# Mobile Phone Programming Workshop 2007 Abstracts

### From CCRMA Wiki

Line 21: | Line 21: | ||

2-D wave equation. This gives us some specific clues why faithful physical models in two | 2-D wave equation. This gives us some specific clues why faithful physical models in two | ||

dimensions are more complicated. | dimensions are more complicated. | ||

+ | |||

+ | [[Category: Workshops]] |

## Current revision as of 17:09, 4 March 2008

**Title: Mobile Music Making - History and Prospects** by Georg Essl

**Abstract:** "Mobile music making" refers to the use of mobile devices in music performance.
This talk reviews the fairly brief history of this emerging field by emphasizing
performance practices but also technologies as have been developed so far. Then we go
over some challenges ahead. What kinds of mobile music performances are thinkable? What
are the restrictions and opportunities of the mobile setting and
mobile technology for these types of performances?

**Title: Why are 2-D waves more tricky than 1-D?** by Georg Essl

**Abstract:** This talk discusses the properties of the wave equation in the plane for
bounded domains. This is the typical equation we consider when trying to come up with
physical models of drums, violin top plates or other flat sounding objects. Digital
waveguides provide a very elegant physical modeling technique for the one-dimensional
wave equation. This has to do with specific properties of the 1-D wave equation. There
are however analogue descriptions and related properties in two dimensions. Impulsive
excitations and their resulting wave fronts have a specific geometric structure. Goal of
the lecture is to illustrate these and other structural properties of the solution of the
2-D wave equation. This gives us some specific clues why faithful physical models in two
dimensions are more complicated.