250a Accelerometer Lab

From CCRMA Wiki
Revision as of 16:06, 13 October 2009 by Lukedahl (Talk | contribs) (getting the iPod to talk to your computer via Open Sound Control)

Jump to: navigation, search

Lab 4: Accelerometers, Audio Filters, and (optionally) Multitouch
Due on Wednesday, October 21th at 5PM

For this lab you need an iPod Touch (loaners are available) or an iPhone running TouchOSC, and Max/MSP or Pd on a computer.

Get connected and get oriented

iPod Touches, like many newer portable electronic devices, have a 3-axis accelerometer in them, which allows designers to take into account both orientation of the device with respect to gravity as well as detecting physical gestures that are made with the phone.

For this lab, instead of writing our own iPod applications (the subject of an entire course), we will use an iPod app called TouchOSC to send accelerometer data from the iPod to max or pd, where we will process the data and make sound. TouchOSC is installed on the iPods available to use in this lab.

If you prefer to use your own iPod or iPhone, you are welcome to use one of the other apps which perform similar functions. Here is a review of some options: http://heuristicmusic.com/blog/?p=124.

getting the iPod to talk to your computer via Open Sound Control

  • Make sure your computer and iPod are on the same network.
  • Find out the name or IP address of your computer.
  • On the iPod start TouchOSC and press the small 'i' to get to preferences. Select 'Network' and set Host to the name of your computer (e.g. 'cmn37.stanford.edu' or 'mylaptop.local'.)
  • Set the outgoing port to 8000.
  • Open accel_osc.pd (INSERT LINK AND MAX PATCH HERE), and make sure that accelerometer messages from TouchOSC are being received in Pd/Max.
  • use printing to examine the incoming OSC messages.

getting oriented

  • Look at the acceleration values and graphs as you move the iPod around.
  • What are the units that acceleration is reported in?
  • Figure out the direction and orientation of each (x,y,z) accelerometer axis. How do you do this?
  • Draw a picture of the x,y, and z axes and their orientation as they relate to the iPod. (For lab submission you can include this picture or describe verbally what you discover.)

Naive Gesture Detection and Thresholding

Here's a way to make a simple gesture detector. One obvious difference between fast jerky movements and slow gradual movements is sudden jumps in the acceleration values. As discussed in lecture, jerk is the derivative of acceleration.

Since our accelermeter data is discrete in time (i.e. we get one value every some number of milliseconds), we can approximate derivation by taking the difference between successive values. (Technically, this is a "one-zero highpass filter.") You can use the included delta abstraction, which simply returns the difference between subsequent input values.

Start with accel+osc and connect a delta object to one or more acceleration values, pick a threshold that corresponds to a satisfying level of jerkiness, and use threshold (Pd) or past (max) to make a sound when you exceed the threshold. You can give the user additional control of the sound based on the direction and/or the magnitude of the jerk, if you like.

Congratulations, you have now written a jerk detector.

Audio Filtering

The purpose of this part of the lab is to get a sense for the effect of different kinds of filters, and to start thinking about (audio) signals as being comprised of frequency components. Don't worry, we'll come back to accelerometers later.

Open the pd patch

This patch allows you to select one of four input sources (white noise, a sine wave, a pair of sine waves, or a collection of oud samples) and pass the sound through one of seven possible filters:

  • No filtering
  • High pass filtering with Pd's (one-pole) hip~ object
  • High pass filtering with a "cascade" of four hip~ objects
  • Low pass filtering with Pd's (one-pole) lop~ object
  • Low pass filtering with a cascade of four lop~ objects
  • Band pass filtering with Pd's bp~ object
  • Band pass filtering with a cascade of Pd's bp~ objects


Play with this patch to get a feeling of the effect of different kinds of filters on different input sounds.

Start with the white noise source. (Be very careful with the output gain! White noise is extremely loud per unit of amplitude!) This is the best input for hearing the differences between different kinds of filters because it contains all frequencies. (It's called "white" noise by analogy to white light, which contains all frequencies, i.e., all colors of light.) Turn the master volume and/or your headphones way down, then select input source zero (white noise) and filter type zero (unfiltered). Beautiful, huh?

Now step through the other six filter types, playing with the parameters of each. Sweep the high-pass cutoff frequency. Sweep the cascaded high pass cutoff frequency and note that the four filters have "four times as much" effect on the sound as the single hip~ object. Ditto for the low pass objects. For the band pass, start with the default Q factor of 1 and sweep the center frequency. Then make the Q factor small and sweep the frequency again. Then make the Q factor large and sweep the frequency again. Now you know what these filters do.

Repeat all of the above on the single sine wave. Note that no matter what filtering you do, all you change is the gain (and phase) of the sine wave. (Geek moment: the reason is because all of these filters are "linear and time-invariant".) This is very important: filters don't add anything; they just change the balance of what's already there. Note that lowpass filtering reduces the volume of high frequency sine waves but has less effect on the volume of low frequency sine waves, etc.

Now try this on a pair of sine waves spaced pretty widely apart in frequency (for example, 100 Hz and 2000 Hz). Hear how the different filters affect the relative volumes of the two sine waves.

Finally, play some of the oud samples (via the same QWERTY keyboard triggering mechanism) through various filters. Experiment with transposition and how it interacts with filtering. In particular, transpose the samples down by a large amount and see how highpass cuts all the sound (as with a low-frequency sine wave), while lowpass emphasizes the "bassiness" of the sound.