Next  |  Prev  |  Up  |  Top  |  REALSIMPLE Top

Acoustic Intensity

Acoustic Intensity may be defined by

$\displaystyle \zbox{\underline{I} \mathrel{\stackrel{\Delta}{=}}p \underline{v}...
...ox{\large Time}} =
\frac{\mbox{\large Power Flux}}{\mbox{\large Area}}\right)
$

where

\begin{eqnarray*}
p &=& \mbox{acoustic pressure} \quad \left(\frac{\mbox{\large ...
...uad \left(\frac{\mbox{\large Length}}{\mbox{\large Time}}\right)
\end{eqnarray*}

For a plane traveling wave, we have

$\displaystyle \zbox{p = R v}
$

where

$\displaystyle R \mathrel{\stackrel{\Delta}{=}}\rho c
$

is called the wave impedance of air, and

\begin{eqnarray*}
c &=& \mbox{sound speed}\\
\rho &=& \mbox{mass density of air...
...athrel{\stackrel{\Delta}{=}}& \left\vert\underline{v}\right\vert
\end{eqnarray*}

Therefore, in a plane wave,

$\displaystyle \zbox{I = p v = Rv^2 = \frac{p^2}{R}}
$


Next  |  Prev  |  Up  |  Top  |  REALSIMPLE Top

Download Delay.pdf
Download Delay_2up.pdf
Download Delay_4up.pdf

``Computational Acoustic Modeling with Digital Delay'', by Julius O. Smith III and Nelson Lee,
REALSIMPLE Project — work supported by the Wallenberg Global Learning Network .
Released 2008-06-05 under the Creative Commons License (Attribution 2.5), by Julius O. Smith III and Nelson Lee
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA