MIR workshop 2008

From CCRMA Wiki
Revision as of 09:51, 4 August 2008 by Jleboeuf (Talk | contribs) (Lectures)

Jump to: navigation, search

CCRMA Workshop: Music Information Retrieval


Workshop Title: "Intelligent Audio Systems: Foundations and Applications of Music Information Retrieval"


This workshop will teach the underlying ideas, approaches, technologies, and practical design of intelligent audio systems using Music Information Retrieval (MIR) algorithms.

MIR is a highly-interdisciplinary field bridging the domains of digital audio signal processing, pattern recognition, software system design, and machine learning. Simply put, MIR algorithms allow a computer to “listen” and “understand or make sense of” audio data, such as MP3s in a personal music collection, live streaming audio, or gigabytes of sound effects, in an effort to reduce the semantic gap between high-level musical information and low-level audio data. In the same way that listeners can recognize the characteristics of sound and music – tempo, key, chord progressions, genre, or song structure – MIR algorithms are capable of recognizing and extracting this information, enabling systems to perform extensive sorting, searching, music recommendation, metadata generation, transcription, and even aiding/generating real-time performance.

This workshop will target students, researchers, and industry audio engineers who are unfamiliar with the field of Music Information Retrieval (MIR). We will demonstrate the myriad of exciting technologies enabled by the fusion of basic signal processing techniques with machine learning and pattern recognition. Lectures will cover topics such as low-level feature extraction, generation of higher-level features such as onset timings and chord estimations, audio similarity clustering, search, and retrieval techniques, and design and evaluation of machine classification systems. The presentations will be applied, multimedia-rich, overview of the building blocks of modern MIR systems. Our goal is to make the understanding and application of highly-interdisciplinary technologies and complex algorithms approachable.

The workshop will consist of half-day lectures, half-day supervised lab sessions, classroom exercises, demonstrations, and discussions.

Labs will allow students to design basic ground-up "intelligent audio systems", leveraging existing MIR toolboxes, programming environments, and applications. Labs will include creation and evaluation of basic instrument recognition, transcription, and real-time audio analysis systems.

Knowledge of basic digital audio principles and familiarity with basic programming (Matlab, C/C++, and/or ChucK) will be useful. Students are highly encouraged to bring their own audio source material for course labs and demonstrations.

Workshop syllabus

  • Administration
    • Introductions
    • CCRMA Overview
    • Final Projects
  • Introduction to Capabilities and Applications of MIR
    • Why MIR?
    • Overview of potential research and commercial applications
    • Basic System Overview and Architecture
  • Survey of the field, real-world applications, MIR research, and challenges
    • Current commercial applications
    • Searching, Similarity, and Seed Query Systems
    • Recommendation and Playlisting systems
    • How stuff works: Select Commercial MIR projects
    • Academic MIR research projects
    • Music Transcription
    • Real-time machine listening and audio analysis

Timing and Segmentation

  • Frames and Windows
  • Onset Detection
  • Beat & Tempo Extraction

Feature Extraction

  • Low Level Features
    • Zero Crossing
    • Temporal centroid, Log Attack time, Attack slope)
    • Spectral features (Centroid, Flux, RMS, Rolloff, Flatness, Kurtosis, Brightness)
    • Spectral bands
    • Log spectrogram
    • Chroma bins
    • MFCC
    • MPEG-7
  • Higher-level features
    • Key Estimation
    • Chord Estimation
    • Genre (genre, artist ID, similarity)
    • "Fingerprints"

Analysis / Decision Making

  • Classification
    • Heuristic Analysis
    • Distance measures (Euclidean, Manhattan, etc.)
    • k-NN
    • SVM / One-class SVM
  • Clustering and probability density models
    • Density distance measures (centroid distance, EMD, KL-divergence, etc)
    • k-Means
    • Clustering
    • GMM
    • HMM
  • Nested classifier / Anchor-space / template-based systems

Model / Data Preparation Techniques

  • Data Preparation
    • PCA / LDA
    • Scaling data
  • Model organization
    • concept and design
    • Data set construction and organization
    • Walk through example: audio similarity retrieval
    • Walk through example: instrument/speaker/source identification

Evaluation Methodology

  • Feature selection
  • Cross Validation
  • Information Retrieval metrics (precision, recall, F-Measure)

Plus guest lectures/visits from academic experts and real-world folks.

software, libraries, examples

Applications & Environments