MIR workshop 2009

From CCRMA Wiki

(Difference between revisions)
Jump to: navigation, search
m (Lectures & Labs 2009)
(PLEASE SEE THE LATEST VERSION OF THE CCRMA MIR Workshop: http://cm-wiki.stanford.edu/wiki/MIR_workshop_2010)
 
(36 intermediate revisions not shown)
Line 1: Line 1:
= Intelligent Audio Systems: Foundations and Applications of Music Information Retrieval =
= Intelligent Audio Systems: Foundations and Applications of Music Information Retrieval =
-
== logistics ==
+
== Logistics ==
Workshop Title: '''"Intelligent Audio Systems: Foundations and Applications of Music Information Retrieval"
Workshop Title: '''"Intelligent Audio Systems: Foundations and Applications of Music Information Retrieval"
'''
'''
* 9-5 PM.  June 29-July 3 2009
* 9-5 PM.  June 29-July 3 2009
* Instructors: [http://www.imagine-research.com/ Jay LeBoeuf] and [http://ccrma.stanford.edu/~kglee Kyogu Lee]
* Instructors: [http://www.imagine-research.com/ Jay LeBoeuf] and [http://ccrma.stanford.edu/~kglee Kyogu Lee]
 +
* Participants: [https://cm-wiki.stanford.edu/wiki/MIR_workshop_2009/Participants Networking Information]
 +
 +
== PLEASE SEE THE LATEST (2010) VERSION OF THE CCRMA MIR Workshop: http://cm-wiki.stanford.edu/wiki/MIR_workshop_2010 ==
== Abstract ==  
== Abstract ==  
Line 104: Line 107:
* Features: ZCR, Spectral moments              -K
* Features: ZCR, Spectral moments              -K
* Classification: Using simple heuristics and thresholds -J
* Classification: Using simple heuristics and thresholds -J
 +
* [http://ccrma.stanford.edu/workshops/mir2009/CCRMA_MIR_2009_Lecture_1.pdf Jay's Lecture 1 Slides]
 +
* [http://ccrma.stanford.edu/workshops/mir2009/juans_lecture/2_fft.pdf Fundamentals of Digital Audio Signal Processing (lecture slides from Juan Bello)]
<br><u>Lab 1</u>
<br><u>Lab 1</u>
Line 110: Line 115:
** [http://ccrma.stanford.edu/workshops/mir2009/wavfiles.tar download sound samples: wavfiles.tar]
** [http://ccrma.stanford.edu/workshops/mir2009/wavfiles.tar download sound samples: wavfiles.tar]
* Background for students needing a refresher:
* Background for students needing a refresher:
-
** [http://ccrma.stanford.edu/workshops/mir2009/Lab0/lab0.html Fundamentals of Matlab ]
+
** [http://ccrma.stanford.edu/workshops/mir2009/Lab0/lab0.html Fundamentals of Matlab]
** [http://ccrma.stanford.edu/workshops/mir2009/Lab1/lab1.html Fundamentals of Digital Audio Signal Processing (FFT, STFT, Windowing, Zero-padding, 2-D Time-frequency representation)]
** [http://ccrma.stanford.edu/workshops/mir2009/Lab1/lab1.html Fundamentals of Digital Audio Signal Processing (FFT, STFT, Windowing, Zero-padding, 2-D Time-frequency representation)]
 +
* Onset detection
* Onset detection
** [http://ccrma.stanford.edu/workshops/mir2009/Lab1/CATbox_v0.zip download CATbox (Computer Audition Toolbox): CATbox_v0.zip]
** [http://ccrma.stanford.edu/workshops/mir2009/Lab1/CATbox_v0.zip download CATbox (Computer Audition Toolbox): CATbox_v0.zip]
Line 126: Line 132:
** Post-Processing, Peak-Picking
** Post-Processing, Peak-Picking
** Tempo estimation, beat tracking
** Tempo estimation, beat tracking
 +
* [http://ccrma.stanford.edu/workshops/mir2009/CCRMA_MIR_2009_Lecture_2.pdf Jay's Lecture 2 Slides]
 +
** [http://ccrma.stanford.edu/workshops/mir2009/juans_lecture/4_rhythm.pdf Temporal Analysis (lecture slides from Juan Bello)]
* Features: Additional spectral features (Spread, Flatness)  -J
* Features: Additional spectral features (Spread, Flatness)  -J
-
* Scaling of feature data                                   -J
+
** [http://ccrma.stanford.edu/workshops/mir2009/juans_lecture/3_feature.pdf Spectral Features (lecture slides from Juan Bello)]
 +
* Scaling of feature data   -J
* Classification: Instance-based classifiers (such as k-NN and distance metrics)  -J
* Classification: Instance-based classifiers (such as k-NN and distance metrics)  -J
<br><u>Lab 2</u>
<br><u>Lab 2</u>
* [http://ccrma.stanford.edu/workshops/mir2009/Lab2/labrosa-coversongid.tgz download Dan Ellis' coversong id toolbox: coversongs]
* [http://ccrma.stanford.edu/workshops/mir2009/Lab2/labrosa-coversongid.tgz download Dan Ellis' coversong id toolbox: coversongs]
 +
* [http://ccrma.stanford.edu/workshops/mir2009/wav/04_rock_and_roll_music.wav download an audio file]
 +
* [http://ccrma.stanford.edu/workshops/mir2009/Lab2/post_proc.m post processing]
 +
* [http://ccrma.stanford.edu/workshops/mir2009/Lab2/adpthresholding.m adaptive thresholding]
* [http://ccrma.stanford.edu/workshops/mir2009/Lab2/lab2_1.m Tempo estimation, beat tracking]
* [http://ccrma.stanford.edu/workshops/mir2009/Lab2/lab2_1.m Tempo estimation, beat tracking]
* [http://ccrma.stanford.edu/workshops/mir2009/Lab2/lab2_2.m Extract new features]  
* [http://ccrma.stanford.edu/workshops/mir2009/Lab2/lab2_2.m Extract new features]  
Line 138: Line 150:
<br><u>Day 3 - Harmony: Key, Chord Estimation</u>
<br><u>Day 3 - Harmony: Key, Chord Estimation</u>
-
* Features: Timbral features; Octave-bands  -J
+
* Features: Temporal features; Octave-bands  -J
-
* Features: Spectral Envelopes, MFCCs) -J
+
* Features: Spectral Envelopes, MFCCs  -J
* Classification: Unsupervised classification (k-means)  -J
* Classification: Unsupervised classification (k-means)  -J
* Chroma Representation                      -K
* Chroma Representation                      -K
* Key-Profile and Key Estimation            -K
* Key-Profile and Key Estimation            -K
* Chord Recognition                          -K
* Chord Recognition                          -K
 +
 +
* [http://ccrma.stanford.edu/workshops/mir2009/CCRMA_MIR_2009_Lecture_3.pdf Jay's Lecture 3 Slides]
 +
* [http://ccrma.stanford.edu/workshops/mir2009/juans_lecture/6_harmony.pdf Harmony Analysis (lecture slides from Juan Bello)]
 +
* [http://ccrma.stanford.edu/workshops/mir2009/references/klee-ieee-taslp08-print.pdf Chord recognition using HMMs (Kyogu Lee)]
 +
* [http://ccrma.stanford.edu/workshops/mir2009/references/klee-lncs08.pdf Genre-specific chord recognition using HMMs (Kyogu Lee)]
<br><u>Lab 3</u>
<br><u>Lab 3</u>
-
* [http://ccrma.stanford.edu/~kglee/kaist_summer2008_special_lecture/lab/lab4/lab4.html Key estimation, chord recognition]
+
* [http://ccrma.stanford.edu/workshops/mir2009/Lab3/lab3.tgz download lab3.tgz]
 +
* [http://ccrma.stanford.edu/workshops/mir2009/Lab3/lab3.html Key estimation, chord recognition]
* [http://ccrma.stanford.edu/workshops/mir2009/Lab%203%20-%20Cluster%20Lab.pdf Clustering lab with MFCCs]
* [http://ccrma.stanford.edu/workshops/mir2009/Lab%203%20-%20Cluster%20Lab.pdf Clustering lab with MFCCs]
<br><u>Day 4</u>
<br><u>Day 4</u>
-
*Structural Analysis 1 -K
+
*Structural Analysis  -K
** Similarity Matrix
** Similarity Matrix
** Novelty Score
** Novelty Score
** Music Segmentation
** Music Segmentation
 +
* [http://ccrma.stanford.edu/workshops/mir2009/CCRMA_MIR_2009_Lecture_4.pdf Jay's Lecture 4 Slides]
 +
* [http://ccrma.stanford.edu/workshops/mir2009/juans_lecture/7_segmentation.pdf Structural Analysis (lecture slides from Juan Bello)]
 +
* [http://ccrma.stanford.edu/workshops/mir2009/references/Foote_00.pdf Automatic Audio Segmentation (Jonathan Foote)]
* New Classifier: GMM  -J
* New Classifier: GMM  -J
* Classification examples:  -J
* Classification examples:  -J
-
** Genre Classification
 
-
** Instrument Identification
 
** Speech/Music Discrimination
** Speech/Music Discrimination
 +
** Genre Classification
<br><u>Lab 4</u>
<br><u>Lab 4</u>
-
* [http://ccrma.stanford.edu/~kglee/kaist_summer2008_special_lecture/lab/lab4/lab4.html Structural analysis]
+
* [http://ccrma.stanford.edu/workshops/mir2009/Lab4/lab4.html Structural analysis]
-
* [http://ccrma.stanford.edu/workshops/mir2009/Lab%206%20-%20Gaussian%20Mixture%20Models.pdf GMM Lab]
+
* [http://ccrma.stanford.edu/workshops/mir2009/Lab%204%20-%20Gaussian%20Mixture%20Models.pdf GMM Lab]
<br><u>Day 5</u>
<br><u>Day 5</u>
* Building and evaluating systems - assembling testing and training sets - J
* Building and evaluating systems - assembling testing and training sets - J
* IR Methodologies (Cross-validation, training and test sets)            - K/J
* IR Methodologies (Cross-validation, training and test sets)            - K/J
-
* Classification: SVM                                              -J
+
* Classification: SVM
-
* IR Evaluation Metrics (precision, recall, f-measure, AROC,...)  -K  
+
* [http://ccrma.stanford.edu/workshops/mir2009/CCRMA_MIR_2009_Lecture_5.pdf Jay's Lecture 5 Slides]
 +
** [http://ccrma.stanford.edu/workshops/mir2009/juans_lecture/8_classification.pdf More classification (lecture slides from Juan Bello)]                                             -J
 +
* IR Evaluation Metrics (precision, recall, f-measure, AROC,...)  -K
 +
** [http://ccrma.stanford.edu/workshops/mir2009/references/recall_precision.pdf Recall-Precision]
 +
** [http://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf ROC Analysis]
* Practical tips & tricks                -K/J  
* Practical tips & tricks                -K/J  
* Guest Lecture: [http://ccrma.stanford.edu/~gautham/Site/Gautham%20J.%20Mysore.html Gautham Mysore]
* Guest Lecture: [http://ccrma.stanford.edu/~gautham/Site/Gautham%20J.%20Mysore.html Gautham Mysore]
<br><u>Lab 5</u>
<br><u>Lab 5</u>
 +
* [http://ccrma.stanford.edu/workshops/mir2009/Lab5/lab5.tgz Data preprocessing using LDA]
 +
** [http://ccrma.stanford.edu/workshops/mir2009/Lab5/stprtool.zip Download Statistical Pattern Recognition Toolbox]
 +
** [http://ccrma.stanford.edu/workshops/mir2009/Lab5/stprtool.pdf Stprtool User's Guide]
* [http://ccrma.stanford.edu/workshops/mir2009/Lab%205%20-%20SVMs.pdf Building classifiers with SVMs]  
* [http://ccrma.stanford.edu/workshops/mir2009/Lab%205%20-%20SVMs.pdf Building classifiers with SVMs]  
-
* [http://ccrma.stanford.edu/workshops/mir2008/Lab%207%20-%20HMM%20%20Cross%20validation%20-%20Final%20Projects.pdf Cross Validation and Accuracy measures]
+
* [http://ccrma.stanford.edu/workshops/mir2009/Lab%205b%20Cross%20Validation%20Code.pdf Cross Validation and Accuracy measures]
* Your questions?
* Your questions?
Line 181: Line 208:
[http://cm-wiki.stanford.edu/wiki/MIR_workshop_2008_notes Explanations, tutorials, code demos, recommended papers here - for each topic....]
[http://cm-wiki.stanford.edu/wiki/MIR_workshop_2008_notes Explanations, tutorials, code demos, recommended papers here - for each topic....]
-
 
+
== MIR Workshop and lectures from 2008==  
-
== Jay's Lectures 2008==  
+
[http://cm-wiki.stanford.edu/wiki/MIR_workshop_2008 CCRMA MIR Summer Workshop 2008]
-
[http://cm-wiki.stanford.edu/wiki/MIR_workshop_2008_notes CCRMA MIR 2008 Workshop Wiki - complementary study notes for these lectures.]
+
-
 
+
-
[http://ccrma.stanford.edu/workshops/mir2008/Day1_CCRMA_MIR_workshop_2008.pdf Lecture 1 - Introduction and motivations for MIR.  Onset detection, zero crossing rate, and heuristic classification.]
+
-
 
+
-
[http://ccrma.stanford.edu/workshops/mir2008/Day2_CCRMA_MIR_workshop_2008.pdf Lecture 2 - k-NN, spectral moments, spectral features, octave bands, profiles, and scaling.]
+
-
 
+
-
[http://ccrma.stanford.edu/workshops/mir2008/Day3_CCRMA_MIR_workshop_2008.pdf Lecture 3 - Log spectrogram, chromagrams, key and chord estimation, discuss final projects.]
+
-
 
+
-
[http://ccrma.stanford.edu/workshops/mir2008/Day4_CCRMA_MIR_workshop_2008.pdf Lecture 4 - Sonifying feature data, temporal feature extractors, MFCCs, unsupervised classification, k-means clustering.]
+
-
 
+
-
[http://ccrma.stanford.edu/workshops/mir2008/Day5_CCRMA_MIR_workshop_2008.pdf Lecture 5 - Support Vector Machines: Binary, RBF parameters, grid search, practical information for designing SVM classifiers.]
+
-
 
+
-
[http://ccrma.stanford.edu/workshops/mir2008/Day6_CCRMA_MIR_workshop_2008.pdf Lecture 6 - One-class SVM, nu parameter, accuracy, cross-validation, evaluation metrics, assembling training and testing data, probabilistic clustering with GMMs, GMM parameters, distance measures between PDFs, Expectation-Maximization, Artist and Genre classification.]
+
-
 
+
-
[http://ccrma.stanford.edu/workshops/mir2008/Day8_CCRMA_MIR_workshop_2008.pdf Lecture 8 - Practical considerations for building classifiers, Hidden Markov Models.]
+
-
 
+
-
[http://ccrma.stanford.edu/workshops/mir2008/Day9_CCRMA_MIR_workshop_2008.pdf Lecture 9 - Code sharing resources, MPEG-7 feature extractors.]
+
-
 
+
-
[http://ccrma.stanford.edu/workshops/mir2008/Day10_CCRMA_MIR_workshop_2008.pdf Lecture 10 - Course summary, acknowledgments, resources for research.]
+
-
 
+
-
 
+
== References for additional info ==  
== References for additional info ==  
Line 245: Line 251:
http://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-i.html
http://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-i.html
-
[http://cm-wiki.stanford.edu/wiki/MIRToolbox_wishes MIRToolbox comments, wishes, wants]
+
[http://theremin.music.uiowa.edu/MIS.html Univ or Iowa Music Instrument Samples ]
== MATLAB Utility Scripts ==
== MATLAB Utility Scripts ==
Line 252: Line 258:
* [[Reading MP3 Files]]
* [[Reading MP3 Files]]
* [[Low-Pass Filter]]
* [[Low-Pass Filter]]
 +
* Steve Tjoa: [http://ccrma.stanford.edu/~kiemyang/software Matlab code] (updated July 9, 2009)
[[Category: Workshops]]
[[Category: Workshops]]
-
 
-
 
http://ccrma.stanford.edu/~kglee/kaist_summer2008_special_lecture/
http://ccrma.stanford.edu/~kglee/kaist_summer2008_special_lecture/

Current revision as of 09:36, 30 July 2010

Contents

Intelligent Audio Systems: Foundations and Applications of Music Information Retrieval

Logistics

Workshop Title: "Intelligent Audio Systems: Foundations and Applications of Music Information Retrieval"

PLEASE SEE THE LATEST (2010) VERSION OF THE CCRMA MIR Workshop: http://cm-wiki.stanford.edu/wiki/MIR_workshop_2010

Abstract

How would you "Google for audio", provide music recommendations based your MP3 files, or have a computer "listen" and understand what you are playing?

This workshop will teach the underlying ideas, approaches, technologies, and practical design of intelligent audio systems using Music Information Retrieval (MIR) algorithms.

MIR is a highly-interdisciplinary field bridging the domains of digital audio signal processing, pattern recognition, software system design, and machine learning. Simply put, MIR algorithms allow a computer to "listen" and "understand or make sense of" audio data, such as MP3s in a personal music collection, live streaming audio, or gigabytes of sound effects, in an effort to reduce the semantic gap between high-level musical information and low-level audio data. In the same way that listeners can recognize the characteristics of sound and music - tempo, key, chord progressions, genre, or song structure - MIR algorithms are capable of recognizing and extracting this information, enabling systems to perform extensive sorting, searching, music recommendation, metadata generation, transcription, and even aiding/generating real-time performance.

This workshop is intended for: students, researchers, and industry audio engineers who are unfamiliar with the field of Music Information Retrieval (MIR). We will demonstrate the myriad of exciting technologies enabled by the fusion of basic signal processing techniques with machine learning and pattern recognition. Lectures will cover topics such as low-level feature extraction, generation of higher-level features such as chord estimations, audio similarity clustering, search, and retrieval techniques, and design and evaluation of machine classification systems. The presentations will be applied, multimedia-rich, overview of the building blocks of modern MIR systems. Our goal is to make the understanding and application of highly-interdisciplinary technologies and complex algorithms approachable.

Knowledge of basic digital audio principles is required. Familiarity with Matlab is desired. Students are highly encouraged to bring their own audio source material for course labs and demonstrations.

Workshop structure: The workshop will consist of half-day lectures, half-day supervised lab sessions, demonstrations, and discussions. Labs will allow students to design basic ground-up "intelligent audio systems", leveraging existing MIR toolboxes, programming environments, and applications. Labs will include creation and evaluation of basic instrument recognition, transcription, and real-time audio analysis systems.

Workshop syllabus

  • Administration
    • Introductions
    • CCRMA Overview
  • Introduction to Capabilities and Applications of MIR
    • Why MIR?
    • Overview of potential research and commercial applications
    • Basic System Overview and Architecture

Timing and Segmentation

  • Frames and Windows
  • Onset Detection
  • Beat & Tempo Extraction

Feature Extraction

  • Low Level Features
    • Zero Crossing
    • Temporal centroid, Log Attack time, Attack slope
    • Spectral features (Centroid, Flux, RMS, Rolloff, Flatness, Kurtosis, Brightness)
    • Spectral bands
    • Log spectrogram
    • Chroma bins
    • MFCC
  • Higher-level features
    • Tempo/BPM
    • Key Estimation
    • Chord Estimation
    • Genre (genre, artist ID, similarity)

Analysis / Decision Making

  • Classification
    • Heuristic Analysis
    • k-NN
    • SVM
  • Clustering and probability density models
    • k-Means
    • Clustering
    • GMM

Model / Data Preparation Techniques

  • Data Preparation
    • Scaling data
  • Model organization
    • concept and design
    • Data set construction and organization

Evaluation Methodology

  • Feature selection
  • Cross Validation
  • Information Retrieval metrics (precision, recall, F-Measure)

Plus guest lectures/visits from academic experts and real-world folks.

software, libraries, examples

Applications & Environments

Machine Learning Libraries & Toolboxes

Optional Toolboxes

Lectures & Labs 2009


Day 1


Lab 1 Students who need a personal tutorial of Matlab or audio signal processing will split off and received small group assistance to bring them up to speed.

Audio slice manipulation with a simple feature.


Day 2


Lab 2


Day 3 - Harmony: Key, Chord Estimation

  • Features: Temporal features; Octave-bands -J
  • Features: Spectral Envelopes, MFCCs -J
  • Classification: Unsupervised classification (k-means) -J
  • Chroma Representation -K
  • Key-Profile and Key Estimation -K
  • Chord Recognition -K


Lab 3


Day 4

  • New Classifier: GMM -J
  • Classification examples: -J
    • Speech/Music Discrimination
    • Genre Classification


Lab 4


Day 5


Lab 5

Supplemental papers and information for the lectures...

Explanations, tutorials, code demos, recommended papers here - for each topic....

MIR Workshop and lectures from 2008

CCRMA MIR Summer Workshop 2008

References for additional info

Recommended books:

  • Data Mining: Practical Machine Learning Tools and Techniques, Second Edition by Ian H. Witten , Eibe Frank (includes software)
  • Netlab by Ian T. Nabney (includes software)
  • Signal Processing Methods for Music Transcription, Klapuri, A. and Davy, M. (Editors)
  • Computational Auditory Scene Analysis: Principles, Algorithms, and Applications, DeLiang Wang (Editor), Guy J. Brown (Editor)
  • Speech and Audio Signal Processing:Processing and perception of speech and music Ben Gold & Nelson Morgan, Wiley 2000

Prerequisite / background material:

Papers:

Other books (not necessary reviewed by the instructors yet):

  • Pattern Recognition and Machine Learning (Information Science and Statistics) by Christopher M. Bishop
  • Neural Networks for Pattern Recognition, Christopher M. Bishop, Oxford University Press, 1995.
  • Pattern Classification, 2nd edition, R Duda, P Hart and D Stork, Wiley Interscience, 2001.
  • "Artificial Intelligence: A Modern Approach" Second Edition, Russell R & Norvig P, Prentice Hall, 2003.
  • Machine Learning, Tom Mitchell, McGraw Hill, 1997.

Interesting Links:

Audio Source Material

OLPC Sound Sample Archive (8.5 GB) [1]

RWC Music Database (n DVDs) [available in Stanford Music library]

RWC - Sound Instruments Table of Contents

http://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-i.html

Univ or Iowa Music Instrument Samples

MATLAB Utility Scripts

http://ccrma.stanford.edu/~kglee/kaist_summer2008_special_lecture/

Personal tools