AUTOMATED TESTING OF OPEN-SOURCE MUSIC
SOFTWARE WITH OPEN SOUND WORLD AND
OPENSOUND CONTROL

Amar Chaudhary
amar@ptank.com

ABSTRACT

Providing robust systems for live musical performance has
been a difficult problem. Such systems are highly dynamic
with lots of paths for execution; even small changes in input
can lead to different results. Comprehensive testing is
difficult, tedious and resource intensive, more so for open-
source projects that often lack the resources to do such
testing. We present a system for efficient automated testing
of the Open Sound World (OSW) open-source music
environment using OpenSound Control (OSC) messages sent
from Python scripts. The automated testing system helped
the developers to release a significantly more robust version
of OSW in 2004, and is an important tool in the development
of OSW 2.0. OSW supports VST and LADSPA plug-ins as
is binary compatible with most Pd externals. Thus, the
automated testing system in OSW can be used to test these
external plug-ins as well.

1. INTRODUCTION

Live musical performance with computers requires robust
software over a large set of changing user input. For more
complex systems, the likelihood that a small change in user
input between performance and rehearsal (e.g., a missed note,
a timing glitch or an input value that is out of the tested
range) could have a serious effect on the system increases.
Even well-designed systems that employ techniques from
computer science to avoid faults are subject to issues arising
from bugs in the code or the inherent unpredictability of
complex dynamical systems. Such systems require
comprehensive testing to minimize the risk of faults.

Such testing is a costly and complex process. Commercial
software developers often apply large amounts of time and
resources to testing; open-source projects without such
resources must often rely on the goodwill and expertise of
their user base to report individual issues. Even when
rigorous testing is undertaken, it is more often than not a
tedious process that provides little technical or intellectual
reward for the open-source developer or musicians using his
or her software.

Automated testing has been used in many projects to
provide efficient testing. Open-source software, such as the
GNU compiler collection (GCC) [4], often include test scripts
invoked with the command “make test.” However, such
batch testing becomes more challenging when applied to a
reactive real-time system such as software used in musical
performance.

The OpenSound Control (OSC) protocol [9] provides a
framework for automated testing in real-time music
applications. A large number of test cases, written as
sequences of OSC messages, can be executed quickly. Bi-
directional OSC communication provides a mechanism for

feedback on success or failure to the testing agent, and OSC
queries can be used to dynamically adapt testing to the state
of a system (e.g., extensions that may or may not be
installed).

This paper describes an effort to use OSC to build an
automated testing system for Open Sound World, an open-
source environment for real-time music and multimedia
applications.

2. BACKGROUND

Open Sound World (OSW) is large, feature-rich system for
developing real-time music and multimedia applications to
use in live performance or other interactive settings [2]. It
has been available to the public as open-source software since
2001. One of the goals during the development of OSW 1.2
in 2004 was significantly increasing the robustness of the
application and trying to eliminate bugs before they became
part of public releases. In addition to the challenges for open-
source testing described in the previous section, OSW has the
added challenge of running reliably on diverse platforms:
Windows 2000/XP, Linux and Mac OS X. We are currently
developing a new version based on feedback and
contributions from developers and users. OSW version 2.0,
to be released in 2005, builds on the original design and goals
of the project by improving important aspects of the system,
such as user interface, distributed client-server architecture
and greater compatibility with other languages and
environments. As with the development of version 1.2, this
release presents a significant testing effort in the presence of
limited testing resources.

These challenges make the OSW project a strong
candidate for automated testing. Additionally, OSW supports
bi-directional OSC communication and OSC queries. This
suggested that we develop a strategy based on OSC messages
for multi-platform automated testing.

3. OSC SUPPORT IN OSW

This section briefly describes several features of the OSC-
server implementation in OSW that were necessary for the
development of our automated testing system.

3.1. All objects in OSW are OSC addressable

In OSW, components called transforms are combined to form
programs called patches. Patches are themselves transforms
that can be included in other patches. This gives rise to a
hierarchical name space in which every transform has a
unique address, which be used as an address for OSC
messages. Additionally, the inlets, outlets and state variables

(i.e., internal variables and parameters of a transform) are
themselves named components with unique addresses. Thus
an OSW program forms a complete OSC address space where
any object (patch, transform, variable) can be queried
inspected or modified using OSC messages.

3.2. Support for OSC Queries

OSW includes a full implementation of OSC queries, which
was largely the work of Andrew Schmeder at Center for New
Music and Audio Technologies (CNMAT) [8]. OSW
supports queries of objects for documentation, type
signatures, current values and contents (e.g., state variables of
a transform, or transforms in a patch). Clients can use
queries to discover the dynamic address space of OSW
programs. A client can then use OSC to send any message
understood by any of the objects in the programs.

3.3. Every message receives a reply

Every message received by an OSW server results in a return
message to the client. This allows a client to detect a
communication or server failure by timing out on reply.
Additionally, the reply message always has the same address
as the original message:

/patch/outputO/sample_rate/current-value
- /patch/outputO/sample_rate/current-value 0 44100.0

In the above example, a query was sent to get the current
value of the state variable /patch/outputO/sample_rate.
The reply included the query address, an error code of zero
(indicating success), and the value itself. If the variable was
not found on the server, an error would have been returned

3.4. Programming via OSC messages

OSW programs can be built or modified remotely using OSC
messages. Patches and transforms can be instantiated, and
connections established between inlets and outlets. For
example, the following message:

»

/patch/add-transform “osw::Sinewave” “sin0”

will instantiate a transform named sin0 of class Sinewave in
the patch named /patch. To connect the outlet of this
transform to an existing audio output named output0O, the
following message is used:

/patch/sin0/samplesOut/connect “/patch/output0/mix”

4. DEVELOPING THE TEST SYSTEM

A Python-based testing framework was developed to send and
receive OSC messages as described in the previous section,
and evaluate the return messages against expected results.
The framework relied on the unittest library in Python
[7]. In this framework, a series of test cases are aggregated
into a test suite (these terms are standard in software-quality-
assurance organizations), which can then be automatically
executed. Each test case consists of one or more individual
tests, which are scripts written by a test developer.

Individual tests were organized into test cases by
conceptual areas, for example, one test case included several
tests for list processing, while another dynamically build
simple patches to output audio. We present one example test

from the list-processing test case TestListServer. In
the example test, the OSW transform list::Reverse is
instantiated and used to process two different lists: one
numeric and one that contains strings and a nested list. For
each message sent to the server, the reply is first tested for
validity using the helper method errorTest. If a reply is
not received or contains an error condition, the test fails.
Once the list-reversing transform is instantiated, it can be
tested by setting the value of its inlet to a particular list to be
tested. Setting the inlet in OSW will activate the transform
and process the input. The outlet of the transform will then
contain the result. The test script then sends a “current-
value” query to the outlet to obtain the result, which is
compared to a “correct result” generated by the script (we
assume that Python’s list-reversal operation has itself been
tested enough to be considered correct). If the results are
equal (within a certain round-off tolerance for floating-point
numbers), the test is considered successful.

class TestListServer (unittest.TestCase):

def test Reverse(self):
"""Reverse lists"""
#load the external
TestSupport.runOSCCommand ('/load-
osx',['list/Reverse'])

#instantiate the transform

result = TestSupport.runOSCCommand
('/patch/add-transform',
["1list::Reverse', 'reversel'])

self.errorTest (result)

#first list to try
1 =11,2,2.718281728459,
3,3.14159265358979323846,4,5]

#send list to the transform inlet

#this will trigger the transform to run

result = TestSupport.runOSCCommand
('/patch/reversel/listIn', 1)

self.errorTest (result,len(l))

#get the result from the output

result = TestSupport.runOSCCommand

('/patch/reversel/listOut/current-value', [])

self.errorTest (result)

#is the list the correct length?

self.assertEqual (len(result),len(1l)+3)

#0K, now compare to the same reversal

in Python

rl = result[3:]

rl.reverse();

for (a,b) in zip(rl,1):
self.assertAlmostEqual (a,b, 6)

#let’s try a more complex list

1 = ['apple', 'pear',[1,2,3], 'banana']

result = TestSupport.runOSCCommand
('/patch/reversel/listIn', 1)

self.errorTest (result,len(l))

result = TestSupport.runOSCCommand

('/patch/reversel/listOut/current-value', [])
self.errorTest (result)
self.assertEqual (len(result),len(1l)+3)

Note that “success” of a test script means that it ran to
completion without triggering any of the assertions along the
way.

Jred_square

LB

¥
pd:gemwin
1

-
[} "

¥ L2 T

pd:rotate |
v
TEy My

i
,
-
|

.drawﬂ\l

wvectar List:

Figure 1. GEM Pd externals running in OSW 1.2.x. The Pd externals (prefixed with “pd::”) accept input from
native OSW transforms, including lists from MessageBox transforms that are interpreted as Pd messages.

4.1. Testing of DSP functions

Similar to the list-processing example above, DSP transforms
that operate on audio input can be tested by sending a known
block of samples to audio inlets and comparing the results
with known correct values. OSW includes an extension to
OpenSound Control that recognizes signals as blocks of
integer or floating-point values.

Synthesis transforms that generate audio output in
response to virtual time input (i.e., generating samples every
clock tick), OSW includes an OSC method /advance-clock
that advances the main clock one unit (which is a function of
the current audio sample rate and block size). Advancing the
main clock, which is a standard OSW state variable, will
activate all transforms that accept time sources, including
synthesis transforms such as Sinewave. The output values of
these transforms can then be obtained to test for correctness.
This process allows the testing system to evaluate the
correctness of signal-processing transforms in OSW without
being subject to the performance constraints and potential
non-deterministic behaviour of real-time processing, i.e., the
clock is only advanced one tick and the output values are
available until the testing system explicitly advances the
clock again.

5. TESTING COMPATIBLE PLUG-INS

OSW includes support for several ‘“standard” plug-in
architectures, including VST, LADSPA and Pd externals.
Although such plug-ins are developed outside the context of
OSW, developers of these plug-ins can use them in the
context of OSW to develop OSC-based automated test suites.
This section describes standard plug-in facilities in OSW and
how the automated testing system in OSW can enhance
reliability in external software.

5.1. VST and LADSPA plug-ins

VST plug-ins have become a de-facto standard for
synthesizers, effects and other musical components. A wide
variety of VST plug-ins are available both freely and
commercially. Additionally, several popular commercial and
open-source music packages can host VST plug-ins and
integrate them into the applications functionality. Similarly,
LADSPA plug-ins are becoming a de-facto standard for audio
plug-ins on Linux, as well as for open-source audio
development on other platforms (e.g., Audacity supports
LADSPA plug-ins on multiple platforms [1]). The remainder
of this section, however, focuses on VST.

OSW can host VST plug-ins via the Vst transform. This
transform loads a VST plug-in and exposes its audio-signal
and MIDI /O as inlets and outlets. Additionally, VST
“automation parameters” (parameters of the plug-in that can
be read or modified by the host) are exposed as transform
inlets or state variables. As variables of an OSW transform,
these parameters become OSC addressable and can be
queried or modified by external OSC hosts. Additionally,
OSW supports atomicity on VST-parameter updates via OSC
bundles. Because all parameters of the VST plug-in are OSC
addressable, automated test suites can be developed similar to
those described in section 4. Thus, even in cases where it not
considered an end-user target by the plug-in developer, OSW
and OSC can become valuable testing and debugging tools for
developing more robust plug-ins.

5.2. The “Pd-compatibility Layer”

A large number of externals for Max/MSP and Pd [6] have
been developed over time and used extensively in the
computer-music community. Once a piece has made use of
such externals, it usually requires that it remain realized in
that environment (which becomes a greater challenge as
programming environments mutate or become unsupported).
Hand-porting of complex pieces to newer systems may prove
difficult or even impossible without access to features of the
original system.

We have taken steps to address this issue by providing a “Pd-
compatibility layer” for OSW. This system provides a set of

intrinsic Pd objects as OSW transforms as well as the ability
to load and use most Pd externals as transforms without
recompilation. For example, the library for the popular Pd
external fiddle~ can be loaded into OSW via the
compatibility layer, and OSW users can then instantiate the
transform pd: : fiddle~ to use it in their patches. 1 A large
number of Pd objects have been successfully imported into
OSW for use in projects, including PeRColate [5] and the
GEM library [3], as illustrated in figure 1.

Similar to hosted VST plug-ins, the named inlets and outlets
of Pd objects instantiated within OSW become OSC
addressable, allowing remote control and access of Pd objects
without specialized patches and infrastructure for receiving
and interpreting OSC messages. In addition to unit testing of
individual Pd objects via OSC messages, entire music
programs or pieces for live performance can be ported to
OSW using many of the original Pd objects. Thus, entire
pieces can be tested extensively using automated scripts prior
to rehearsal and performance.

6. DISCUSSION

Initial use of the automated test system in the summer of
2004 uncovered numerous issues. Systematic instantiation of
every transform identified basic issues in a few transforms
that we used less frequently in development or musical
practice, such as missing parameters leading to instantiation
errors, or various transforms affecting each other via shared
resources that may be have been locked or contaminated.
The extensive set of mathematical transforms in OSW was
systematically tested over a range of input, uncovering several
mathematical errors. All of these bugs were relatively easy to
fix, but would have been difficult to detect and isolate with
ad-hoc user testing in the field.

Additional blocks of test cases have been developed for
basic audio performance, DSP and OSC-based control of
documentation and tutorial patches bundled with OSW. This
latter set of tests in particular was useful for isolating issues
in complex interactions between transforms, such as
unprotected resources, and systematically testing behavior of
the system on different operating systems.

The end result was a significantly more robust release for
OSW 1.2. Although the data for a rigorous comparison is not
currently available, anecdotal evidence suggests fewer
“functional bugs” or application faults during normal use.
The most common issues now reported by users are system
incompatibilities, which our current set of tests have not
addressed.

The testing framework and test cases are now part of the
source release of OSW at http://osw.sourceforge.net and
available for users to perform and modify tests on their own
systems.

'Although OSW does not use the convention of tilde characters for
“signal” objects found in Max/MSP and Pd, the suffix is preserved on
imported Pd objects.

7. ACKNOWLEDGMENTS

The author wishes to acknowledge to contributions of Andrew
Schmeder in developing the OSC infrastructure in Open
Sound World, as well as the support of the Center for New
Music and Audio Technologies at UC Berkeley, and the UC
Discovery Grant.

8. REFERENCES

[1] Audacity. http://audacity.sourceforge.net

[2] Chaudhary, A., A. Freed and M. Wright. “An Open
Architecture for Real-time Music Software.”
Proceedings of the International Computer Music
Conference, Berlin, 2000.

[3] Danks, M. “Real-time image and video processing
in gem.” Proceedings of the International
Computer Music Conference, Thessaloniki, Greece,
1997.

[4] The GNU Compiler Collection. http://gcc.gnu.org/

[5] PeRColate library.
kunst.org/puredata/percolate

http://www.akustische-

[6] Puckette, M. “Pure Data: Another Integrated
Computer Music Environment.” Second
Intercollege Computer Music Concerts, Tachikawa,
Japan, 1996.

[7] Purcell, S. Python Unit Testing Framework.
http://pyunit.sourceforge.net/pyunit.html

[8] Schmeder, A. W. “Implementation of a Scalable
and Dynamic Interface for Open Sound World using
OpenSound Control.”
http://www.a2hd.com/research/osw-osc/osw-0sc-
03.php

[91 Wright, M. OpenSound Control Specification
version 1.0. March 26, 2002.
http://cnmat.berkeley.edu/OpenSoundControl

	Index
	ICMC 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Program Guide

	Sessions
	Monday 5, September 2005
	MonAmOR1-Paper Session 1: Frameworks
	MonAmPO1-Demo Session 1
	MonAmOR2-Paper Session 2: History of Electroacoustic Mu ...
	MonAmPO2-Poster Introduction Session
	MonAmPO3-Demo Session 2
	MonPmOR1-Paper Session 3: Automatic Performance Renderi ...
	MonPmOR2-Studio reports
	MonPmPO1-Demo Session 3
	MonPmOR3-Paper Session 4: Sound Synthesis and Analysis
	MonPmPO2-Demo Session 4

	Tuesday 6, September 2005
	TueAmOR1-Paper Session 1: Sound Synthesis and Analysis
	TueAmPO1-Demo Session 1
	TueAmOR2-Paper Session 2: Music Analysis and Representa ...
	TueAmPO2-Poster Introduction Session
	TueAmPO3-Demo Session 2
	TuePmOR1-Paper Session 3: Mathematical Music Theory
	TuePmPO1-Demo Session 3

	Wednesday 7, September 2005
	WedAmOR1-Paper Session 1: Sound Synthesis and Analysis
	WedAmPO1-Demo Session 1
	WedAmOR2-Paper Session 2: Psychoacoustics
	WedAmPO2-Poster Introduction Session
	WedAmPO3-Demo Session 2
	WedPmOR1-Paper Session 3: Systems for Composition and M ...
	WedPmOR2-Studio reports
	WedPmPO1-Demo Session 3
	WedPmOR3-Paper Session 4: Sound Processing and Synthesi ...
	WedPmPO2-Demo Session 4

	Thursday 8, September 2005
	ThuAmOR1-Paper Session 1: Music Information Retrieval a ...
	ThuAmOR2-Paper Session 2: Performance
	ThuAmPO1-Poster Introduction Session
	ThuAmPO2-Demo Session 2
	ThuPmOR1-Paper Session 3: Interactive Music
	ThuPmOR2-Studio reports
	ThuPmPO1-Demo Session 3
	ThuPmOR3-Paper Session 4: General Computer Music Topics
	ThuPmPO2-Demo Session 4

	Friday 9, September 2005
	FriAmOR1-Paper Session 1: Composition Systems
	FriAmOR2-Paper Session 2: Composition Systems
	FriAmPO1-Poster Introduction Session
	FriAmPO2-Demo Session 2
	FriPmOR1-Paper Session 3: Sound Synthesis and Analysis
	FriPmPO1-Demo Session 3
	FriPmOR2-Paper Session 4: Performance
	FriPmPO2-Demo Session 4

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	Digital Audio Signal Processing
	Sound Synthesis and Analysis
	Music Analysis
	Music Information Retrieval
	Representation and Models for Computer Music
	Artificial Intelligence and Music
	Languages for Computer Music
	Mathematical Music Theory
	Psychoacoustics, Music Perception and Cognition
	Acoustics of Music
	Aesthetics, Philosophy and Criticism of Music
	History of Electroacoustic Music
	Computer Systems in Music Education
	Composition Systems and Techniques
	Interactive Performance Systems
	Software and Hardware Systems
	General and Miscellaneous Issues in Computer Music
	Studio Reports

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Amar Chaudhary

