
Best Practices for Open Sound Control

Andrew Schmeder and Adrian Freed and David Wessel
Center for New Music and Audio Technologies (CNMAT), UC Berkeley

1750 Arch Street
Berkeley CA, 94720

USA,
{andy,adrian,wessel}@cnmat.berkeley.edu.edu

Abstract
The structure of the Open Sound Control (OSC)
content format is introduced with historical con-
text. The needs for temporal synchronization and
dynamic range of audio control data are described
in terms of accuracy, precision, bit-depth, bit-rate,
and sampling frequency. Specific details are given
for the case of instrumental gesture control, spa-
tial audio control and synthesis algorithm control.
The consideration of various transport mechanisms
used with OSC is discussed for datagram, serial
and isochronous modes. A summary of design
approaches for describing audio control data is
shown, and the case is argued that multi-layered
information-rich representations that support mul-
tiple strategies for describing semantic structure are
necessary.

Keywords
audio control data, signal quality assurance, best
practices, open sound control

1 Introduction
1.1 Definition
Open Sound Control (OSC) is a digital media
content format for streams of real-time audio
control messages. By audio control we mean
any time-based information related to an audio
stream other than the audio component itself.
This definition also separates control data from
stream meta-data that is essentially not time-
dependent (e.g. [Wright et al., 2000]). Natu-
rally such a format has application outside of
audio technology, and OSC has found use in
domains such as show control and robotics.

1.2 What is Open
It should be noted that OSC is not a standard
as it does not provide any test for certifica-
tion of conformance. The openness of Open
Sound Control is that it has no license require-
ments, does not require patented algorithms or
protected intellectual property, and makes no
strong assertions about how the format is to be
used in applications.

1.3 Format Structure
OSC streams are sequences of frames defined
with respect to a point in time called a timetag.
The frames are called bundles. Inside a bundle
are some number of messages, each of which
represent the state of a sub-stream at the
enclosing reference timetag. The sub-streams
are labelled with a human-readable character
string called an address. In a message, the
address is associated with a vector of primitive
data types that include common 32-bit binary
encodings for integers, real numbers and text
(Figure 1).

Unlike audio data, which is sampled regularly
on a fixed temporal grid, bundles may contain
mixtures of sub-streams that are sampled at dif-
ferent or variable rates. Therefore, the number
of messages appearing in a bundle may vary
depending on what data is being sampled in
that moment.

OSC Bundle

Encapsulated Message(s)

Message #1

NTP Timestamp

Seconds Seconds
Fraction

Length OSC Message

Bundle
Identifier

#bundle

(...)

OSC Message

Address

/foo/bar

Data
Typetags

,ifs

Arguments

1, 3.14, "baz"

OSC Stream

Bundle

Message...

Bundle

(...)

Figure 1: Structure of the OSC content format

1.4 History
OSC was invented in 1997 by Adrian Freed and
Matt Wright at The Center for New Music and

Audio Technologies (CNMAT), where its first
use was to control sound synthesis algorithms
in the CAST system using network messaging
(The CNMAT Additive Synthesizer Toolkit)
[Adrian Freed, 1997]. CAST was implemented
for the SGI Irix platform, which was one of the
first general purpose operating systems to pro-
vide reliable realtime performance to user-space
applications [Freed, 1996] [Cortesi and Thomas,
2001]. This capability was a key influence in
the design of the OSC format in particular with
respect to the inclusion of timestamped bundles
that enable high quality time synchronization
of discrete events distributed over a network.
Following the success of the CAST messaging
system, the protocol was refined and published
online as the OSC 1.0 Specification in 2002
[Wright, 2002].

1.5 Best Practices
Considering OSC as a content format alone does
not account for how it can and should be used
in applications. A larger picture exists around
the needs and requirements of sound control in
general with respect to the signal quality and
description of control data. In the past these
needs have been underestimated by hardware
and software designs, leading to less than ideal
results. Research into the needs of audio control
data are summarized in this paper along with
recommendations for how to best apply OSC
features so that the requirements are satisfied.

1.6 Systems Integration
In the context of the Open System Interconnec-
tion Basic Reference Model (OSI Model), OSC
is classified as a Layer 6 or Presentation Layer
entity.

However in the larger scope of how OSC is
used, other layers are considered as part of the
practice. Related topics and their associated
layer are listed in Table 1.

OSI Layer Topic in OSC Practice

7 Application Semantics, Choreography
6 Presentation OSC Format
5 Session Enumeration, Discovery
4 Transport Latency, Reliability
3 Network Stream Routing
2 Frame Hardware Clocks, Timing
1 Bit Cabling, Wireless, Power

Table 1: OSC related topics in the context of
associated OSI Model layers

2 Temporal Audio Control

2.1 Instrumental Gestures
Musical instrumental gestures are actuations of
a musical instrument by direct human control
(typically by kinetic neuro-muscular actuation).
The transduction of a physical gesture into a
digital representation requires measurement of
the temporal trajectory of all relevant dimen-
sions of the physical system such as spatial
position, applied force, damping and friction.

An assessment of the performable dynamic
range with respect to each physical dimension
is beyond the scope of this document, however,
in a somewhat general way it is possible to
estimate the quantity of temporal information
contained in an isolated sub-stream of a musical
performance.

2.1.1 Temporal Information Rate
It is estimated that the smallest controllable
temporal precision by human kinetic actuation
is 1 millisecond (msec), based on an example of
an instrumental gesture called the flam that is
known to have a very fine temporal structure
[Wessel and Wright, 2002]. This limit of 1msec
coincides with the threshold for just noticable
difference in onset time between two auditory
events.

The flam technique in drumming is a method
of striking the surface of a drum with two
sticks so that the relative arrival time of each
stick modulates the timbre (spectral quality)
of the resulting sound. Because of the very
close temporal proximity of the events, a human
listener perceives them to be a single event
where the spectral centroid of the timbre is
correlated to the temporal fine structure. This
inter-onset time can be reliably controlled by a
trained performer between 1-10 msec.

The flam is an example of an instrumental
gesture with temporal precision of 1 msec.
However the temporal accuracy of instrumental
gestures is at least an order of magnitude larger.
The tolerable latency for performance of music
requiring very tight rhythmic synchronization
between two players has been measured to be
10 msec [Chafe et al., 2004]. Ignoring the
complications of fixed versus variable delays, it
seems reasonable to assume 10 msec as an esti-
mate of temporal accuracy in an instrumental
gesture event. And finally, it is also reasonable
to suppose that trained musicians can perform
event rates up to 10 events per second in a
single sub-stream (polyphonic streams are not

considered here).
The temporal information present in musical

events can be estimated from these numbers.
The information in bits, also called the index
of difficulty in Fitt’s Law, is calculated from
the ratio between effective target distance ρ and
standard error of the effective target width σ:

I = log2

(
1 +

ρ

σ

)
bits (1)

Suppose a musician performs the double-
strike flam at a rate of 10 hz. This is equivalent
to two tasks: 1) placement of events with an
average separation of 100 msec and standard
error of 10 msec, 2) placement of two sub-events
with a separation of 10 msec and error of 1
msec. Assuming the dual-task is repeated at
10 hz then the total information rate is,

I ′ = log2

(
1 +

100
10

)
+log2

(
1 +

10
1

)
bits, (2)

I ′ × 10
sec

= 68
bits
sec

. (3)

This estimate informs us that if the gesture as
described was transformed to a digital represen-
tation without loss of information, the temporal
dimension alone would require 68 bits/sec to
encode.

For sake of comparison the highest reported
information transfer rates for target-selection
with a mouse in the ISO-1941-9 test are around
3 bits/sec [MacKenzie et al., 2001].

A distinguishing feature of the musical con-
text of gesture is that the human performer uses
a combination of extensive training, anticipa-
tions of musical structure, and sensory feedback
to continuously adjust and refine the gesture.
Therefore, musical gestures cannot be directly
compared to reaction-time studies or task-based
assessments as they are used in the study of
human-machine ergonomics. However it is clear
from this example that musical gestures contain
a far greater density of temporal information
than is typical for human-computer interactions
in other contexts.

2.2 Spatial Audio Control
Spatial audio effects such as early reflections
and reverberation are broad-band temporal-
spectral transformations, however the maxi-
mum useful rate at which a spatial audio effect
can be controlled is limited to the sub-audible
frequency band between 0-50 hz. This is due

to the simple fact that if a spatial parameter
is modulated with a high frequency, perceptual
fusion takes place yielding a transformation of
the source in some way other than the intended
outcome. For example a virtual source with
rotating dipole directivity pattern ceases to be
perceived as rotating for frequencies above 10
hz [Schmeder, 2009a]. Similarly if the location
of a virtual source alternates between two po-
sitions at a high rate, the observer perceives a
stationary source with a wider apparent source
width.

However, spatial audio control data requires
very high temporal precision to avoid phase arti-
facts in multi-loudspeaker arrays. AES11-2003
recommends a between-channel synchronization
error of +/- 5% per sample frame [Audio Engi-
neering Society, 2003] [Bouillot and et al, 2009].
An audio signal stream at 96khz requires that
the temporal synchronization error does not
exceed 0.5 microseconds.

The effect of synchronization error in the
control stream for a spatial audio rendering
engine may have an impact on the final repro-
duction quality. For example in a phase-mode
beamforming array ([Rafaely, 2005b]), synchro-
nization inaccuracy is similar to a positioning
error and synchronization jitter is functionally
similar to transducer noise [Rafaely, 2005a].

2.3 Sound Synthesis
In a pure signal processing context audio control
data can be considered as the component of
the signal that is non-stationary. The rep-
resentation of control information is a topic
specific to the design of any given algorithm,
and so it is impossible to state a universal set
of requirements for audio control. It is worth
noting that some audio synthesis algorithms
can have significant bandwidth requirements,
especially the data driven methods such as
sinusoidal additive synthesis and concatenative
synthesis.

3 Temporal Quality Assurance

3.1 Event Synchronization
Assuming clock synchronization is available,
the timetag can be used to schedule events
with fixed delays that account for the network
transport delay in communication between de-
vices. The delays must be known and bounded.
This is called forward synchronization and can
be efficiently implemented with the priority
queue data structure [Schmeder and Freed,

2008] [Brandt and Dannenberg, 1998] (Figure
2).

OSC Bundle
Input x

is x.Timestamp
NOW?

is x.Timestamp
Future?

is x.Timestamp
Past? Fault

Defer

Execute

Figure 2: Forward synchronization scheduling
for presentation of messages

Applications using OSC timestamps for syn-
chronization should make clear in their docu-
mentation what type of clock synchronization is
to be used, if any, as well as limits on tolerable
network delay.

3.2 Effect of Jitter
Jitter is randomness in time. This may be
found in the transport delay, or in the clock
synchronization error. Unless it is removed, the
effect of jitter on a signal is to corrupt it with
noise. The noise is temporal so its magnitude
depends on the rate of change of the signal,
or its frequency content. Even for relatively
low-rate gesture signals, jitter noise can play
a significant role. In Figure 3 we see that a
2 msec jitter causes a significant reduction in
the channel headroom. The fact that temporal
jitter has a strong influence on signal quality is
well known in the audio engineering community
where a typical sampling converter operating at
96khz requires a clock with jitter measured in
the picosecond range.

Figure 3: Effective channel headroom after
jitter induced noise on a 10hz carrier signal

In Figure 4 we see what combinations of jitter
and carrier frequency will degrade a gesture
stream with 8-bit dynamic range.

0.01 msec 0.1 msec 1. msec 2. msec 4. msec
0.5 Hz 100.806 80.942 60.5853 54.4588 48.2834
1. Hz 89.4672 69.2973 49.5129 42.7719 37.1899
2 Hz 83.5256 64.1865 44.4936 37.811 32.166
4 Hz 77.8606 58.3905 38.2024 32.4498 25.4497
8 Hz 72.3401 52.0053 31.2989 25.7653 20.1786
16 Hz 66.1133 45.8497 25.8291 19.7408 14.3312
32 Hz 60.2471 39.6844 19.7202 13.546 8.26448
64 Hz 53.9285 33.8882 13.9203 7.90135 1.7457

Figure 4: Signal headroom as a function of
carrier frequency and standard deviation of
delay error. BOLD where effective headroom is
less than 8-bits dynamic range (8-bits = 48db).

3.3 Jitter Attenuation
From a simple inspection of the table shown,
it is apparent that in order to transmit without
loss of information an instrumental gesture data
stream with frequency content up to 10 hz and
8-bit dynamic range the jitter must be less than
1/10th of a millisecond. Greater dynamic range
requires proportionally less jitter where an error
reduction by 50% improves dynamic range by 6
dB or 1-bit. To transmit a 10 hz signal with
16-bit dynamic range requires jitter to be less
than .5 microseconds.

On contemporary consumer operating sys-
tems typical random delays of 1-10 milliseconds
between hardware and software interrupts are
unacceptably large [Wright et al., 2004], and
this source of temporal noise ultimately inhibits
the information transmission-rates for real-time
control streams. If the data is isochronously
sampled it is possible to use filters to smooth
jitter [Adriensen and Space, 2005]. However
this is not a typical expectation in audio con-
trol so something else must be done. If the
clock synchronization error is smaller than the
transport jitter (which is often the case) and the
data stream uses timestamps, then it is possible
to use forward synchronization to remove jitter
from a control signal (shown in Figure 5).

This operation trades lower jitter for a longer
fixed delay. Provided that total delays after
rescheduling are less than 10 msec, a satisfac-
tory music performance experience is possible.

3.4 Atomicity
Within each bundle exists a point-in-time sam-
ple of a collection of sub-stream messages. The
scope over which the data is valid is defined both

Figure 5: Typical transport jitter of 1-5 msec
and its recovery by forward synchronization

with respect to the message addresses as well as
some temporal window at the reference timetag.

In implementation practice for application
design, message data needs to double-buffered
or queued in a FIFO that is updated according
to the associated timetag. This prevents unin-
tended temporal skew between sub-streams.

4 Transport Considerations

A common transport protocol used with the
OSC format is UDP/IP, but OSC can be encap-
sulated in any digital communication protocol.
The specific features of each transport can affect
the quality and availability of stream data at the
application layer.

4.1 Datagram Transports
A datagram transport (UDP being a canonical
example) is a non-assured transport. Each
packet is either delivered in its entirety or not
delivered at all. Packets may be out of order, in
which case OSC bundle timestamps can be used
to recover the correct order. Datagram trans-
ports provide a natural encapsulation boundary
for each packet. In the case of UDP if the packet
exceeds the maximum transmission unit (MTU)
the packet may be fragmented over multiple
pieces. The fragmentation can introduce extra
delay as the UDP/IP stack must then reassem-
ble the pieces before delivering the packet to an
application.

4.2 Serial Stream Transport
Serial transports (TCP/IP being an example)
provide a continuous data stream between end-
points. The OSC content format does not define
a means for representing the beginning and end
of a packet. In particular the OSC bundle can

contain any number of encapsulated messages
and there is no way for a parser to determine the
total number until the end of packet is reached.
Therefore the major need for sending OSC on
a serial transport is that the packets must be
encoded with some extra data to indicate where
the packet boundaries are, called a framing
protocol.

Two options have been proposed for packet
framing on serial links. The idea proposed in
the OSC 1.0 specification is an integer length-
count prefixed on the start of each packet that
indicates how many bytes to expect. This en-
coding requires a totally assured transport such
as TCP/IP or USB-Serial. A serial transport
with possible errors (such as RS232) will be
broken if there is any error in the encoded
length.

The SLIP method for framing packets (RFC
1055 [Romkey, 1988]) is an alternative that
is robust to transmission errors and stream
interruption. In general it is preferred over the
former for its simple error recovery.

Assured transports must be used for any mis-
sion critical application of OSC and generally
this means TCP/IP or something with a similar
feature set is needed.

4.3 Isochronous Stream Transport
Isochronous protocols have guaranteed band-
width, in-order delivery of data, but are not
assured (no retries are made on failure). They
may or may not provide natural packet bound-
aries.

Ethernet AVB and the isochronous modes of
USB and Firewire are examples of this transport
type. Ethernet AVB has additional features
in that it also provides a network clock for
synchronization and its own timestamp for syn-
chronization of events with total latency as low
as 2 msec and synchronization error of less than
0.5 microseconds. Class A streams in the AVB
framework are unique among all the transports
discussed here in that they are guaranteed to
meet or exceed all synchronization and latency
requirements needed for audio control data as
described in this paper [Marner, 2009].

4.4 File Streams and Databases
For the archival recording and recall of audio
control data streams, file systems and databases
can be treated as serial stream transports with
high block-based jitter in the retrieval phase.
By considering a file to be a type of serial
stream, OSC can use the same framing protocol

for serial stream encoding as a file format.
Again the SLIP method is recommended, and
it error recovery features enable robustness
against file corruption and truncation.

When a recorded stream of OSC messages is
replayed, the original timestamps are rewritten
according to a simple linear transformation,
and can then be reconstructed temporally using
the forward synchronization scheduler. The
rewriting of timestamps does not require rel-
ative time encodings. Since relative time can
always be extracted from absolute time but
not the converse, recording of OSC streams for
archival purposes should always use absolute
time values.

OSCOSC Stream DB

Real-time Interface

Application

Read
Stream

Write
Stream

Commands
Interface

#bundle
to record

#bundle
query results

Forward
Synchronization

Scheduler

Real-time Gesture
Streams

Informational
Access Control

/play
/filter
/index

Figure 6: Multi-stream recording and playback
interface to a database

A multi-stream approach for interfacing OSC
streams to a database and efficient queries over
the recorded data is demonstrated in the OSC-
StreamDB project [Schmeder, 2009b] (Figure
6).

4.5 Bandwidth Constrained Transports
When bandwidth constrained transports are
required such as wireless radios, OSC may be
modified with some effort to enable lower bit-
rates. Depending on the nature of the data
stream, adaptive sampling dependent on the
information-rate can be used to reduce the
number of messages on the network. Interpo-
lation between frames can be used to recover a
smooth control signal in reconstruction. This
is likely to work well for instrumental gesture
data as the actual effective number of new bits
of information per second is relatively low.

Another major source of bit-sparsity in OSC
streams is the message address field. Because
it is typically a human-readable string, and
English text has a bit rate of 1-1.5 bits per
character, about 80% of the bits are redundant.
A dictionary-type compression scheme could
be used to compress the address strings if

necessary.

4.6 Network Topology and Routing
The OSC 1.0 Specification included some lan-
guage regarding OSC client and server end-
points. In fact this distinction is not necessary
and OSC may be used on unidirectional trans-
ports, and more complex network topologies in-
cluding multicast, broadcast and peer-to-peer.
The OSCgroups project provides a method for
achieving multicast routing and automatic NAT
traversal on the internet [Bencina, 2009].

A shortcoming of many current OSC imple-
mentations using UDP/IP is missing support
for bidirectional messaging. As a best practice
implementations should try to leverage as much
information as the transport layer can provide,
as this makes more simple the task of configu-
ration of the endpoint addresses in applications
as well as stateful inspection at lower layers.

5 Describing Control Data

The address field in an OSC message is where
descriptive information is placed to identify the
semantics of the message data. The set of
all possible addresses within an application is
called an address space.

5.1 Descriptive Styles
Existing OSC practice includes a wide variety of
strategies for structuring address spaces. Here
we intend to clarify the differences between
the styles rather than to promote any par-
ticular method as preferred. Four common
styles have emerged over decades of software
engineering practice: RPC, REST, OOP and
RDF. Examples of OSC messages in each style
accomplishing the same task (setting the gain
on a channel) are given here.
5.1.1 RPC
The RPC (Remote Procedure Call) style em-
ployes functional enumeration, and lends itself
to small address spaces of fixed functions:
/setgain (channel number = 3) (gain value = x)

5.1.2 REST
The REST (Representational State Transfer)
style encourages state-machine free represen-
tations by transmitting the entire state of an
entity in each transaction. Web application pro-
grammers are familiar with this style wherein
every time a page is loaded, the application has
two phases: setup (recreating the entire applica-
tion state from the transferred representation)

and teardown (throwing it all away). The state-
free property is what enables web-browsers to
always pages outside the context of a browsing
session by recalling a bookmark.

OSC address spaces using the REST style of
resource enumeration have a familiar appear-
ance since it is the most common style used in
the construction of hyperlink addresses on the
web.

/channel/3/gain (x)

5.1.3 OOP
The OOP (Object Oriented Programming) style
is based on an intuitive concept of objects that
are self-contained entities containing both at-
tributes and specialized functions called meth-
ods that are procedures transforming their own
attributes.

/channel/3@gain (x)
/channel/3/setgain (x)

OOP enables abstraction and layering in large
systems. It may also need notations beyond the
basic ’/’ delimiter used in path-style addresses
since the OOP structure requires differentiation
of the object, attribute and method entity
types. In the above example we have used
’@’ following the XPath notation to indicate an
attribute. In Jamoma a ’:’ character is used to
similar effect [Place et al., 2008].
5.1.4 RDF
The RDF (Resource Description Framework)
style employs ontological tagging to describe
data with arbitrarily complex grammars. This
style of control is the most powerful of the
alternatives shown here, however its use also
requires greater verbosity since it makes no
semantic assumptions about the data structure.

The interpretation of the delimiter ’/’ in OSC
as a hierarchical containment operator as it
implies in the REST and OOP paradigms is
not used in this style. Instead it is interpreted
as an unordered delimiter between tags, and
each tag is a comma-separated triple of subject,
predicate, and object entities.

/channel,num,3
/op,is,set
/lvalue,is,gain
/rvalue,units,dB (x)

5.2 Leveraging Pattern Matching
In OSC there a type of query operator called
address pattern matching. Similar to the use of
wildcard operators in command-line file system

operations, patterns enable one-to-many map-
pings between patterns and groups of messages.
However this technique is only useful if the
target messages have a structure that enables
the provided pattern syntax to make useful
groupings. This structure is usually present
when the address space follows the REST design
paradigm. Designers of address spaces for
applications should consider how the resulting
addresses might make use of grouped-control by
patterns.
/channel/*/gain (common gain value x)

Some effort is needed to retain efficiency of
query operators in very large address spaces.
This is possible using database structures such
as the RDTree [Schmeder, 2009b].

5.3 Problems with Stateful Encodings
A stateful encoding of a control data stream
is one where the meaning of a message has
some dependence on a previously transmitted
message. The interpretation of the message by
the receiver requires some memory of previously
received messages in addition to the necessary
logic to correctly fuse the information. This
logic is typically a finite state machine, although
in general it can be more complex.

Suppose that there is a switch, called
/button, with two possible states, off or
on, represented by the numbers 0 and 1
respectively. A designer wishing to conserve
network bandwidth decides only to transmit
a message when the switch changes from one
state to the other and so sends the number +1
to indicate a transition from 0 to 1 and the
number -1 to indicate a transition from 1 to 0.

0 1

+1

-1

Figure 7: Finite state machine for parsing the
transitions between a two states

The following is a valid sequence of messages
that can be verified at by a receiver using the
finite state machine shown in Figure 7.
/button +1
/button -1
/button +1
/button -1

A potential problem with this representation
is that it is not robust to any errors in the

transmission of the data. Suppose that a
message is lost due to the use of a non-assured
transport such as UDP/IP, the sequence is then:
/button +1
/button +1
/button -1

In this example it is possible to make a
more complex state machine that is capable of
of recovering from the missing data, but we
can immediately see that the complexity of the
program has doubled (Figure 8).

0 1

+1

-1

+1-1

Figure 8: Finite state machine for parsing the
transitions between a two states with error
recovery logic

An alternative solution eliminates the need
for a parsing engine entirely, by simply trans-
ferring the entire state of the switch in every
message.
/button 0
/button 0
/button 0
/button 1
/button 1
/button 0
...

Furthermore, if these messages are contin-
uously transmitted even when the state does
not change, then the receiver needs to make no
special effort to recover from a missed message.
While this example is contrived to the point of
being trivial, it does demonstrate that stateful
encodings require more complex programs es-
pecially in the case of error handling. On mod-
ern network transports with typical bandwidth
capacity of 1Gbits/sec, the simplicity of state-
free representations is often more valuable than
saving network bandwidth.

5.4 Layering Control Data
Between the source user action performed on a
human input device to the high level application
control stream, there are several intermediate
layers of representation [Follmer et al., 2009]
(Figure 9). The OSC format can be used at
every layer where a digital representation of
the data stream is present. Even though such
streams may ultimately be not used in high
level abstractions it is useful to retain the OSC
address labels at each step.

Physical
Materials

Electronic
Sensing

Signal
Processing

Mapping
Transforms

Device
Abstraction

User Action

A

A A

A
A
u

v

s

t

f f

+

-

Figure 9: Intermediate layers of representation
between user interface controller and an appli-
cation

5.4.1 Complications of Mapping
The use of transformational mapping of gesture
data is an important aspect in the design of
interactive musical systems [Hunt et al., 2003].
In many cases useful mapping transformations
carry out some type of information fusion that
is a non-linear transformation of the data. How-
ever non-linear transformations require extra
attention because they transform uniform noise
into a non-uniform noise with a complicated
spatial structure. It is possible to design adap-
tive filters that are optimal for a non-linear
transformation, however this requires a more
complex processing graph than what is shown
in Figure 9.

Consider the non-linear transformation func-
tion,

f(x, y) =
x − y

x + y
. (4)

If x and y are corrupted with any noise (which
is inevitable) then the transformed variable
f(x, y) will greatly amplify that noise when x
and y approach zero. This is evident from
the fact that its derivative is unbounded as
(x, y) → (0, 0).

∂x,yf(x, y) = − x − y

(x + y)2
± 1

x + y
(5)

Therefore thresholding (outlier rejection) and
noise filtering must take place after the map-
ping transform, even though they are ostensibly
signal processing layer operations (see Figure
10). In other words, the layer model of Figure
9 is not entirely correct as the layers are not
strictly ordered. To enable out-of-order process-

ing across layers, designers should retain ver-
sions of data streams before and after mapping
transformations under different address labels.

Raw Sensor
Data

Nonlinear
Function

Noise
Filtering

Outlier
Rejection

Signal
Processing

Mapping
Transforms

Electronic
Sensing

Figure 10: Cross-layer dependencies exist in the
processing chain for input control data.

6 Conclusion

Here we present a brief summary of each point
made in the document.

6.1 Transport and Synchronization
6.1.1 Instrumental Gesture Control
For data streams from measurement of human
kinetic gestures, the temporal synchronization
error should be not more than .1 milliseconds to
ensure lossless transmission of periodic signals
up to 10 hz with 8 bit dynamic range, with
each extra bit of dynamic range requiring half
the temporal error (50 usec for 9 bits, 25 usec
for 10 bits, etc.). To resolve events with 1
msec relative temporal precision the sampling
frequency of measurement should be 2000 hz.
6.1.2 Spatial Audio Control
The transport should be capable of updating
the spatial audio parameters at rates of 100hz
in order to resolve the full range of perceivable
spatial effects that may extend up to 50 hz.

For spatial audio control data used in beam-
forming or wavefield synthesis rendering, fol-
lowing the AES recommended limits the syn-
chronization error should be less than 5% of
a sample frame for the highest controlled fre-
quency. For example control over coefficients in
a phase-mode beamforming array operating up
to 10 khz requires a synchronization accuracy
of 5 microseconds.
6.1.3 Digital Audio Synthesis Control
For audio synthesis algorithms in general the
needs of control data are dependent on the
nature of the algorithm and may vary widely
depending on the level of detail and control

bandwidth. Except for perhaps the most eso-
teric applications, a 0.5 microsecond temporal
precision is sufficient for control of any audio
synthesis algorithm.
6.1.4 Atomicity
In all cases careful use of double-buffering, lock-
free queues and local memory-barrier opera-
tions should be used to ensure a best-effort
is made for minimizing the synchronization
skew between bundle-encapsulated sub-stream
messages.
6.1.5 Latency and Jitter
The latency and jitter of secondary software
interrupts typical of for human-input device
streams are detrimental to the quality of control
data. Bounded latency and minimal jitter
should be ensured for audio control data.

6.2 Control Meta-data
6.2.1 Interface Design Patterns
Many styles of meta-data description are
possible including procedural (RPC), resource-
oriented (REST), object-oriented (OOP) and
ontology-oriented (RDF). Application designers
should feel free to choose the most appropriate
style, however designers creating generic tools
for OSC processing should support as many
styles as possible.
6.2.2 Stateful Representation
When stateful representations of control data
streams are used (with care), then assured
transports should also be employed to reduce
software errors that may be triggered by trans-
mission errors.
6.2.3 Multi-Layered Representation
Retaining data stream representations at mul-
tiple levels of abstraction is useful as some
operations on control data streams cannot be
performed in a strictly sequential order. The
general process structure for transformation of
control data is a directed graph.

7 Acknowledgements

We are grateful to Meyer Sound Laboratories
Inc. of Berkeley CA for financial support of
this work. The anonymous reviewers provided
helpful suggestions to improve this document.
The users of OSC in the community includ-
ing computer music application designers and
researchers have played an important role in
bringing to light important issues related to
audio control.

References
Matthew Wright Adrian Freed. 1997. CAST:
CNMAT Additive Synthesis Tools. http://
archive.cnmat.berkeley.edu/CAST/.

Fons Adriensen and A Space. 2005. Using
a DLL to Filter Time. In Proceedings of the
Linux Audio Conference.

Audio Engineering Society. 2003. AES
Recommended Practice for Digital Audio
Engineering - Synchronization of Digital
Audio Equipment in Studio Operations.
Technical Report 11, AES.

Ross Bencina. 2009. OSCgroups.
http://www.audiomulch.com/~rossb/
code/oscgroups/.

Nicolas Bouillot and et al. 2009. AES White
Paper: Best Practices in Network Audio,
volume 57 of JAES. AES.

Eli Brandt and Roger Dannenberg. 1998.
Time in Distributed Real-Time Systems. In
Proceedings of the ICMC, pages 523–526, San
Francisco, CA.

Chris Chafe, Michael Gurevich, Grace Leslie,
and Sean Tyan. 2004. Effect of time delay
on ensemble accuracy. In In Proceedings
of the International Symposium on Musical
Acoustics.

David Cortesi and Susan Thomas. 2001.
REACT™ Real-Time Programmer’s Guide.
Number Document Number 007-2499-011.
Silicon Graphics, Inc.

Sean Follmer, Björn Hartmann, and Pat
Hanrahan. 2009. Input Devices are like
Onions: A Layered Framework for Guiding
Device Designers. In Workshop of CHI.

Adrian Freed. 1996. Audio I/O Programming
on SGI Irix. http://cnmat.berkeley.edu/
node/8775.

Andy Hunt, Marcelo M. Wanderley, and
Matthew Paradis. 2003. The Importance of
Parameter Mapping in Electronic Instrument
Design. Journal of New Music Research,
32(4):429–440, December.

I. Scott MacKenzie, Tatu Kauppinen, and
Miika Silfverberg. 2001. Accuracy measures
for evaluating computer pointing devices.
In CHI ’01: Proceedings of the SIGCHI
conference on Human factors in computing
systems, pages 9–16, New York, NY, USA.
ACM.

Geoffrey M Marner. 2009. Time Stamp Ac-
curacy needed by IEEE 802.1AS. Technical
report, IEEE 802.1 AVB TG.

Timothy Place, Trond Lossius, Alexander
Jensenius, Nils Peters, and Pascal Baltazar.
2008. Addressing Classes by Differentiating
Values and Properties in OSC. In NIME.

B. Rafaely. 2005a. Analysis and design
of spherical microphone arrays. Speech and
Audio Processing, IEEE Transactions on,
13(1):135–143, Jan.

B. Rafaely. 2005b. Phase-mode versus
delay-and-sum spherical microphone array
processing. Signal Processing Letters, IEEE,
12(10):713–716, Oct.

J. Romkey. 1988. RFC1055 - Nonstandard for
transmission of IP datagrams over seria lines:
SLIP. Technical report, IETF.

Andy Schmeder and Adrian Freed. 2008.
Implementation and Applications of Open
Sound Control Timestamps. In Proceedings
of the ICMC, pages 655–658, Belfast, UK.
ICMA.

Andrew Schmeder. 2009a. An Exploration
of Design Parameters for Human-Interactive
Systems with Compact Spherical Loud-
speaker Arrays. In Ambisonics Symposium.

Andrew Schmeder. 2009b. Efficient Gesture
Storage and Retrieval for Multiple Applica-
tions using a Relational Data Model of Open
Sound Control. In Proceedings of the ICMC.

David Wessel and Matthew Wright. 2002.
Problems and Prospects for Intimate Musical
Control of Computers. Computer Music
Journal, 26:11–22.

Matthew Wright, Amar Chaudhary, Adrian
Freed, Sami Khoury, David Wessel, and Ali
Momeni. 2000. An xml-based sdif stream
relationships language. In International
Computer Music Conference, pages 186–189,
Berlin, Germany. International Computer
Music Association.

Matthew Wright, Ryan Cassidy, and Michael
Zbyszynski. 2004. Audio and Gesture
Latency Measurements on Linux and OSX.
In Proceedings of the ICMC, pages 423–429.

Matthew Wright. 2002. Open Sound
Control 1.0 Specification. http:
//opensoundcontrol.org/spec-1_0.

