Elementary Digital Waveguide Models for Vibrating Strings

Julius Smith and Nelson Lee

RealSimple Project
Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University
Stanford, California 94305

June 5, 2008

Outline

• Ideal vibrating string
• Sampled traveling waves
• Terminated string
• Plucked and struck string
• Damping and dispersion
• String Loop Identification
• Nonlinear “overdrive” distortion

*Work supported by the Wallenberg Global Learning Network
Ideal Vibrating String

Wave Equation

\[Ky'' = \epsilon \ddot{y} \]

- \(K \) \(\Delta \) string tension
- \(\epsilon \) \(\Delta \) linear mass density
- \(y \) \(\Delta \) string displacement

Newton’s second law

\[\text{Force} = \text{Mass} \times \text{Acceleration} \]

Assumptions

- Lossless
- Linear
- Flexible (no “Stiffness”)
- Slope \(y'(t, x) \ll 1 \)
String Wave Equation Derivation

Total upward force on length dx string element:

\[
f(x + dx/2) = K \sin(\theta_1) + K \sin(\theta_2) \\
\approx K [\tan(\theta_1) + \tan(\theta_2)] \\
= K [-y'(x) + y'(x + dx)] \\
\approx K [-y'(x) + y'(x) + y''(x)dx] \\
= K y''(x)dx
\]

Mass of length dx string segment: $m = \epsilon dx$.

By Newton’s law, $f = ma = m\ddot{y}$, we have

\[
K y''(t, x)dx = (\epsilon dx)\ddot{y}(t, x)
\]

or

\[
K y''(t, x) = \epsilon \ddot{y}(t, x)
\]
Traveling-Wave Solution

One-dimensional lossless wave equation:

\[Ky'' = \epsilon \dot{y} \]

Plug in traveling wave to the right:

\[y(t, x) = y_r(t - x/c) \]

\[\Rightarrow y'(t, x) = -\frac{1}{c} \dot{y}(t, x) \]

\[y''(t, x) = \frac{1}{c^2} \ddot{y}(t, x) \]

- Given \(c \triangleq \sqrt{K/\epsilon} \), the wave equation is satisfied for any shape traveling to the right at speed \(c \) (but remember slope \(\ll 1 \))

- Similarly, any left-going traveling wave at speed \(c \), \(y_l(t + x/c) \), satisfies the wave equation (show)
• General solution to lossless, 1D, second-order wave equation:

\[y(t, x) = y_r(t - x/c) + y_l(t + x/c) \]

• \(y_l(\cdot) \) and \(y_r(\cdot) \) are arbitrary twice-differentiable functions (slope \(\ll 1 \))

• **Important point:** Function of two variables \(y(t, x) \) is replaced by two functions of a single (time) variable ⇒ *reduced computational complexity*.

• Published by d’Alembert in 1747
 (wave equation itself introduced in same paper)
Infinitely long string plucked simultaneously at three points marked ‘p’

- Initial displacement = sum of two identical triangular pulses
- At time \(t_0 \), traveling waves centers are separated by \(2ct_0 \) meters
- String is not moving where the traveling waves overlap at same slope.
- Animation\(^1\)

\(^1\)http://ccrma.stanford.edu/jos/rsadmin/TravellingWaveApp.swf
Sampled Traveling Waves in a String

For discrete-time simulation, we must sample the traveling waves

- Sampling interval \(\frac{\Delta t}{\Delta} = T \) seconds
- Sampling rate \(\frac{\Delta f}{T} = f_s \) Hz \(= \frac{1}{T} \)
- Spatial sampling interval \(\frac{\Delta x}{X} = \frac{c}{T} \) m/s \(= \frac{cT}{\Delta} \)
 \(\Rightarrow \) systolic grid

For a vibrating string with length \(L \) and fundamental frequency \(f_0 \),

\[
c = f_0 \cdot 2L \quad \left(\frac{\text{meters}}{\text{sec}} = \frac{\text{periods}}{\text{sec}} \cdot \frac{\text{meters}}{\text{period}} \right)
\]

so that

\[
X = cT = (f_0 2L)/f_s = L[f_0/(f_s/2)]
\]

Thus, the number of spatial samples along the string is

\[
L/X = (f_s/2)/f_0
\]

or

Number of spatial samples = Number of string harmonics
Examples:

- Spatial sampling interval for (1/2) CD-quality digital model of Les Paul electric guitar (strings ≈ 26 inches)
 - \(X = L f_0 / (f_s / 2) = L 82.4 / 22050 \approx 2.5 \) mm for low E string
 - \(X \approx 10 \) mm for high E string (two octaves higher and the same length)
 - Low E string: \((f_s / 2) / f_0 = 22050 / 82.4 = 268 \) harmonics (spatial samples)
 - High E string: 67 harmonics (spatial samples)

- Number of harmonics = number of oscillators required in additive synthesis

- Number of harmonics = number of two-pole filters required in subtractive, modal, or source-filter decomposition synthesis

- Digital waveguide model needs only one delay line (length \(2L \))
Examples (continued):

- Sound propagation in *air*:
 - Speed of sound $c \approx 331$ meters per second
 - $X = 331/44100 = 7.5$ mm
 - Spatial sampling rate $\nu_s = 1/X = 133$ samples/m
 - Sound speed in air is *comparable* to that of transverse waves on a guitar string (faster than some strings, slower than others)
 - Sound travels much faster in most solids than in air
 - Longitudinal waves in strings travel faster than transverse waves
 - *typically* an order of magnitude faster
Sampled Traveling Waves in any Digital Waveguide

\[x \rightarrow x_m = mX \]
\[t \rightarrow t_n = nT \]

\[\Rightarrow \]

\[y(t_n, x_m) = y_r(t_n - x_m/c) + y_l(t_n + x_m/c) \]
\[= y_r(nT - mX/c) + y_l(nT + mX/c) \]
\[= y_r[(n - m)T] + y_l[(n + m)T] \]
\[= y^+(n - m) + y^-(n + m) \]

where we defined

\[y^+(n) \triangleq y_r(nT) \quad y^-(n) \triangleq y_l(nT) \]

• “+” superscript \(\Rightarrow \) right-going

• “−” superscript \(\Rightarrow \) left-going

• \(y_r[(n - m)T] = y^+(n - m) \) = output of \(m \)-sample delay line with input \(y^+(n) \)

• \(y_l[(n + m)T] \triangleq y^-(n + m) \) = input to an \(m \)-sample delay line whose output is \(y^-(n) \)
Lossless digital waveguide with observation points at \(x = 0 \) and \(x = 3X = 3cT \)

\[y(t, x) = y^+(t - x/cT) + y^-(t + x/cT) \]
\[y(nT, mX) = y^+(n - m) + y^-(n + m) \]

- Position \(x_m = mX = mcT \) is eliminated from the simulation
- Position \(x_m \) remains laid out from left to right
- Left- and right-going traveling waves must be summed to produce a physical output
 \[y(t_n, x_m) = y^+(n - m) + y^-(n + m) \]
- Similar to ladder and lattice digital filters

Important point: Discrete time simulation is exact at the sampling instants, to within the numerical precision of the samples themselves.

To avoid aliasing associated with sampling:
• Require all initial waveshapes be \textit{bandlimited} to \((-f_s/2, f_s/2)\)

• Require all external driving signals be similarly bandlimited

• Avoid nonlinearities or keep them “weak”

• Avoid time variation or keep it slow

• Use plenty of lowpass filtering with rapid high-frequency roll-off in severely nonlinear and/or time-varying cases

• Prefer “feed-forward” over “feed-back” around nonlinearities and/or modulations when possible

Interactive Java simulation of a vibrating string:

\url{http://www.colorado.edu/physics/phet/simulations/stringwave/stringWave.swf}
Other Wave Variables

Velocity Waves:

\[v^+(n) \triangleq \dot{y}^+(n) \]
\[v^-(n) \triangleq \dot{y}^-(n) \]

Wave Impedance (we’ll derive later):

\[R = \sqrt{K \epsilon} = \frac{K}{c} = \epsilon c \]

Force Waves:

\[f^+(n) \triangleq R v^+(n) \]
\[f^-(n) \triangleq -R v^-(n) \]

Ohm’s Law for Traveling Waves:

\[
\begin{align*}
 f^+(n) &= R v^+(n) \\
 f^-(n) &= -R v^-(n)
\end{align*}
\]
Rigidly Terminated Ideal String

- Reflection *inverts* for displacement, velocity, or acceleration waves (proof below)
- Reflection *non-inverting* for slope or force waves

Boundary conditions:

\[y(t, 0) \equiv 0 \quad y(t, L) \equiv 0 \quad (L = \text{string length}) \]

Expand into Traveling-Wave Components:

\[
\begin{align*}
 y(t, 0) &= y_r(t) + y_l(t) = y^+(t/T) + y^-(t/T) \\
 y(t, L) &= y_r(t - L/c) + y_l(t + L/c)
\end{align*}
\]

Solving for outgoing waves gives

\[
\begin{align*}
 y^+(n) &= -y^-(n) \\
 y^-(n + N/2) &= -y^+(n - N/2)
\end{align*}
\]

\[N \triangleq \frac{2L}{X} = \text{round-trip propagation time in samples} \]
Moving Termination: Ideal String

Uniformly moving rigid termination for an ideal string (tension K, mass density ϵ) at time $0 < t_0 < L/c$.

Driving-Point Impedance:

\[
y'(t, 0) = -\frac{v_0 t_0}{c t_0} = -\frac{v_0}{c} = -\frac{v_0}{\sqrt{K/\epsilon}}
\]

\[
\Rightarrow f_0 = -K \sin(\theta) \approx -K y'(t, 0) = \sqrt{K \epsilon v_0} \triangleq R v_0
\]

- If the left endpoint moves with constant velocity v_0 then the external applied force is $f_0 = R v_0$
- $R \triangleq \sqrt{K \epsilon} \triangleq \text{wave impedance}$ (for transverse waves)
- Equivalent circuit is a resistor (dashpot) $R > 0$
- We have the simple relation $f_0 = R v_0$ only in the absence of return waves, i.e., until time $t_0 = 2L/c$.
• Successive snapshots of the ideal string with a uniformly moving rigid termination
• Each plot is offset slightly higher for clarity
• GIF89A animation at

 http://ccrma.stanford.edu/~jos/swgt/movet.html
Waveguide “Equivalent Circuits” for the Uniformly Moving Rigid String Termination

![Diagram of waveguide equivalent circuits](image)

- String moves with speed \(v_0 \) or \(0 \) only
- String is always one or two straight segments
- “Helmholtz corner” (slope discontinuity) shuttles back and forth at speed \(c \)
- String slope increases without bound
- Applied force at termination steps up to infinity
 - Physical string force is labeled \(f(n) \)
 - \(f_0 = Rv_0 = \text{incremental force per period} \)
A doubly terminated string, “plucked” at 1/4 its length.

- Shown short time after pluck event.
- Traveling-wave components and physical string-shape shown.
- Note traveling-wave components sum to zero at terminations.
 (Use image method.)
Digital Waveguide Plucked-String Model Using Initial Conditions

Initial conditions for the ideal plucked string.

- Amplitude of each traveling-wave = $1/2$ initial string displacement.
- Sum of the upper and lower delay lines = initial string displacement.
Acceleration-Wave Simulation

Initial conditions for the ideal plucked string: acceleration or curvature waves.

Recall:

\[y'' = \frac{1}{c^2} \ddot{y} \]

Acceleration waves are proportional to “curvature” waves.
Ideal Struck-String Velocity-Wave Simulation

Initial conditions for the ideal struck string in a velocity wave simulation.

Hammer strike = momentum transfer = velocity step:

\[m_h v_h(0-) = (m_h + m_s) v_s(0+) \]
External String Excitation at a Point

```
\[ f(n) + (x = 0) \quad \text{Del M} \quad + \quad \text{Delay} N \quad \text{Example Output} \]
```

\[f(n) \quad \text{Del M} \quad + \quad \text{Delay} N \quad \text{Hammer Strike} f(t) \quad \text{Filter} \]

\(x = 0 \rangle \quad (x = \text{striking position}) \quad (x = L) \]

“Waveguide Canonical Form”

Equivalent System: Delay Consolidation

```
\[ f(t) \quad + \quad \text{Del 2M} \quad + \quad \text{Delay 2N} \quad \text{String Output} \]
```

Finally, we “pull out” the comb-filter component:
Delay Consolidated System (Repeated):

Equivalent System: FFCF Factored Out:

- Extra memory needed.
- Output “tap” can be moved to delay-line output.
Algebraic Derivation

By inspection:

\[
F_o(z) = z^{-N} \left\{ F_i(z) + z^{-2M} \left[F_i(z) + z^{-N} H_l(z) F_o(z) \right] \right\}
\]

\[
\Rightarrow H(z) \triangleq \frac{F_o(z)}{F_i(z)} = z^{-N} \frac{1 + z^{-2M}}{1 - z^{-(2M+2N)}}
\]

\[
= (1 + z^{-2M}) \frac{z^{-N}}{1 - z^{-(2M+2N)}}
\]
Damped Plucked String

Rigidly terminated string with distributed resistive losses.

- N loss factors g are embedded between the delay-line elements.

Equivalent System: Gain Elements Commuted

All N loss factors g have been “pushed” through delay elements and combined at a single point.
Computational Savings

- \(f_s = 50\text{kHz}, f_1 = 100\text{Hz} \Rightarrow \text{delay} = 500\)
- Multiplies reduced by two orders of magnitude
- Input-output transfer function unchanged
- Round-off errors reduced
Frequency-Dependent Damping

- Loss factors g should really be digital filters
- Gains in nature typically decrease with frequency
- Loop gain may not exceed 1 (for stability)
- Gain filters commute with delay elements (LTI)
- Typically only one gain filter used per loop

Simplest Frequency-Dependent Loop Filter

$$H_l(z) = b_0 + b_1 z^{-1}$$

- Linear phase $\Rightarrow b_0 = b_1$ (\Rightarrow delay = 1/2 sample)
- Zero damping at dc $\Rightarrow b_0 + b_1 = 1$
 $\Rightarrow b_0 = b_1 = 1/2$
 \Rightarrow

$$H_l(e^{j\omega T}) = \cos \left(\frac{\omega T}{2} \right), \quad |\omega| \leq \pi f_s$$
Next Simplest Case: Length 3 FIR Loop Filter

\[H_l(z) = b_0 + b_1 z^{-1} + b_2 z^{-2} \]

- Linear phase \(\Rightarrow b_0 = b_2 \) (\(\Rightarrow \) delay = 1 sample)
- Unity dc gain \(\Rightarrow b_0 + b_1 + b_2 = 2b_0 + b_1 = 1 \) \(\Rightarrow \)
 \[H_l(e^{j\omega T}) = e^{-j\omega T} [(1 - 2b_0) + 2b_0 \cos(\omega T)] \]
- Remaining degree of freedom = damping control
Length 3 FIR Loop Filter with Variable DC Gain

Have two degrees of freedom for brightness & sustain:

\[
 g_0 \triangleq e^{-6.91P/S} \\
 b_0 = g_0(1 - B)/4 = b_2 \\
 b_1 = g_0(1 + B)/2
\]

where

\[
 P = \text{period in seconds (total loop delay)} \\
 S = \text{desired sustain time in seconds} \\
 B = \text{brightness parameter in the interval } [0, 1]
\]

Sustain time \(S \) is defined here as the time to decay 60 dB (or 6.91 time-constants) when brightness \(B \) is maximum (\(B = 1 \)). At minimum brightness (\(B = 0 \)), we have

\[
 |H_1(e^{j\omega T})| = g_0 \frac{1 + \cos(\omega T)}{2} = g_0 \cos^2(\omega T)
\]
Karplus-Strong Algorithm

- To play a note, the delay line is initialized with random numbers ("white noise")
Interpretations of the Karplus-Strong Algorithm

The Karplus-Strong structure can be interpreted as a

- *pitch prediction filter* from the Codebook-Excited Linear Prediction (CELP) standard (*periodic LPC* synthesis)
- *feedback comb filter* with *lowpassed feedback*
 used earlier by James A. Moorer for recursively modeling *wall-to-wall echoes* (“About This Reverberation Business”)
- *simplified digital waveguide model*
KS Physical Interpretation

• Rigidly terminated ideal string with the simplest damping filter

• Damping consolidated at one point and replaced by a one-zero filter approximation

• String shape = sum of upper and lower delay lines

• String velocity = spatial integral of the difference of upper and lower delay lines:

\[s \triangleq y' = \frac{1}{c} (v_l - v_r) \]

\[\Rightarrow y(t, x) = \frac{1}{c} \int_0^x \left[v_l \left(t + \frac{\xi}{c}\right) - v_r \left(t - \frac{\xi}{c}\right) \right] d\xi \]

• Karplus-Strong string is both “plucked” and “struck” by random amounts along entire length of string!
KS Sound Examples

- “Vintage” 8-bit sound examples:
 - Original Plucked String: (AIFF) (MP3)
 - Drum: (AIFF) (MP3)
 - Stretched Drum: (AIFF) (MP3)

- STK Plucked String: (WAV) (MP3)
 - Plucked String 1: (WAV) (MP3)
 - Plucked String 2: (WAV) (MP3)
 - Plucked String 3: (WAV) (MP3)
 - Plucked String 4: (WAV) (MP3)
Extended Karplus-Strong (EKS) Algorithm

\[N = \text{pitch period (2× string length) in samples} \]

\[H_p(z) = \frac{1 - p}{1 - p z^{-1}} = \text{pick-direction lowpass filter} \]

\[H_\beta(z) = 1 - z^{-\beta N} = \text{pick-position comb filter, } \beta \in (0, 1) \]

\[H_d(z) = \text{string-damping filter (one/two poles/zeros typical)} \]

\[H_s(z) = \text{string-stiffness allpass filter (several poles and zeros)} \]

\[H_\rho(z) = \frac{\rho(N) - z^{-1}}{1 - \rho(N) z^{-1}} = \text{first-order string-tuning allpass filter} \]

\[H_L(z) = \frac{1 - R_L}{1 - R_L z^{-1}} = \text{dynamic-level lowpass filter} \]
EKS Sound Example

Bach A-Minor Concerto—Orchestra Part: [(WAV)] [(MP3)]

- Executes in real time on one Motorola DSP56001 (20 MHz clock, 128K SRAM)
- Developed for the NeXT Computer introduction at Davies Symphony Hall, San Francisco, 1989
- Solo violin part was played live by Dan Kobialka of the San Francisco Symphony
Loop Filter Identification

For loop-filter design, we wish to minimize the error in

- partial decay time (set by amplitude response)
- partial overtone tuning (set by phase response)

Simple and effective method:

- Estimate pitch (elaborated next page)
- Set Hamming FFT-window length to four periods
- Compute the short-time Fourier transform (STFT)
- Detect peaks in each spectral frame
- Connect peaks through time (amplitude envelopes)
- Amplitude envelopes must decay exponentially
- On a dB scale, exponential decay is a straight line
- Slope of straight line determines decay time-constant
- Can use 1st-order polyfit in Matlab or Octave
- For beating decay, connect amplitude envelope peaks
- Decay rates determine ideal amplitude response
- Partial tuning determines ideal phase response
Plucked/Struck String Pitch Estimation

- Take FFT of middle third of plucked string tone
- Detect spectral peaks
- Form histogram of peak spacing Δf_i
- Pitch estimate $\hat{f}_0 \overset{\Delta}{=} \text{most common spacing } \Delta f_i$
- Refine \hat{f}_0 with gradient search using harmonic comb:

$$\hat{f}_0 \overset{\Delta}{=} \arg \max_{\hat{f}_0} \sum_{i=1}^{K} \log |X(k_i\hat{f}_0)|$$

$$= \arg \max_{\hat{f}_0} \prod_{i=1}^{K} |X(k_i\hat{f}_0)|$$

where

$K = \text{number of peaks, and}$

$k_i = \text{estimated harmonic number of } i\text{th peak}$

(\text{valid method for non-stiff strings})

Must skip over any missing harmonics,
\text{i.e., omit } k_i \text{ whenever } |X(k_i\hat{f}_0)| \approx 0.$

References: For pointers to research literature, see

http://ccrma.stanford.edu/~jos/jnmr/Model_Parameter_Estimation.html
A popular type of distortion, used in electric guitars, is clipping of the guitar waveform.

Hard Clipper

\[
f(x) = \begin{cases}
-1, & x \leq -1 \\
x, & -1 \leq x \leq 1 \\
1, & x \geq 1
\end{cases}
\]

where \(x \) denotes the current input sample \(x(n) \), and \(f(x) \) denotes the output of the nonlinearity.
Soft Clipper

\[f(x) = \begin{cases}
-\frac{2}{3}, & x \leq -1 \\
\frac{1}{3}x^3 - x, & -1 \leq x \leq 1 \\
\frac{2}{3}, & x \geq 1
\end{cases} \]
Simulation of a basic distorted electric guitar with amplifier feedback.

- Distortion should be preceded and followed by EQ
 Simple example: integrator pre, differentiator post

- Distortion output signal often further filtered by an amplifier cabinet filter, representing speaker cabinet, driver responses, etc.

- In Class A tube amplifiers, there should be duty-cycle modulation as a function of signal level
 - 50% at low levels (no duty-cycle modulation)
 - 55-65% duty cycle observed at high levels
 ⇒ even harmonics come in
 - Example: Distortion input can offset by a constant (e.g., input RMS level times some scaling)

See http://www.trueaudio.com/at_eetjlm.htm for further discussion.