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Summary Notes on the Mathematical Theory
of Finger Holes, as Applicable to Clarinets’

A. H. Benade, Case Institute of Technology, December 1960

An earlier paper on the properties of woodwinds (referred to here as paper A)? showed
that, as a consequence of the use of finger holes, the only musically useful bores are
members of the Bessel horn family in which the cross-sectional area S(x) of the bore varies
as some single positive power of the distance x from the reed end. Various other
considerations further limit the bores to two members of this family. The straight,
cylindrical bore of the clarinet group is a representative of one of these remaining bores, (e
= 0), while the conical bores used in oboes, saxophones, etc., belong to the remaining
possibility, (¢ = 2). The discussion in paper A was based on the assumption that opening a
series of side holes in the lower part of the bore is nearly equivalent to cutting off the tube at
a point near the position of the highest hole that is open. This assumption will be examined
in the present note (here we will confine our attention to the cylindrical-bore clarinet family),
which will discuss also, as an extension of certain remarks made in the earlier paper, the '
properties of a bore with many closed side holes. Methods will be given for the effective
lengths of pipes with many open side holes, and several questions of intonation will be
examined insofar as they relate to the nature of the side holes. This discussion will be
confined to the phenomena that occur in the lowest two registers of the clarinet, since the
acoustic behavior of a cross-fingered pipe and the action of the register key bring in some
subtleties having to do with the reed mechanism. These matters require a separate discussion
that is outside the scope of the present set of notes.

Pipes with many closed side holes

A woodwind instrument having all its finger holes closed constitutes a tapered
transmission line with side branches, and its characteristic impedancéaand wave velocity
depend upon the size and spacing of the holes along it. Because of the nature of our musical
scale, the spacing of these side branches is not uniform along the pipe, the distance between
a given hole and its nearest neighbors being about 6% of the length of the bore from the reed
to that particular hole.

Elementary consideration of the closed holes in paper A showed the existence of a
necessary relation between the interhole spacing 2s and the hole diameter 2b, for a bore of
diameter 2a having a wall thickness . This matter will now be looked at more rigorously,
since this type of bore forms the basis for all later analysis. Assume for the moment that we
are dealing with a uniform bore with holes of uniform spacing and size, so that standard
transmission-line theory can be applied in an obvious way. If we are interested in sounds
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whose wavelength is very long compared with the interhole spacing and wall thickness, we
find that the characteristic impedance and the wave velocity are given by the following
expressions: i

Z, = (pc/na®(1 + D)
v, =c(l + D)'?

where

D, = (1/2)(bjay’(t/s)

It 1s worth noting that due to the symmetry of the cosine and the antisymmetry of the tangent
functions, these approximations are good to the 3rd order in (ws/c) and wt/c).*

Transmission-line theory in its simplest form is applicable to lines in which both
propagation velocity and characteristic impedance remain constant along the line, so that the
foregoing result proves the applicability of such theory to clarinet bores, since their normal-
mode frequency ratios also require constant velocity and impedance throughout. In order to
achieve this with a cylindrical bore, the parameter D, must be kept constant by adjusting the
hole radius to grow as the square root of the distance from the reed end, as explained in
paper A.

It turns out that the presence of closed holes in a clarinet lowers the wave velocity by a
few percent and also increases the effective cross-sectional area of the bore by the same
amount. If for simplicity we imagine a bore free of side holes in its upper part, and this is
Joined to a slightly smaller bore provided with side holes so that the characteristic impedance
is constant throughout, while the velocity differs in the two parts, we find that the effective
length of the combination is altered by an amount A{ due to the lowered sound velocity:

r-[1 - (/o]
I -rfl - (v,/O]

Al =9

Here r is the fraction of the complete bore that is provided with closed side holes. In actual
clarinets the bore above the top hole is not altered in the way I have indicated (at least not in
the simple and abrupt way shown here), and the neglect of this leads to a further length
correction that is to be added to the one given here. This additional correction will be
discussed later on in these notes.

Before leaving the closed-hole bore system it is worthwhile to remark on the fact that the
system behaves as a low-pass filter whose cutoff is up above the 20th harmonic of the
musical note being played, so that an examination of a bore allows a flat statement to be
made about the highest frequency present in the sound spectrum!
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Pipes with many open side holes

The size and spacing of the finger holes of a woodwind are jointly determined by the
twin necessities of having the correct effective bore in that part of the instrument where the
holes are closed (as discussed already) and by the need for obtaining a chromatic scale by
successively opening the holes. Very fortunately for analysis purposes, the interaction
between these two requirements is simple enough to permit a separate study of each at the
beginning, after which they may be combined in a synthesis that permits accurate calculation
of the acoustic properties of the bore and its side holes.

It has been thirty years since Richardson first applied impedance theory to the calculation
of normal modes of a pipe with side holes,® but his formulation was only tractable when
applied to the case of one or two open holes in a pipe. It was basically a graphical method
from which it was difficult to draw any general conclusions. Attempts to apply transmission-
line theory to the open-hole system of a woodwind were stalled (in the writer’s mind, at
least) by the common knowledge that the equations governing a lumped-constant line with
variable coefficients become hopelessly complicated, a complication that appears to be
aggravated by the fact that the coefficients change greatly in the distance of one (free-space)
wavelength. These considerations overlook a familiar fact known to musicians and designers
alike: that the pitch and tone quality of a given played note is almost independent of the size
and position of all the open holes beyond the first two or three. 1 do not intend that this
remark be taken as a rigorously correct statement, but rather as a strong hint on how an
approximate theory may be constructed. The validity of the statement may then be evaluated
in the light of the successes and failures of this theory.

The independence of the natural frequency from the spacing of the lower open holes
implies that a meaningful theory might be constructed upon an assumed "equivalent”
transmission line with holes of uniform size that are spaced according to the dimensions and
spacing of the first two open holes in the actual instrument. A study of the impedance and
propagation properties of this equivalent line will permit calculation of the acoustical
behavior of several of the lowest vibrational modes of a real woodwind when account is
taken of the composite nature of the system. That is, the actual instrument bore is treated as
being made of three parts: a) a smooth tube between mouthpiece and the first closed hole, b)
a lumped-constant uniform line (low-pass) created by the sequence of closed holes, and c) a
lumped-constant high-pass line formed by the remaining holes, which are all open. The
calculation of the resonant frequencies must be made for the complete system, and they must
be further modified by the nature of the excitory system.

In the limit of low frequencies, the characteristic impedance and propagation constant of
a uniform pipe with radius a and wall thickness ¢ pierced by a row of holes of radius »
spaced 2s apart may be written as follows:
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Z, = j(pcl3a®) (2t,/s)* (1 + D)'* (a/b)
cosh(sT",) = (1 + 2D )

where
D, = (1/2)(bla)* (s/t,) = D, x (t * ¢t [s?)

t, = effective length of the open hole =t + b x f(bla) [see note 6]

For frequencies lower than about the 6th harmonic or so of the fundamental note, the
characteristic impedance is seen to be pure imaginary, and it is essentially masslike, so that a
pipe terminated by a section pierced with many uniformly spaced holes behaves very much
like one terminated by a small aperture. This behavior will be discussed further at a later
time in this outline. The hyperbolic cosine has a magnitude greater than unity in the low-
frequency region that is of primary musical interest, and this shows that the open-hole system
operates as a high-pass filter below cutoff, so that there is no wave propagation in this part of
the bore. The pressure variations are therefore in phase all along the open-hole bore, but
their amplitudes are damped exponentially with a linear attenuation coefficient:

«, = (1/2s)cosh™ (1 + 2D,)

so that the pressure amplitude p; at the i’th hole is greater than that at the (i + 1)st hole (a
distance 2s below it on the bore) by the amount

pp,,, = explcosh™ (1 + 2D,)]

The smaller holes on a clarinet or oboe are so spaced and proportioned that the calculated
pressure amplitude falls by about 0.75 from hole to hole in good agreement with
experimental measurement. It will be shown later that the angular distribution of the radiated
sound will be strongly affected by this attenuation. I should like to emphasize that not all of
the sound output of a clarinet or other woodwind falls within the qualitative domain of
validity of the long-wavelength approximation described above. The fundamental assumption
here is that the lower open holes of a real instrument do not determine the effective
impedance presented to the closed-hole part of the bore. Mathematically this is represented
by the fact that the open-hole part acts as a nonpropagating line, so that "messages”
concerning the nonuniformity of the line are not carried back to the main bore. In the tonal
spectrum of a clarinet note, those components that lie above the cutoff frequency implied by
the general impedance formula of the uniform open-hole line will propagate with very little
reflection down the open-hole part of the bore, and they are therefore radiated freely from all
the holes.
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Length corrections for closed-hole effects

For many years it has been customary to give the vibration frequencies of a complex
resonator in terms of the length of some closely related resonator. A point that is sometimes
neglected in regard to these end corrections is that they are almost always frequency
dependent, so that the higher modes of oscillation of the complex resonator do not in general
coincide with the higher modes of a simple resonator chosen to match at the lowest mode.

Because woodwinds having closed and open bores constitute a class of systems in which
the velocity of sound may vary with frequency, and because both conical and cylindrical
bores are used, there can be considerable confusion as to whether the acoustical length used
in a given calculation is based on the (variable) internal sound velocity or the sound velocity
in the open air (c). To avoid this ambiguity, and for other reasons having to do with the
ease of computation, the length correction (Af,) for a complex pipe system whose desired
lowest-mode frequency is w, will be given as a fraction F, of the free-space quarter
wavelength ¢, of this frequency for a clarinet type of bore (and of the free-space half
wavelength for flute and oboe bores). The mechanical length L, desired for the actual bore is

then given by L, =0( - F,)

Often it is important to know the value of the correction at frequencies that are integral
multiples of w, , so that we may define F,(m) as the value of F, at the m’th harmonic of w,.

In general there are several end corrections to be considered simultaneously: the
mouthpiece cavity produces one of these, as does the blown reed; in addition to these are the
corrections due to open and closed side holes, as well as corrections from the irregularities in
the bore. These several corrections are additive in first order, so that if each correction is
labelled by a subscript i, the complete equation for the length L, of a bore that is to play the

note w, is shown by:
L, =001 -XF,)
i

There is one such equation for each note in the low register of the instrument, the
subscript k giving the serial number of the note beginning with the lowest in the scale. Once
the various F’s have been found, the design of a woodwind is straightforward. All that is
required is to drill the holes for all the notes at the proper distances L, from the reference
mark at the top of the bore, after which the mouthpiece is attached so that it also is in the
proper position relative to the same mark.

Effect of small variations in the cross-sectional area
In a clarinet bore there are small variations from the idealized cylindrical shape caused

not only by irregularly spaced or duplicated finger holes, but also from deliberate alterations
introduced by the builder in an attempt to improve the tone, response, and tuning of his
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instruments. In the present context we shall consider the bore to be "uniform" in its shape if
the effective cross section (as defined in paper A and implied by the impedance relation
given in the first equation of this paper) remains constant. The slowing-down of waves in a
pipe with closed side holes gives rise to a separate end correction, as already explained, so
that here we will take the wave velocity within the bore to be simply c.

Let S,(x) represent the bore cross-sectional area at a distance x from the upper end of the
idealized pipe under consideration, so that S,(f) = wa® where a is the radius of the open end.
Let the variations of an actual bore from this idealized cross section be represented by a
perturbing area S,(x) such that (S,/S,) < 1 at all points in the bore. The frequency of
oscillation of the n’th mode of such a perturbed system may be accurately calculated by
Rayleigh’s method, making use of the wave functions belonging to the unperturbed bore.
Such a calculation may be used to show that the perturbed system vibrates so that its #’th
mode is equal in frequency to that of an idealized bore whose length is increased by the
amount Af given below:

dx

Al = +fQ(Sp/S0)cosgﬂ#

Examination of this expression shows that an enlargement of the bore in the
neighborhood of a pressure node of the standing wave always raises the vibrational
frequency, while an enlargement near an antinode of pressure lowers the frequency. As a
result, the effect of a given perturbation of the bore may result in a sharpening or a flattening
of the played note, depending on the note being played and on the register that is in use.
Examples of this will be given later.

Effect of duplicated, missing, or mis-sized closed holes

The presence of a small hole of volume V, = b/, located at the position x; along the
bore of an otherwise regular instrument may be represented mathematically by a delta
function perturbation to the area:

Sp(x) =V, 8(x - x)

This perturbation is to be used in the potential energy term of the Rayleigh expression, but
not in the kinetic term, since physical considerations show that the small extent of the hole in
the axial direction of the bore precludes the possibility of much longitudinal motion in the
hole. The complete discussion of the implications of this remark would take up too much
room and so will not appear in this summary of results. The resulting end correction, which
may also be found by impedance methods, is
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2n - 1)1rxi]

_ 2
At = (V,/S,) cos® [ Y .
Many woodwinds have duplicate side holes for certain notes, placed there for the purpose
of easing the technical problems of the musician. The right-hand cross key of a clarinet,
which is used for playing the Bh below middle C, is an example, as is the doubly duplicated
hole for the D# immediately above middle C. These extra holes give rise to pitch changes
of varying amounts for all the notes played with one or more holes closed below them, in an
amount determined by the equation above. At first thought it would seem logical to put a
small constriction into the bore at the location of these extra holes, or a projecting lug that
forms a "negative volume" equal and opposite to that introduced by the extra closed hole.
There is however no possible way to do this without constricting the flow of air in the
neighborhood of the hole and its correcting lug, so that there is a kinetic energy term added
by the lug to the Rayleigh integrals that does not have a counterpart arising from the hole.
Briefly we may say that a projection into the bore, or a constriction, must have its effect
calculated from the equation just above the heading "Effect of duplicated, . . . ," while the
extra closed hole produces changes that are to be calculated from the second equation after
this same heading. The first of the equations I have just referred to shows that a constriction
can either raise or lower the pitch, while the second of them shows only the possibility of a
flattening. As a result, there is no way in which to ream the bore or to choose a projection
into it that will compensate exactly for a duplicated closed hole.

An extension of the preceding calculations may be used to find the alteration in tuning
produced by a closed side hole that is displaced from its "proper" position in the regular
sequence of holes, and moved down or up the bore a short distance 6 , so that it is located at
the position (x; + ). In order to preserve the tuning of the note played with this particular
hole open, the hole must be enlarged above its normal size if § is positive, and decreased if &
is negative. The amount by which it must be enlarged is determined by the open-hole
properties of the instrument. If the hole is displaced an amount & and its volume is altered
by an amount (AV) from the normal position and size for a hole belonging at the position x, ,
the length change produced is

(2n - Dmx,

2n - Dmx,
Al = (AVIS,)cos? ("%}

- @2n - D)= (V,/S,)(3/0)sin

The first term has to do with the change in hole size, and this always produces a
flattening effect if AV is positive independent of x; or the mode number n. Although the
amount of this flattening is strongly dependent on x; and », the maximum amplitude of this
alteration is independent of n. The second term deals with the displacement of the hole and
may be of either sign, with a maximum amplitude that grows in importance linearly with 7.
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Further remarks on closed-hole effects

It is worth comment that for cylindrical instruments such as the clarinet, the fractional
length correction F = Af/f due to each closed hole perturbation is proportional to the ratio
of the perturbing volume V, to that of the complete bore V, = S,f. The exact magnitude
of this correction is equal to this ratio multiplied by a simple trigonometric function of the
hole position. As a result, the maximum (positive or negative) fractional frequency change
that can possibly be caused by a hole is given in hundredths of a semitone by the following

expression:
maximum pitch change = 1.66 (V,/V,) -10° cents

An examination of the approximations involved in all of the length corrections shows
them to be of the same general order of accuracy. The pitch error in cents to be expected in
the final corrected length (£ + Af) for a single one of the several corrections may be shown
to have a size something of the order of (m? x 10°) cents for a Af/f correction of m cents.
This error is completely negligible from a musical point of view, as will become obvious
from the examples that follow.

While the error arising from a single correction is negligible, the question arises as to
whether or not the superposition of many such corrections does not lead ultimately to errors
that are serious in their practical consequences for a designer. A simple estimate of this net
error may be based on the fact that the signs of the errors contributed by the various
corrections are essentially random and not correlated with the sign of the correction itself. It
is a well-known principle of statistical analysis that the resultant of such a set of random
quantities is given by the square root of the sum of the squares of the quantities themselves.
Thus, if the j’th correction for a particular note has the magnitude m;,, the resultant error
arising from the complete set of corrections is approximately given by

tesultanterror = 107%(%, m]f‘)“'”2 cents

Numerical examples of closed-hole effects

The formulas given so far for the calculation of length corrections are simple and easily
applied, but it is worthwhile to give a few selected examples to clarify their nature and
practical order of magnitude. These examples will be based on a simplified representative
clarinet bore of 15-mm diameter, and all results will be given as the fractional correction F
= Al/{ expressed in cents.

1) Suppose that the diameter of the mouthpiece and barrel joint is increased in diameter by 1
mm above that of the rest of the bore, this enlargement being extended down to a point 10

cm from the closed end of a tube of overall length 40 cm (roughly equivalent to the low B in
the clarinet chalumeau register). We will also consider the case of a tube similarly enlarged,
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with an overall length of 20 cm corresponding to the highest note that can be played in the
lowest register of a clarinet.

40-cm tube: n =1 flattened 50 cents (fundamental mode)
n = 2 flattened 16 cents (third harmonic)
n =3 sharpened 10 cents
20-cm tube: n = 1 flattened 70 cents
n =2 sharpened 24 cents
n =3 flattened 14 cents

Two important results are illustrated by these numbers: a) the magnitude of the correction
fluctuates strangely with mode number and b) a short bore is much more strongly affected by
a perturbation than is a long one, and its fluctuations are completely different.

2) Many times when playing in an ensemble the musician has to tune to the other
instruments by pulling out the mouthpiece and/or barrel joint. Let us assume that the
mouthpiece is pulled out from the barrel joint a distance of 3 mm so that the perturbing
volume in the gap is about 0.6 cm’ located at a distance of 7 cm from the closed end. The
volume of the bore itself is about 70 cm? if its length is 40 cm.

n 1 flattened 13.4 cents
n =2 flattened 6.5 cents
n =3 flattened 0.6 cents

If on the other hand the instrument is lengthened by pulling it apart at the junction of the
barrel joint and the rest of the instrument, we find the following set of flattenings:

n 1 flattened 12.2 cents
n =2 flattened 2.1 cents
n =3 flattened 2.1 cents

Once again it is apparent that the intonation of the instrument is completely upset by the
relatively small perturbation, and once more we see that these perturbations are irregular
throughout the scale, so that the musician has to learn to re-correct each note separately,
treating it as a special case.

(3) The two extra side holes for the alternate fingering of the D# above middle C on a
clarinet are each about 6 mm in diameter and drilled through a wall that is about 7 mm thick
at a position 27.5 cm from the upper end of the instrument. If we assume that the total
length of the bore is once again 40 cm, we find that the extra holes alter the tuning of this
instrument as follows:
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1 flattened 2 cents
= 2 flattened 9 cents
3  flattened 9 cents

=R

Length corrections for open-hole effects (general)

The effective length of a clarinetlike bore terminating in any sort of impedance at the
lower end is equal to the physical length of pipe that is used plus a correction length Af of
pipe whose input impedance at the point of attachment to the main bore is exactly equal to
the actual terminating impedance. Thus, for a closed-hole bore with characteristic impedance
of Z, at the junction and a terminating impedance Z:

JZ, tan(w Ay ) = Z,

This may then be solved explicitly for the value of A¢ at any desired frequency:

Al = v [w)tan"(-jZ,/Z,)

In general, Af is a complicated function of the frequency, but this causes no difficulty
in the design of an instrument, since the frequency is pre-assigned by the nature of the
musical scale. Once again it is often useful to employ a fractional correction of F = Af£/{ in
the manner described earlier.

Pipe with a single side hole

The case of a bore pierced by a single side hole at a given distance from the lower end
was solved by Richardson, as has already been mentioned, and it will serve as a simple
introductory problem in the present context. Here the terminating impedance appearing at
the bottom of the closed-hole part of the bore consists of the parallel input impedances of two
ducts, one of which is the hole itself, and the other, the length of bore below the open hole.

Let the hole be of radius b drilled a distance M, from the lower end of the instrument
(M, = M plus an open-end correction at the bottom of the bore). As before, the effective
thickness of the wall is #,, and the radius of the bore is a. If we assume for simplicity that
the upper part of the bore does not carry any closed holes, the length correction may be
shown to have the form:

tan(wz, [c)tan(w M, /c)

Al = (v, /w)tan™
(bla)* tan(wM, [c) + tan(wt, /)
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This result is valid for any lengths M, and ¢,, and for any frequency as long as the
wavelength is considerably larger than the transverse dimensions of the hole and bore, as is
always the case in musical instruments.

When the length M, is much less than the wavelength, as is the practical case if only the
lowest hole is open, we may make use of the low-frequency limit of the above expression,
which turns out to be independent of frequency, making it a simple correction of the sort
dear to tradition:

Al = t,[(bla)* + (¢,/M )]

This result may be used as a means for finding where to drill the first hole on a cylindrical
bore that is to play a chromatic scale. Let £, be the desired effective length of the
complete bore, and £, be that of the bore when the first hole is opened. Geometrically this
requires that £, = ¢, + M,, while musically we must require that 1.06 ¢, = ¢, if the hole is
to raise the pitch one semitone. These two requirements may be shown equivalent to

0060, - M, + Al = 0

which may be solved together with the preceding equation to give a value for M, as shown
below:

M, = (1/2)(0.06 0,) {1 + [1 + 4(a/b)* (¢,/0.06 0,)]"*}

An interesting feature of this equation is the complete freedom it gives the designer in the
choice of hole size and wall thickness. Once these have been chosen from mechanical
considerations and the requirements laid down by the acoustical properties of the closed-hole
part of the bore, one has only to drill the hole a distance M up from the open end. The
freedom implied here is not absolute, however, inasmuch as the calculation is based on a
low-frequency approximation. No serious difficulty will be experienced with the failure of
this approximation, however, if the value of M, satisfies the very conservative inequality

(M, [60) < 1

This is almost automdtically satisfied in practice, unless the side hole is positively minute.

While the analytical form of the solution for M, on an instrument having a true bell at
the lower end is different from that given above, the general approach to its calculation is
exactly the same, and the qualitative results described here may be carried over to the more
complex case almost unchanged.
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Pipe with many open side holes

A problem of greater significance in the theory of woodwinds is that of a bore ending in
a section provided with a number of open side holes. We have seen that, in the musically
interesting case where the interhole spacing is small compared with the wavelength, a pipe
with open holes along it has an input impedance that is pure imaginary and of a masslike
character. This impedance Z, serves as the terminating impedance on the upper part of the
bore when we set about calculating the effective length correction. There is however a
serious trap concealed within this statement. It is fundamental to the nature of the impedance
equations for periodic lines that the lines begin and end with "half-sections." The equations
given earlier for Z, and Z, are based upon the assumption that each of the two types of line
begins at a point midway between the holes, so that the A{ implied above is to be measured
from a point lying midway between the first open hole and the last closed one! For practical
purposes we are more interested in a quantity that tells us how far up the bore from ¢, to
drill the £’th hole (the first open hole in the series). As a result we must subtract the
distance s (half the interhole spacing) in order to obtain the length correction measured
from the first open hole. If we take, for example, a bore unencumbered with closed holes in
its upper part, the length correction becomes (without making a low-frequency
approximation)

(b/a)2(1/2)cot(wte/c)tan(o)s/c) + 1}1/2 )
(blay* (1/2)cot(wt, [c) cot(wsfc) - 1

AL = (v, Jw)tan™ {

Examination of this expression, and of the more general one that includes the effects of
closed holes in the upper part of the bore, shows that the value of Af remains quite
constant over a frequency range extending rather close to the critical frequency at which the
lower bore begins to "conduct" waves, as signaled by the change of sign in the denominator
of Z,. As aresult of this approximate constancy of Af, the normal-mode frequency ratios
of a pipe ending with a sequence of open holes of the sort used in musical instruments lie
within a tenth of a semitone of those of a simple pipe of the same effective length. Here we
have an explicit mathematical justification for the assumptions made in the earlier paper on
the negligible effect of the open-hole series on the results of that paper. One must recall,
however, that these remarks are only valid for frequencies below the cutoff of the open-hole
line.”

The correctness of this formulation of the length correction problem may be verified by
measurements of clarinets, or by especially constructed bores with a minimum of perturbing
complication. If one measures a distance upward from the first open hole equal to one-
quarter wavelength reduced by the calculated Af for a particular note on a clarinet, a point
on the mouthpiece is reached that is the nominal effective closed upper end of the bore for
that note. If this procedure is carried out for several notes in the chalumeau register, all the
nominal upper ends lie within 2 or 3 mm of each other. If a detailed analysis is made of the
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various perturbations to the bore caused by the irregularities in the closed-hole part of the
bore, the effective closed end proves to be the same for all notes within a half millimeter,
and this discrepancy is at the limit of accuracy imposed on the calculation by the difficulty of
getting accurate data concerning the bore and its holes.

The diagrams that accompany these notes [no diagrams were with the carbon copy--VB]
show the details of an experiment carried out with steel tubes of accurately known
dimensions in conjunction with a digital frequency counter. The resonant frequencies of a
10" tube cut off squarely at the end are compared with those of a longer piece of the same
tubing that is provided with a set of side holes accurately laid out along its lower length.
The holes are spaced out in 6% increments of length from the closed plug, and their
diameter grows as the square root of their distance from the plug, so that they are very
similar to the holes on a clarinet. There are no formulas for calculating the effective length
of a side hole, so that this quantity was measured for the first open hole by means of a
Helmholtz resonator technique, as shown. A view of the accuracy of the experiments and of
the calculation may be obtained by comparing the calculated and measured values for Af
and making an analysis of the errors involved. For the lowest mode of vibration, the
corrections are found to be the following:

calculated Af = 1.270 inches
experimental Af = 1.255 inches
discrepancy = 0.015 inches

Most of the discrepancy is explainable.

A preliminary assessment of the uncertainties brought in by experimental errors and by
the inexact value for the velocity of sound (which enters the correction only to second order)
leads to the conclusion that only about 0.005 inches of the discrepancy can be attributed to
these errors, leaving a systematic error yet to be explained. However, the agreement is still
close enough for the formulas to be considered verified, since we find a discrepancy of only
a few thousandths of an inch out of a total length of 10 inches. This amounts to a fractional
error of 0.0015, or 2.5 cents, which would be applicable to every note in the low-register
scale in a systematic way, so that it is trivially easy to correct in the design of an instrument.

Due to the goodness of the agreement, all the measured dimensions of the tubes will be
redetermined in the near future, so that a careful estimate of the discrepancy and its error
may be obtained. It is anticipated that the published version of these notes will include the
results of this closer study.
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Notes

'"This article was found among Benade’s papers as a pale carbon copy on pebbled second-
sheet paper. Typed by Benade and left in a state of first revision, it paraphrases the On
woodwind instrument bores, J. Acoust. Soc. Am. 31(2):137-146 (1959) but with less
mathematical detail and with some added practical applications specific to the clarinet. It has
been retyped by Virginia Benade and checked for accuracy of transcription by Peter Hoekje.

’A. H. Benade, On woodwind instrument bores, J. Acoust. Soc. Am. 31(2):137-146
(1959).

*[note added by P. Hoekje] Benade often used the term characteristic impedance to refer
to the specific acoustic impedance, which equals [density o] x [wave speed c]/[cross-sectional
area wa’].

*[note added by P. Hoekje] This is an approximation that assumes that the only effect of
the closed holes is on the compliance and not on the inertance of the bore. Keefe and
Nederveen later have described the inertance due to wave-front spreading in the closed holes.

°E. G. Richardson, Technical Aspects of Sound (Elsevier, New York, 1953), Vol 1, 488.

*[note added by P. Hoekje] f(b/a) represents a coefficient due to the open-end correction,
and Benade is implying that this varies with hole size; however, he often used f(b/a) = 1.5.

"For higher frequencies the analysis becomes more complicated, but may be studied by
means of the WKB approximation. A calculation of this case is in progress.



