
Time Varying Delay Effects

Julius Smith and Nelson Lee

RealSimple Project∗

Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University

Stanford, California 94305

June 5, 2008

It is often necessary for a delay line to vary in length. (Consider

simulating a sound ray when either the source or listener is moving.)

In this case, separate read and write pointers are normally used.

∗Work supported by the Wallenberg Global Learning Network

1

http://ccrma.stanford.edu/~{}jos
http://ccrma.stanford.edu/~{}nalee
http://ccrma.stanford.edu/realsimple/
http://ccrma.stanford.edu/
http://www.stanford.edu/group/Music/
http://www.stanford.edu/
http://www.wgln.org/

Variable Delay Lines

Let A denote an array of length N . Then we can implement an

M -sample variable delay line in the C programming language as

shown in Fig.??. We require, of course, M ≤ N .

The M -sample variable delay line using separate read- and

write-pointers:

static double A[N];

static double *rptr = A; // read ptr

static double *wptr = A; // write ptr

double setdelay(int M) {

rptr = wptr - M;

while (rptr < A) { rptr += N }

}

double delayline(double x)

{

double y;

A[wptr++] = x;

y = A[rptr++];

if ((wptr-A) >= N) { wptr -= N }

if ((rptr-A) >= N) { rptr -= N }

return y;

}

The Synthesis Tool Kit, Version 4 [?] contains the C++ class

“Delay” which implements this type of variable (but

2

non-interpolating) delay line. There are additional subclasses which

provide interpolating reads by various methods. In particular, the

class DelayL implements continuously variable delay lengths using

linear interpolation. The code listing in Fig.?? can be modified to

use linear interpolation by replacing the line

y = A[rptr++];

with

long rpi = (long)floor(rptr);

double a = rptr - (double)rpi;

y = a * A[rpi] + (1-a) * A[rpi+1];

rptr += 1;

To implement a continuously varying delay, we add a “delay growth

parameter” g to the delayline function in Fig.??, and change the

line

rptr += 1; // pointer update

above to

rptr += 1 - g; // pointer update

When g is 0, we have a fixed delay line. When g > 0, the delay

grows g samples per sample, which we may also interpret as seconds

per second, i.e., Ḋt = g. In §?? on page ??, this will be applied to

simulation of the Doppler effect.

3

Delay-Line Interpolation

When delay lines need to vary smoothly over time, some form of

interpolation between samples is usually required to avoid “zipper

noise” in the output signal as the delay length changes. There is a

hefty literature on “fractional delay” in discrete-time systems, and

the survey in [?] is highly recommended.

This section will describe the most commonly used cases. Linear

interpolation is perhaps most commonly used because it is very

straightforward and inexpensive, and because it sounds very good

when the signal bandwidth is small compared with half the sampling

rate. For a delay line in a nearly lossless feedback loop, such as in a

vibrating string simulation, allpass interpolation is usually a better

choice since it costs the same as linear interpolation in the first-order

case and has no gain distortion. (Feedback loops can be very

sensitive to gain distortions.) Finally, in Appendix ??, some higher

order interpolation schemes are outlined.

Linear Interpolation

Linear interpolation works by effectively drawing a straight line

between two neighboring samples and returning the appropriate point

along that line.

More specifically, let η be a number between 0 and 1 which

represents how far we want to interpolate a signal y between time n

and time n + 1. Then we can define the linearly interpolated value

4

ŷ(n + η) as follows:

ŷ(n + η) = (1− η) · y(n) + η · y(n + 1)

For η = 0, we get exactly ŷ(n) = y(n), and for η = 1, we get exactly

ŷ(n + 1) = y(n + 1). In between, the interpolation error

|ŷ(n + η)− y(n + η)| is nonzero, except when y(t) is a linear

function between y(n) and y(n + 1).

Note that by factoring out η, we can obtain a one-multiply form,

ŷ(n + η) = y(n) + η · [y(n + 1)− y(n)] .

Thus, the computational complexity of linear interpolation is one

multiply and two additions per sample of output.

A linearly interpolated delay line is depicted in Fig.??.

M samples delay z−1

η

1 η−

y(n) ()Mnŷ η−−

Linearly interpolated delay line.

The C++ class implementing a linearly interpolated delay line in the

Synthesis Tool Kit (STK) is called DelayL.

The frequency response of linear interpolation for fixed fractional

delay (η fixed in Fig.??) is shown in Fig.??. From inspection of

Fig.??, we see that linear interpolation is a one-zero FIR filter.

When used to provide a fixed fractional delay, the filter is linear and

time-invariant (LTI). When the delay provided changes over time, it

is a linear time-varying filter.

5

http://ccrma.stanford.edu/CCRMA/Software/STK/

0 0.5 1 1.5 2 2.5 3
-20

-15

-10

-5

0

5
Linear Interpolating Filters, Del= [0.001:0.1:1]

Frequency (radians/sample)

A
m

pl
itu

de
 -

 d
B

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Frequency (radians/sample)

P
ha

se
 D

el
ay

 -
 s

am
pl

es

Linear interpolation frequency responses for delays between 0 and 1.

Note the higher accuracy at low frequencies, reaching zero error at

dc for all fractional delays.

Linear interpolation sounds best when the signal is oversampled.

Since natural audio spectra tend to be relatively concentrated at low

frequencies, linear interpolation tends to sound very good at high

sampling rates.

When interpolation occurs inside a feedback loop, such as in digital

waveguide models for vibrating strings, errors in the amplitude

response can be highly audible (particularly when the loop gain is

close to 1, as it is for steel strings, for example). In these cases, it is

6

possible to eliminate amplitude error (at some cost in delay error) by

using an allpass filter for delay-line interpolation.

First-Order Allpass Interpolation

A delay line interpolated by a first-order allpass filter is drawn in

Fig.??.

M samples delay z−1y(n)

η

η−

()Mnŷ ∆−−

Allpass-interpolated delay line.

Intuitively, ramping the coefficients of the allpass gradually “grows”

or “hides” one sample of delay. This tells us how to handle resets

when crossing sample boundaries.

The difference equation is

x̂(n−∆)
∆
= y(n) = η · x(n) + x(n− 1)− η · y(n− 1)

= η · [x(n)− y(n− 1)] + x(n− 1).

Thus, like linear interpolation, first-order allpass interpolation

requires only one multiply and two adds per sample of output.

The frequency response is

H(z) =
η + z−1

1 + ηz−1
. (1)

7

At low frequencies (z → 1), the delay becomes

∆ ≈
1− η

1 + η
(2)

Figure ?? shows the phase delay of the first-order digital allpass filter

for a variety of desired delays at dc. Since the amplitude response of

any allpass is 1 at all frequencies, there is no need to plot it.

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

First−Order Allpass Interpolating Filters, Del= [0.001:0.1:1.2]

Frequency (radians/sample)

P
ha

se
 D

el
ay

 −
 s

am
pl

es

Allpass-interpolation phase delay for a variety of desired delays (exact

at dc).

The first-order allpass interpolator is generally controlled by setting

8

its dc delay to the desired delay. Thus, for a given desired delay ∆,

the allpass coefficient is (from Eq. (2))

η ≈
1−∆

1 + ∆

From Eq. (1), we see that the allpass filter’s pole is at z = −η, and

its zero is at z = −1/η. A pole-zero diagram for ∆ = 0.1 is given in

Fig.??. Thus, zero delay is provided by means of a pole-zero

cancellation! Due to inevitable round-off errors, pole-zero

cancellations are to be avoided in practice. For this reason and

others (discussed below), allpass interpolation is best used to provide

a delay range lying wholly above zero, e.g.,

∆ ∈ [0.1, 1.1] ←→ η ∈ [−0.05, 0.82]

9

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Pole−Zero Plot, delta = 0.10, eta = 0.82

Re(z)

Im
(z

)

Allpass-interpolator pole-zero diagram for ∆ = 0.1.

Note that, unlike linear interpolation, allpass interpolation is not

suitable for “random access” interpolation in which interpolated

values may be requested at any arbitrary time in isolation. This is

because the allpass is recursive so that it must run for enough

10

samples to reach steady state. However, when the impulse response

is reasonably short, as it is for delays near one sample, it can in fact

be used in “random access mode” by giving it enough samples with

which to work.

The STK class implementing allpass-interpolated delay is DelayA.

Minimizing the Transient Response of First-Order
Allpass Interpolation

In addition to approaching a pole-zero cancellation at z = −1,

another undesirable artifact appears as ∆→ 0: The transient

response also becomes long when the pole at z = −η gets close to

the unit circle.

A plot of the impulse response for ∆ = 0.1 is shown in Fig.??. We

see a lot of “ringing” near half the sampling rate. We actually should

expect this from the nonlinear phase distortion which is clearly

evident near half the sampling rate in Fig.??. We can interpret this

phenomenon as the signal components near half the sampling rate

being delayed by different amounts than other frequencies, therefore

“sliding out of alignment” with them.

11

http://ccrma.stanford.edu/CCRMA/Software/STK/

0 5 10 15 20 25 30
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Impulse response, delta = 0.10, eta = 0.82

Time (samples)

A
m

pl
itu

de

Impulse response of the first-order allpass interpolator for ∆ = 0.1.

For audio applications, we would like to keep the impulse-response

duration short enough to sound “instantaneous.” That is, we do not

wish to have audible “ringing” in the time domain near fs/2. For

high quality sampling rates, such as larger than fs = 40 kHz, there is

no issue of direct audibility, since the ringing is above the range of

human hearing. However, it is often convenient, especially for

research prototyping, to work at lower sampling rates where fs/2 is

audible. Also, many commercial products use such sampling rates to

save costs.

12

Since the time constant of decay, in samples, of the impulse response

of a pole of radius R is approximately

τ

T
≈

1

1−R
,

and since a 60-dB decay occurs in about 7 time constants (“t60”) [?,

p. 38], we can limit the pole of the allpass filter to achieve any

prescribed specification on maximum impulse-response duration.

For example, suppose 100 ms is chosen as the maximum t60 allowed

at a sampling rate of fs = 10, 000. Then applying the above

constraints yields η ≤ 0.993, corresponding to the allowed delay

range [0.00351, 1.00351].

1 Large Delay Changes

When implementing large delay length changes (by many samples), a

useful implementation is to cross-fade from the initial delay line

configuration to the new configuration:

• Computational requirements are doubled during the cross-fade.

• The cross-fade should occur over a time interval long enough to

yield a smooth result.

• The new delay interpolation filter, if any, may be initialized in

advance of the cross-fade, for maximum smoothness. Thus, if

the transient response of the interpolation filter is N samples,

the new delay-line + interpolation filter can be “warmed up”

(executed) for N time steps before beginning the cross-fade. If

13

the cross-fade time is long compared with the interpolation filter

duration, “pre-warming” is not necessary.

• This is not a true “morph” from one delay length to another

since we do not pass through the intermediate delay lengths.

However, it avoids a potentially undesirable Doppler effect.

• A single delay line can be shared such that the cross-fade occurs

from one read-pointer (plus associated filtering) to another.

14

Specific Time-Varying Delay Effects

Time varying delay lines are fundamental building blocks for delay

effects, synthesis algorithms, and computational acoustic models of

musical instruments.

In the category of delay effects, variable delay lines are used for

• Phasing

• Flanging

• Chorus

• Leslie

• Reverb

(While reverberators need not be time varying, nowadays they

typically are [?, ?].)

In digital waveguide synthesis, variable delay lines are used for

• Vibrating strings (guitars, violins, . . .)

• Woodwind bores

• Horns

• Tonal percussion (rods, membranes)

The following sections will elaborate on the use of variable delay lines

for effects. Their use in digital waveguide models will be deferred to

a later section.

Flanging

15

Flanging is a delay effect that has been available in recording studios

since at least the 1960s. Surprisingly little literature exists, although

there is some [?, ?, ?, ?, ?, ?].

According to lore [?, ?], the term “flanging” arose from the way the

effect was originally achieved by two tape machines set up to play the

same tape in unison, with their outputs are added together (mixed

equally), as shown in Fig. 1. To achieve the flanging effect, the flange

of one of the supply reels is touched lightly to make it play a littler

slower. This causes a delay to develop between two tape machines.

The flange is released, and the flange of the other supply reel is

touched lightly to slow it down. This causes the delay to gradually

disappear and then begin to grow again in the opposite direction.

The delay is kept below the threshold of echo perception (e.g., only a

few milliseconds in each direction). The process is repeated as

desired, pressing the flange of each supply reel in alternation. The

flanging effect has been described as a kind of “whoosh” passing

subtly through the sound.1 The effect is also compared to the sound

of a jet passing overhead, in which the direct signal and ground

reflection arrive at a varying relative delay [?]. If flanging is done

rapidly enough, an audible Doppler shift is introduced which

approximates the “Leslie” effect commonly used for organs (see §??).

Flanging is modeled quite accurately as a feedforward comb filter, as

discussed in §??, in which the delay M is varied over time. Figure 1

depicts such a model. The input-output relation for a basic flanger
1For sound examples, see http://www.harmony-central.com/Effects/Articles/Flanging/.

16

http://www.harmony-central.com/Effects/Articles/Flanging/

y(n)

Flange

Two tape machines configured to produce a flanging effect.

can be written as

y(n) = x(n) + gx[n−M(n)] (3)

where x(n) is the input signal amplitude at time n = 0, 1, 2, . . . ,

y(n) is the output at time n, g is the “depth” of the flanging effect,

and M(n) is the length of the delay-line at time n. The delay length

M(n) is typically varied according to a triangular or sinusoidal

waveform. We may say that the delay length is modulated by an

“LFO” (Low-Frequency Oscillator). Since M(n) must vary smoothly

over time, it is clearly necessary to use an interpolated delay line to

provide non-integer values of M in a smooth fashion.

y(n)x(n)
g

M(n) samples of delay

The basic flanger effect.

As shown in Fig.?? on page ??, the frequency response of Eq. (3)

has a “comb” shaped structure. For g > 0, there are M peaks in the

17

frequency response, centered about frequencies

ω
(p)
k = k

2π

M
, k = 0, 1, 2, . . . , M − 1.

For g = 1, the peaks are maximally pronounced, with M notches2

occurring between them at frequencies ω
(n)
k = ω

(p)
k + π/M . As the

delay length M is varied over time, these “comb teeth” squeeze in

and out like the pleats of an accordion. As a result, the spectrum of

any sound passing through the flanger is “massaged” by a variable

comb filter.

As is evident from Fig.?? on page ??, at any given time there are

M(n) notches in the flanger’s amplitude response (counting

positive- and negative-frequency notches separately). The notches

are thus spaced at intervals of fs/M Hz, where fs denotes the

sampling rate. In particular, the notch spacing is inversely

proportional to delay-line length.

The time variation of the delay-line length M(n) results in a

“sweeping” of uniformly-spaced notches in the spectrum. The

flanging effect is thus created by moving notches in the spectrum.

Notch motion is essential for the flanging effect. Static notches

provide some coloration to the sound, but an isolated notch may be

inaudible [?]. Since the steady-state sound field inside an undamped

acoustic tube has a similar set of uniformly spaced notches (except

at the ends), a static row of notches tends to sound like being inside

an acoustic tube.
2The term notch here refers to the elimination of sound energy at a single frequency or over a narrow frequency

interval. Another term for this is “null”.

18

Flanger Speed and Excursion

As mentioned above, the delay-line length M(n) in a digital flanger

is typically modulated by a low-frequency oscillator (LFO). The

oscillator waveform is usually triangular, sinusoidal, or exponential

(triangular on a log-frequency scale). In the sinusoidal case, we have

the following delay variation:

M(n) = M0 · [1 + A sin(2πfnT)]

where f is the “speed” (or “rate”) of the flanger in cycles per

second, A is the “excursion” or “sweep” (maximum delay swing)

which is often not brought out as a user-controllable parameter, and

M0 is the average delay length controlling the average notch density

(also not normally brought out as a user-controllable parameter).

Flanger Depth Control

To obtain a maximum effect, the depth control, g in Fig. 1, should be

set to 1. A depth of g = 0 gives no effect.

Flanger Inverted Mode

A different type of maximum depth is obtained for g = −1. In this

case, the peaks and notches of the g = 1 case trade places. In

practice, the depth control g is usually constrained to the interval

[0, 1], and a sign inversion for g is controlled separately using a

“phase inversion” switch.

19

In inverted mode, unless the delay M is very large, the bass response

will be weak, since the first notch is at dc. This case usually sounds

high-pass filtered relative to the “in-phase” case (g > 0).

As the notch spacing grows very large (M shrinks), the amplitude

response approaches that of a first-order difference

y(n) = x(n)− x(n− 1), which approximates a differentiator

y(t) = d
dtx(t). An ideal differentiator eliminates dc and provides a

progressive high-frequency boost rising 6 dB per octave (specifically,

the amplitude response is |H(ω)| = |ω|).

Flanger Feedback Control

Many modern commercial flangers have a control knob labeled

“feedback” or “regen.” This control sets the level of feedback from

the output to the input of the delay line, thereby creating a feedback

comb filter in addition to the feedforward comb filter, in the same

manner as in the creation of a Schroeder allpass filter.

More generally, outputs of any subset of the allpass sections can be

fed back to the input (in small amounts) to produce different

sounding effects [?].

Summary of Flanging

In view of the above, we may define a flanger in general as any filter

which modulates the frequencies of a set of uniformly spaced notches

and/or peaks in the frequency response. The main parameters are

• Depth g ∈ [0, 1] — controlling notch depth

20

• Speed f — speed of notch movement

• Phase — switch to subtract instead of adding the direct signal

with the delayed signal

Possible additional parameters include

• Average Delay M0

• Excursion or Sweep A — amount by which the delay-line grows

or shrinks

• Feedback or Regeneration aM ∈ (−1, 1) — feedback coefficient

from output to input

Note that flanging provides only uniformly spaced notches. This can

be considered non-ideal for several reasons. First, the ear processes

sound over a frequency scale that is more nearly logarithmic than

linear [?]. Therefore, exponentially spaced notches (uniformly spaced

on a log frequency scale) should sound more uniform perceptually.

Secondly, the uniform peaks and notches of the flanger can impose a

discernible “resonant pitch” on the program material, giving the

impression of being inside a resonant tube. Third, it is possible for a

periodic tone to be completely annihilated by harmonically spaced

notches if the harmonics of the tone are unlucky enough to land

exactly on a subset of the harmonic notches. In practice, exact

alignment is unlikely; however, the signal loudness can be modulated

to a possibly undesirable degree as the notches move through

alignment with the signal spectrum. For this reason, flangers are best

used with noise-like or inharmonic sounds. For harmonic signals, it

makes sense to consider methods for creating non-uniform moving

notches.

21

Phasing

The phaser , or phase shifter, is closely related to the flanger in that

it also works by sweeping notches through the spectrum of the input

signal. While the term phasing is sometimes used synonymously with

flanging [?], commercial phase shifters have been observed to

implement nonuniformly spaced notches.3 We will therefore define a

phaser as any linear filter which modulates the frequencies of a set of

non-uniformly spaced notches, while a flanger will remain any device

which modulates uniformly spaced notches.

Phasing with First-Order Allpass Filters

The block diagram of a typical inexpensive phase shifter for guitar

players is shown in Fig. 1.4 It consists of a series chain of first-order

allpass filters,5 each having a single time-varying parameter gi(n)

controlling the pole and zero location over time, plus a feedforward

path through gain g which is a fixed depth control.

AP g1

1
AP g2

1
AP g3

1
AP g4

1
x(n) y(n)

g

Structure of a phaser based on four first-order allpass filters.

3The author discovered this by looking at the circuit for the MXR phase shifter in 1975.
4This is the basic architecture of the MXR phase shifter as well as the Univibe used by Jimi Hendrix [?], and

described in detail at (http://www.geofex.com/Article Folders/univibe/uvfrindx.htm).
5Moog has built a 12-stage phaser of this type [?] and up to 20 stages (10 notches) have been noted [?].

22

http://www.geofex.com/Article_Folders/univibe/uvfrindx.htm

In analog hardware, the first-order allpass transfer function [?,

Appendix C, Section 8]6 is

AP
ωb
1

∆
=

s− ωb

s + ωb
. (4)

In discrete time, the general first-order allpass has the transfer

function

AP gi
1

∆
=

gi + z−1

1 + giz−1
.

We now consider the analog and digital cases, respectively.

Classic Analog Phase Shifters

Setting s = jω in Eq. (4) gives the frequency response of the

analog-phaser transfer function to be

Ha(jω) =
jω − ωb

jω + ωb
.

The phase response is readily found to be

Θi(ω) = π − 2 tan−1

(

ω

ωb

)

.

Note that the phase is always π at dc (ω = 0), meaning each allpass

section inverts at dc. Also, at ω =∞ (remember we’re talking about

analog here), we get a phase of zero. In between, the phase falls

from π to 0 as frequency goes from 0 to∞. In particular, at ω = ωb,

the phase has fallen exactly half way, to π/2. We will call ω = ωb

the break frequency of the allpass section.7

6Available online at
http://ccrma.stanford.edu/~jos/filters/Analog Allpass Filters.html

7Saying that the frequency ω0 is the break frequency for the one-pole term H(s) = b/(s + ω0) is terminology
from classical control theory. Below the break frequency, H(s) ≈ b/ω0, and above, H(s) ≈ b/s. On a log-log plot,

23

http://ccrma.stanford.edu/~{}jos/filters/Analog_Allpass_Filters.html

Figure ??a shows the phase responses of four first-order analog

allpass filters with ωb set to 2π[100, 200, 400, 800]. Figure ??b shows

the resulting normalized amplitude response for the phaser, for g = 1

(unity feedfoward gain). The amplitude response has also been

normalized by dividing by 2 so that the maximum gain is 1. Since

there is an even number (four) of allpass sections, the gain at dc is

1 + (−1)(−1)(−1)(−1) = 1. Put another way, the initial phase of

each allpass section at dc is π, so that the total allpass-chain phase

at dc is 4π. As frequency increases, the phase of the allpass chain

decreases. When it comes down to 3π, the net effect is a sign

inversion by the allpass chain, and the phaser has a notch. There will

be another notch when the phase falls down to π. Thus, four allpass

sections give two notches. For each notch in the desired response we

must add two new allpass sections.
the amplitude response |H(jω)| may be approximated by a slope-zero line at height G0 = 20 log10(|b|) from dc
to ω0, followed by an intersecting line with negative slope of 20 dB per decade for all higher frequencies. At the
break frequency, the true gain is down 3dB from G0, but far away from the break frequency, the piecewise-linear
approximation is extremely accurate. Such an approximate amplitude response is called a Bode plot . Bode plots are
covered in any introductory course on control systems design (also called the design of “servomechanisms”).

24

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

3

First−Order Analog Allpass Phase Responses
P

ha
se

 −
 r

ad

fc=100
fc=200
fc=400
fc=800

10
1

10
2

10
3

10
4

−40

−30

−20

−10

0
Overall Phaser Amplitude Responses

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

(a) Phase reponses of first-order analog allpass sections with break

frequencies at 100, 200, 400, and 800 Hz. (b) Corresponding phaser

amplitude response.

From Fig.??b, we observe that the first notch is near f = 100 Hz.

This happens to be the frequency at which the first allpass pole

“breaks,” i.e., ω = g1. Since the phase of a first-order allpass section

at its break frequency is π/2, the sum of the other three sections

must be approximately 2π + π/2. Equivalently, since the first section

has “given up” π/2 radians of phase at ω = g1 = 2π100, the other

three allpass sections combined have given up π/2 radians as well

25

(with the second section having given up more than the other two).

In practical operation, the break frequencies must change

dynamically, usually periodically at some rate.

Classic Virtual Analog Phase Shifters

To create a virtual analog phaser, following closely the design of

typical analog phasers, we must translate each first-order allpass to

the digital domain. Working with the transfer function, we must map

from s plane to the z plane. There are several ways to accomplish

this goal [?]. However, in this case, an excellent choice is the bilinear

transform (see §?? on page ??), defined by

s← c
z − 1

z + 1
(5)

where c is chosen to map one particular frequency to exactly where it

belongs. In this case, c can be chosen for each section to map the

break frequency of the section to exactly where it belongs on the

digital frequency axis. The relation between the analog and digital

frequency axes follows immediately from Eq. (5) as

jωa = c
ejωdT − 1

ejωdT + 1

= c
ejωdT/2

(

ejωdT/2 − e−jωdT/2
)

ejωdT/2
(

ejωdT/2 + e−jωdT/2
)

= jc
sin(ωdT/2)

cos(ωdT/2)
= jc tan(ωdT/2).

26

Thus, given a particular desired break frequency ωa = ωd = ωb, we

can set

c = ωb cot(ωbT/2).

Recall from Eq. (4) on page 23 that the transfer function of the

first-order analog allpass filter is given by

Ha(s) =
s− ωb

s + ωb

where ωb is the break frequency. Applying the general bilinear

transformation Eq. (5) gives

Hd(z) = Ha

(

c
1− z−1

1 + z−1

)

=
c
(

1−z−1

1+z−1

)

− ωb

c
(

1−z−1

1+z−1

)

+ ωb

∆
=

pd − z−1

1− pdz−1

where we have denoted the pole of the digital allpass by

pd
∆
=

c− ωb

c + ωb
=

cot(ωbT/2)− 1

cot(ωbT/2) + 1
=

1− tan(ωbT/2)

1 + tan(ωbT/2)
.

Figure ?? shows the digital phaser response curves corresponding to

the analog response curves in Fig.??. While the break frequencies

are preserved by construction, the notches have moved slightly,

although this is not visible from the plots. An overlay of the total

phase of the analog and digital allpass chains is shown in Fig.??. We

see that the phase responses of the analog and digital alpass chains

diverge visibly only above 9 kHz. The analog phase response

approaches zero in the limit as ωa →∞, while the digital phase

response reaches zero at half the sampling rate, 10 kHz in this case.

27

This is a good example of when the bilinear transform performs very

well.

10
2

10
3

10
4

0

1.57

3.14
First−Order Digital Allpass Phase Responses

P
ha

se
 (

ra
di

an
s)

fc=100
fc=200
fc=400
fc=800

10
1

10
2

10
3

10
4

−40

−30

−20

−10

0
Overall Digital Phaser Amplitude Responses

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

(a) Phase reponses of first-order digital allpass sections with break

frequencies at 100, 200, 400, and 800 Hz, with the sampling rate set

to 20,000 Hz. (b) Corresponding phaser amplitude response.

28

10
2

10
3

10
4

0

3.14

6.28

9.42

12.6

Total Phase Responses of Analog and Digital Allpass Chain

Frequency (Hz)

P
ha

se
 (

ra
di

an
s)

Analog
Digital

Phase reponse of four first-order allpass sections in series — analog

and digital cases overlaid.

Fig.?? below 10 kHz can be largely eliminated by increasing the

sampling rate by 15% or so. See the case of digitizing the Moog VCF

for an example in which the presence of feedback in the analog

circuit leads to a delay-free loop in the digitized system [?, ?].

Phasing with 2nd-Order Allpass Filters

The allpass structure proposed in [?] provides a convenient means for

29

generating nonuniformly spaced notches that are independently

controllable to a high degree. Another advantage of the allpass

approach is that no interpolating delay line is needed.

AP g1

2
AP g2

2
AP g3

2
AP g4

2
x(n) y(n)

g

Structure of a phaser based on four allpass filters AP1 through
AP4.

Allpass Phaser Architecture

The architecture of the allpass-based notch filter is shown in Fig. 1.

It consists of a series connection of allpass filters with a feed-around.

Thus, the delay line of the flanger is replaced by a string of allpass

filters. (A delay line is of course an allpass filter itself.) The phaser

will have a notch wherever the phase of the allpass chain is at π (180

degrees). It can be shown that these frequencies occur very close to

the resonant frequencies of the allpass chain. It is therefore

convenient to use a single conjugate pole pair in each allpass section,

i.e., use second-order allpass sections of the form

H(z) =
a2 + a1z

−1 + z−2

1 + a1z−1 + a2z−2

where

a1 = −2R cos(θ)

a2 = R2

30

and R is the radius of each pole in the complex-conjugate pole pair,

and pole angles are ±θ. The pole angle can be interpreted as

θ = ωcT where ωc is the resonant frequency and T is the sampling

interval.

Allpass Phaser Parameters

To move just one notch, the tuning of the pole-pair in the

corresponding section is all that needs to be changed. Note that

tuning affects only one coefficient in the second-order allpass

structure (though it is used in two places).

The depth of the notches can be varied together by changing the

gain of the feedforward path.

The bandwidth of individual notches is mostly controlled by the

distance of the associated pole-pair from the unit circle. So to widen

the notch associated with a particular allpass section, one may

increase the “damping” of that section.

Finally, since the gain of the allpass string is unity (by definition of

allpass filters), the gain of the entire structure is strictly bounded

between 0 and 2. This property allows arbitrary notch controls to be

applied without fear of the overall gain becoming ill-behaved.

Allpass Phaser Notch Distribution

As mentioned above, it is desirable to avoid exact harmonic spacing

of the notches, but what is the ideal non-uniform spacing? One

possibility is to space the notches according to the critical bands of

31

hearing, since essentially this gives a uniform notch density with

respect to “place” along the basilar membrane in the ear. There is

no need to follow closely the critical-band structure, and many simple

functional relationships can be utilized to tune the notches [?]. Due

to the immediacy of the relation between notch characteristics and

the filter coefficients, the notches can easily be placed under

musically meaningful control.

Vibrato Simulation

The term vibrato refers to small, quasi-periodic variations in the

pitch of a tone. On a violin, for example, vibrato is produced by

wiggling the finger stopping the string on the fingerboard; a violin

vibrato frequency can be very slow, or a bit faster than 6 Hz. A

typical vibrato depth is on the order of 1 percent (a semitone is

21/12 ≈ 6 percent). In the singing voice, vibrato is produced by

modulating the tension of the vocal folds. Vibrato is typically

accompanied by tremolo, which is amplitude modulation at the same

frequency as the vibrato which causes it. For example, in the violin,

the frequency-modulations of the string vibrations are translated into

amplitude modulations by the complex variations in the frequency

response of the violin body.

To apply vibrato to a sound, it is necessary to apply a quasi-periodic

frequency shift. This can be accomplish using a modulated delay

line. This works because a time-varying delay line induces a

simulated Doppler shift on the signal within it.

Doppler Effect

32

The Doppler effect causes the pitch of a sound source to appear to

rise or fall due to motion of the source and/or listener relative to

each other. You have probably heard the pitch of a horn drop lower

as it passes by (e.g., from a moving train). As a pitched

sound-source moves toward you, the pitch you hear is raised; as it

moves away from you, the pitch is lowered. The Doppler effect has

been used to enhance the realism of simulated moving sound sources

for compositional purposes [?], and it is an important component of

the “Leslie effect” (described in §??).

As derived in elementary physics texts, the Doppler shift is given by

ωl = ωs

1 + vls
c

1− vsl
c

(6)

where ωs is the radian frequency emitted by the source at rest, ωl is

the frequency received by the listener, vls denotes the speed of the

listener relative to the propagation medium in the direction of the

source, vsl denotes the speed of the source relative to the

propagation medium in the direction of the listener, and c denotes

sound speed. Note that all quantities in this formula are scalars.

Vector Formulation

Denote the sound-source velocity by vs(t) where t is time. Similarly,

let vl(t) denote the velocity of the listener, if any. The position of

source and listener are denoted xs(t) and xl(t), respectively, where

x
∆
= (x1, x2, x3)

T is 3D position. We have velocity related to position

by

vs =
d

dt
xs(t) vl =

d

dt
xl(t). (7)

33

Consider a Fourier component of the source at frequency ωs. We

wish to know how this frequency is shifted to ωl at the listener due

to the Doppler effect.

Velocity Projection

The Doppler effect depends only on velocity components along the

line connecting the source and listener [?, p. 453]. We may therefore

orthogonally project the source and listener velocities onto the vector

xsl = xl − xs pointing from the source to the listener. (See Fig. 1.1

on page 44 for a specific example.)

The orthogonal projection of a vector x onto a vector y is given by

[?]

Py(x) =

〈

x, y
〉

|| y ||2
y

∆
=

xTy

yTy
y.

Therefore, we can write the projected source velocity as

vsl = Pxsl
(vs) =

〈vs, xsl〉

‖xsl ‖
2 xsl =

〈vs, xl − xs〉

‖xl − xs ‖
2 (xl − xs) . (8)

In the far field (listener far away), Eq. (8) reduces to

vsl ≈
〈vs, xl〉

‖xl ‖
2 xl = Pxl

(vs) (‖ xl ‖ ≫ ‖xs ‖). (9)

1.1 Doppler Simulation

It is well known that a time-varying delay line results in a frequency

shift. Time-varying delay is often used, for example, to provide

vibrato and chorus effects [?]. We therefore expect a time-varying

34

delay-line to be capable of precise Doppler simulation. This section

discusses simulating the Doppler effect using a variable delay line [?].

Consider Doppler shift from a physical point of view. The air can be

considered as analogous to a magnetic tape which moves from

source to listener at speed c. The source is analogous to the

write-head of a tape recorder, and the listener corresponds to the

read-head. When the source and listener are fixed, the listener

receives what the source records. When either moves, a Doppler shift

is observed by the listener, according to Eq. (6).

Doppler Simulation via Delay Lines

This analogy also works for a delay-line based computational model.

The magnetic tape is now the delay line, the tape read-head is the

read-pointer of the delay line, and the write-head is the delay-line

write-pointer. In this analogy, it is readily verified that modulating

delay by changing the read-pointer increment from 1 to 1 + vls/c

(thereby requiring interpolated reads) corresponds to listener motion

away from the source at speed vls. It also follows that changing the

write-pointer increment from 1 to 1 + vsl/c corresponds source

motion toward the listener at speed vsl. When this is done, we must

use interpolating writes into the delay memory. Interpolating writes

are often called de-interpolation [?], and they are formally the

graph-theoretic transpose of interpolating reads (ordinary

“interpolation”) [?]. A review of time-varying, interpolating,

delay-line reads and writes, together with a method using a single

shared pointer, are given in [?].

35

Time-Varying Delay-Line Reads

If x(t) denotes the input to a time-varying delay, the output can be

written as

y(t) = x(t−Dt).

where Dt denotes the time-varying delay in seconds. In discrete-time

implementations, when Dt is not an integer multiple of the sampling

interval, x(t−Dt) may be approximated to arbitrary accuracy (in a

finite band) using bandlimited interpolation (see §?? on page ??) or

other techniques for implementation of fractional delay [?, ?].

Let’s analyze the frequency shift caused by a time-varying delay by

setting x(t) to a complex sinusoid at frequency ωs:

x(t) = ejωst

The output is now

y(t) = x(t−Dt) = ejωs·(t−Dt).

The instantaneous phase of this signal is

θ(t) = ∠y(t) = ωs · (t−Dt)

which can be differentiated to give the instantaneous frequency

ωl = ωs(1− Ḋt) (10)

where ωl denotes the output frequency, and Ḋt
∆
= d

dtDt denotes the

time derivative of the delay Dt. Thus, the delay growth-rate, Ḋt,

equals the relative frequency downshift:

Ḋt =
ωs − ωl

ωs
.

36

Comparing Eq. (10) to Eq. (6), we find that the time-varying delay

most naturally simulates Doppler shift caused by a moving listener,

with

Ḋt = −
vls

c
. (11)

That is, the delay growth-rate, Ḋt, should be set to the speed of the

listener away from the source, normalized by sound speed c.

Simulating source motion is also possible, but the relation between

delay change and desired frequency shift is more complex, viz., from

Eq. (6) and Eq. (10),

Ḋt = −
vls
c + vsl

c

1− vsl
c

≈ −
(vls

c
+

vsl

c

)

where the approximation is valid for vsl ≪ c. In Section 1.1, a

simplified approach is proposed based on moving the delay input

instead of its output.

The time-varying delay line was described in §?? on page ??. As

discussed there, to implement a continuously varying delay, we add a

“delay growth parameter” g to the delayline function in Fig.??

on page ??, and change the line

rptr += 1; // pointer update

to

rptr += 1 - g; // pointer update

When g is 0, we have a fixed delay line, corresponding to Ḋt = 0 in

Eq. (10). When g > 0, the delay grows g samples per sample, which

37

we may also interpret as seconds per second, i.e., Ḋt = g. By

Eq. (11), we see that we need

g = −
vls

c

to simulate a listener traveling toward the source at speed vls.

Note that when the read- and write-pointers are driven directly from

a model of physical propagation-path geometry, they are always

separated by predictable minimum and maximum delay intervals.

This implies it is unnecessary to worry about the read-pointer passing

the write-pointers or vice versa. In generic frequency shifters [?], or

in a Doppler simulator not driven by a changing geometry, a pointer

cross-fade scheme may be necessary when the read- and

write-pointers get too close to each other.

Multiple Read Pointers

Using multiple read pointers, multiple listeners can be simulated.

Furthermore, each read-pointer signal can be filtered to simulate

propagation losses and radiation characteristics of the source in the

direction of the listener. The read-pointers can move independently

to simulate the different Doppler shifts associated with different

listener motions and relative source directions.

Multiple Write Pointers

It is interesting to consider also what effects can be achieved using

multiple de-interpolating write pointers. From the considerations in

38

§1.1, we see that multiple write-pointers correspond to multiple

write-heads on a magnetic tape recorder. If they are arranged at a

fixed spacing, they are equivalent to multiple read pointers, providing

a basic multipath simulation. If, however, the write pointers are

moving independently, they induce independent Doppler shifts due to

source motion. In particular, each write-pointer can lay down a signal

from a separate source to a single listener with its own Doppler shift.

Furthermore, each write-signal can be passed through its own filter.

Such an individualized source filter can implement all filtering

incurred along the propagation path from each source to the listener.

When all write pointers have the same input signal, their filters can

be implemented using a series chain in which the outputs of

successive filters in the chain correspond to progressively longer

propagation paths (progressively more filtering). Such an

implementation can greatly reduce the filter order required for

propagation paths longer than the shortest.

The write-pointers may cross each other with no ill effects, since all

but the first8 simply sum into the shared delay line.

We have seen that a single delay line can be used to simulate any

number of moving listeners (§1.1) or any number of moving sources.

However, when simulating both multiple listeners and multiple

sources, it is not possible to share a single delay line. This is because

the different listeners do not see the same Doppler shift for each

moving source, and while the listener’s read-pointer motion can be

adjusted to correct for the Doppler shift seen from any particular

source, it cannot correct for more than one in general. Thus, in
8The “first” write-pointer is defined as the one writing farthest ahead in time; it must overwrite memory, instead

of summing into it, when a circular buffer is being used, as is typical.

39

general, we need as many delay lines as there are sources or listeners,

whichever is smaller. More precisely, if there are N moving sources

and M moving listeners, simulation requires min(N, M) delay lines.

Stereo Processing

As a special case, stereo processing of any number of sources can be

accomplished using two delay lines, corresponding to left and right

stereo channels. The stereo mix may contain a panned mixture of

any number sources, each with its own stereo placement, path

filtering, and Doppler shift. The two stereo outputs may correspond

to “left and right ears,” or, more generally, to left- and right-channel

microphones in a studio recording set-up.

System Block Diagram

A schematic diagram of a stereo multiple-source simulation is shown

in Fig. 1.1. To simplify the layout, the input and output signals are

all on the right in the diagram. For further simplicity, only one input

source is shown. Additional input sources are handled identically,

summing into the same delay lines in the same way.

The input source signal first passes through filter H0(z), which

provides time-invariant filtering common to all propagation paths.

The left- and right-channel filters H
(n)
0L (z) and H

(n)
0R (z) are typically

low-order, linear, time-varying filters implementing the time-varying

40

Left Out0 Delay Line

0 Right OutDelay Line

. . . Source InH2 H1 H0

H
(n)
1R

H
(n)
1L

H
(n)
0R

H
(n)
0L

H
(n)
2L

H
(n)
2R

Block diagram of a stereo simulator for any number of moving
sound sources (from [?]).

characteristics of the shortest (time-varying) propagation path from

the source to each listener. (The (n) superscript here indicates a

time-varying filter.) These filter outputs sum into the delay lines at

arbitrary (time-varying) locations using interpolating writes

(de-interpolation). The zero signals entering each delay line on the

left can be omitted if the left-most filter overwrites delay memory

instead of summing into it.

The outputs of H
(n)
0L (z) and H

(n)
0R (z) in Fig. 1.1 correspond to the

“direct signal” from the moving source, when a direct signal exists.

These filters may incorporate modulation of losses due to the

changing propagation distance from the moving source to each

listener, and they may include dynamic equalization corresponding to

the changing radiation strength in different directions from the

moving (and possibly turning) source toward each listener.

The next trio of filters in Fig. 1.1, H1(z), H
(n)
1L (z), and H

(n)
1R (z),

correspond to the next-to-shortest acoustic propagation path,

typically the “first reflection,” such as from a wall close to the source.

Since a reflection path is longer than the direct path, and since a

reflection itself can attenuate (or scatter) an incident sound ray,

41

there is generally more filtering required relative to the direct signal.

This additional filtering can be decomposed into its fixed component

H1(z) and time-varying components H
(n)
1L (z) and H

(n)
1R (z).

Note that acceptable results may be obtained without implementing

all of the filters indicated in Fig. 1.1. Furthermore, it can be

convenient to incorporate Hi(z) into H
(n)
iL (z) and H

(n)
iR (z) when

doing so does not increase their orders significantly.

Note also that the source-filters H
(n)
iL (z) and H

(n)
iR (z) may include

HRTF filtering [?, ?] in order to impart illusory angles of arrival in

3D space.

Chorus Effect

The chorus effect (or “choralizer”) is any signal processor which

makes one sound source (such as a voice) sound like many such

sources singing (or playing) in unison. Since performance in unison is

never exact, chorus effects simulate this by making independently

modified copies of the input signal. Modifications may include

(1) delay,

(2) frequency shift, and

(3) amplitude modulation.

The typical chorus effect today is based on several time-varying delay

lines which accomplishes (1) and (2) in a qualitative fashion. Reverb

generally provides (3) incidentally. Before digital delay lines, analog

42

LC ladder networks were used as an approximation, beginning in the

early 1940s in the Hammond organ [?, p. 731].

An efficient chorus-effect implementation may be based on multiple

interpolating taps working on a single delay line. The taps oscillate

back and forth about the positions they would have while

implementing a fixed tapped delay line. The tap modulation

frequency may be set to achieve a prescribed frequency-shift via the

Doppler effect. Each tap should be individually spatialized; in the

case of stereo, each tap can be panned to its own stereo position.

The Leslie

The Leslie, named after its inventor, Don Leslie,9 is a popular audio

processor used with electronic organs and other instruments [?, ?]. It

employs a rotating horn and rotating speaker port to “choralize” the

sound. Since the horn rotates within a cabinet, the listener hears

multiple reflections at different Doppler shifts, giving a kind of chorus

effect. Additionally, the Leslie amplifier distorts at high volumes,

producing a pleasing “growl” highly prized by keyboard players.

The Leslie consists primarily of a rotating horn and a rotating

speaker port inside a wooden cabinet enclosure [?]. We first consider

the rotating horn.

Rotating Horn Simulation

The heart of the Leslie effect is a rotating horn loudspeaker. The

rotating horn from a Model 600 Leslie can be seen mounted on a
9http://en.wikipedia.org/wiki/Leslie speaker

43

http://en.wikipedia.org/wiki/Leslie_speaker

microphone stand in Fig.??. Two horns are apparent, but one is a

dummy, serving mainly to cancel the centrifugal force of the other

during rotation. The Model 44W horn is identical to that of the

Model 600, and evidently standard across all Leslie models [?]. For a

circularly rotating horn, the source position can be approximated as

xs(t) =

[

rs cos(ωmt)

rs sin(ωmt)

]

(12)

where rs is the circular radius and ωm is angular velocity. This

expression ignores any directionality of the horn radiation, and

approximates the horn as an omnidirectional radiator located at the

same radius for all frequencies. In the Leslie, a diffuser is inserted

into the end of the horn in order to make the radiation pattern closer

to uniform [?], so the omnidirectional assumption is reasonably

accurate.

By Eq. (7), the source velocity for the circularly rotating horn is

vs(t) =
d

dt
xs(t) =

[

−rsωm sin(ωmt)

rsωm cos(ωmt)

]

(13)

Note that the source velocity vector is always orthogonal to the

source position vector, as indicated in Fig. 1.1.

xsl = xl − xs

vsl

xs

θs xl = (rl, 0)

vs

0

Relevant geometry for a rotating horn (from [?]).

44

Since vs and xs are orthogonal, the projected source velocity Eq. (8)

simplifies to

vsl = Pxsl
(vs) =

〈vs, xl〉

‖xl − xs ‖
2 (xl − xs) . (14)

Arbitrarily choosing xl = (rl, 0) (see Fig. 1.1), and substituting

Eq. (12) and Eq. (13) into Eq. (14) yields

vsl =
−rlrsωm sin(ωmt)

r2
l + 2rlrs cos(ωmt) + r2

s

[

rl − rs cos(ωmt)

−rs sin(ωm)t

]

. (15)

In the far field, this reduces simply to

vsl ≈ −rsωm sin(ωmt)

[

1

0

]

. (16)

Substituting into the Doppler expression Eq. (6) with the listener

velocity vl set to zero yields

ωl =
ωs

1 + rsωm sin(ωmt)/c
≈ ωs

[

1−
rsωm

c
sin(ωmt)

]

, (17)

where the approximation is valid for small Doppler shifts. Thus, in

the far field, a rotating horn causes an approximately sinusoidal

multiplicative frequency shift, with the amplitude given by horn

length rs times horn angular velocity ωm divided by sound speed c.

Note that rsωm is the tangential speed of the assumed point of horn

radiation.

Leslie Free-Field Horn Measurements

The free-field radiation pattern of a Model 600 Leslie rotating horn

was measured using the experimental set-up shown in Fig.?? [?]. A

45

matched pair of Panasonic microphone elements (Crystal River

Snapshot system) were used to measure the horn response both in

the plane of rotation and along the axis of rotation (where no

Doppler shift or radiation pattern variation is expected). The

microphones were mounted on separate boom microphone stands, as

shown in the figure. A close-up of the plane-of-rotation mic is shown

in Fig.??.

46

Rotating horn recording set up (from [?]).

Microphone close-up (from [?]).

The horn was set manually to fixed angles from -180 to 180 degrees

in increments of 15 degrees, and at each angle the impulse response

was measured using 2048-long Golay-code pairs [?].

Figure ?? shows the measured impulse responses and Fig.?? shows

the corresponding amplitude responses at the various angles. Note

that the beginning of each impulse response contains a fixed portion

which does not depend significantly on the angle. This is thought to

be due to “leakage” from the base of the horn. It arrives first since

47

the straight-line path from the enclosed speaker to the microphone is

shorter than that traveling through the horn assembly.

0 1 2 3 4 5 6
−1

0

1

2

3

4

5

6

7
impulse responses, theta = [−180:30:180]

time − milliseconds

am
pl

itu
de

Measured impulse-responses of the Leslie 600 rotating-horn at

multiples of 15 degrees. The middle trace is recorded with the

microphone along the axis of the horn (from [?]).

48

10
−1

10
0

10
1

−60

−50

−40

−30

−20

−10

0
Leslie response power spectra, theta = [−180:30:180]

frequency − kHz

po
w

er
 −

 d
B

Measured amplitude-responses of the Leslie 600 rotating-horn at

multiples of 15 degrees (from [?]).

Separating Horn Output from Base Leakage

Note that Fig.?? indicates the existence of fixed and

angle-dependent components in the measured impulse responses. An

iterative algorithm was developed to model the two components

separately [?].

Let M = 256 denote the number of impulse-response samples in

49

each measured impulse response,and let N = 25 denote the number

of angles (-180:15:180) at which impulse-response measurements

were taken. We denote the M ×N impulse-response matrix by h.

Each column of h is an impulse response at some horn angle.

(Figure ?? can be interpreted as a plot of the transpose of h.)

We model h as

h = α + γ · diag(z−τi) + e

where τi is the arrival-time delay, in samples, for the horn output in

the ith row (the delays clearly visible in Fig.?? as a function of

angle). These arrival times are estimated as the location of the peak

in the cross-correlation between the ith impulse response and the

same impulse response after converting it to minimum phase [?].

The diagonal matrix diag(z−τi) denotes a shift operator which delays

the ith column of γ by τi samples. Thus, γ contains the horn-output

impulse response (without the base leakage) shifted to time zero

(i.e., the angle-dependent delay is removed). Finally, the error matrix

e is to be minimized in the least-squares sense.

Each column of the matrix α contains a copy of the estimated

horn-base leakage impulse-response:

α = a · 1T

where 1T = [1, 1, . . . , 1].

The estimated angle-dependent impulse-responses in γ are modeled

as linear combinations of K = 5 fixed impulse responses, viewed

(loosely) as principal components:

γ = g ·w

50

where g is the M ×K orthonormal matrix of fixed filters (principal

components), and w is a K ×N matrix of weights, found in the

usual way by a truncated singular value decomposition (SVD) [?].

Algorithm

To start the separation algorithm, γ0 is initialized to the zero-shifted

impulse response data h · diag(zτi), ignoring the tails of the

base-leakage they may contain. Then α0 is estimated as the mean of

h− γ0diag(z−τi). This mean is then subtracted from h to produce

b1 = (h−α0)diag(z−τi) which is then then converted to

γ1 = g1 ·w1 by a truncated SVD. A revised base-leakage estimate

α1 is then formed as h− γ1diag(z−τi), and so on, until convergence

is achieved.

Results

Figure ?? plots the K = 5 weighted principal components identified

for the angle-dependent component of the horn radiativity. Each

component is weighted by its corresponding singular value, thus

visually indicating its importance. Also plotted using the same line

type are the zero-lines for each principal component. Note in

particular that the first (largest) principal component is entirely

positive.

51

−200 −150 −100 −50 0 50 100 150 200
−5

−4

−3

−2

−1

0

1

2

3
weighted time−shifted components, theta = [−180:15:180]

angle (degrees)

am
pl

itu
de

First 5 principal components weighted by their corresponding singular

values. Each angle-dependent impulse response is modeled as a

linear combination of these angle-independent impulse-response

components (from [?]).

Figure ?? shows the complete horn impulse-response model

(α + γ · diag(z−τi)), overlaid with the original raw data h. We see

that both the fixed base-leakage and the angle-dependent

horn-output response are closely followed by the fitted model.

52

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

4

5

6

7
measured and modeled impulse responses, theta = [−180:15:180]

time − milliseconds

am
pl

itu
de

Overlay of measured (solid) and modeled (dotted) impulse-responses

at multiples of 15 degrees (from [?]).

Figure ?? shows the estimated impulse response of the base-leakage

component a(n), and Fig.?? shows the modeled angle-dependent

horn-output components γ delayed out to their natural arrival times.

53

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5

2
final base−leakage impulse response

time − milliseconds

am
pl

itu
de

Modeled base-leakage impulse-response (angle-independent) (from

[?]).

54

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

4

5

6

7
delayed impulse response component, theta = [−180:15:180]

time − milliseconds

am
pl

itu
de

Modeled horn-output impulse-responses at multiples of 15 degrees

(from [?]).

Figure ?? shows the average power response of the horn outputs.

Also overlaid in that figure is the average response smoothed

according to Bark frequency resolution [?]. This equalizer then

becomes H0(z) in Fig. 1.1. The filters H0L(z) and H0R(z) in Fig. 1.1

are obtained by dividing the Bark-smoothed frequency-response at

each angle by H0(z) and designing a low-order recursive filter to

provide that equalization dynamically as a function of horn angle.

55

The impulse-response arrival times τi determine where in the delay

lines the filter-outputs are to be summed in Fig. 1.1.

10
−1

10
0

10
1

−60

−50

−40

−30

−20

−10

0
Leslie horn equalization

frequency − kHz

po
w

er
 −

 d
B

Average angle-dependent amplitude response overlaid with

Bark-smoothed response to be used as a fixed equalization applied to

the source (from [?]).

Figure ?? shows a spectrogram view of the angle-dependent

amplitude responses of the horn with H0(z) (Bark-smoothed curve in

Fig.??) divided out. This angle-dependent, differential equalization

is used to design the filters H0L(z) and H0R(z) in Fig. 1.1. Note that

56

below 12 Barks or so, the angle-dependence is primarily to decrease

amplitude as the horn points away from the listener, with high

frequencies decreasing somewhat faster with angle than low

frequencies.

Leslie normalized response power spectrum, theta = [−180:30:180]

frequency − Bark

ho
rn

 a
ng

le
 −

 d
eg

re
es

0 5 10 15 20 25

−180

−150

−120

−90

−60

−30

0

30

60

90

120

150

180

power − dB
−12 −9 −6 −3 0

Angle-dependent amplitude response divided by Bark-smoothed

average response to be used as the basis for design of time-varying,

angle-dependent equalization to be applied after H0(z) (from [?]).

57

1.2 Rotating Woofer-Port and Cabinet Simulation

It is straightforward to extend our computational model to include

the rotating woofer port and wooden cabinet enclosure as follows:

• In [?], it is mentioned that an AM “throb” is the main effect of

the rotating woofer port. A modulated lowpass-filter cut-off

frequency has been used for this purpose by others. Our

measured data will be used to construct angle-dependent filtering

in a manner analogous to that of the rotating horn, and this

“woofer filter” runs in parallel with the rotating horn model.

• The Leslie cabinet multiply-reflects the sound emanating from

the rotating horn. The first few early reflections are simply

handled as additional sources in Fig. 1.1. We can extend the

impulse-response-component separation algorithm of §1.1 to the

case of superimposed early reflections in the impulse response.

(Preliminary results are promising.)

• To qualitatively simulate later, more reverberant reflections in

the Leslie cabinet, we feed a portion of the rotating-horn and

speaker-port signals to separate states of an artificial reverberator

(see Chapter ??). This reverberator may be configured as a

“very small room” corresponding to the dimensions and

scattering characteristics of the Leslie cabinet, and details of the

response may be calibrated using measurements of the impulse

response of the Leslie cabinet. Finally, in order to emulate the

natural spatial diversity of a radiating Leslie cabinet in a room,

“virtual cabinet vent outputs” can be extracted from the model

and fed into separate states of a room reverberator.

58

In summary, we may use multiple interpolating write-pointers to

individually simulate the early cabinet reflections, and a “Leslie

cabinet” reverberator for handling later reflections more statistically.

1.3 Miscellaneous Effects

This section describes miscellaneous digital audio effects which the

author has seen applied in practice. For much more about signal

processing for digital audio effects, see, e.g., [?].

Doubling Simulation

Doubling is a studio recording technique often used to “thicken”

vocals in which the same part is sung twice by the same person. In

other words, doubling is a “chorus of two”, where both parts are

sung “in unison” by the same person. As an example, the Beatles

used doubling very often, such as on the track “Hard Day’s Night”.

A single variable delay line can simulate doubling very effectively.

Slap Back

The term slap back refers to the use of a single echo on a recorded

track. The echo may be placed in a different spatial location in the

stereo mix. Normally the echo delay is just large enough to be heard

as a discrete echo on careful listening (e.g., on the order of tens of

milliseconds). Slap back is very popular in 1950s-style recordings

such as “rockabilly” tunes.

59

In summary, slap back can be regarded as a simplification of doubling

in which the second voice is kept at a larger, fixed delay relative to

the first voice.

60

	Large Delay Changes
	Doppler Simulation
	Rotating Woofer-Port and Cabinet Simulation
	Miscellaneous Effects

