Difference between revisions of "MakerFaire"

From CCRMA Wiki
Jump to: navigation, search
(Leap the Dips)
 
(101 intermediate revisions by 10 users not shown)
Line 1: Line 1:
 +
[[File:Granuleggs.jpg|750px]]
 +
 +
 +
 
==Introduction==
 
==Introduction==
The [http://ccrma.stanford.edu Center for Computer Research in Music and Acoustics] (CCRMA -- pronounced "karma") is an interdisciplinary center at Stanford University dedicated to artistic and technical innovation at the intersection of music and technology. We are a place where musicians, engineers, computer scientists, designers, and researchers in HCI and psychology get together to develop technologies and make art. In recent years, the question of how we interact physically with electronic music technologies has fostered a growing new area of research that we call Physical Interaction Design for Music. We emphasize practice-based research, using DIY physical prototying with low-cost and open source tools to develop new ways of making and interacting with sound. At the Maker Faire, we will demonstrate the low-cost hardware prototyping kits and our customized open source Linux software distribution that we use to develop new sonic interactions, as well as some exciting projects that have been developed using these tools. Below you will find photos and descriptions of the tools and projects we will demonstrate.
+
The [http://ccrma.stanford.edu Center for Computer Research in Music and Acoustics] (CCRMA -- pronounced "karma") is an interdisciplinary center at Stanford University dedicated to artistic and technical innovation at the intersection of music and technology. We are a place where musicians, engineers, computer scientists, designers, and researchers in HCI and psychology get together to develop technologies and make art. In recent years, the question of how we interact physically with electronic music technologies has fostered a growing new area of research that we call Physical Interaction Design for Music. We emphasize practice-based research, using DIY physical prototying with low-cost and open source tools to develop new ways of making and interacting with sound. At the Maker Faire, we will demonstrate the low-cost hardware prototyping kits and our customized open source Linux software distribution that we use to develop new sonic interactions, as well as some exciting projects that have been developed using these tools. Below you will find photos and descriptions of the projects and tools we will demonstrate.
 +
 
 +
 
 +
 
 +
 
 +
==The Blade Axe==
 +
Romain Michon
 +
 
 +
The BladeAxe is an iPad-based musical instrument leveraging the concepts of “augmented mobile device” and “hybrid physical model controller.” By being almost fully standalone, it can be used easily on stage in the frame of a live performance by simply plugging it to a traditional guitar amplifier or to any sound system. Its acoustical plucking system provides the performer with an extended expressive potential compared to a standard controller
 +
 
 +
[[File:BladeAx2016.jpg|500px]]
 +
 
 +
 
 +
 
 +
==Granuleggs ==
 +
Alison Rush, David Grunzweig, and Trijeet Mukhopadhyay
 +
 
 +
The Granuleggs is a new music controller for granular synthesis which allows a musician to explore the textural potential of their samples in a unique and intuitive way, with a focus on creating large textures instead of distinct notes. Each controller is egg shaped, designed to fit the curve of your palm as you gyrate the eggs and tease your fingers to find yourself the perfect soundscape.
 +
 
 +
[[File:Granuleggs.jpg|500px]]
 +
 
 +
 
 +
==BelugaBeats==
 +
Jack Atherton
 +
 
 +
BelugaBeats is a whale-based step sequencer. You can add whales to 8 rows of a grid, and when a wave washes over them, they will sound their blowholes and play their notes. Changing a whale's size alters the pitch it sings. Occasionally, a whale will get distracted by a fish and play its note while underwater. Unfortunately, there is nothing you can do about this.
 +
 
 +
[[File:Belugabeats.png|500px]]
 +
 
 +
==Chorest==
 +
Jack Atherton
 +
 
 +
Welcome to your personal Chorest! Walk around, plant seeds, grow trees, and hear the wind in the air! Look down from a bird's eye view, or move through the trees on the chorest floor. When you breathe on your trees, they'll play a chord for you. Or, try singing to them! Trees need a noisy sound to grow -- try stroking your microphone! As you grow your trees, their sound will mature. Don’t forget, it’s always possible to plant new seeds and start anew. Occasionally, you may see a ghost from the past. Please, do not be alarmed.
 +
 
 +
[[File:Chorest.png|500px]]
 +
 
 +
 
 +
==Leap the Dips==
 +
Jack Atherton
 +
 
 +
This rolling ball sculpture invites participants to test their skill at "leaping the dips" on a copper model of the world's oldest operating roller coaster.  The project's aesthetic draws from a practice certainly much older than the roller coaster -- teenage rebellion, and the ensuing adult panic over the activities of "kids these days."  Marbles roll over tracks and supports that are fashioned out of soldered copper wire.  The tracks feature dips that cause the marbles to lift off the track and crash back down, as was possible in early roller coasters without up-stop wheels on the underside of the track.  Take care in the placement of your marble not to cause the marbles to completely fly off the track!  The dips are fitted with sensors that drive an algorithm in Max/MSP for giving aural feedback and a cultural experience to the users.
 +
 
 +
[[File:LeapTheDipsPicture.jpg|500px]]
 +
 
 +
== Music Maker==
 +
Sasha Leitman, John Granzow
 +
 
 +
Music Maker (https://ccrma.stanford.edu/musicmaker) is a free online resource that provides files for 3D printing woodwind and brass mouthpieces and tutorials for using those mouthpieces to learn about acoustics and music. The mouthpieces are designed to fit into standard plumbing and automobile parts that can be easily purchased at home improvement and automotive stores. The goal is to make a musical tool that can be used as simply as a set of building blocks but that aims to bridge the gap between our increasingly digital world of fabrication and the real-world materials that make up our daily lives.
 +
An increasing number of schools, libraries and community groups are purchasing 3D printers but many are still struggling to create engaging and relevant curriculum that ties into academic subjects. Making new musical instruments is a fantastic way to learn about acoustics, physics and mathematics.
 +
 
 +
 
 +
[[File:P1000118.jpg|500px]] [[File:TrumpetWithBell.jpg|500px]]
 +
 
 +
 
 +
==Cetacant==
 +
Alison Rush
 +
 
 +
The cetacant is a musical instrument inspired by whales and designed to accompany a performance of Vela 6911, a piece by Victor Gama. The cetacant emulates features of the cetacean vocal apparatus, using tubes and chambers full of air, water, and oil to produce and amplify sounds. The attached photo is of a prototype; the instrument's final form will resemble a suspended sphere, evoking the bubbles produced by a vocalizing whale, or our watery planet as seen from space.
 +
 
 +
[[File:Cetacant-diagram1.jpg|500px]]
 +
 
 +
 
 +
 
 +
==Mephisto==
 +
Romain Michon
 +
 
 +
Mephisto is a small battery powered open source Arduino based device. Up to five sensors can be connected to it using simple 1/8" stereo audio jacks. The output of each sensor is digitized and converted to OSC messages that can be streamed on a WIFI network to control any Faust generated app.
 +
The goal of Mephisto is to provide an easy way for musicians to interact with the different parameters of a Faust object or any other OSC compatible software during a live performance.
 +
As a "DIY" open source project, Mephisto only uses open source hardware (Arduino, etc.) and was designed to be easily built by anyone.
 +
 
 +
 
 +
[[File:Mephisto1.jpg|500px]]
 +
[[File:Mephisto2.jpg|500px]]
 +
 
 +
 
 +
== Hearing Polyphony - A Game and Experiment! ==
 +
Madeline Huberth
 +
 
 +
I work in the Neuromusic lab at CCRMA, whose goal on the whole is to investigate phenomena related to understanding music. Specifically, I've been doing work this past year in how our brain processes polyphony (hearing multiple melodies at once), and will present a game I created that uses the stimuli used in our experiment as a way of understanding the experiment. The experiment and our findings will also be on a poster that I can bring.
 +
 
 +
Our experiment shows that your brain can detect changes in polyphonic patterns automatically - how easy is it for you to do it consciously? Play and find out!
 +
 
 +
 
 +
[[File:Romain_cap.png|500px]]
 +
 
 +
 
 +
==CollideFx==
 +
Chet Gnegy
 +
 
 +
CollideFx is a real-time audio effects processor that integrates the physics of real objects into the parameter space of the signal chain. Much like in a traditional signal chain, a user can choose a series of effects and offer realtime control to their various parameters. In this work, we introduce a means of creating tree-like signal graphs that dynamically change their routing in response to position changes of the unit generators. The unit generators are easily controllable using the click and drag interface and respond using familiar physics, including conservation of linear and angular momentum and friction. With little difficulty, users can design interesting effects, or alternatively, can fling a unit generator into a cluster of several others to obtain more surprising results, letting the physics engine do the decision making.
 +
 
 +
[[Image:Chet.png|400px]]
  
==Software Tools==
 
Planet CCRMA at Home is a collection of open source programs that you can add to a computer running Fedora Linux to transform it into an audio/multi-media workstation with a low-latency kernel, current audio drivers and a nice set of music, midi, audio and video applications (with an emphasis on real-time performance). It replicates most of the Linux environment we have been using for years here at CCRMA for our daily work in audio and computer music production and research. Planet CCRMA is easy to install and maintain, and can be upgraded from our repository over the web. Bootable CD and DVD install images are also available.  This software is free.
 
  
[http://ccrma.stanford.edu/planetccrma/software http://ccrma.stanford.edu/planetccrma/software]
+
==The Processed Typewriter==
 +
Andrew Watts
  
 +
Other than the human voice, musical instruments convey primarily
 +
abstraction through sound content. We interpret these sounds as music to
 +
varying degrees, but if one were to step away from the cultural
 +
associations, the noise would remain highly ambiguous. With a typewriter
 +
the sounds inherent in the machine's use also contain linguistic meaning.
 +
Having this added layer to work with, a composer could pair the text and
 +
the sounds in a multitude of ways, even utilizing the ambiguity of
 +
semantic meaning with the ill-defined meaning of typewriter sounds. For
 +
this project I am specifically thinking towards a performance in the late
 +
spring during a residency with famed soprano Tony Arnold. Rather than a
 +
typical accompaniment for a solo soprano piece, like as a piano, it would
 +
be much more interesting and musically fertile to have her singing lyrics
 +
which are actively being typed in the background. Not only is the text
 +
being transformed into sound through the vocal line, but also the
 +
hammering away of the typewriter. Furthermore, these sounds and the images
 +
of the text appearing on the page would be processed, enabling a wide
 +
range of articulations, imagery, references, and audio sculpting.
  
[[Image:Ardour_sm.png]]
+
[[File:Typewriter1.jpg|500px]] [[File:Typewriter2.png|500px]]  
  
Ardour -  Multitrack Sound Editor
 
  
 +
==String==
 +
Joshua Coronado
  
 +
String is controller used to generate waveforms, curves, and envelopes using a camera, coloured string, and Max/MSP. Users draw curves representing objects such as a filter envelope using coloured string. The coloured curve is then captured by a camera and deciphered into a digital curve to be rendered out to audio by Max/MSP.
  
[[Image:Hydrogen_sm.png]]
+
[[File:Strings.JPG|500px]]
 +
[[File:Strings_2.JPG|500px]]
  
Hydrogen - Drum Sequencer
+
==Tibetan Singing Prayer Wheel==
 +
Yoo-yoo Yeh
  
 +
Inspired by the traditional Tibetan prayer wheel and Tibetan singing bowl, we present the Tibetan Singing Prayer Wheel, a physical motion sensing controller that allows you to play virtual Tibetan singing bowls as well as processes your voice when you perform several gestures - spinning the wheel at different speeds, raising and lowering your arm, and tapping a button on the outside. A separate RF transmitter allows you to transition between the three distinct sound design layers: (1) a Faust-STK physical model of a Tibetan singing bowl, (2) a delayed and windowed voice processing layer, and (3) a novel modal reverb model of an actual Tibetan singing bowl, that takes the voice as input. The system is designed to be easy for anyone to pick up and improvise with - go ahead and try it!
  
 +
[[File:NIME_System_Architecture_v2.png|500px]]
  
[[Image:Pd-jack-jaaa_sm.png]]
+
==Mariah==
 +
Mathew Horton
  
Pd, Jack and Jaaa - Real-time audio tools
+
Mariah sonifies the "diva finger wave." Mariah is a letter of love to women like Whitney Houston, Christina Aguilera, and its namesake, Mariah Carey. Simple draw on the screen with your finger and sing a note. Instant riffs and trills just like the great divas of the 80's, 90's, and 00's!
  
==Hardware Tools==
+
But the amazing, unexpected outcome of creating Mariah was a really interesting feedback instrument. Mariah takes in audio, pitch shifts it, and plays it What you end up with at low levels of sounds is a "self-generating" feedback instrument that creates some really crazy effects.
In our [http://ccrma.stanford.edu/courses/250a/ courses], we use a prototyping kit based on Atmel AVR microcontrollers, with Pascal Stang's [http://hubbard.engr.scu.edu/embedded/avr/boards/index.html#avrminiv40 AVRmini] at the core. To the AVRmini, we attach an I2C LCD display, solderless breadboard strips, a loudspeaker and sometimes a MIDI jack. In student lab exercises and for prototyping, we hook up sensor circuits on the breadboard and send control signals to a Linux PC over USB, serial, MIDI or Ethernet in order to control open source real-time sound synthesis and processing software. These prototypes are then often built into larger-scale music and interactive sound art projects like the ones below that we will demonstrate at the Maker Faire.
+
  
[[Image:Avrboard.jpg]]
+
[[File:2015-02-10_11.58.33.png|500px]]
  
==WaveSaw==
+
==Hill==
Most commercial electronic instruments limit the control of sound to one-dimensional controls, such as knobs or faders, whose settings are mapped through various levels of abstraction to create a resulting waveform or timbre. The WaveSaw is inspired by a desire to control sound in a direct and physical way. We want to touch a sound, to manipulate it with our hands as if it is a physical object. The WaveSaw is an instrument whose physical shape is mapped directly to the shape of a waveform or spectrum, and by changing the shape of the instrument we change the sound.
+
Mathew Horton
  
[[Image:WaveSaw.jpg]]
+
Hill is a software application for musical and visual accompaniment of spoken word poetry. It is inspired by the minimalist video game, Mountain, as well as Lauren Zuniga's poem, "World's Tallest Hill". Hill builds a scene through which the text of a poem can move. The view of the scene can shift, and depending on the particular place at which the scene is viewed, the accompanying audio is transformed in different ways. Hill allows users to "compose" an accompaniment for a poem by adhering to a sort of "score."
  
The WaveSaw is made of a long, flat, saw-like strip of flexible metal with wooden handles on each end with which the user can bend, twist, and rotate the instrument. The shape of the blade is measured by flex sensors along its length. The flex sensor values are sent via a microcontroller to a computer, where a custom Puredata (Pd) object recreates the lengthwise shape of the saw blade as a table. This table is then used as the basis of either scanned synthesis or spectral filtering. In the case of scanned synthesis, the table is used as a wavetable that is scanned at audio rates to generate a pitched tone whose waveform, and hence spectrum, varies with the shape of the saw blade. Similarly, the table can be used as the spectral shape of a multi-band filter through which any signal can be passed. Additionally, the WaveSaw has flex sensors oriented width-wise on the saw that are used to measure the amount of twist applied to the blade, an accelerometer for sensing orientation in space, and a pressure sensitive resistor on one handle to measure how hard the handle is squeezed.
+
[[File:Hill.png|500px]]
  
==Myrtle==
 
 
Myrtle is a music controller that communicates with a computer via OSC (Open Sound Control, an open-ended machine communication protocol) and MIDI simultaneously. The interface is primarily designed for controlling the pitch, amplitude envelope, and rhythm of three sound sources in real-time. Designed in conjunction with the Pd environment, Myrtle currently controls a bank of FM synthesizers via OSC, and can transmit 12 different user selectable MIDI notes via a standard MIDI out port. These notes are triggered real-time using a fader.
 
  
[[Image:Myrtle_whiteback_s.jpg]]
+
==Tower of Power==
 +
Graham Davis, Connor Kelley
  
Myrtle was designed to be used in a live-performance environment, played solo or as part of an ensemble. Instead of an "all-in-one" design, the functions of Myrtle are fairly specific, giving it a unique sound and feel. However, since it is only a controller and not a stand-alone instrument, it can be mapped to any number of different sounds or devices, limited only by the numerical data it puts out. The typical usage of the controller is with the left hand controlling pitch via the foam strips (see below), and the right hand manipulating the various controls on the right side. There are many ways to use the controller differently than this, however. The goal was to create a new and unique tool for musical expression, and integrated into that goal was the idea that Myrtle would have the ability to control audio synthesis in complicated ways, using an intuitive and easy-to-use design. The combination of 3 different controls - a fader, optical sensors, and a series of buttons, used in conjunction with one another , were all integral in achieving this goal.
+
Tower of Power (ToP for short) is an interactive tower of wood that generates sound and sweet LED's. Inspired by the Hunchback of Notre Dame and 1970s funk, ToP is the auditory column for our generation. Tact is a project designed to make sound design and beat construction more intuitive. The instrument is a glove mounted with contact microphones that allows the wearer to record, transform and perform natural sounds at the touch of a finger. A wireless iPad interface provides the wearer with sound-shaping controls, playback effects and glove feedback. Amplify your interaction with the world via tactile sampling and contact playback with Tact. String is controller used to generate waveforms, curves, and envelopes using a camera, coloured string, and Max/MSP. Users draw curves representing objects such as a filter envelope using coloured string. The coloured curve is then captured by a camera and deciphered into a digital curve to be rendered out to audio by Max/MSP.
  
[[Image:Myrtle_strips.jpg]]
+
[[File:Tower_of_power.png|500px]]
 +
[[File:Tower_of_power2.png|500px]]
  
Please see the detailed Myrtle project page here: [http://ccrma.stanford.edu/~breeder/projects/myrtle/myrtle.html http://ccrma.stanford.edu/~breeder/projects/myrtle/myrtle.html]
+
==Sonic Anxiety==
 +
Victoria Grace, Joel Chapman
  
[[Image:Myrtle_controls.jpg]]
+
Sonic Anxiety is an ironic twist on performance anxiety, where the performance is the sound of my anxiety while locked in a cage. Sensors track my breathing to control the harmony and timbre while my pulse sets the pace and drum rhythms of the piece.
  
==Trees of Pythagoras==
 
The Trees of Pythagoras is an acoustic, electromagnetically-actuated, computer-controlled, long-stringed instrument, with the important distinction of being a single instrument composed of three, physically separate parts. Each piece is, in essence, constructed like a square, extra-large member of the violin family. Each piece consists of a large soundbox connected to a long steel string about ten feet long. Each piece sounds acoustically with a wide dynamic range, but only one unit is intended to be played by a musician. The other two pieces are actuated using electromagnets, which are controlled through a Max/MSP patch. Additionally, all three pieces have piezo-electric transducers which feeds the sound of each unit back to the computer. The Trees of Pythagoras is a concert instrument intended for live performance.
 
  
[[Image:Trees_1.jpg]]
+
[[File:Cage.png|500px]]
  
The three soundboxes are all similar in construction to a member of the violin family. They are constructed using a variety of plywoods, eliminating differences in wood stiffness due to grain direction, thus allowing for the square shape. Different thicknesses and sometimes different cuts of plywood are used for the top and back plates allowing for two different sets of plate resonances. Each has an internal architecture with a soundpost and bass bar. Each unit uses a standard contrabass bridge. An important difference to the violin family, is that the top and back plates of these soundboxes are considerably more flexible allowing for greater coupling with the internal air column resonance. Steel signpost bar is employed as a suitable neck and standard 18 gauge steel wire from the local hardware store is used as a string. The string is freestanding, not unlike an Erhu, and connects to the steel bar at the bottom, lays over the bridge, and is attached at the top of the unit to a tuning peg inserted directly into the steel bar.
+
==lovelyStepSequencer==
 +
Micah Arvey
  
[[Image:Trees_elect.jpg]]
+
3 dimensional step sequencer.
  
Two of the three units are actuated using an electromagnet assembly. This assembly is then powered using a standard audio amplifier. I acquired fairly powerful electromagnets which have resistances of around 4 ohms at 0 Hz, like many small speakers. For this instrument, the priority was force. I needed to be able to create large, low-frequency waves on the steel strings at a respectable amplitude. Because I am interested in complex sounds, issues concerning distortion are not important. After much research and experimentation, I created an assembly using two electromagnets, facing each other on either side of the steel string. Using ideas developed by Edgar Berdahl and Steven Backer (see
+
[[File:BSsWorking.png|500px]]
[http://ccrma.stanford.edu/~sbacker/empp/berdahl_backer.pdf  http://ccrma.stanford.edu/~sbacker/empp/berdahl_backer.pdf]), I added two rare-earth magnets on either side of each electromagnet which intensifies the magnetic field. A stereo
+
audio amplifier is then used to feed the same signal to both electromagnets with the polarity reversed for one so that while one magnet is pushing the other is pulling. This design provides ample force while still being powered by a small wattage amplifier. With too much power, the electromagnets will overheat. To provide additional assistance with this, each
+
electromagnet is attached to a heat sink. For all three units, I constructed a basic piezo-electric transducer using piezo discs and an op-amp based impedance buffer as a pre-amplifier.
+
  
[[Image:Trees_magnets.jpg]]
+
==Velokeys==
 +
Austin Whittier
  
==Accordiatron==
+
Velokeys is a velocity-sensitive QWERTY keyboard for desktop jamming. Millions of people spend every day training their brains with a QWERTY key layout – at work, at school, and at home. This project is meant to meld the expressivity
  
The Accordiatron is a new MIDI controller for real-time performance based on the paradigm of a conventional squeeze box or concertina. It translates the gestures of a performer to the standard communication protocol of MIDI, allowing for flexible mappings of performance data to sonic parameters. When used in conjunction with a real-time signal processing environment, the Accordiatron becomes an expressive, versatile musical instrument. A combination of sensory outputs providing both discrete and continuous data gives the subtle expressiveness and control necessary for interactive music.
+
[[File:Qwerty.png|500px]]
  
[[Image:Atron_1.jpg]]
 
  
The Accordiatron detects the rotation and distance between the hands, the latter by means of a potentiometer embedded in the scissor linkage that connects the two end panels. Buttons on either end panel can be used for triggering notes, samples, or any other discrete input. The Accordiatron is based on the premise building a new interface to capture what are known to be expressive performance gestures, but divorcing those gestures from a particular sound source. The Accordiatron is gathering a growing repertoire of compositions using a variety of mappings.
+
== Busk Box ==
 +
Sasha Leitman
  
[[Image:Atron_3.jpg]]
 
  
[http://ccrma.stanford.edu/~gurevich/accordiatron/ http://ccrma.stanford.edu/~gurevich/accordiatron/]
+
The Busk Box is a street performance system that combines the traditions of wandering street performers and musicians with the modern technologies. Inside of a 1911 wooden trunk, 2 6" speakers, 1 10" subwoofer, 2 class-T amplifiers and a portable mixer are all powered by lithium-ion batteries. In addition, the box is supported by folding wheels and legs which enable the box to be set up and torn down in less than 3 minutes. This platform was designed to bring experimental and electronic music to the San Francisco Fisherman's Wharf district.
  
  
[[Category:PID]]
+
[[Image:BuskBox.jpg|400px]]

Latest revision as of 23:40, 4 May 2016

Granuleggs.jpg


Introduction

The Center for Computer Research in Music and Acoustics (CCRMA -- pronounced "karma") is an interdisciplinary center at Stanford University dedicated to artistic and technical innovation at the intersection of music and technology. We are a place where musicians, engineers, computer scientists, designers, and researchers in HCI and psychology get together to develop technologies and make art. In recent years, the question of how we interact physically with electronic music technologies has fostered a growing new area of research that we call Physical Interaction Design for Music. We emphasize practice-based research, using DIY physical prototying with low-cost and open source tools to develop new ways of making and interacting with sound. At the Maker Faire, we will demonstrate the low-cost hardware prototyping kits and our customized open source Linux software distribution that we use to develop new sonic interactions, as well as some exciting projects that have been developed using these tools. Below you will find photos and descriptions of the projects and tools we will demonstrate.



The Blade Axe

Romain Michon

The BladeAxe is an iPad-based musical instrument leveraging the concepts of “augmented mobile device” and “hybrid physical model controller.” By being almost fully standalone, it can be used easily on stage in the frame of a live performance by simply plugging it to a traditional guitar amplifier or to any sound system. Its acoustical plucking system provides the performer with an extended expressive potential compared to a standard controller

BladeAx2016.jpg


Granuleggs

Alison Rush, David Grunzweig, and Trijeet Mukhopadhyay

The Granuleggs is a new music controller for granular synthesis which allows a musician to explore the textural potential of their samples in a unique and intuitive way, with a focus on creating large textures instead of distinct notes. Each controller is egg shaped, designed to fit the curve of your palm as you gyrate the eggs and tease your fingers to find yourself the perfect soundscape.

Granuleggs.jpg


BelugaBeats

Jack Atherton

BelugaBeats is a whale-based step sequencer. You can add whales to 8 rows of a grid, and when a wave washes over them, they will sound their blowholes and play their notes. Changing a whale's size alters the pitch it sings. Occasionally, a whale will get distracted by a fish and play its note while underwater. Unfortunately, there is nothing you can do about this.

Belugabeats.png

Chorest

Jack Atherton

Welcome to your personal Chorest! Walk around, plant seeds, grow trees, and hear the wind in the air! Look down from a bird's eye view, or move through the trees on the chorest floor. When you breathe on your trees, they'll play a chord for you. Or, try singing to them! Trees need a noisy sound to grow -- try stroking your microphone! As you grow your trees, their sound will mature. Don’t forget, it’s always possible to plant new seeds and start anew. Occasionally, you may see a ghost from the past. Please, do not be alarmed.

Chorest.png


Leap the Dips

Jack Atherton

This rolling ball sculpture invites participants to test their skill at "leaping the dips" on a copper model of the world's oldest operating roller coaster. The project's aesthetic draws from a practice certainly much older than the roller coaster -- teenage rebellion, and the ensuing adult panic over the activities of "kids these days." Marbles roll over tracks and supports that are fashioned out of soldered copper wire. The tracks feature dips that cause the marbles to lift off the track and crash back down, as was possible in early roller coasters without up-stop wheels on the underside of the track. Take care in the placement of your marble not to cause the marbles to completely fly off the track! The dips are fitted with sensors that drive an algorithm in Max/MSP for giving aural feedback and a cultural experience to the users.

LeapTheDipsPicture.jpg

Music Maker

Sasha Leitman, John Granzow

Music Maker (https://ccrma.stanford.edu/musicmaker) is a free online resource that provides files for 3D printing woodwind and brass mouthpieces and tutorials for using those mouthpieces to learn about acoustics and music. The mouthpieces are designed to fit into standard plumbing and automobile parts that can be easily purchased at home improvement and automotive stores. The goal is to make a musical tool that can be used as simply as a set of building blocks but that aims to bridge the gap between our increasingly digital world of fabrication and the real-world materials that make up our daily lives. An increasing number of schools, libraries and community groups are purchasing 3D printers but many are still struggling to create engaging and relevant curriculum that ties into academic subjects. Making new musical instruments is a fantastic way to learn about acoustics, physics and mathematics.


P1000118.jpg TrumpetWithBell.jpg


Cetacant

Alison Rush

The cetacant is a musical instrument inspired by whales and designed to accompany a performance of Vela 6911, a piece by Victor Gama. The cetacant emulates features of the cetacean vocal apparatus, using tubes and chambers full of air, water, and oil to produce and amplify sounds. The attached photo is of a prototype; the instrument's final form will resemble a suspended sphere, evoking the bubbles produced by a vocalizing whale, or our watery planet as seen from space.

Cetacant-diagram1.jpg


Mephisto

Romain Michon

Mephisto is a small battery powered open source Arduino based device. Up to five sensors can be connected to it using simple 1/8" stereo audio jacks. The output of each sensor is digitized and converted to OSC messages that can be streamed on a WIFI network to control any Faust generated app. The goal of Mephisto is to provide an easy way for musicians to interact with the different parameters of a Faust object or any other OSC compatible software during a live performance. As a "DIY" open source project, Mephisto only uses open source hardware (Arduino, etc.) and was designed to be easily built by anyone.


Mephisto1.jpg Mephisto2.jpg


Hearing Polyphony - A Game and Experiment!

Madeline Huberth

I work in the Neuromusic lab at CCRMA, whose goal on the whole is to investigate phenomena related to understanding music. Specifically, I've been doing work this past year in how our brain processes polyphony (hearing multiple melodies at once), and will present a game I created that uses the stimuli used in our experiment as a way of understanding the experiment. The experiment and our findings will also be on a poster that I can bring.

Our experiment shows that your brain can detect changes in polyphonic patterns automatically - how easy is it for you to do it consciously? Play and find out!


Romain cap.png


CollideFx

Chet Gnegy

CollideFx is a real-time audio effects processor that integrates the physics of real objects into the parameter space of the signal chain. Much like in a traditional signal chain, a user can choose a series of effects and offer realtime control to their various parameters. In this work, we introduce a means of creating tree-like signal graphs that dynamically change their routing in response to position changes of the unit generators. The unit generators are easily controllable using the click and drag interface and respond using familiar physics, including conservation of linear and angular momentum and friction. With little difficulty, users can design interesting effects, or alternatively, can fling a unit generator into a cluster of several others to obtain more surprising results, letting the physics engine do the decision making.

Chet.png


The Processed Typewriter

Andrew Watts

Other than the human voice, musical instruments convey primarily abstraction through sound content. We interpret these sounds as music to varying degrees, but if one were to step away from the cultural associations, the noise would remain highly ambiguous. With a typewriter the sounds inherent in the machine's use also contain linguistic meaning. Having this added layer to work with, a composer could pair the text and the sounds in a multitude of ways, even utilizing the ambiguity of semantic meaning with the ill-defined meaning of typewriter sounds. For this project I am specifically thinking towards a performance in the late spring during a residency with famed soprano Tony Arnold. Rather than a typical accompaniment for a solo soprano piece, like as a piano, it would be much more interesting and musically fertile to have her singing lyrics which are actively being typed in the background. Not only is the text being transformed into sound through the vocal line, but also the hammering away of the typewriter. Furthermore, these sounds and the images of the text appearing on the page would be processed, enabling a wide range of articulations, imagery, references, and audio sculpting.

Typewriter1.jpg Typewriter2.png


String

Joshua Coronado

String is controller used to generate waveforms, curves, and envelopes using a camera, coloured string, and Max/MSP. Users draw curves representing objects such as a filter envelope using coloured string. The coloured curve is then captured by a camera and deciphered into a digital curve to be rendered out to audio by Max/MSP.

Strings.JPG Strings 2.JPG

Tibetan Singing Prayer Wheel

Yoo-yoo Yeh

Inspired by the traditional Tibetan prayer wheel and Tibetan singing bowl, we present the Tibetan Singing Prayer Wheel, a physical motion sensing controller that allows you to play virtual Tibetan singing bowls as well as processes your voice when you perform several gestures - spinning the wheel at different speeds, raising and lowering your arm, and tapping a button on the outside. A separate RF transmitter allows you to transition between the three distinct sound design layers: (1) a Faust-STK physical model of a Tibetan singing bowl, (2) a delayed and windowed voice processing layer, and (3) a novel modal reverb model of an actual Tibetan singing bowl, that takes the voice as input. The system is designed to be easy for anyone to pick up and improvise with - go ahead and try it!

NIME System Architecture v2.png

Mariah

Mathew Horton

Mariah sonifies the "diva finger wave." Mariah is a letter of love to women like Whitney Houston, Christina Aguilera, and its namesake, Mariah Carey. Simple draw on the screen with your finger and sing a note. Instant riffs and trills just like the great divas of the 80's, 90's, and 00's!

But the amazing, unexpected outcome of creating Mariah was a really interesting feedback instrument. Mariah takes in audio, pitch shifts it, and plays it What you end up with at low levels of sounds is a "self-generating" feedback instrument that creates some really crazy effects.

2015-02-10 11.58.33.png

Hill

Mathew Horton

Hill is a software application for musical and visual accompaniment of spoken word poetry. It is inspired by the minimalist video game, Mountain, as well as Lauren Zuniga's poem, "World's Tallest Hill". Hill builds a scene through which the text of a poem can move. The view of the scene can shift, and depending on the particular place at which the scene is viewed, the accompanying audio is transformed in different ways. Hill allows users to "compose" an accompaniment for a poem by adhering to a sort of "score."

Hill.png


Tower of Power

Graham Davis, Connor Kelley

Tower of Power (ToP for short) is an interactive tower of wood that generates sound and sweet LED's. Inspired by the Hunchback of Notre Dame and 1970s funk, ToP is the auditory column for our generation. Tact is a project designed to make sound design and beat construction more intuitive. The instrument is a glove mounted with contact microphones that allows the wearer to record, transform and perform natural sounds at the touch of a finger. A wireless iPad interface provides the wearer with sound-shaping controls, playback effects and glove feedback. Amplify your interaction with the world via tactile sampling and contact playback with Tact. String is controller used to generate waveforms, curves, and envelopes using a camera, coloured string, and Max/MSP. Users draw curves representing objects such as a filter envelope using coloured string. The coloured curve is then captured by a camera and deciphered into a digital curve to be rendered out to audio by Max/MSP.

Tower of power.png Tower of power2.png

Sonic Anxiety

Victoria Grace, Joel Chapman

Sonic Anxiety is an ironic twist on performance anxiety, where the performance is the sound of my anxiety while locked in a cage. Sensors track my breathing to control the harmony and timbre while my pulse sets the pace and drum rhythms of the piece.


Cage.png

lovelyStepSequencer

Micah Arvey

3 dimensional step sequencer.

500px

Velokeys

Austin Whittier

Velokeys is a velocity-sensitive QWERTY keyboard for desktop jamming. Millions of people spend every day training their brains with a QWERTY key layout – at work, at school, and at home. This project is meant to meld the expressivity

Qwerty.png


Busk Box

Sasha Leitman


The Busk Box is a street performance system that combines the traditions of wandering street performers and musicians with the modern technologies. Inside of a 1911 wooden trunk, 2 6" speakers, 1 10" subwoofer, 2 class-T amplifiers and a portable mixer are all powered by lithium-ion batteries. In addition, the box is supported by folding wheels and legs which enable the box to be set up and torn down in less than 3 minutes. This platform was designed to bring experimental and electronic music to the San Francisco Fisherman's Wharf district.


BuskBox.jpg