

Building Large-scale
Interactive Systems with

OSC, Siren, CSL, and CRAM
Stephen Travis Pope

Center for Research in Electronic Art Technology
(CREATE)

Graduate Program in Media Arts and
Technologies (MAT)

University of California, Santa Barbara (UCSB)
stp@{create,mat}.ucsb.edu

HW/SW Components
• Siren: Hierarchical/procedural

representation for composers (OSC out)

• CSL: Scalable DSP framework (OSC srv)

• CRAM: Cluster management for
distributed RT OO software (Mgr)

• CNSI Sphere: A really cool loud/
bright/sensing space to play in!

Cal. NanoSystems Inst. @ UCSB
• MAT in CNSI: labs, studios, workshops, sphere
• CNSI compute infrastructure

– Traditional vector supercomputer
– 1024-node Linux cluster
– Multimedia processing cluster (TBD)

• Sphere: 3-story I/O space
– 12-channel overlapping video output
– 128-channel sound output
– Camera/microphone/sensor multi-modal input

CNSI Sphere

How? DSCP!
Distributed Sensing, Computation,

and Projection = MVC on steroids
Back-end application models are

scientific/numerical/simulation
Multimodal multiuser sensing/control

and tracking/mapping farms
Application = sensing/tracking

policies + output data mappings
Presentation/interaction via CNSI

Sphere, LAN/WAN streaming
Infrastructure uses CRAM mgmnt
DBs for configurations, resources, and

media content (renderers)

Application/
Simulation

Control
Filters

Interaction Mgmnt.

Media Data Mapping

AV Rendering Farms

Multimodal
Multi-user Input

Immersive
Multi-user

A & V Displays

Model Access

Distr. Sys. Mgmnt.
Fault-tolerance,
Load-balancing,

Config DB

Rsrc DB

Content DB

Sensing/Gesture
Tracking Farms

Interface
Model

Current Sphere-lite

Sensors Gesture Mapping Synthesis Spatial output

MIDI Wintel PCs Apple Xserves Apple G5
Matrix Apple G5s Apple G5s/G4s Echo Layla
Graphonic Sun Ultras
OT_Kbd SGI Octanes
Creatovox
VR Trackers
Mot. Capture Interfaces
AdC_Panner Occam/Macco
(LAN is switched 1000BaseT) OscAR

 Serial/MIDI OSC/XML RFS

Config DBCRAM

Manager

Apple G4

In
Pictures

CSL
Server
Farm

Spatialization
Model

Compositional
Model

Surround
Output

Gesture
Sensors

Output
Drivers

Networked Synthesis/Performance
• Managed

“orchestra-scale”
sound synthesis,
multi-modal
gestural sensing
and control, and
pluriphonic
projection (up to 128
channel output in the
CNSI sphere)

Siren 2003 (VisualWorks) Demo

CSL “Hello world” Program
Sine wave with envelope
// Create a sine oscillator -- this is a comment

Sine osc(220.0);

// Create an ADSR envelope -- args are (dur, a, d, s, r)

ADSR env(3.0, 0.06, 0.2, 0.2, 1.5);

// Create a multiplier

MulOp mul(osc, env);

// Plug it into the output driver

globalIO.set_root(mul);

Demo

Multi-host CSL Graphs
• Distributed sub-graph processing with RemoteIO and

RemoteFrameStream, RFS protocol, buffering

IO
OSC

HostA

HostB

RemoteFrameStream node, client

RemoteIO root, server

CSL RFS protocol (TCP, UDP, ATM)

Demo

CRAM Manager

• Network/Node

• Node/Service

• Application/Service

• Log/Control pane
– Run-time monitor
– Planning
– DB play-back

Demo

GestureSensor Drivers & Servers
• Reusable sensor driver framework

– Serial in, cacheing/differencing/throttling, OSC out
• GestureSensors: receive OSC or MIDI

void * mData; // data array (typically a float *)
char * mCmd; // OSC command (without the '/')
char * mTypeString; // OSC type string, e.g., “ffff”

– Event input thread mgmnt
– Parsing and differencing
– Map to static or global data or messages

• Subclasses
– Glove, Ebeam, Matrix, FOBirds, AdC_Panner, etc.

CV-to-OSC
• Multiple-camera 3D

motion tracking of
multiple sources

• Data mapping for sound
synthesis and
transformation algorithms

• Intelligent trans-media
system that learns and
adapts, based on memory
of the actions and states of
the sensor space

Siren (MODE, HSTK, DoubleTalk)
• Smalltalk-based object-oriented framework

for sound/music description and processing,
under development since 1984

• Focus on structure representation, control
mapping, and composition, rather than on
performance, DSP, or notation

• API/Platform for music representation and
composition language development

What’s Siren?
• Smoke music representation language

– Music magnitudes, events, event lists, generators,
modifiers, struct. algorithms, …

– Organize timing, tuning, timbre, space, gesture, grouping,
versioning

• I/O voices (players, property-parameter mappers)
for many formats: (m11-SC3) note lists, OSC, MIDI,
XML, CORBA, …

• Multi-threaded RT scheduler
• GUI widgets and apps for music
• (OO/R)DBMS interfaces for persistency

[440 Hz, (1/4 beat), 44 dB]
evtList mapPItches: gamut.
evtList playOn: Voice default.

Siren Components (1992)

Siren 2003 (VisualWorks) Demo

Siren Tools 1984-2004

The CREATE Signal Library (CSL,
“sizzle”) (“chill?”)

• General-purpose,
portable C++ framework
for distributed, real-time
digital audio synthesis
and processing

• Used for stand-alone
applications, plug-ins,
OSC servers, etc.

Demo

CSL Relatives
• Like Cmix, STK, Siren, JSyn, MxV, or

CLM
– Delivered as a library in a general-purpose

programming language
• Unlike SuperCollider, Csound, Max

– Not its own language
– No scheduler
– Uses C++ development environment

CSL3 Basics
• Buffer objects (1-4 classes)

– Multichannel non-interleaved sample storage
– “Smart” object, not just a (float **), ptr. mgmnt.
– Handle malloc/free, filling statistics, etc.

• FrameStream classes (Ugens) (many)
– Respond to the message next_buffer(input, output)

– Processors have a FrameStream as input
• Mix-in classes (vs. wrapper classes)

– Phased, Positionable, Writeable, Cacheable, etc.

“Hello world” in CSL
Sine wave with envelope
// Create a sine oscillator -- this is a comment

Sine osc(220.0);

// Create an ADSR envelope -- args are (dur, a, d, s, r)

ADSR env(3.0, 0.06, 0.2, 0.2, 1.5);

// Create a multiplier

MulOp mul(osc, env);

// Plug it into the output driver

globalIO.set_root(mul);

Demo

CSL Sources, Controls, and Processors
• Sources

– Oscillators (perfect, BL), SumOfSines, Noise, SoundFiles, Chaotic/
IteratedFS, IFFT, Physical Models, Granulators, Signal windows

• Control
– Envelopes, LFOs, LFNoise, ProbDists, DynamicVariables, OSC, MIDI,

GUI, CORBA, XML, note lists, Feature extractors, Input followers
• Processors

– Operators, Mixers, Filters/banks, Reverbs, (N-M)Panners, DelayLines,
FDN, WaveShape, Lo-latency Convolution, FFT/IFFT, LPC/FIR

• Support
– RingBuffer, ThreadedFrameStream, BlockResizer, RateConvertor,

Splitter/Joiner, FanOut (needed), Interleaver/Deint., Test main()s
– Tools: FIR/Reverb IR Design, Spectrum DBs, Control-mapping

The Big Picture of CSL
• Basic DSP graph

• Connected to control input
(OSC, MIDI, GUI, CORBA,
XML), and IO object

• Buffering and latency tuning

Control IO

CSL DSP Graph Flexibility
• Sub-graphs can run at different:

– Sample rates (for control),
– Buffer sizes (for transforms),
– Numbers of channels (for efficiency),
– Buffer formats (interleaved or not),
– In different threads, etc.

• These can be changed (within reason) at run-
time (e.g., for load- or traffic-balancing)

Multi-host CSL Graphs
• Distributed sub-graph processing with RemoteIO and

RemoteFrameStream, RFS protocol, buffering

IO
OSC

HostA

HostB

RemoteFrameStream node, client

RemoteIO root, server

CSL RFS protocol (TCP, UDP, ATM)

Demo

Instruments and OSC/MIDI/XML
• Instrument object

– Holds onto a DSP graph; adds “reflective” accessors
– Generates OSC address spaces, MIDI maps, etc.
– Server main() function loads an instrument library and

publishes an address space on a listener socket
– Example: // C++ accessor decl.

list[0] = new Accessor("du", set_duration_f, CSL_FLOAT_TYPE);
list[1] = new Accessor("am", set_amplitude_f, CSL_FLOAT_TYPE);

// Produces:
/i1/ instrument 1’s OSC address space
 /i1/du: set-duration command
 /i1/am: set-amplitude command

GestureSensor Drivers & Servers
• Reusable sensor driver framework

– Serial in, cacheing/differencing/throttling, OSC out
• GestureSensors: receive OSC or MIDI

void * mData; // data array (typically a float *)
char * mCmd; // OSC command (without the '/')
char * mTypeString; // OSC type string, e.g., “ffff”

– Event input thread mgmnt
– Parsing and differencing
– Map to static or global data or messages

• Subclasses
– Glove, Ebeam, Matrix, FOBirds, AdC_Panner, etc.

CSL main() for OSC Processing
// Set up OSC address space root

init_OSC_addr_space();
// EITHER: add the instrument library OSC addr. space

setup_OSC_instr_library(library, numInstruments);
// OR: create a background thread for a GestureSensor

Thread * aThread = ThreadPthread::MakeThread();
aThread->fork_thread(GS_thread_fcn, & someArgument);

// start the I/O callback thread
GlobalIO->start();

// Run the OSC I/O loop function (doesn't return)
main_OSC_loop(theUDPPort);

OSC with a Shell Script
Shell script to test sending OSC messages to CSL
Create a convenient alias

alias ssoo "sendOSC -h localhost 54321"
Play a note on instrument 1

ssoo /i1/p; sleep 3
Set a value and play another note

ssoo /i2/cf,50.0; ssoo /i2/p; sleep 3
play a note with parameters: dur/amp/car/mod/ind

ssoo /i4/pn,4.0,0.3,220.0,357.4,3.0; sleep 4
load a sound file

ssoo /i8/fi,"$CSL_DATA/shine.snd"
play a sampled sound

ssoo /i8/p; sleep 1

CV Input to OSC
• Implement multiple camera 3D

motion tracking of multiple
sources.

• Construct an intelligent trans-
media system that learns and
adapts, based on memory of the
actions and states of the sensor
space.

• Map the data to sound synthesis
and transformation algorithms
that will provide evocative and
meaningful results.

Managing Siren and CSL: CRAM
• CRAM: Yet another Distributed Processing

Environment (DPE, Cluster Mgmnt. literature)
• Framework to deploy, start/stop, and monitor multi-

host distributed real-time OO applications
• Provides fault-tolerance and load-balancing*
• CRAM is 3rd-gen. DPE implementation at CREATE

(1996-2004) (HPDM/TAO, Yellow/CORBA_AV)
• Designed for robustness, simplicity, and low

overhead; limited services and scalability/replication

CRAM Manager

• Network/Node

• Node/Service

• Application/Service

• Log/Control pane
– Run-time monitor
– Planning
– DB play-back

Demo

CRAM Configuration for CSL

Bells

Bells

Voices Mixer/
Spatializer

Noise

8-ch
Out

Manager Config DB

Demo

• Auralizer & VRML
• Pulsar Generator
• Creatovox
• MusicVisualization
• FMAK DB
• TimeMachine
• InteractEMGroup
• Creatophone
• Time-DDecomp
• SC_3 Work

Related Projects
at CREATE

Z[n] = T(X[n]+Y[n])

E V E N T N O D E
S I G N A L S

E V E N T S

F R E Q U E N C Y A M P L I T U D E P H A S E

T I M E
1

4 . 5

6

7 . 3

X

Y
Z

