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Reverberation Transfer Function
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• Three sources

• One listener (two ears)

• Filters should include pinnae filtering

(spatialized reflections)

• Filters change if anything in the room changes

In principle, this is an exact computational model.
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Implementation

Let hij(n) = impulse response from source j to ear i. Then the

output is given by six convolutions:

y1(n) = (s1 ∗ h11)(n) + (s2 ∗ h12)(n) + (s3 ∗ h13)(n)

y2(n) = (s1 ∗ h21)(n) + (s2 ∗ h22)(n) + (s3 ∗ h23)(n)

• For small n, filters hij(n) are sparse

• Tapped Delay Line (TDL) a natural choice

Transfer-function matrix :

[

Y1(z)

Y2(z)

]

=

[

H11(z) H12(z) H13(z)

H21(z) H22(z) H23(z)

]






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




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Complexity of Exact Reverberation

Reverberation time is typically defined as t60, the time, in seconds, to

decay by 60 dB.

Example:

• Let t60 = 1 second

• fs = 50 kHz

• Each filter hij requires 50,000 multiplies and additions per

sample, or 2.5 billion multiply-adds per second.

• Three sources and two listening points (ears) ⇒
30 billion operations per second

– 10 dedicated CPUs clocked at 3 Gigahertz

– multiply and addition initiated each clock cycle

– no wait-states for parallel input, output, and filter coefficient

accesses

• FFT convolution is faster, if throughput delay is tolerable

Conclusion: Exact implementation of point-to-point transfer

functions is generally too expensive for real-time computation.
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Possibility of a Physical Reverb Model

In a complete physical model of a room,

• sources and listeners can be moved without affecting the room

simulation itself,

• spatialized (in 3D) stereo output signals can be extracted using a

“virtual dummy head”

How expensive is a room physical model?

• Audio bandwidth = 20 kHz ≈ 1/2 inch wavelength

• Spatial samples every 1/4 inch or less

• A 12’x12’x8’ room requires > 100 million grid points

• A lossless 3D finite difference model requires one multiply and 6

additions per grid point ⇒ 30 billion additions per second at

fs = 50 kHz

• A 100’x50’x20’ concert hall requires more than

3 quadrillion operations per second

Conclusion: Fine-grained physical models are too expensive for

real-time computation, especially for large halls.
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Perceptual Aspects of Reverberation

Artificial reverberation is an unusually interesting signal processing

problem:

• “Obvious” methods based on physical modeling or input-output

modeling are too expensive

• We do not perceive the full complexity of reverberation

• What is important perceptually?

• How can we simulate only what is audible?
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Perception of Echo Density and Mode Density

• For typical rooms

– Echo density increases as t2

– Mode density increases as f 2

• Beyond some time, the echo density is so great that a stochastic

process results

• Above some frequency, the mode density is so great that a

random frequency response results

• There is no need to simulate many echoes per sample

• There is no need to implement more resonances than the ear can

hear
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Proof that Echo Density Grows as Time Squared

Consider a single spherical wave produced from a point source in a

rectangular room.

• Tesselate 3D space with copies of the original room

• Count rooms intersected by spherical wavefront
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Proof that Mode Density Grows as Freq. Squared

The resonant modes of a rectangular room are given by

k2(l, m, n) = k2
x(l) + k2

y(m) + k2
z(n)

• kx(l) = lπ/Lx = lth harmonic of the fundamental standing wave

in the x

• Lx = length of the room along x

• Similarly for y and z

• Mode frequencies map to a uniform 3D Cartesian grid indexed by

(l, m, n)

• Grid spacings are π/Lx, π/Ly, and π/Lz in x,y, and z,

respectively.

• Spatial frequency k of mode (l, m, n) = distance from the

(0,0,0) to (l, m, n)

• Therefore, the number of room modes having a given spatial

frequency grows as k2
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Early Reflections and Late Reverb

Based on limits of perception, the impulse response of a reverberant

room can be divided into two segments

• Early reflections = relatively sparse first echoes

• Late reverberation—so densely populated with echoes that it is

best to characterize the response statistically.

Similarly, the frequency response of a reverberant room can be

divided into two segments.

• Low-frequency sparse distribution of resonant modes

• Modes packed so densely that they merge to form a random

frequency response with regular statistical properties
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Perceptual Metrics for Ideal Reverberation

Some desirable controls for an artificial reverberator include

• t60(f) = desired reverberation time at each frequency

• G2(f) = signal power gain at each frequency

• C(f) = “clarity” = ratio of impulse-response energy in early

reflections to that in the late reverb

• ρ(f) = inter-aural correlation coefficient at left and right ears

Perceptual studies indicate that reverberation time t60(f) should be

independently adjustable in at least three frequency bands.

11

Energy Decay Curve (EDC)

For measuring and defining reverberation time t60, Schroeder

introduced the so-called energy decay curve (EDC) which is the tail

integral of the squared impulse response at time t:

EDC(t)
∆
=

∫ ∞

t

h2(τ )dτ

• EDC(t) = total signal energy remaining in the reverberator

impulse response at time t

• EDC decays more smoothly than the impulse response itself

• Better than ordinary amplitude envelopes for estimating t60

12



Energy Decay Relief (EDR)

The energy decay relief (EDR) generalizes the EDC to multiple

frequency bands:

EDR(tn, fk)
∆
=

M
∑

m=n

|H(m, k)|2

where H(m, k) denotes bin k of the short-time Fourier transform

(STFT) at time-frame m, and M is the number of frames.

• FFT window length ≈ 30− 40 ms

• EDR(tn, fk) = total signal energy remaining at time tn sec in

frequency band centered at fk
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Energy Decay Relief (EDR) of a Violin Body Impulse

Response
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• Energy summed over frequency within each “critical band of

hearing” (Bark band)

• Violin body = “small box reverberator”
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Reverb = Early Reflections + Late Reverb

Late
Reverb

... ...
Tapped Delay Linex(n)

y(n)

• TDL taps may include lowpass filters

(air absorption, lossy reflections)

• Several taps may be fed to late reverb unit,

especially if it takes a while to reach full density

• Some or all early reflections can usually be worked into the delay

lines of the late-reverberation simulation (transposed tapped

delay line)
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Early Reflections

The “early reflections” portion of the impulse response is defined as

everything up to the point at which a statistical description of the

late reverb takes hold.

• Often taken to be the first 100ms

• Better to test for Gaussianness

– Histogram test for sample amplitudes in 10ms windows

– Exponential fit (t60 match) to EDC (Prony’s method, matrix

pencil method)

– Crest factor test (peak/rms)

• Typically implemented using tapped delay lines (TDL)

(suggested by Schroeder in 1970 and implemented by Moorer in

1979)

• Early reflections should be spatialized (Kendall)

• Early reflections influence spatial impression
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Late Reverberation

Desired Qualities:

1. a smooth (but not too smooth) decay, and

2. a smooth (but not too regular) frequency response.

• Exponential decay no problem

• Hard part is making it smooth

– Must not have “flutter,” “beating,” or unnatural irregularities

– Smooth decay generally results when the echo density is

sufficiently high

– Some short-term energy fluctuation is required for naturalness

• A smooth frequency response has no large “gaps” or “hills”

– Generally provided when the mode density is sufficiently large

– Modes should be spread out uniformly

– Modes may not be too regularly spaced, since audible

periodicity in the time-domain can result

• Moorer’s ideal late reverb: exponentially decaying white noise

– Good smoothness in both time and frequency domains

– High frequencies need to decay faster than low frequencies

• Schroeder’s rule of thumb for echo density in the late reverb is

1000 echoes per second or more

• For impulsive sounds, 10,000 echoes per second or more may be

necessary for a smooth response

17

Schroeder Allpass Sections

−g

g

−g

g

−g

g

x(n) y(n)z−M1 z−M2 z−M3

• Typically, g = 0.7

• Delay-line lengths Mi mutually prime, and

span successive orders of magnitude

e.g., 1051, 337, 113

• Allpass filters in series are allpass

• Each allpass expands each nonzero input sample from the

previous stage into an entire infinite allpass impulse response

• Allpass sections may be called “impulse expanders”, “impulse

diffusers” or simply “diffusers”

• NOT a physical model of diffuse reflection, but

single reflections are expanded into many reflections,

which is qualitatively what is desired.
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Why Allpass?

• Allpass filters do not occur in natural reverberation!

• “Colorless reverberation” is an idealization only possible in the

“virtual world”

• Perceptual factorization:

Coloration now orthogonal to decay time and echo density
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Are Allpasses Really Colorless?

• Allpass impulse response only “colorless” when extremely short

(less than 10 ms or so).

• Long allpass impulse responses sound like feedback comb-filters

• The difference between an allpass and feedback-comb-filter

impulse response is one echo!

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de

(a)
Allpass Impulse Response, M=7, g=0.7

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

Time (samples)

A
m

pl
itu

de

(b)
Feedback Comb Filter Impulse Response, M=7, g=0.7

(a) H(z) = 0.7+z−7

1+0.7z−7 (b) H(z) = 1
1+0.7z−7

• Steady-state tones (sinusoids) really do see the same gain at

every frequency in an allpass, while a comb filter has widely

varying gains.
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A Schroeder Reverberator called JCRev

RevOut

OutA

OutB

OutC

OutD

RevIn

RevOut

AP 0.7
1051 AP 0.7

337 AP 0.7
113

FFCF 0.733
4999

FFCF 0.742
4799

FFCF 0.715
5399

FFCF 0.697
5801

z−0.046fs

z−0.057fs

z−0.041fs

z−0.054fs

Classic Schroeder reverberator JCRev.

JCRev was developed by John Chowning and others at CCRMA

based on the ideas of Schroeder.

• Three Schroeder allpass sections:

AP g
N

∆
=

g + z−N

1 + gz−N

• Four feedforward comb-filters:

FFCF g
N

∆
= g + z−N
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• Schroeder suggests a progression of delays close to

MiT ≈
100 ms

3i
, i = 0, 1, 2, 3, 4.

• Comb filters impart distinctive coloration:

– Early reflections

– Room size

– Could be one tapped delay line

• Usage: Instrument adds scaled output to RevIn

• Reverberator output RevOut goes to four delay lines

– Four channels decorrelated

– Imaging of reverberation between speakers avoided

• For stereo listening, Schroeder suggests a mixing matrix at the

reverberator output, replacing the decorrelating delay lines

• A mixing matrix should produce maximally rich yet uncorrelated

output signals

• JCRev is in the Synthesis Tool Kit (STK)

– JCRev.cpp

– JCRev.h.
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FDN Late Reverberation

History

• Gerzon 1971: “orthogonal matrix feedback reverb”

cross-coupled feedback comb filters (see below)

• Stautner and Puckette 1982:

A = g
1√
2











0 1 1 0

−1 0 0 −1

1 0 0 −1

0 1 −1 0











• A second-order Hadamard matrix :

H2
∆
=

1√
2

[

1 1

−1 1

]

,

• Higher order Hadamard matrices defined by recursive embedding:

H4
∆
=

1√
2

[

H2 H2

−H2 H2

]

.
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Jot’s FDN Late Reverberators (1991)

q12 q13

q22 q23

q32 q33

q11

q21

q31

x1(n)

x2(n)

x3(n)

g1

g2

g3

u(n)

b1

b3

b2

c1

c2

c3

y(n)

d

z−M1

z−M2

z−M3

E(z)

Jot FDN Reverberator for N = 3

• Generalized state-space model (unit delays replaced by arbitrary

delays)

• Note direct path weighted by d

• The “tonal correction” filter E(z) equalizes mode energy

indepedent of reverberation time

(perceptual orthogonalization)
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Choice of Feedback Matrix

Late reverberation should resemble exponentially decaying noise. This

suggests the following two-step procedure for reverberator design:

1. Set t60 =∞ and make a good white-noise generator

2. Establish desired reverberation times in each frequency band by

introducing losses

The white-noise generator is the lossless prototype reverberator.
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Householder Feedback Matrix

Jot proposed the lossless feedback matrix

AN = IN −
2

N
uNuT

N

• Householder reflection (negated)

• Input vector is reflected about uT
N = [1, 1, . . . , 1] in

N -dimensional space

• IN can be replaced by any N ×N permutation matrix

• Multiply-free when N is a power of 2

• At most one multiply required

• Only 2N − 1 additions

(a general matrix-times-vector multiplication is O(N 2)

multiply-adds)
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Householder Reflection

Let Pu denote the projection matrix which orthogonally projects

vectors onto u, i.e.,

Pu =
u uT

uTu
=

u uT

‖u ‖2

and

Pu x = u
〈u, x〉
‖u ‖2

specifically projects x onto u. Since the projection is orthogonal, we

have 〈x−Pux, x〉 = 0.

• We may interpret (I −Pu)x as the difference vector between x

and Pux, its orthogonal projection onto u, since

(I −Pu)x + Pux = x

and we have (I −Pu)x ⊥ x by definition of the orthogonal

projection.

• Consequently, the projection onto u minus this difference vector

gives a reflection of the vector x about u:

y = Pux− (I −Pu)x = (2Pu − I)x

• y is obtained by reflecting x about u

• This is called a Householder reflection
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Householder FDN = Coupled Feedback Combs

A Householder FDN can be drawn as

−2/N

x(n) y(n)z−M1

z−M2

z−M3

• N feedback comb filters in parallel

• Extra global feedback path added, gain = −2/N

• Cross-coupled feedback comb filters
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Householder Properties for Specific Sizes

• For N 6= 2, all entries in the matrix are nonzero

– Every delay line feeds back to every other delay line

– Echo density maximized as soon as possible

• For N = 4, all matrix entries have the same magnitude:

A4 =
1

2











1 −1 −1 −1

−1 1 −1 −1

−1 −1 1 −1

−1 −1 −1 1











.

• Only the N = 4 case is “balanced” in this way

• Multiply free

• In a manner analogous to Hadamard embedding to generate

higher-order Hadamard matrices, Jot proposed constructing an

N = 16 feedback matrix as a 4× 4 Householder embedding of

the N = 4 Householder matrix:

A16 =
1

2











A4 −A4 −A4 −A4

−A4 A4 −A4 −A4

−A4 −A4 A4 −A4

−A4 −A4 −A4 A4










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Triangular Feedback Matrices

A triangular matrix has its eigenvalues along the diagonal.

Example:

A3 =







λ1 0 0

a λ2 0

b c λ3







is lower triangular. Its eigenvalues are (λ1, λ2, λ3) for all a, b, c.

Note: Not all triangular matrices with unit-modulus eigenvalues are

lossless.

Example:

A2 =

[

1 0

1 1

]

• Two eigenvalues equal to 1

• Only one eigenvector, [0, 1]T

• Jordan block of order 2 corresponding to the repeated eigenvalue

λ = 1

By direct computation,

An
2 =

[

1 0

n 1

]

which is clearly not lossless.
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Choice of Delay Lengths

• Delay line lengths Mi typically mutually prime

• For sufficiently high mode density,
∑

i Mi must be sufficiently

large.

– No “ringing tones” in the late impulse response

– No “flutter”
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Mean Free Path

d = 4
V

S
(mean free path)

where V is the total volume of the room, and S is total surface area

enclosing the room.

Regarding each delay line as a mean-free-path delay, the mean free

path length, in samples, is the average delay-line length:

d

cT
=

1

N

N
∑

i=1

Mi

where c = sound speed and T = sampling period.

This is only a lower bound because many reflections are diffuse in

real rooms, especially at high frequencies (one plane-wave reflection

scatters in many directions)
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Mode Density Requirement

FDN order = sum of delay lengths:

M
∆
=

N
∑

i=1

Mi (FDN order)

• Order = number of poles

• All M poles are on the unit circle in the lossless prototype

• If uniformly distributed, mode density =

M

fs
= MT modes per Hz

• Schroeder suggests that 0.15 modes per Hz

(when t60 = 1 second)

• Generalizing:

M ≥ 0.15t60fs

• Example: For fs = 50 kHz and t60 = 1 second, M ≥ 7500

• Note that M = t60fs is the length of the FIR filter giving an

exact implementation. Thus, recursive filtering is about 7 times

more efficient by this rule of thumb.
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Achieving Desired Reverberation Times

To set the reverberation time, we need to move the poles of the

lossless prototype slightly inside the unit circle.

We want the to move high-frequency poles farther in than

low-frequency poles.

Basic substitution:

z−1 ← G(z)z−1

where G(z) a lowpass filter satisfying
∣

∣G(ejωT )
∣

∣ ≤ 1 for all ω.

• G(z) = per-sample filter in the propagation medium

First applied to complete reverberators by Jot

• Jot suggests

All pole radii in the reverberator should vary smoothly

with frequency.

Otherwise, late decay will be dominated by largest pole(s)
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Delay-Filter Design

Let

• t60(ω) = desired reverberation time at frequency ω

• Hi(z) = lowpass filter for delay-line i

How do we design Hi(z) to achieve t60(ω)?

Let

pi
∆
= ejωiT

denote the ith pole of the lossless prototype. Neglecting phase in the

loss filter G(z), the substitution

z−1 ← G(z)z−1

only affects the pole radius, not angle.

Assuming G(ejωT ) ≈ 1, pole i moves from z = ejωiT to

pi = Rie
jωiT

where

Ri = G
(

Rie
jωiT

)

≈ G
(

ejωiT
)

.
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Desired Pole Radius

Pole radius Ri and t60 are related by

R
t60(ωi)/T
i = 0.001

The ideal loss filter G(z) therefore satisfies

|G(ω)|t60(ω)/T = 0.001

The desired delay-line filters are therefore

Hi(z) = GMi(z)

⇒
∣

∣Hi(e
jωT )

∣

∣

t60(ω)
MiT = 0.001.

or

20 log10

∣

∣Hi(e
jωT )

∣

∣ = −60
MiT

t60(ω)
.

Now use invfreqz or stmcb, etc., in Matlab to design low-order

filters Hi(z) for each delay line.
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First-Order Delay-Filter Design

Jot used first-order loss filters for each delay line:

Hi(z) = gi
1− ai

1− aiz−1

• gi gives desired reverberation time at dc

• ai sets reverberation time at high frequencies

Design formulas:

gi = 10−3MiT/t60(0)

ai =
ln(10)

4
log10(gi)

(

1− 1

α2

)

where

α
∆
=

t60(π/T )

t60(0)
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Tonal Correction Filter

Let hk(n) = impulse response of kth system pole. Then

Ek =

∞
∑

n=0

|hk(n)|2 = total energy

Thus, total energy is proportional to decay time.

To compensate, Jot proposes a tonal correction filter E(z) for the

late reverb (not the direct signal).

First-order case:

E(z) =
1− bz−1

1− b
where

b =
1− α

1 + α
and

α
∆
=

t60(π/T )

t60(0)

as before.
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Further Extensions for FDN Reverberation

While FDNs address several problems in previous reverberation

filters, the following areas could benefit from further attention:

• Spatialization of reverberant echoes

– HRTF for initial early reflection (Kendall and Martens)

– Diffuse field illusion for late reverb?

(Current approach is simply decorrelating each channel.)

• Mode frequency distribution

– Coupled delay-line systems tend to have uniform mode

density

– Natural mode densities increase with freq. squared

– However, note that perception of mode density decreases

with frequency

– Is a uniform distribution a good compromise between nature

and perception?
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Further Extensions for FDN Reverberation

• Specific low-frequency modes (“early resonances”) — do we

want them?

– Early reflections do some shaping of low-frequency response

– For concert halls, low-frequency resonances and

anti-resonances are typically eliminated as much as possible

by parametric equalizers

– Perhaps “unnaturally flat” at low frequencies is ideal

– ‘Small-box reverberators” such as the violin body or vocal

tract require faithful LF resonators (formants important)

• Perceptual studies say reverberation time should be

independently adjustable in at least three frequency bands

• Householder FDN = digital waveguide network (DWN) with one

scattering junction
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FDNs as Digital Waveguide Networks

Householder FDN

AN = IN −
2

N
uuT

is equivalent to a network of N digital waveguides intersecting at a

single scattering junction:

s1(n+m1) sN(n+mN)

s1(n) sN(n)

m1/2 mN/2

• Single scattering junction indicated by open circle

• Far end of each waveguide branch is terminated by an ideal

reflection (filled circle).

• Wave impedance if ith waveguide = u[i]
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• uT = [1, 1, . . . , 1] means all waveguides have same impedance

(“isotrophic junction”)
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Rectilinear Digital Waveguide Mesh
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Waveguide Mesh Features

• A mesh of such waveguides in 2D or 3D can simulate waves

traveling in any direction in the space.

• Analogy: tennis racket = rectilinear mesh of strings =

pseudo-membrane

• Wavefronts are explicitly simulated in all directions

• True diffuse field in late reverb

• Spatialized reflections are “free”

• Echo density grows naturally with time

• Mode density grows naturally with frequency

• Low-frequency modes very accurately simulated

• High-frequency modes mistuned due to dispersion (can be

corrected) (often not heard)

• Multiply free almost everywhere

• Coarse mesh captures most perceptual details
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Reverb Resources on the Web

• Harmony Central article1 (with sound examples)

• William Gardner’s MIT Master’s thesis2

1http://www.harmony-central.com/Effects/Articles/Reverb/
2http://www.harmony-central.com/Computer/Programming/virtual-acoustic-room.ps.gz
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