
Managing Complexity with Explicit Mapping of Gestures to Sound
Control with OSC

Matthew Wright, Adrian Freed, Ahm Lee, Tim Madden, Ali Momeni

CNMAT, UC Berkeley, 1750 Arch St., Berkeley, CA 94709, USA
email: {matt,adrian,ahm,tjmadden,ali}@cnmat.berkeley.edu

Abstract

We present a novel use of the OpenSound Control (OSC)
protocol to represent the output of gestural controllers as
well as the input to sound synthesis processes. With this
scheme, the problem of mapping gestural input into sound

synthesis control becomes a simple translation from OSC
messages into other OSC messages. We provide examples
of this strategy and show benefits including increased
encapsulation and program clarity.

1. Introduction
We desire expressive real-time control of computer

sound synthesis and processing from many different
gestural interfaces such as the Boie/Mathews Radio Drum

(Boie, et al., 1989), the Buchla Thunder (Buchla, 2001),
Wacom Tablets (Wright, et al., 1997), gaming joysticks, etc.
Unlike acoustic instruments, these gestural interfaces have
no inherent mapping between the gestures they sense and

the resulting sound output. Indeed, most of the art of
designing a real-time-playable computer music instrument
lies in designing the mapping between sensed gestures and
control of the sound generating and processing.

We believe that OpenSound Control (OSC) (Wright and
Freed, 1997, Wright, 1998) provides many benefits to the
creators of these gesture-to-sound-control mappings. It is

general enough to represent both the sensed gestures from
physical controllers and the parameter settings needed to
control sound synthesis, so it provides a uniform syntax and
conceptual framework for this mapping. The symbolic

names for all OSC parameters make explicit what is being
controlled and can make programs easier to read and
understand. An OSC interface to a gestural-sensing or
signal-processing subprogram is a powerful form of

abstraction that can expose all of the important features
while hiding the implementation.

We will present a paradigm for using OSC for this
mapping task and give a series of examples culled from

several years of live performance with a variety of gestural
controllers and performance paradigms.

2. OpenSound Control
OpenSound Control (OSC) was originally developed to

facilitate the distribution of control structure computations
to small arrays of loosely coupled heterogeneous computer
systems. A common application of OSC is to communicate
control structure computations from one client machine to

an array of synthesis servers. The abstraction mechanisms
built into OSC—a hierarchical name space and regular
expression message targeting—have also proven to be
useful in implementations running entirely on a single

machine. In this context we have discovered a particularly
valuable application of the OSC client/server model in the
organization of the gestural component of control structure

computations. The basic strategy is to:
• Translate all incoming gestural data into OSC

messages with descriptive addresses
• Make all controllable parameters in the rest of the

system OSC-addressable
Now the gestural performance mapping is simply a

translation of one set of OSC messages to another. This
gives performers greater scope and facility in choosing how

best to effect the required parameter changes.

3. An OSC Address Subspace for
Wacom Tablet Data

Wacom digitizing graphic tablets are attractive gestural
interfaces for real-time computer music. They provide

extremely accurate two-dimensional absolute position
sensing of a stylus, along with measurements of pressure,
two-dimensional tilt, and the state of the switches on the
side of the stylus, with reasonably low latency. The styli

(pens) are two-sided, with a “tip” and an “eraser.” The
tablets also support other devices, including a mouse-like
“puck,” and can be used with two devices simultaneously.

Unfortunately, this measurement data comes from the

Wacom drivers in an inconvenient form. Each of the five
continuous parameters is available independently, but
another parameter, the “device type,” indicates what kind of

device is being used and, for the case of pens, whether the
tip or eraser is being used. For a program to have different
behavior based on which end of the pen is used, there must
be a switching and gating mechanism to route the

continuous parameters to the correct processing based on
the “device type.” Similarly, the tablet senses position and
tilt even when the pen is not touching the tablet, so a

program that behaves differently based on whether or not
the pen is touching the tablet must examine another variable
to properly dispatch the continuous parameters.

Instead of simply providing the raw data from the

Wacom drivers, our Wacom-OSC object outputs OSC
messages with different addresses for the different states.
For example, if the eraser end of the pen is currently
touching the tablet, Wacom-OSC continuously outputs

messages whose address is /eraser/drawing and
whose arguments are the current values of position, tilt, and
pressure. At the moment the eraser end of the pen is

released from the tablet, Wacom-OSC outputs the message
/eraser/release. As long as the eraser is within range
of the tablet surface, Wacom-OSC continuously outputs
messages with the address /eraser/hovering and the

same position, tilt, and pressure arguments.
With this scheme, all of the dispatching on the “device

type” variables is done once and for all inside Wacom-
OSC, and hidden from the interface designer. The interface

designer simply uses the existing mechanisms for routing
OSC messages to map the different pen states to different
musical behaviors.

We use another level of OSC addressing to define
distinct behaviors for different regions of the tablet. The
interface designer creates a data structure giving the names
and locations of any number of regions on the tablet surface.

An object called Wacom-Regions takes the OSC messages

from Wacom-OSC and prepends the appropriate region
name for events that occur in the region.

For example, suppose the pen is drawing within a region
named “foo.” Wacom-OSC outputs the message

/tip/drawing with arguments giving the current pen
position, tilt, and pressure. Wacom-Regions looks up this
current pen position in the data structure of all the regions
and sees that the pen is currently in region “foo,” so it

outputs the message /foo/tip/drawing with the same
arguments. Now the standard OSC message routing
mechanisms can dispatch these messages to the part of the

program that implements the behavior of the region “foo.”
Once again tedious programming work is hidden from

the interface designer, whose job is simply to take OSC
messages describing tablet gestures and map them to

musical control.

4. Dimensionality Reduction for the
Tactex Control Surface

Tactex’s MTC Express controller (Tactex, 2001) senses
pressure at multiple points on a surface. The primary
challenge using the device is to reduce the high

dimensionality of the raw sensor output (over a hundred
pressure values) to a small number of parameters that can be
reliably controlled.

One approach is to install physical tactile guides over the
surface and interpret the result as a set of sliders controlled
by a performer’s fingers. Apart from not fully exploiting the
potential of the controller this approach has the

disadvantage of introducing delays as the performer finds
the slider positions.

An alternative approach is to interpret the output of the
tactile array as an “image” and use computer vision

techniques to estimate pressure for each finger of the hand.
Software provided by Tactex outputs four parameters for
each of up to five sensed “fingers,” which we represent with

the following OSC addresses:
• /x — X position on the surface
• /y — Y position on the surface
• /z — Pressure

• /age — Amount of time this finger has been
touching the surface

The anatomy of the human hand makes it impossible to
control these four variables independently for each of five

fingers. We have developed another level of analysis, based

/{tip, eraser}/{hovering, drawing} x y xtilt ytilt pressure

/{tip, eraser}/{touch, release} x y xtilt ytilt
/{airbrush, puckWheel, puckRotation} value
/buttons/[1-2] booleanValue

Table 1: OSC Address Subspace for Wacom Tablets

on interpreting the parameters of three fingers as a triangle,

as shown in Figure 1. This results in the parameters shown
in Table 2. These parameters are particularly easy to control
and have the advantage of working with any orientation of
the hand.

Figure 1: Parameters of Triangle Formed by 3 Fingers

5. An OSC Address Space for Joysticks
USB joysticks used for computer games also have good

properties as musical controllers. One model senses two

dimensions of tilt, rotation of the joystick, and a large array
of buttons and switches. The buttons support “chording,”
meaning that multiple buttons can be pressed at once and
detected individually.

We developed a modal interface in which each button
corresponds to a particular musical behavior. With no
buttons pressed, no sound results. When one or more
buttons are pressed, the joystick’s tilt and rotation

continuously affect the behaviors associated with those
buttons.

The raw joystick data is converted into OSC messages

whose address indicates which button is pressed and whose

arguments give the current continuous measurements of the
joystick’s state. When two or more buttons are depressed,
the mapper outputs one OSC message per depressed button,
each having identical arguments. For example, while

buttons “B” and “D” are pressed, our software continuously
outputs these two messages:

• /joystick/b xtilt ytilt rotation
• /joystick/d xtilt ytilt rotation

Messages with the address /joystick/b are then
routed to the software implementing the behavior associated

with button “B” with the normal OSC message routing
mechanisms.

6. Mapping Incoming MIDI to OSC
Suppose a computer-music instrument is to be controlled

by two keyboards, two continuous foot-pedals, and a foot-

switch. There is no reason for the designer of this
instrument to think about which MIDI channels will be
used, which MIDI controller numbers the foot-pedals
output, whether the input comes to the computer on one or

more MIDI ports, etc.
We map MIDI message to OSC messages as soon as

possible. Only the part of the program which does this

translation needs to embody any of the MIDI addressing
details listed above. The rest of the program sees messages
with symbolic names like /footpedal1, so the mapping
of MIDI to synthesis control is clear and self-documenting.

7. Controller Remapping
The use of an explicit mapping from gestural input to

sound control, both represented as OSC messages, makes it
easy to change this mapping in real-time to create different
modes of behavior for an instrument. Simply route

incoming OSC messages to the mapping software
corresponding to the current mode.

For example, we have developed Wacom tablet

interfaces where the region in which the pen touches the
tablet surface defines a musical behavior to be controlled by
the continuous pen parameters even as the pen moves
outside the original region. Selection of a region when the

pen touches the tablet determines which mapper(s) will
interpret the continuous pen parameters until the pen is
released from the tablet.

/area <area_of_inscribed_triangle>

/averageX <avg_X_value>
/averageY <avg_Y_value>
/incircle/radius <Incircle radius>
/incircle/area <Incircle area>

/sideLengths <side1> <side2> <side3>
/baseLength <length_of_longest_side>
/orientation <slope_of_longest_side>
/pressure/average <avg_pressure_value>

/pressure/max <maximum_pressure_value>
/pressure/min <minimum_pressure_value>
/pressure/tilt <leftmost_Z-rightmost_Z>

Table 2: OSC Messages Output from Tactex Triangle
Detection

8. OSC to Control Hexaphonic Guitar
Processing

We have created a large body of signal processing

instruments that transform the hexaphonic output of an
electric guitar. Many of these effects are structured as
groups of 6 signal-processing modules, one for each string,
with individual control of all parameters on a per-string

basis. For example, a hexaphonic 4-tap delay has 6 signal
inputs, 6 signal outputs, and six groups of nine parameters:
the gain of the undelayed signal, four tap times, and four tap
gains.

OSC gives us a clean way to organize these 54
parameters. We make an address space whose top level
chooses one of the six delay lines with the numerals 1-6,

and whose bottom level names the parameters. For
example, the address /3/tap2time sets the time of the
second delay tap for the third string. We can then leverage
OSC’s pattern-matching capabilities, for example, by

sending the message /[4-6]/tap[3-4]gain to set the
gain of taps three and four of strings four, five, and six all at
once.

9. Example: A Tactex-Controlled
Granular Synthesis Instrument

We have developed an interface that controls granular

synthesis from the triangle-detection software for the Tactex
MTC described above. Our granular synthesis instrument
continuously synthesizes grains each with a location in the

original sound and frequency transposition value that are
chosen randomly from within a range of possible values.
The real-time-controllable parameters of this instrument are
arranged in a straightforward OSC address space:

• /bufpos — Avg. grain position in input sound

• /bufposrange — Range of possible values

around /bufpos
• /duration —duration of each grain
• /transpose — Average transposition per grain
• /transposerange — Range of possible

transposition values around /transpose
The Max/MSP patch shown in the figure below maps

incoming Tactex triangle-detection OSC messages to OSC
messages to control this granular synthesizer.

This mapping was codeveloped with Guitarist/Composer
John Schott and used for his composition “The Fly.”

10. Conclusion
We have described the benefits in diverse contexts of

explicit mapping of gestures to sound control parameters
with OSC.

References
Boie, B., M. Mathews, and A. Schloss 1989. The Radio Drum as a

Synthesizer Controller. Proceedings of the International

Computer Music Conference, Columbus, OH, pp. 42-45.
Buchla, D. 2001. Buchla Thunder.

http://www.buchla.com/historical/thunder/index.html
Tactex. 2001. Tactex Controls Home Page. http://www.tactex.com
Wright, M. 1998. Implementation and Performance Issues with

OpenSound Control. Proceedings of the International

Computer Music Conference, Ann Arbor, Michigan.
Wright, M. and A. Freed 1997. Open Sound Control: A New

Protocol for Communicating with Sound Synthesizers.
Proceedings of the International Computer Music Conference,
Thessaloniki, Hellas, pp. 101-104.

Wright, M., D. Wessel, and A. Freed 1997. New Musical Control
Structures from Standard Gestural Controllers. Proceedings of

the International Computer Music Conference, Thessaloniki,
Hellas.

1/Maximum area
in square taxels

OSC-route /area /averageX /averageY /incircle /pressure

tactex-OSC

granularsynth

* 0.008547

prepend /bufposrange

prepend /bufpos

* 0.076923

prepend /transpose

expr pow(1.0594633\,($f1-4.5)*2.66)

OSC-route /area

prepend /transposerange

expr pow(1.0594633\,$f1*0.00242)

OSC-route /average

prepend /duration

* 300.

dac~

