2)+

y (n+N/2)

Output (non-physical)

-1 “Bridge”
Rigid Termination

y (n)+

 “Nut”
Rigid Termination

N/2 samples delay, N/2 loss factors g -

g
N/2

g
-N/2

y (n)-

-1

Rigidly terminated string with distributed resistive losses.

• N loss factors g are embedded between the delay-line elements.

Equivalent System: Gain Elements Commuted

N samples delayOutput

g N

y (n-N)+y (n)+

All N loss factors g have been “pushed” through delay elements and

combined at a single point.

25

Computational Savings

• fs = 50kHz, f1 = 100Hz ⇒ delay = 500

• Multiplies reduced by two orders of magnitude

• Input-output transfer function unchanged

• Round-off errors reduced

26

Frequency-Dependent Damping

• Loss factors g should really be digital filters

• Gains in nature typically decrease with frequency

• Loop gain may not exceed 1 (for stability)

• Gain filters commute with delay elements (LTI)

• Typically only one gain filter used per loop

Simplest Frequency-Dependent Loop Filter

Hl(z) = b0 + b1z
−1

• Linear phase ⇒ b0 = b1 (⇒ delay = 1/2 sample)

• Zero damping at dc ⇒ b0 + b1 = 1

⇒ b0 = b1 = 1/2

⇒
Hl(e

jωT) = cos (ωT/2) , |ω| ≤ πfs

27

Next Simplest Case: Length 3 FIR Loop Filter

Hl(z) = b0 + b1z
−1 + b2z

−2

• Linear phase ⇒ b0 = b2 (⇒ delay = 1 sample)

• Unity dc gain ⇒ b0 + b1 + b2 = 2b0 + b1 = 1 ⇒

Hl(e
jωT) = e−jωT [(1 − 2b0) + 2b0 cos(ωT)]

• Remaining degree of freedom = damping control

28

Length 3 FIR Loop Filter with Variable DC Gain

Have two degrees of freedom for brightness & sustain:

g0
∆
= e−6.91P/S

b0 = g0(1 − B)/4 = b2

b1 = g0(1 + B)/2

where

P = period in seconds (total loop delay)

S = desired sustain time in seconds

B = brightness parameter in the interval [0, 1]

Sustain time S is defined here as the time to decay 60 dB (or 6.91

time-constants) when brightness B is maximum (B = 1). At

minimum brightness (B = 0), we have

|Hl(e
jωT)| = g0

1 + cos(ωT)

2
= g0 cos2(ωT)

29

Karplus-Strong Algorithm

N samples delayOutput y (n)+

z 1-

1/2

1/2

y (n-N)+

• To play a note, the delay line is initialized with random numbers

(“white noise”)

30

Interpretations of the Karplus-Strong Algorithm

The Karplus-Strong structure can be interpreted as a

• pitch prediction filter from the Codebook-Excited Linear

Prediction (CELP) standard (periodic LPC synthesis)

• feedback comb filter with lowpassed feedback

used earlier by James A. Moorer for recursively modeling

wall-to-wall echoes (“About This Reverberation Business”)

• simplified digital waveguide model

31

KS Physical Interpretation

• Rigidly terminated ideal string with the simplest damping filter

• Damping consolidated at one point and replaced by a one-zero

filter approximation

• String shape = sum of upper and lower delay lines

• String velocity = spatial integral of the difference of upper and

lower delay lines:

s
∆
= y′ =

1

c
(vl − vr)

⇒ y(t, x) =
1

c

∫ x

0

[

vl

(

t +
ξ

c

)

− vr

(

t − ξ

c

)]

dξ

• Karplus-Strong string is both “plucked” and “struck” by random

amounts along entire length of string!

32

KS Sound Examples

• “Vintage” 8-bit sound examples:

• Original Plucked String: (AIFF) (MP3)

• Drum: (AIFF) (MP3)

• Stretched Drum: (AIFF) (MP3)

• STK Plucked String: (WAV) (MP3)

• Plucked String 1: (WAV) (MP3)

• Plucked String 2: (WAV) (MP3)

• Plucked String 3: (WAV) (MP3)

• Plucked String 4: (WAV) (MP3)

33

http://ccrma.stanford.edu/~jos/aiff/pluck.aiff
http://ccrma.stanford.edu/~jos/mp3/pluck.mp3
http://ccrma.stanford.edu/~jos/aiff/ksdrum.aiff
http://ccrma.stanford.edu/~jos/mp3/ksdrum.mp3
http://ccrma.stanford.edu/~jos/aiff/ksdrumst.aiff
http://ccrma.stanford.edu/~jos/mp3/ksdrumst.mp3
http://ccrma.stanford.edu/~jos/wav/plucked.wav
http://ccrma.stanford.edu/~jos/mp3/plucked.mp3
http://ccrma.stanford.edu/~jos/wav/karplus2.wav
http://ccrma.stanford.edu/~jos/mp3/karplus2.mp3
http://ccrma.stanford.edu/~jos/wav/karplus1.wav
http://ccrma.stanford.edu/~jos/mp3/karplus1.mp3
http://ccrma.stanford.edu/~jos/wav/ks44k.wav
http://ccrma.stanford.edu/~jos/mp3/ks44k.mp3
http://ccrma.stanford.edu/~jos/wav/karplus1.wav
http://ccrma.stanford.edu/~jos/mp3/karplus1.mp3

Extended Karplus-Strong (EKS)
Algorithm

Hβ(z)

Hρ(z) Hs(z)

HL(z)Hp(z)

Hd(z)

z−N

N = pitch period (2× string length) in samples

Hp(z) =
1 − p

1 − p z−1
= pick-direction lowpass filter

Hβ(z) = 1 − z−βN = pick-position comb filter, β ∈ (0, 1)

Hd(z) = string-damping filter (one/two poles/zeros typical)

Hs(z) = string-stiffness allpass filter (several poles and zeros)

Hρ(z) =
ρ(N) − z−1

1 − ρ(N) z−1
= first-order string-tuning allpass filter

HL(z) =
1 − RL

1 − RL z−1
= dynamic-level lowpass filter

34

EKS Sound Example

Bach A-Minor Concerto—Orchestra Part: (WAV) (MP3)

• Executes in real time on one Motorola DSP56001

(20 MHz clock, 128K SRAM)

• Developed for the NeXT Computer introduction at Davies

Symphony Hall, San Francisco, 1989

• Solo violin part was played live by Dan Kobialka of the San

Francisco Symphony

35

http://ccrma.stanford.edu/~jos/wav/bachfugue.wav
http://ccrma.stanford.edu/~jos/mp3/bachfugue.mp3

Loop Filter Identification

For loop-filter design, we wish to minimize the error in

• partial decay time (set by amplitude response)

• partial overtone tuning (set by phase response)

Simple and effective method:

• Estimate pitch (elaborated next page)

• Set Hamming FFT-window length to four periods

• Compute the short-time Fourier transform (STFT)

• Detect peaks in each spectral frame

• Connect peaks through time (amplitude envelopes)

• Amplitude envelopes must decay exponentially

• On a dB scale, exponential decay is a straight line

• Slope of straight line determines decay time-constant

• Can use 1st-order polyfit in Matlab or Octave

• For beating decay, connect amplitude envelope peaks

• Decay rates determine ideal amplitude response

• Partial tuning determines ideal phase response

36

Plucked/Struck String Pitch Estimation

• Take FFT of middle third of plucked string tone

• Detect spectral peaks

• Form histogram of peak spacing ∆fi

• Pitch estimate f̂0
∆
= most common spacing ∆fi

• Refine f̂0 with gradient search using harmonic comb:

f̂0
∆
= arg max

f̂0

K
∑

i=1

log
∣

∣

∣
X(kif̂0)

∣

∣

∣

= arg max
f̂0

K
∏

i=1

∣

∣

∣
X(kif̂0)

∣

∣

∣

where

K = number of peaks, and

ki = estimated harmonic number of ith peak

(valid method for non-stiff strings)

Must skip over any missing harmonics,

i.e., omit ki whenever |X(kif̂0)| ≈ 0.

References: For pointers to research literature, see

http://ccrma.stanford.edu/~jos/jnmr/Model Parameter Estimation.html

37

http://ccrma.stanford.edu/~{}jos/jnmr/Model_Parameter_Estimation.html

Nonlinear “Overdrive”

A popular type of distortion, used in electric guitars, is clipping of

the guitar waveform.

Hard Clipper

f(x) =











−1, x ≤ −1

x, −1 ≤ x ≤ 1

1, x ≥ 1

where x denotes the current input sample x(n), and f(x) denotes

the output of the nonlinearity.

38

Soft Clipper

f(x) =















−2
3, x ≤ −1

x − x3

3 , −1 ≤ x ≤ 1
2
3, x ≥ 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
x=−1:0.01:1; plot([−(2/3)*ones(1,100), x−x.3/3, (2/3)*ones(1,100)])

x(n)

f(
x(

n)
)

39

Amplifier Distortion + Amplifier Feedback

Gain
Feedback
Amplifier

...

Pre-distortion output level

Pre-distortion gain

Output Signal

Distortion output level

Nonlinear Distortion

Amplifier Feedback Delay

String 1

String N

Simulation of a basic distorted electric guitar with amplifier
feedback.

• Distortion should be preceded and followed by EQ

Simple example: integrator pre, differentiator post

• Distortion output signal often further filtered by an amplifier

cabinet filter, representing speaker cabinet, driver responses, etc.

• In Class A tube amplifiers, there should be duty-cycle modulation

as a function of signal level2

– 50% at low levels (no duty-cycle modulation)

– 55-65% duty cycle observed at high levels

⇒ even harmonics come in

– Example: Distortion input can offset by a constant

(e.g., input RMS level times some scaling)

2See http://www.trueaudio.com/at eetjlm.htm for further discussion.

40

http://www.trueaudio.com/at_eetjlm.htm

