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HW/SW Components
• Siren: Hierarchical/procedural

representation for composers (OSC out)

• CSL: Scalable DSP framework (OSC srv)

• CRAM: Cluster management for
distributed RT OO software (Mgr)

• CNSI Sphere: A really cool loud/
bright/sensing space to play in!



 

Cal. NanoSystems Inst. @ UCSB
• MAT in CNSI: labs, studios, workshops, sphere
• CNSI compute infrastructure

– Traditional vector supercomputer
– 1024-node Linux cluster
– Multimedia processing cluster (TBD)

• Sphere: 3-story I/O space
– 12-channel overlapping video output
– 128-channel sound output
– Camera/microphone/sensor multi-modal input



 

CNSI Sphere



 

How?   DSCP!
Distributed Sensing, Computation,

and Projection = MVC on steroids
Back-end application models are

scientific/numerical/simulation
Multimodal multiuser sensing/control

and tracking/mapping farms
Application = sensing/tracking

policies + output data mappings
Presentation/interaction via CNSI

Sphere, LAN/WAN streaming
Infrastructure uses CRAM mgmnt
DBs for configurations, resources, and

media content (renderers)
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Current Sphere-lite

Sensors          Gesture Mapping           Synthesis               Spatial output

MIDI Wintel PCs      Apple Xserves   Apple G5
Matrix Apple G5s      Apple G5s/G4s Echo Layla
Graphonic      Sun Ultras
OT_Kbd        SGI Octanes
Creatovox
VR Trackers
Mot. Capture Interfaces
AdC_Panner Occam/Macco
(LAN is switched 1000BaseT) OscAR

 Serial/MIDI         OSC/XML                     RFS

Config DBCRAM

Manager

Apple G4
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Networked Synthesis/Performance
• Managed

“orchestra-scale”
sound synthesis,
multi-modal
gestural sensing
and control, and
pluriphonic
projection (up to 128
channel output in the
CNSI sphere)



 

Siren 2003 (VisualWorks) Demo



 

CSL “Hello world” Program
Sine wave with envelope
// Create a sine oscillator -- this is a comment

Sine osc(220.0);

// Create an ADSR envelope -- args are (dur, a, d, s, r)

ADSR env(3.0, 0.06, 0.2, 0.2, 1.5);

// Create a multiplier

MulOp mul(osc, env);

// Plug it into the output driver

globalIO.set_root(mul);

Demo



 

Multi-host CSL Graphs
• Distributed sub-graph processing with RemoteIO and

RemoteFrameStream, RFS protocol, buffering

IO
OSC

HostA

HostB

RemoteFrameStream node, client

RemoteIO root, server

CSL RFS protocol (TCP, UDP, ATM)

Demo



 

CRAM Manager

• Network/Node

• Node/Service

• Application/Service

• Log/Control pane
– Run-time monitor
– Planning
– DB play-back

Demo



 

GestureSensor Drivers & Servers
• Reusable sensor driver framework

– Serial in, cacheing/differencing/throttling, OSC out
• GestureSensors: receive OSC or MIDI

void * mData; // data array (typically a float *)
char * mCmd; // OSC command (without the '/')
char * mTypeString; // OSC type string, e.g., “ffff”

– Event input thread mgmnt
– Parsing and differencing
– Map to static or global data or messages

• Subclasses
– Glove, Ebeam, Matrix, FOBirds, AdC_Panner, etc.



 

CV-to-OSC
• Multiple-camera 3D

motion tracking of
multiple sources

• Data mapping for sound
synthesis and
transformation algorithms

• Intelligent trans-media
system that learns and
adapts, based on memory
of the actions and states of
the sensor space



 

Siren (MODE, HSTK, DoubleTalk)
• Smalltalk-based object-oriented framework

for sound/music description and processing,
under development since 1984

• Focus on structure representation, control
mapping, and composition, rather than on
performance, DSP, or notation

• API/Platform for music representation and
composition language development



 

What’s Siren?
• Smoke music representation language

– Music magnitudes, events, event lists, generators,
modifiers, struct. algorithms, …

– Organize timing, tuning, timbre, space, gesture, grouping,
versioning

• I/O voices (players, property-parameter mappers)
for many formats: (m11-SC3) note lists, OSC, MIDI,
XML, CORBA, …

• Multi-threaded RT scheduler
• GUI widgets and apps for music
• (OO/R)DBMS interfaces for persistency

[440 Hz, (1/4 beat), 44 dB]
evtList mapPItches: gamut.
evtList playOn: Voice default.



 

Siren Components (1992)



 

Siren 2003 (VisualWorks) Demo



 

Siren Tools 1984-2004



 

The CREATE Signal Library (CSL,
“sizzle”) (“chill?”)

• General-purpose,
portable C++ framework
for distributed, real-time
digital audio synthesis
and processing

• Used for stand-alone
applications, plug-ins,
OSC servers, etc.

Demo



 

CSL Relatives
• Like Cmix, STK, Siren, JSyn, MxV, or

CLM
– Delivered as a library in a general-purpose

programming language
• Unlike SuperCollider, Csound, Max

– Not its own language
– No scheduler
– Uses C++ development environment



 

CSL3 Basics
• Buffer objects (1-4 classes)

– Multichannel non-interleaved sample storage
– “Smart” object, not just a (float **), ptr. mgmnt.
– Handle malloc/free, filling statistics, etc.

• FrameStream classes (Ugens) (many)
– Respond to the message next_buffer(input, output)

– Processors have a FrameStream as input
• Mix-in classes (vs. wrapper classes)

– Phased, Positionable, Writeable, Cacheable, etc.



 

“Hello world” in CSL
Sine wave with envelope
// Create a sine oscillator -- this is a comment

Sine osc(220.0);

// Create an ADSR envelope -- args are (dur, a, d, s, r)

ADSR env(3.0, 0.06, 0.2, 0.2, 1.5);

// Create a multiplier

MulOp mul(osc, env);

// Plug it into the output driver

globalIO.set_root(mul);

Demo



 

CSL Sources, Controls, and Processors
• Sources

– Oscillators (perfect, BL), SumOfSines, Noise, SoundFiles, Chaotic/
IteratedFS, IFFT, Physical Models, Granulators, Signal windows

• Control
– Envelopes, LFOs, LFNoise, ProbDists, DynamicVariables, OSC, MIDI,

GUI, CORBA, XML, note lists, Feature extractors, Input followers
• Processors

– Operators, Mixers, Filters/banks, Reverbs, (N-M)Panners, DelayLines,
FDN, WaveShape, Lo-latency Convolution, FFT/IFFT, LPC/FIR

• Support
– RingBuffer, ThreadedFrameStream, BlockResizer, RateConvertor,

Splitter/Joiner, FanOut (needed), Interleaver/Deint., Test main()s
– Tools: FIR/Reverb IR Design, Spectrum DBs, Control-mapping



 

The Big Picture of CSL
• Basic DSP graph

• Connected to control input
(OSC, MIDI, GUI, CORBA,
XML), and IO object

• Buffering and latency tuning

Control IO



 

CSL DSP Graph Flexibility
• Sub-graphs can run at different:

– Sample rates (for control),
– Buffer sizes (for transforms),
– Numbers of channels (for efficiency),
– Buffer formats (interleaved or not),
– In different threads, etc.

• These can be changed (within reason) at run-
time (e.g., for load- or traffic-balancing)



 

Multi-host CSL Graphs
• Distributed sub-graph processing with RemoteIO and

RemoteFrameStream, RFS protocol, buffering

IO
OSC

HostA

HostB

RemoteFrameStream node, client

RemoteIO root, server

CSL RFS protocol (TCP, UDP, ATM)

Demo



 

Instruments and OSC/MIDI/XML
• Instrument object

– Holds onto a DSP graph; adds “reflective” accessors
– Generates OSC address spaces, MIDI maps, etc.
– Server main() function loads an instrument library and

publishes an address space on a listener socket
– Example: // C++ accessor decl.

list[0] = new Accessor("du", set_duration_f, CSL_FLOAT_TYPE);
list[1] = new Accessor("am", set_amplitude_f, CSL_FLOAT_TYPE);

// Produces:
/i1/  instrument 1’s OSC address space
   /i1/du: set-duration command
   /i1/am: set-amplitude command



 

GestureSensor Drivers & Servers
• Reusable sensor driver framework

– Serial in, cacheing/differencing/throttling, OSC out
• GestureSensors: receive OSC or MIDI

void * mData; // data array (typically a float *)
char * mCmd; // OSC command (without the '/')
char * mTypeString; // OSC type string, e.g., “ffff”

– Event input thread mgmnt
– Parsing and differencing
– Map to static or global data or messages

• Subclasses
– Glove, Ebeam, Matrix, FOBirds, AdC_Panner, etc.



 

CSL main() for OSC Processing
// Set up OSC address space root

init_OSC_addr_space();
// EITHER: add the instrument library OSC addr. space

setup_OSC_instr_library(library, numInstruments);
// OR: create a background thread for a GestureSensor

Thread * aThread = ThreadPthread::MakeThread();
aThread->fork_thread(GS_thread_fcn, & someArgument);

// start the I/O callback thread
GlobalIO->start();

// Run the OSC I/O loop function (doesn't return)
main_OSC_loop(theUDPPort);



 

OSC with a Shell Script
# Shell script to test sending OSC messages to CSL
# Create a convenient alias

alias ssoo "sendOSC -h localhost 54321"
# Play a note on instrument 1

ssoo /i1/p; sleep 3
# Set a value and play another note

ssoo /i2/cf,50.0; ssoo /i2/p; sleep 3
# play a note with parameters: dur/amp/car/mod/ind

ssoo /i4/pn,4.0,0.3,220.0,357.4,3.0; sleep 4
# load a sound file

ssoo /i8/fi,"$CSL_DATA/shine.snd"
# play a sampled sound

ssoo /i8/p; sleep 1



 

CV Input to OSC
• Implement multiple camera 3D

motion tracking of multiple
sources.

• Construct an intelligent trans-
media system that learns and
adapts, based on memory of the
actions and states of the sensor
space.

• Map the data to sound synthesis
and transformation algorithms
that will provide evocative and
meaningful results.



 

Managing Siren and CSL: CRAM
• CRAM: Yet another Distributed Processing

Environment (DPE, Cluster Mgmnt. literature)
• Framework to deploy, start/stop, and monitor multi-

host distributed real-time OO applications
• Provides fault-tolerance and load-balancing*
• CRAM is 3rd-gen. DPE implementation at CREATE

(1996-2004) (HPDM/TAO, Yellow/CORBA_AV)
• Designed for robustness, simplicity, and low

overhead; limited services and scalability/replication



 

CRAM Manager

• Network/Node

• Node/Service

• Application/Service

• Log/Control pane
– Run-time monitor
– Planning
– DB play-back

Demo



 

CRAM Configuration for CSL

Bells

Bells

Voices Mixer/
Spatializer

Noise

8-ch
Out

Manager Config DB

Demo



 

• Auralizer & VRML
• Pulsar Generator
• Creatovox
• MusicVisualization
• FMAK DB
• TimeMachine
• InteractEMGroup
• Creatophone
• Time-DDecomp
• SC_3 Work

Related Projects
at CREATE
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