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ABSTRACT
OpenSound Control (“OSC”) is a protocol for communication
among computers, sound synthesizers, and other multimedia
devices that is optimized for modern networking technology.
OSC has achieved wide use in the field of computer-based new
interfaces for musical expression for wide-area and local-area
networked distributed music systems, inter-process
communication, and even within a single application.
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1. TUTORIAL OVERVIEW of OSC
This is a user-level overview of OSC. For more technical

details such as exact semantics and the binary format of OSC
messages, please see the OSC specification [33].

1.1 Client/Server
OSC is designed to support a client/server architecture.

OSC data is transmitted in data units called packets. Anything
that sends OSC packets (e.g., an application, physical device,
subprogram, etc.) is a client and anything that receives OSC
packets is a server.

OSC is a transport-independent, high-level application
protocol; in other words, OSC does not specify what low-level
networking mechanism will be used to move OSC packets from
the client to the server.

1.2 Messages
The basic unit of OSC data is a message, consisting of an

address pattern, a type tag string, and arguments. The
address pattern is a string that specifies the entity or entities
within the OSC server to which the message is directed (within
the “Addressing Scheme” described below) as well as what
kind of message it is. The type tag string gives the data type of
each argument. The arguments are the data contained in the
message.

For example, a message’s address pattern might be
/voice/3/freq, its type string might indicate that there is a
single floating-point argument, and the argument might be
261.62558.

1.3 Argument Data Types
Each message contains a sequence of zero or more

arguments. The official OSC data types are ASCII strings, 32-
bit floating point and integer numbers, and “blobs,” chunks of
arbitrary binary data. OSC’s type mechanism allows for many
other types, including 64-bit numbers, RGBA color, “True,”
and “False.” Only a few implementations support these other
types, but they all represent them in a standard way.

1.4 Addressing Scheme
All of the points of control of an OSC server are organized

into a tree-structured hierarchy called the server’s address
space. Each node of the address space has a symbolic name and
is a potential destination for OSC messages.

Each OSC server defines its own address space according to
the features it provides and the implementor’s idea of how
these features should be organized. This is in contrast to
protocols such as ZIPI [22] and MIDI that attempt to define in
advance what the architecture of a synthesizer should be and
what kinds of messages can be sent to it.

An OSC address is simply the full path from the root of the
address space tree to a particular node, with a slash-delimited
format like a URL or file system pathname. For example, the
address “/voices/3/freq” refers to a node named “freq” that is a
child of a node named “3” that is a child of a top-level node
named “voices.”

An OSC server’s address space may change dynamically,
therefore OSC’s query system (described below) includes a
mechanism for discovering the current address space.

1.5 Address Pattern Matching
Remember that each OSC message contains an OSC address

pattern, not an OSC address. An OSC address pattern is
exactly like an OSC address, except that it may contain special
characters for regular expression [10] pattern matching. When
an message’s address pattern matches more than one of the
addresses in the server’s address space, the effect is the same as
if there were individual messages (all with the same
arguments) sent to each of the matched addresses.

The special characters are ‘?’, ‘*’, a string of characters
inside ‘[brackets]’, and a comma-delimited list of strings
inside ‘{curly,braces}’. They work like Unix shell filename
globbing.

1.6 Bundles and Temporal Atomicity
A bundle is a sequence of messages and/or bundles. This

recursive definition allows for arbitrary nesting of sub-
bundles. All of the messages in the same bundle must be
processed by the OSC server atomically; in other words i t
should be as if all of the messages in the bundle are processed
in a single instant. An OSC packet may be a bundle or a
(single) message.

1.7 Time Tags
Each bundle has a time tag that specifies the desired

absolute time at which the messages in the bundle should take
effect. The format is that used by the Internet Network Time
Protocol [23] and provides sub-nanosecond accuracy over a
range of over 100 years. OSC currently relies on an outside
mechanism to synchronize clocks on different machines to the
same absolute time, for example, NTP [23] or SNTP [24].
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1.8 Queries
Queries are OSC messages that request the server to send

information back to the client. Example queries include “what
is the current list of nodes under this given node?”, “what
argument types are expected for messages sent to this given
node?”, “what is the value of the parameter that can be set by
sending messages to this node?”, and “please send me some
documentation for the object or feature specified by this
address.”

2. IMPLEMENTATIONS OF OSC
CNMAT created OSC and maintains a web site,

downloadable code, and developers’ email list. As the public
face of OSC we often hear about other people’s use of OSC;
this section lists the implementations and uses of OSC of
which we are aware. Since the standard is open and our code is
freely downloadable, we assume that there are other
implementations of which we are not aware; we look forward to
hearing about them. No doubt some of the details described in
this section will be obsolete by the time this paper goes to
press, especially, we hope, some of the limitations of certain
systems.

All of the implementations mentioned in this section are
linked from the main OSC home page at CNMAT
(http://www.cnmat.berkeley.edu/OSC).

2.1 CNMAT’s Open-Source OSC Software
All of the software mentioned in this section is available for

download from CNMAT (http://www.cnmat.berkeley.edu/OSC).

When we introduced OSC in 1997, we released OSC-client.c,
a C library for constructing OSC packets through a procedure
call interface. There is nothing more to implementing an OSC
client than constructing proper OSC packets and sending them
over the network.

We also released a pair of text-based Unix command-line
utilities: sendOSC allows the user to type in message
addresses and arguments via a no-frills text interface, and
formats and sends these messages via UDP to the desired IP
address and port number; dumpOSC listens for OSC messages
on a given UDP port and prints them out in a simple ASCII
format.

As part of CNMAT’s early efforts to promote OSC, we
released the OSC Kit [32] in source code form in 1998. Our
reasoning was that although the community as a whole was in
favor of OSC and its features (as they had been of ZIPI), people
would be reluctant to implement OSC (as they had been of
ZIPI) unless we did a lot of the work for them (which we did
not do for ZIPI). Thus, the OSC Kit implements most of the
features needed for an OSC server: (dynamic) construction of
an address space, parsing OSC packets, pattern-matching
address patterns within the address space, associating a user-
defined callback procedure with each node of the address space
and invoking that procedure in response to messages sent to
that node, and even a scheduler for implementing time tags.
The OSC Kit is completely neutral to architecture and
operating system and was designed not to degrade reactive
real-time performance.

2.2 Music Programming Environments
All of the current OSC implementations known to the

authors send and receive OSC packets only as UDP packets.

2.2.1 Max/MSP
     The first programming environment to implement OSC was
Max/MSP [28, 36], in the form of Max “externals” written by
Matt Wright. The OpenSoundControl external translates in
both directions between native Max data lists and OSC-

formatted binary data. The otudp external (as well as the now-
obsolete udp external) sends and receives arbitrary UDP
packets and can be used in conjunction with the
OpenSoundControl object. These are implemented as separate
objects to allow for transmission of OSC packets other than by
UDP packets and to allow for transmission of UDP packets
other than OSC packets. Finally, the OSC-route external
enables the parsing of OSC address patterns by Max
programmers and implements OSC’s pattern matching features.
All of these objects have been ported to the OSX version of
Max/MSP.

The Max/MSP implementation has full support for sending
and receiving messages and bundles, but there is currently no
integration between OSC time tags and Max’s scheduler and
no support for queries. There is backwards-compatible
support for both sending and receiving non-type-tagged
messages. Temporal atomicity of bundles is handled by the
fact that OpenSoundControl outputs a “bang” after outputting
all of the messages in a bundle; it is the responsibility of the
Max/MSP programmer to ensure that all of the messages take
effect atomically when the “bang” is output.

2.2.2 SuperCollider
James McCartney added OSC support to the object-oriented

SuperCollider (“SC”) language and environment [21] in 1998.
The OSCNode object represents a node of the OSC address
space and contains a symbolic name, a list of the children of
the node, and a function to be called when the node receives a
message. The OSCOutPort and OSCInPort objects represent
UDP ports that can send or receive (respectively) OSC packets.
Every OSCInPort has an OSCNode that is the root of the
address space associated with that port.

There is a large sub-tree of OSC messages that can be sent to
the SC environment itself, including “run the main patch,”
“stop synthesis,” “play this sound file from the local disk,”
and even “compile and execute the code in the string argument
to this message.” There is also an OSC representation for all of
the important MIDI messages (note on/off, continuous
controllers, pitch bend, program change, channel and key
pressure, and all-notes-off); when SC receives one of these
OSC messages it’s exactly as if SC had received the
corresponding MIDI message via MIDI input.

Version 3 of SC, only for OSX, has a completely new
architecture and is called SuperCollider Server. In this
version, the synthesis engine is a separate application from the
SC language and programming environment; the two
communicate exclusively with OSC messages via UDP or TCP.
This allows the SC synthesis engine to be controlled by
applications other than the SC language.

2.2.3 Open Sound World
Open Sound World (OSW) [5] is a scalable, extensible

object-oriented language that allows sound designers and
musicians to process sound in response to expressive real-
time control. OSW has the same graphical dataflow model and
nested subpatch structure as the Max family of languages; one
important difference is that every OSW object has a symbolic
name. Thus, the objects in an OSW patch automatically form
an OSC-style hierarchical address space and can thus easily be
addressed with OSC messages; the OSW kernel handles this
automatically. OSW also provides an object called OSCListen
that can be used to process incoming OSC messages manually;
this allows OSW programmers to construct an OSC address
space that does not necessarily reflect the tree structure of the
OSW program that is the OSC server.

OSW has the best support of OSC queries of any
implementation known to the authors, thanks in large part to
recent work by Andy Schmeder at CNMAT. The dynamic

http://www.cnmat.berkeley.edu/OSC
http://www.cnmat.berkeley.edu/OSC
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address space of an OSW program can be discovered by a
querying client. Any message that can be understood by any of
the objects in an OSW patch can be sent to that object via OSC.
An OSC client can get the current value of any variable of any
OSW object.

OSW fully supports type tags. There is currently no
connection between OSC time tags and OSW’s notion of the
current time. A careful programmer can use OSW’s
“synchronous outlets” mechanism to ensure that all elements
within a bundle will be processed atomically.

2.2.4 Pd
OSC support in the P d programming language and

environment [29] is in the form of third-party objects. The
sendOSC and dumpOSC objects are for sending and receiving
OSC packets and are derived from CNMAT’s text-based Unix
command-line utilities of the same name.

The sendOSC object must be set to write to a given IP
address and UDP port. Then it translates Pd lists to properly-
formatted OSC messages and sends them. There is also
support for creating bundles, but not for specifying bundles’
time tags.

The dumpOSC object creates a UDP socket, parses incoming
OSC packets on that port, converts each OSC message to a Pd
list, and outputs the lists sequentially. Time tags are ignored.
There is no mechanism to assist with temporal atomicity of
bundles; in fact, no representation of the bundle structure of
incoming OSC packets is available to the Pd programmer-
—consecutive lists output by dumpOSC might be from the
same bundle or from different OSC packets entirely.

The rou teOSC object is derived from and practically
identical to the Max/MSP OSC-route object; it supports the
parsing of address patterns with pattern matching.

Pd does not currently support queries.

2.2.5 Virtual Sound Server
NCSA’s Virtual Sound Server (“VSS”) [2] is an environment

for real-time interactive sound synthesis; it is designed to be
used in conjunction with graphics rendering software and
includes mechanisms for synchronization of its audio with
other applications’ video. VSS can be controlled with a
limited form of OSC utilizing a flat address space. Type tag
strings, pattern matching, bundles, time tags and queries are
not supported.

2.2.6 Csound
Csound support for OSC currently exists only as part of the

“unofficial” release (http://web.tiscali.it/mupuxeddu/csound).
This implementation is based on the OSC Kit and allows users
to define Csound orchestras that can be controlled by OSC.
The Csound programmer can name elements of the OSC
address space, but the overall tree structure of the OSC address
space is constrained by the fact that all Csound instruments
are at the same level in a flat namespace. A procedure called at
the K-rate checks for and processes newly-received OSC
messages.

2.3 Software Synthesizers
Grainwave [3] is a software granular synthesizer with very

limited OSC support. It accepts MIDI messages formatted as
OSC messages; the use of OSC is solely as a mechanism to
transmit MIDI-style data over the Internet.

Native Instruments’ Reaktor (www.native-instruments.com)
is a general-purpose environment for building software
synthesizers. Reaktor’s OSC support in version 3 is similar to
Grainwave’s, essentially just MIDI over the Internet, but

version 4, currently still in beta, is said to have much more
integrated OSC support.

2.4 General Purpose Programming
Languages

All of the implementations described in this section are
available in source code form via CNMAT’s OSC home page.

Chandrasekhar Ramakrishnan has implemented Java classes
that can create OSC packets via a procedural interface and send
them in UDP packets [30]. It supports type tags but not time
tags. Future plans include the ability to receive OSC.

C. Ramakrishnan has also built an Objective-C wrapper
around OSC-Client.c, designed primarily to allow Cocoa
applications to send OSC messages.

There is an implementation of OSC in Perl
(http://barely.a.live.fm/pd/OSC/perl). The sending half i s
implemented by a Perl wrapper around the sendOSC program
that was created automatically with the S W I G interface
compiler (http://www.swig.org). The receiving half is a port of
the dumpOSC program to Perl; it provides a function called
ParseOSC that takes in a binary OSC packet (such as data
received via Perl’s built-in UDP implementation) and returns
the address and arguments of an OSC message.

There are two OSC implementations for Python;
unfortunately both are Python source files with the name
“OSC.py”. Daniel Holth’s and Clinton McChesney’s pyOSC,
p a r t o f t h e P r o c t o L o g i c project
(ht tp: / /galatea.s te tson.edu/~ProctoLogic) , t ranslates
bidirectionally between the binary OSC format and Python
data types. Bundles are read correctly but cannot be
constructed. It also includes a CallbackManager that allows a
Python programmer to associate Python callbacks with OSC
addresses and then dispatches incoming OSC messages.
Unfortunately pattern matching is not yet implemented.
ProctoLogic is covered by the LGPL.

Stefan Kersten’s OSC.py is a Python module for OSC clients
(http://user.cs.tu-berlin.de/~kerstens/pub/OSC.py). It can
construct arbitrary OSC packets and send them in UDP packets,
and can even produce OSC time tags based on Python’s built-
in time procedures.

Smalltalk also has two implementations of OSC. VWOSC
(http://www.mat.ucsb.edu/~c.ramakr/illposed/vwosc.html) was
written by C. Ramakrishnan and Stephen Pope and currently
only send OSC. The Siren Music and Sound Package for
Squeak Smalltalk (http://www.create.ucsb.edu/Siren) includes
an experimental OSC implementation.

2.5 Web Graphics Systems
Macromedia’s Flash displays web application front-ends,

interactive web site user interfaces, and short-form to long-
form animation. It contains a scripting language called
ActionScript that has good support for manipulating XML
documents as well as a mechanism for sending and receiving
streamed XML documents via a TCP/IP socket. Ben Chun has
defined an XML document type to represent OSC packets in
XML and created a bidirectional gateway between Flash and
OSC with a program called flosc [6] that translates between
OSC packets over UDP and XML documents over TCP.

As a multimedia authoring tool designed to create rich
interactive content for both fixed media and the Internet,
Macromedia’s Director can incorporate photo-quality images,
full-screen or long-form digital video, sounds, animation, 3D
models, text, hypertext, bitmaps, and Macromedia Flash
content. Garry Kling at UCSB has written an extension (“xtra”)
to Director called OSCar [18] that can send OSC packets from

http://web.tiscali.it/mupuxeddu/csound
http://barely.a.live.fm/pd/OSC/perl
http://www.swig.org
http://galatea.stetson.edu/~ProctoLogic
http://user.cs.tu-berlin.de/~kerstens/pub/OSC.py
http://www.mat.ucsb.edu/~c.ramakr/illposed/vwosc.html
http://www.create.ucsb.edu/Siren
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the Lingo scripting language. Future plans include the ability
for Lingo to receive OSC.

2.6 Gesture-to-OSC Hardware
The Kroonde [19] is a system for receiving data from

wireless sensors, for example, pressure, flexion, acceleration,
magnetic field, and light sensors. The Kroonde receiver takes
in data from up to 16 of these sensors and converts them either
to MIDI or to OSC over UDP over 10 BaseT Ethernet.

Dan Overholt has built an interface called the MATRIX
(“Multipurpose Array of Tactile Rods for Interactive
eXpression”) that consists of a 12x12 array of spring-mounted
rods each able to move vertically. An FPGA samples the 144
rod positions at 30 Hz and transmits them serially to a PC that
converts the sensor data to OSC messages [25, 26].

Newton Armstrong at Princeton has built prototype
hardware
(http://music.princeton.edu/~newton/controller.html) with 11
continuous and 40 switch analog inputs, which are digitized,
converted to OSC messages, and sent as UDP packets via a
built-in 10BaseT Ethernet port.

There are plans for the next version of IRCAM’s AtoMIC Pro
gesture-acquisition hardware [9] to output OSC rather than
MIDI as it does now.

3. OSC-based Networking Applications
Here is a somewhat chronological survey of networked

music applications that have been built with OSC. It i s
certainly not comprehensive; we encourage all users of OSC to
inform us about their projects.

At ICMC 2000 in Berlin (http://www.audiosynth.com/icmc2k),
a network of about 12 Macintoshes running SuperCollider
synthesized sound and changed each others’ parameters via
OSC, inspired by David Tudor’s composition “Rainforest.”

The Meta-Orchestra project [16] is a large local-area
network that uses OSC.

In Randall Packer’s, Steve Bradley’s, and John Young’s
“collaborative intermedia work” Telemusic #1 [35], visitors to
a web site interact with Flash controls that affect sound
synthesis in a single physical location. The resulting sound is
streamed back to the web users via RealAudio. This system was
implemented before flosc and before Flash’s XMLSockets
feature existed, so data goes from Flash to JavaScript to Java
to OSC.

In a project [17] at the MIT Media Lab, the analyzed pitch,
loudness, and timbre of a real-time input signal control
sinusoids+noise additive synthesis. The mapping is based on
Cluster-Weighted Modeling and requires extensive offline
analysis and modeling of a collection of sounds. In one
implementation, one machine performs the real-time analysis
and sends the control parameters over OSC to a second
machine performing the synthesis.

Three projects at UIUC are based on systems consisting of
real-time 3D spatial tracking of a physical object, processed by
one processor that sends OSC to a Macintosh running
Max/MSP for sound synthesis and processing.. In the eviolin
project [13], a Linux machine tracks the spatial position of an
electric violin and maps the spatial parameters to control a
resonance model in real-time. The sound output of the violin
is processed through this resonance model. In the Interactive
Virtual Ensemble project [12], a conductor wears wireless
magnetic sensors that send 3D position and orientation data at
100 Hz to a wireless receiver connected to an SGI Onyx that
processes the sensor data. In this system, the Max/MSP
software polls the SGI via OSC to get the current sensor values.
VirtualScore is an immersive audiovisual environment for

creating 3D graphical representations of musical material over
time [11]. It uses a CAVE to render 3D graphics and to receive
orientation and location information from a wand and a head
tracker. Both real-time gestures from the wand and stored
gestures from the “score” go via OSC to the synthesis server.

Stanford’s CCRMA’s Circular Optical Object Locator [14] i s
based on a rotating platter upon which users place opaque
objects. A digital video camera observes the platter and
custom image-processing software outputs data based on the
speed of rotation, the positions of the objects, etc. A separate
computer running Max/MSP receives this information via OSC
and synthesizes sound.

Listening Post [15] is a networked multimedia art
installation based on representing conversations in Internet
chat rooms on a large number of video monitors and also with
sonification via a 10-channel speaker system. A local network
of 4 computers handle text display, text-to-speech, sound
synthesis, and coordination of all these elements; all of the
components of the system communicate with OSC. Listening
Post is currently on display at the Whitney museum of
American Art.

A research group at UCSB’s CREATE has been developing
“high-performance distributed multimedia” and “distributed
sensing, computation, and presentation” systems [27]. These
large-scale networks typically consist of multiple sensors
such as VR head-trackers and hand-trackers, dozens of
computers interpreting input, running simulations, and
rendering audio and video, and multichannel audio and video
output, all connected with CORBA and OSC. Another UCSB
project [8] combines CORBA and OSC to allow a VR system
with data gloves and motion trackers to send control messages
to synthesis software written in SuperCollider.

In the Tgarden project [31], wireless accelerometers are
sensed by a Linux machine and mapped via OSC to control
sound and video synthesis in Max/MSP, SuperCollider, and
NATO.

4. OSC Pedagogy
University courses teaching OSC include the following:

- Iowa State Music 448 (“Computer Music Synthesis”)

- Princeton COS436 (“Human Computer Interface
Technology”)

- Stanford Music 250a (“HCI Seminar”)

- UC Berkeley Music 158 (“Musical Applications of
Computers and Related Technologies”) and 209
(“Advanced Topics in Computer Music”) and CNMAT’s
summer Max/MSP Night School.

- UC Santa Barbara Music 106 (“Interactive Electronic
Performance and Synthesizer Design Using Max/MSP”)

5. BENEFITS OF ORGANIZING REAL-
TIME MUSIC SOFTWARE WITH OSC

This section describes some programming techniques that
make use of OSC as the primary organizational scheme for
building real-time performance instruments. Although our
examples concentrate on the Max/MSP programming
environment, the described techniques can be generalized to
other platforms and aim in general to improve modularity and
interconnectivity of software components.

5.1 A Module’s OSC Namespace Is Its Entire
Functionality

We propose a style of programming in which the entire
functionality of each software module is addressable through
OSC messages. Advantages of this style include the following:

http://music.princeton.edu/~newton/controller.html
http://www.audiosynth.com/icmc2k
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1. The OSC namespace for each module explicitly names all of
that module’s features. This can enable software to be
self-documenting and transparent in its functionality.

2. The entire functionality of each module is accessible via a
single control mechanism: incoming OSC messages. In
graphical languages such as Max/MSP and Pd, this allows
even the most complex objects to have a single control
inlet, reducing the clutter and confusion of connecting to
multiple inlets (Figure 1). As a module’s functionality
grows, no structural changes (such as adding more inlets)
are required; the programmer simply expands the
module’s OSC namespace

3 . If the components of a complex system already
communicate among themselves exclusively with OSC
messages, then it becomes very easy to move some of the
components to other computers to form a distributed
local area network system.

4. Certain OSC messages can be standardized across different
modules. For example, the message “/gain” with a
floating point argument can be used in many different
synthesis and processing components to change gain; the
message “/namespace” can trigger any module to display
its OSC namespace; the message “/go” followed by the
argument 1 or 0 can be used to turn on and off the
processing in the module; and the message “/init” can
initialize a module.

By sending the “/namespace” message to the patch in figure
1 the user is presented with this list of OSC messages and can
quickly learn how to control the patch:

1, /go _int_ turn processing on and off;
2, /rate _float_ play rate;
3, /set-position _float_ between 0 and 1 sets position in buffer
from start to end;
4, /gain _float_ sets gain;
5, /SDIF-tuples _anything_ talks to SDIF-tuples;
6, /SDIF-buffer _symbol_ sets SDIF-buffer for playback;
7, /sinusoids~ _anything_ talks to sinusoids~;
8, /namespace _bang_ opens this collection;

5.2 Storing and Recalling Global Snapshots
of Complex Software Components with OSC

In developing complex software instruments that perform
many processes with many possible arrangements of
parameters, the task of storing and retrieving complete
snapshots of the system’s state can be quite challenging. We
propose a system of performing this storage and recalling that
is based entirely on the usage of OSC messages as the
communication scheme between the instrument’s snapshot
mechanism and its constituent modular components.

Once an instrument comprised of a set of components—all
of whose functionality is addressable with OSC messages—is
developed, it is possible to store and recall global settings of
the entire system by collecting and dispensing OSC messages
from and to the individual components. We propose a model
where each module keeps track of its current state by
remembering what OSC messages have been sent to it most
recently. Note that since the OSC name for each function of the
module is unique, this can be achieved by using the OSC
message as an index whose value is replaced each time a new
value is received. In order to collect a snapshot, we query each
component for its current state. Each component answers the
query in the form of a list of OSC message that will bring i t
back to its current state if sent to it at a later time. OSC
messages from each component are then collected and stored
in one central location. In order to recall a stored global
snapshot of the system, one simply has to send out the list of
OSC messages that each component submitted earlier.

This method was successfully employed in developing Ron
Smith’s work for orchestra and live electronics titled
Constellation [20], as well as the collaborative dance piece of
Carol Murota, Edmund Campion and Ali Momeni entitled
Persistent Vision [4], a work for 16 dancers and live interactive
sound installation.

5.3 Managing Polyphony With OSC
Many of the platforms for developing specialized real-time

audio/video software include some tools for building
polyphony, e.g., Max/MSP’s poly~ object and Pd’s nqpoly~
object. By using a simple abstraction that routes OSC
messages to specific voices of a polyphonic component
(figure 2), OSC’s pattern-matching features can be used to
address specific voices or sets of voices with great ease.

5.4 Dynamic Routing of Controller Data
with OSC

We continue to advocate the use of OSC as the bridge
between input data streams from gestural controllers and
signal processing engines. This style of programming
involves describing a complete OSC namespace for all output
streams from a controller [34]. Intermediary patches
dynamically map the control data to the OSC namespace for a

arg1 (sym): SDIF-buffer name

sinusoids~

tuples columns 2 3 time $1 interp

SDIF-tuples #1

osc-route /go /rate /set-position /gain /SDIF-tuples
/SDIF-buffer /sinusoids~ /namespace

metro 10

f

f 127.

sel 0

t i i

b 3

0

accum 0.

print location

prepend set* 0.01

* 1000.

loadbang

t 127.

coll add-synthji-namespace 1

t open

Figure 1: A Max/MSP patch that performs additive
synthesis in real-time using Sinusoidal Track data

stored in an SDIF-buffer. Everything the patch does is
accessible through a single inlet and is described by the

list of OSC messages that the patch understands.
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Figure 2: A Max/MSP patch that routes OSC messages
starting with the desired voice number to that voice of a

‘poly~’ object (which uses the ‘target’ message to address
specific voices). The patch was created with Max/MSP’s
scripting mechanism and could have been made with any

number of voices.

specific signal processing engine. This allows the performer
to change instruments by switching from one intermediary-
mapping-patch to another, thereby directing his controller’s
OSC output to a different signal processing module.

In the past year, we have further developed our
implementations of this approach to gesture mapping for a
number of controllers including the Buchla Thunder, Wacom
drawing tablets (via a new interface using Cycling 74’s Jitter),
and the game controller Cyborg 3D made by Saitek.

Finally, we promote the use of OSC for designing controller
data streams that are modal. For example, the Saitek Cyborg
3D joystick provides an extremely flexible controller due to
the number of buttons it has accessible to the performer in
conjunction with its 4 continuous controllers (figure 3).

Figure 3: The Saitek Cyborg 3D joystick has 13 buttons and
4 continuous controllers. The three buttons on the top,

labeled 1 to 3, can be used to route the continuous controller
values to different destinations.

It is often desirable to control a number of processes with
one controller, for instance multiple voices of a polyphonic
engine. In the case of the Cyborg 3D, OSC messages in the
form of ‘/button-number/continuous-controller value’ can be
constructed that will render the continuous contoller values
modally addressable to different voices. For example, holding
down button 1 and moving the joystick up and down would
produce messages like, ‘/1/vertical value’, headed to the first
voice of our processing engine. Holding down buttons 2 and
3 while moving the vertical axis of the controller would
produce both ‘/2/vertical value’ and /3/vertical value’
messages, thereby controlling the second and third voices of
the processing engine. A similar technique can be applied to
any combination of held buttons and manipulated continuous
controllers to effectively turn the 4 available continuous
controllers into a much larger number of control data sources.

6. FUTURE OF OSC
Here are some ideas for the future of OSC. Obviously, all

implementations of OSC should be completed and made
consistent, able to both send and receive the full OSC spec
including type tags, bundles, time tags, etc. Full use of time
tags requires solving the time synchronization problem;
experiments must be done to see if NTP and SNTP will be
adequate.

There is no reason that OSC should be so tied to UDP; more
systems should support OSC via TCP, especially in situations
where guaranteed delivery is more important than low latency.

OSC’s query system is still more or less in an experimental
stage; the community should standardize the syntax and
semantics of a collection of useful queries.

Of course we would like to see more systems using OSC. On
the day this paper was submitted we heard that Carlos Agon
had completed an initial implementation of OSC in both
OpenMusic [1] and Macintosh Common Lisp. The jMax [7]
team is also planning to implement OSC.

The translation between OSC and XML used by flosc could
be generally useful to the OSC community; we would like to
see it become standardized.
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