
_60 _61

CHUGENS, CHUBGRAPHS, CHUGINS: 3 TIERS FOR
EXTENDING CHUCK

Spencer Salazar Ge Wang
Center for Computer Research in Music and Acoustics

Stanford University
{spencer, ge}@ccrma.stanford.edu

ABSTRACT

The ChucK programming language lacks
straightforward mechanisms for extension beyond its
built-in programming and processing facilities. Chugens
address this issue by allowing programmers to live-code
new unit generators in ChucK in real-time. Chubgraphs
also allow new unit generators to be built in ChucK, by
defining specific arrangements of existing unit
generators. ChuGins allow a wide array of high-
performance unit generators and general functionality to
be exposed in ChucK by providing a dynamic binding
between ChucK and native C/C++-based compiled
code. Performance and code analysis shows that the
most suitable approach for extending ChucK is
situation-dependent.

1. INTRODUCTION

Since its introduction, the ChucK programming
language [14] has become a popular tool for computer
music composers, educators, and application software
developers. However, to date, its catalogue of audio
processing unit generators and general programming
functionality has been largely limited to those that are
built-in when the ChucK binary executable is compiled.
Adding new unit generators mandates recompilation of
the entirety of ChucK, requiring a level of expertise and
motivation reserved for an elite group of power-users.
Furthermore, community-based development efforts are
hampered by this centralization of functionality, as
developers of new unit generators have no easy way to
share their work.

The aim of the work described herein is to provide
ChucK with multiple levels of extensibility, each
essential and appropriate to specific tasks and levels of
user expertise. On the one hand, ChucK’s pervasive
ethos of on-the-fly development creates the desire to
design and implement new audio processors in ChucK
itself in real-time, working down to the per-sample level
if necessary. Furthermore, implementing these
components in ChucK allows their use on any operating
system ChucK supports with no additional effort from
the developer. For these cases we have developed
Chugens and Chubgraphs.

On the other hand, real-time performance
requirements often mandate the use of compiled native
machine code for complex audio-rate processing. There
also exists a wealth of C/C++-based software libraries
for audio synthesis and effects, such as FluidSynth [4]
and Faust [9]. These situations can be straightforwardly
handled given portable bindings between ChucK and

native compiled code, which is precisely the intent of
ChuGins.

2. RELATED WORK

Extensibility is a primary concern of music software of
all varieties. The popular audio programming
environments Max/MSP [15], Pure Data [10],
SuperCollider [8], and Csound [4] all provide
mechanisms for developing C/C++-based compiled
sound processing functions. Max also allows control-rate
functionality to be encapsulated in-situ in the form of
Javascript code snippets. Max’s Gen facility dynamically
compiles audio-rate processors, implemented as either
data-flows or textual code, to native machine code.
Csound allows the execution of Tcl, Lua, and Python
code for control-rate and/or audio-rate manipulation and
synthesis. The Impromptu environment supports live-
coding of audio-rate processors in a Scheme-like
language [3], and LuaAV does the same for Lua [13].
Pure allows programmers to dynamically write and
execute audio signal processors using Faust [5]. A
thriving ecosystem revolves around extensions to
popular digital audio workstation software, in the form
of VST, RTAS, AudioUnits, and LADSPA plugins
developed primarily in C and C++. For general-purpose
computing, JNI provides a highly flexible binding
between native machine code and the Java virtual
machine-based run-time environment [7]. RubyGems is
a complete plugin and package management tool for
both Ruby-based plugins and C/C++ libraries compiled
with Ruby bindings [11].

3. CHUGENS, CHUBGRAPHS, CHUGINS

3.1. Chugens

The goal of Chugens (pronounced “chyoo-jen”) is to
facilitate rapid prototyping of audio synthesis and
processing algorithms. Additionally, Chugens provide a
basic framework for extending ChucK’s built-in audio
processing functionality. Using the Chugen system, a
programmer can implement sample-rate audio
algorithms within the ChucK development environment,
utilizing the full array of programming facilities
provided by ChucK. These processing units can be
naturally integrated into standard ChucK programs, even
in the same script file, providing seamless control of
audio-rate processing, control-rate manipulation, and
higher-level compositional organization.

A Chugen is created first by subclassing the built-in
Chugen class. This subclass is required to implement a

tick function, which accepts a single floating-point
argument (the input sample) and returns a single
floating-point value (the output sample). For example,
this code uses a Chugen to synthesize a sinusoid using
the cosine function:

class MyCosine extends Chugen
{
 0 => int p;
 440 => float f;
 second/samp => float SRATE;

 fun float tick(float in)
 {
 return Math.cos(p++*2*pi*f/SRATE);
 }
}

In the case of an audio synthesizer that does not process
an existing signal, the input sample may be ignored.

A Chugen defined so may be integrated into audio
graphs like any standard ChucK ugen. Since the tick
function is just a standard ChucK class member function,
it can be as simple or as elaborate as required. Standard
library calls, file I/O, multiprocessing (using spork), and
other general ChucK programming structures can be
integrated into the tick function and supporting code.
For performance reasons, its important to consider that
the tick function will be called for every sample of
audio, so simple tick functions will typically perform
better. Moreover, the intrinsic overhead of ChucK’s
virtual machine architecture will cause Chugens to
underperform compared to a native C/C++
implementation. Lastly, since Chugens are
fundamentally a specialization of a ChucK class, it may
define functions to provide structured access to
whichever parameters it wishes to expose to the
programmer.

3.2. Chubgraphs

Chubgraphs (pronounced “chub-graph”) provide a way
to construct new unit generators by composition,
arranging multiple existing ugens into a single unit. In
this way, common arrangements of existing unit
generators can be defined and instantiated. Furthermore,
Chubgraph parameters can be exposed in a structured
manner via class member functions.

A Chubgraph is defined by extending the Chubgraph
class. The Chubgraph class has member variables named
inlet and outlet; inlet is a ugen that represents the
input signal to the Chubgraph, and outlet is the output
signal. The Chubgraph’s internal audio processing graph
is created by spanning a sequence of ugens between
inlet and outlet. The following Chubgraph
implements a basic feedback echo processor:

class Feedback extends Chubgraph
{
 inlet => Gain dry => outlet;
 dry => Delay delay => outlet;

 delay => Gain feedback => delay;

 0.8 => feedback.gain;

 1::second => delay.delay;
}

(Chubgraphs that do not wish to process an input signal,
such as audio synthesizing algorithms, may omit the
connection from inlet.)

Compared to Chugens, Chubgraphs have obvious
performance advantages, as primary audio-rate
processing still occurs in the native machine code
underlying its component ugens. However Chubgraphs
are limited to audio algorithms that can be expressed as
combinations of existing unit generators; implementing,
for example, intricate mathematical formulae or
conditional logic in the form of a ugen graph is possible
but, in our experience, fraught with hazard.

3.3. ChuGins

ChuGins (pronounced “chug-in”) allow near limitless
possibilities for expansion of ChucK’s capabilities. A
ChuGin is a distributable dynamic library, typically
written in C or C++ compiled to native machine code,
which ChucK can be instructed to load at runtime. When
loaded, the ChuGin defines one or more classes that are
subsequently available to ChucK programs. These
classes may define new unit generators or provide
general programmatic functionality beyond that built in
to ChucK. Since these classes are normal ChucK classes
implemented with native code, member functions and
variables can be used to provide an interface to control
parameters.

ChuGins are best suited for audio algorithms that are
reasonably well understood and stand to gain from the
performance of compiled machine code. The “write-
compile-run” development cycle and C/C++-based
programming mandated by ChuGins makes
implementation of audio processors require
comparatively more effort than the Chubgraph or
Chugen approaches. However for ugens a programmer
intends to use over an extended period of time, the effort
to implement a ChuGin will quickly pay off in the form
of lower CPU usage.

An additional advantage of ChuGins is that they may
provide functionality far outside the intrinsic
capabilities of ChucK. Complex synthesis C/C++ based
synthesis packages can be imported wholesale into
ChucK, opening up an abundance of sonic possibilities.
For example, ChuGins have been implemented to bring
audio processing programs from the Faust programming
language into ChucK. Similarly, the SoundFont renderer
FluidSynth has been packaged as a ChuGin. This
functionality is not limited to audio processing; a serial
port input/output ChuGin is under development, as are
other general purpose programming libraries.

Development of a ChuGin is somewhat more complex
than Chubgraphs or Chugens, and does not lend itself to
explicit presentation of code herein. Using a set of
convenience macros, a ChuGin developer first defines a
query function, which ChucK calls upon first loading
the ChuGin. ChucK provides the query function with
routines with which to define unit generators and
classes, specify what member variables and functions

_60 _61

CHUGENS, CHUBGRAPHS, CHUGINS: 3 TIERS FOR
EXTENDING CHUCK

Spencer Salazar Ge Wang
Center for Computer Research in Music and Acoustics

Stanford University
{spencer, ge}@ccrma.stanford.edu

ABSTRACT

The ChucK programming language lacks
straightforward mechanisms for extension beyond its
built-in programming and processing facilities. Chugens
address this issue by allowing programmers to live-code
new unit generators in ChucK in real-time. Chubgraphs
also allow new unit generators to be built in ChucK, by
defining specific arrangements of existing unit
generators. ChuGins allow a wide array of high-
performance unit generators and general functionality to
be exposed in ChucK by providing a dynamic binding
between ChucK and native C/C++-based compiled
code. Performance and code analysis shows that the
most suitable approach for extending ChucK is
situation-dependent.

1. INTRODUCTION

Since its introduction, the ChucK programming
language [14] has become a popular tool for computer
music composers, educators, and application software
developers. However, to date, its catalogue of audio
processing unit generators and general programming
functionality has been largely limited to those that are
built-in when the ChucK binary executable is compiled.
Adding new unit generators mandates recompilation of
the entirety of ChucK, requiring a level of expertise and
motivation reserved for an elite group of power-users.
Furthermore, community-based development efforts are
hampered by this centralization of functionality, as
developers of new unit generators have no easy way to
share their work.

The aim of the work described herein is to provide
ChucK with multiple levels of extensibility, each
essential and appropriate to specific tasks and levels of
user expertise. On the one hand, ChucK’s pervasive
ethos of on-the-fly development creates the desire to
design and implement new audio processors in ChucK
itself in real-time, working down to the per-sample level
if necessary. Furthermore, implementing these
components in ChucK allows their use on any operating
system ChucK supports with no additional effort from
the developer. For these cases we have developed
Chugens and Chubgraphs.

On the other hand, real-time performance
requirements often mandate the use of compiled native
machine code for complex audio-rate processing. There
also exists a wealth of C/C++-based software libraries
for audio synthesis and effects, such as FluidSynth [4]
and Faust [9]. These situations can be straightforwardly
handled given portable bindings between ChucK and

native compiled code, which is precisely the intent of
ChuGins.

2. RELATED WORK

Extensibility is a primary concern of music software of
all varieties. The popular audio programming
environments Max/MSP [15], Pure Data [10],
SuperCollider [8], and Csound [4] all provide
mechanisms for developing C/C++-based compiled
sound processing functions. Max also allows control-rate
functionality to be encapsulated in-situ in the form of
Javascript code snippets. Max’s Gen facility dynamically
compiles audio-rate processors, implemented as either
data-flows or textual code, to native machine code.
Csound allows the execution of Tcl, Lua, and Python
code for control-rate and/or audio-rate manipulation and
synthesis. The Impromptu environment supports live-
coding of audio-rate processors in a Scheme-like
language [3], and LuaAV does the same for Lua [13].
Pure allows programmers to dynamically write and
execute audio signal processors using Faust [5]. A
thriving ecosystem revolves around extensions to
popular digital audio workstation software, in the form
of VST, RTAS, AudioUnits, and LADSPA plugins
developed primarily in C and C++. For general-purpose
computing, JNI provides a highly flexible binding
between native machine code and the Java virtual
machine-based run-time environment [7]. RubyGems is
a complete plugin and package management tool for
both Ruby-based plugins and C/C++ libraries compiled
with Ruby bindings [11].

3. CHUGENS, CHUBGRAPHS, CHUGINS

3.1. Chugens

The goal of Chugens (pronounced “chyoo-jen”) is to
facilitate rapid prototyping of audio synthesis and
processing algorithms. Additionally, Chugens provide a
basic framework for extending ChucK’s built-in audio
processing functionality. Using the Chugen system, a
programmer can implement sample-rate audio
algorithms within the ChucK development environment,
utilizing the full array of programming facilities
provided by ChucK. These processing units can be
naturally integrated into standard ChucK programs, even
in the same script file, providing seamless control of
audio-rate processing, control-rate manipulation, and
higher-level compositional organization.

A Chugen is created first by subclassing the built-in
Chugen class. This subclass is required to implement a

tick function, which accepts a single floating-point
argument (the input sample) and returns a single
floating-point value (the output sample). For example,
this code uses a Chugen to synthesize a sinusoid using
the cosine function:

class MyCosine extends Chugen
{
 0 => int p;
 440 => float f;
 second/samp => float SRATE;

 fun float tick(float in)
 {
 return Math.cos(p++*2*pi*f/SRATE);
 }
}

In the case of an audio synthesizer that does not process
an existing signal, the input sample may be ignored.

A Chugen defined so may be integrated into audio
graphs like any standard ChucK ugen. Since the tick
function is just a standard ChucK class member function,
it can be as simple or as elaborate as required. Standard
library calls, file I/O, multiprocessing (using spork), and
other general ChucK programming structures can be
integrated into the tick function and supporting code.
For performance reasons, its important to consider that
the tick function will be called for every sample of
audio, so simple tick functions will typically perform
better. Moreover, the intrinsic overhead of ChucK’s
virtual machine architecture will cause Chugens to
underperform compared to a native C/C++
implementation. Lastly, since Chugens are
fundamentally a specialization of a ChucK class, it may
define functions to provide structured access to
whichever parameters it wishes to expose to the
programmer.

3.2. Chubgraphs

Chubgraphs (pronounced “chub-graph”) provide a way
to construct new unit generators by composition,
arranging multiple existing ugens into a single unit. In
this way, common arrangements of existing unit
generators can be defined and instantiated. Furthermore,
Chubgraph parameters can be exposed in a structured
manner via class member functions.

A Chubgraph is defined by extending the Chubgraph
class. The Chubgraph class has member variables named
inlet and outlet; inlet is a ugen that represents the
input signal to the Chubgraph, and outlet is the output
signal. The Chubgraph’s internal audio processing graph
is created by spanning a sequence of ugens between
inlet and outlet. The following Chubgraph
implements a basic feedback echo processor:

class Feedback extends Chubgraph
{
 inlet => Gain dry => outlet;
 dry => Delay delay => outlet;

 delay => Gain feedback => delay;

 0.8 => feedback.gain;

 1::second => delay.delay;
}

(Chubgraphs that do not wish to process an input signal,
such as audio synthesizing algorithms, may omit the
connection from inlet.)

Compared to Chugens, Chubgraphs have obvious
performance advantages, as primary audio-rate
processing still occurs in the native machine code
underlying its component ugens. However Chubgraphs
are limited to audio algorithms that can be expressed as
combinations of existing unit generators; implementing,
for example, intricate mathematical formulae or
conditional logic in the form of a ugen graph is possible
but, in our experience, fraught with hazard.

3.3. ChuGins

ChuGins (pronounced “chug-in”) allow near limitless
possibilities for expansion of ChucK’s capabilities. A
ChuGin is a distributable dynamic library, typically
written in C or C++ compiled to native machine code,
which ChucK can be instructed to load at runtime. When
loaded, the ChuGin defines one or more classes that are
subsequently available to ChucK programs. These
classes may define new unit generators or provide
general programmatic functionality beyond that built in
to ChucK. Since these classes are normal ChucK classes
implemented with native code, member functions and
variables can be used to provide an interface to control
parameters.

ChuGins are best suited for audio algorithms that are
reasonably well understood and stand to gain from the
performance of compiled machine code. The “write-
compile-run” development cycle and C/C++-based
programming mandated by ChuGins makes
implementation of audio processors require
comparatively more effort than the Chubgraph or
Chugen approaches. However for ugens a programmer
intends to use over an extended period of time, the effort
to implement a ChuGin will quickly pay off in the form
of lower CPU usage.

An additional advantage of ChuGins is that they may
provide functionality far outside the intrinsic
capabilities of ChucK. Complex synthesis C/C++ based
synthesis packages can be imported wholesale into
ChucK, opening up an abundance of sonic possibilities.
For example, ChuGins have been implemented to bring
audio processing programs from the Faust programming
language into ChucK. Similarly, the SoundFont renderer
FluidSynth has been packaged as a ChuGin. This
functionality is not limited to audio processing; a serial
port input/output ChuGin is under development, as are
other general purpose programming libraries.

Development of a ChuGin is somewhat more complex
than Chubgraphs or Chugens, and does not lend itself to
explicit presentation of code herein. Using a set of
convenience macros, a ChuGin developer first defines a
query function, which ChucK calls upon first loading
the ChuGin. ChucK provides the query function with
routines with which to define unit generators and
classes, specify what member variables and functions

_62 _63

are associated with these, and indicate a tick function
in the case of unit generators. These functions are then
defined in C/C++, using predefined macros for
interactions with the upper-level ChucK runtime, such
as retrieving function arguments, getting and setting
member variables, and handling input/output samples.
This code is then compiled into a dynamic library using
the standard facilities for doing so on the target
computing platform (gcc for Mac OS X and Linux
systems, Visual C++ for Windows systems). Additional
C/C++ code or libraries, such as STK, may be compiled
into the dynamic library using the mechanisms standard
for those operations on the target platform. Furthermore,
Faust DSP code can be automatically converted to
ChuGin form using FaucK, a Faust architecture file and
an accompanying compilation script.

4. PERFORMANCE CASE STUDIES

Execution speed of audio software is typically a vital
metric for computer musicians, as real-time audio
synthesis requires timely production of tens of thousands
of samples per second. To evaluate the performance of
our mechanisms for extending ChucK, we designed and
implemented several reference unit generators using
each method. For each method, we measured the time
required to offline-render 5 minutes of audio using the
resulting unit generator.

In many situations not only is CPU time at a premium,
but a programmer’s time to implement a specified
application is also limited. Therefore, often “less
complex” programs are more desirable than “more
complex” programs because they can be developed
faster and be better understood by other programmers.
While quantifying code complexity is a nuanced and
volatile field of inquiry, we have chosen to represent it in
the form of lines of code required to implement the unit
generator using each method. In addition to
characterizing code complexity, lines of code gives an
approximation of much time the extension may have
taken to develop.

To construct an overall picture of performance vs.
development effort, we have created a composite
statistic formed by the product of these two metrics,
named “aptness.” A lower aptness indicates that a
particular technique is more appropriate for a particular
processing application than a technique with a higher
aptness.

4.1. CombFilter

For this case study we implemented a simple comb
filter, the “plucked string filter” described in [12]. For
reference, the comparatively concise Chubgraph version
is as follows:

public class CombFilter extends Chubgraph
{
 inlet => Delay d => outlet;
 d => OneZero oz => d;

 -1 => oz.zero;
 100::samp => d.delay;
 0.75 => oz.gain;

}

As can be seen in Table 1, the ChuGin variant of
CombFilter performs best, but the Chubgraph version is
not far behind. The Chugen version performs poorly as a
result of requiring execution of ChucK code at audio-
rate, and also requires more code than the Chubgraph, as
the delay line and moving average filter needed to be
implemented from scratch. Given the vastly superior
lines of code and aptness metrics, the Chubgraph is
probably the best approach to use in this case.
Chubgraph excels here because CombFilter is essentially
a particular arrangement of existing unit generator
primitives, i.e. Delay and OneZero, allowing a concise
and efficient implementation. A ChuGin may be more
appropriate if speed is the utmost concern, but its
inferior code complexity makes it largely undesirable in
this class of audio processing algorithm.

Table 1. Performance and complexity measurements for
CombFilter.

4.2. Bitcrusher

This audio processor performs sample rate reduction by
decimation and destructive sample-width compression
to recreate its input at a specific sample rate and sample
width. The result typically sounds as if it was
synthesized by vintage, low-resolution audio or video
game hardware such as the Casiotone family of
consumer keyboards or the Nintendo Entertainment
System. For reference, the shortest version, a Chugen, is
listed here:

public class Bitcrusher extends Chugen
{
 8 => int bits;
 4 => int downsample;
 float sample;
 int count;
 Math.pow(2,31) => float fINT_MAX;

 fun float tick(float in)
 {
 if(count++ % downsample == 0)
 Math.min(1,Math.max(-1,in))=> sample;

 (sample * fINT_MAX) $ int => int q32;
 32-bits => int shift;
 ((q32 >> shift) << shift) => q32;

 return q32 / fINT_MAX;
 }
}

The results in Table 2 once again show the ChuGin as
the performance leader. Chugen is the most concise, and,
unsurprisingly, the poorest performing contender.
Chubgraph performs better than Chugen, but much
worse than ChuGin, and is far more complex in this
case. The built-in unit generators at the disposal of

CombFilter Time (s) Lines of Code Aptness

Chugen 10.944 18 197

Chubgraph 2.841 9 26

ChuGin 2.001 65 130

Chubgraphs are ill suited to tasks involving conditional
logic and intricate non-linear arithmetic manipulation.
Therefore, this algorithm would be ideal to develop and
prototype as a Chugen. If a computer musician finds him
or herself using this Chugen often, or requires faster
execution time, reimplementation as a ChuGin would be
appropriate.

Table 2. Performance and complexity measurements for
Bitcrusher.

5. FUTURE WORK

Further developments we are pursuing include
mechanisms for creating general purpose programming
libraries in ChucK. Additionally we are investigating a
unified ChuGin repository and distribution system,
similar to Debian APT [1] or RubyGems, to simplify the
task of finding and installing ChucK extensions.

Our current system of importing ChuGins does not
scale well, as ChuGins cannot be loaded on demand.
Rather, ChucK will load every ChuGin that is installed
on a system, which may take a noticeable amount of
time if there are many ChuGins present. In the future we
wish to more intelligently load ChuGins only when their
component ugens and classes are invoked by active
ChucK code.

Chugens generate audio by executing ChucK virtual
machine code at audio-rate; dynamically compiling
Chugens instead to native machine code may introduce
significant performance gains. Environments such as
LuaAV, Gen, and Pure do just this, compiling high-level
programs to native code for audio-rate execution.

Additional improvements may be required in the form
of process and memory safety in ChuGins. Currently,
ChuGins execute in the same process space as ChucK
itself, which means that buggy ChuGins can crash
ChucK outright. Technological approaches can alleviate
these problems somewhat, but organizational solutions
may also be desirable, such as having registries of
vetted and thoroughly tested ChuGins.

6. ACKNOWLEDGEMENTS

Special thanks to Kassen Oud, Casper Schipper, Jorge
Herrera, and Hongchan Choi for their invaluable beta
testing, bug finding, and feature requesting. Additional
support for this research was made possible by a
National Science Foundation Creative IT Grant, No. IIS-
0855758.

7. REFERENCES

[1] Apt. http://wiki.debian.org/Apt. Accessed
February 10, 2012.

[2] Cook, P., and Scavone, G. 1999. “STK: The
Synthesis Toolkit.” In Proceedings of the
International Computer Music Conference.
Beijing, China.

[3] Brown, A. R. and Sorenson, A. 2007.
"Dynamic Media Arts Programming in
impromptu." In Proceedings of the 6th ACM
SIGCHI conference on Creativity & Cognition.
Washington, DC, USA.

[4] FluidSynth. http://www.fluidsynth.org/.
Accessed February 11, 2012.

[5] Gräf, A. 2011. “Functional Signal Processing
with Pure and Faust Using the LLVM Toolkit.”
In Proceedings of the Sound and Music
Computing Conference. Padua, Italy.

[6] Lazzarini, V. 2005. “Extensions to the Csound
Language: from User- Defined to Plugin-
Opcodes and Beyond.” In Proceedings of the
Linux Audio Conference. Karlsruhe, Germany.

[7] Liang, S. 1996. The Java Native Interface:
Programmers Guide and Specification.
Addison-Wesley, Reading, MA.

[8] McCartney, J. 2002. “Rethinking the Computer
Music Language: SuperCollider,” Computer
Music Journal, 26(4): 61-68.

[9] Orlarey, Y., Fober, D., and Letz, S. 2009.
“Faust: an Efficient Functional Approach to
DSP Programming,” New Computational
Paradigms for Computer Music. Edition
Delatour, France.

[10] Puckette, M. S. 1997. "Pure data." In
Proceedings of the International Computer
Music Conference. Thessaloniki, Greece.

[11] RubyGems. http://rubygems.org/. Accessed
February 10, 2012.

[12] Steiglitz, K. 1996. Digital Signal Processing
Primer. Addison-Wesley, Reading, MA.

[13] Wakefield, G., Smith, W., and Roberts, C.
2010. “LuaAV: Extensibility and
Heterogeneity for Audiovisual Computing.” In
Proceedings of the Linux Audio Conference.
Utrecht, the Netherlands.

[14] Wang, G. 2008. The ChucK Audio
Programming Language: A Strongly-timed,
On-the-fly Environ/mentality. PhD Thesis.
Princeton University.

[15] Zicarelli, D. 1998. “An Extensible Real-Time
Signal Processing Environment for MAX.” In
Proceedings of the International Computer
Music Conference. Ann Arbor, MI.

Bitcrusher Time (s) Lines of Code Aptness

Chugen 10.600 21 223

Chubgraph 6.544 41 268

ChuGin 1.965 84 165

_62 _63

are associated with these, and indicate a tick function
in the case of unit generators. These functions are then
defined in C/C++, using predefined macros for
interactions with the upper-level ChucK runtime, such
as retrieving function arguments, getting and setting
member variables, and handling input/output samples.
This code is then compiled into a dynamic library using
the standard facilities for doing so on the target
computing platform (gcc for Mac OS X and Linux
systems, Visual C++ for Windows systems). Additional
C/C++ code or libraries, such as STK, may be compiled
into the dynamic library using the mechanisms standard
for those operations on the target platform. Furthermore,
Faust DSP code can be automatically converted to
ChuGin form using FaucK, a Faust architecture file and
an accompanying compilation script.

4. PERFORMANCE CASE STUDIES

Execution speed of audio software is typically a vital
metric for computer musicians, as real-time audio
synthesis requires timely production of tens of thousands
of samples per second. To evaluate the performance of
our mechanisms for extending ChucK, we designed and
implemented several reference unit generators using
each method. For each method, we measured the time
required to offline-render 5 minutes of audio using the
resulting unit generator.

In many situations not only is CPU time at a premium,
but a programmer’s time to implement a specified
application is also limited. Therefore, often “less
complex” programs are more desirable than “more
complex” programs because they can be developed
faster and be better understood by other programmers.
While quantifying code complexity is a nuanced and
volatile field of inquiry, we have chosen to represent it in
the form of lines of code required to implement the unit
generator using each method. In addition to
characterizing code complexity, lines of code gives an
approximation of much time the extension may have
taken to develop.

To construct an overall picture of performance vs.
development effort, we have created a composite
statistic formed by the product of these two metrics,
named “aptness.” A lower aptness indicates that a
particular technique is more appropriate for a particular
processing application than a technique with a higher
aptness.

4.1. CombFilter

For this case study we implemented a simple comb
filter, the “plucked string filter” described in [12]. For
reference, the comparatively concise Chubgraph version
is as follows:

public class CombFilter extends Chubgraph
{
 inlet => Delay d => outlet;
 d => OneZero oz => d;

 -1 => oz.zero;
 100::samp => d.delay;
 0.75 => oz.gain;

}

As can be seen in Table 1, the ChuGin variant of
CombFilter performs best, but the Chubgraph version is
not far behind. The Chugen version performs poorly as a
result of requiring execution of ChucK code at audio-
rate, and also requires more code than the Chubgraph, as
the delay line and moving average filter needed to be
implemented from scratch. Given the vastly superior
lines of code and aptness metrics, the Chubgraph is
probably the best approach to use in this case.
Chubgraph excels here because CombFilter is essentially
a particular arrangement of existing unit generator
primitives, i.e. Delay and OneZero, allowing a concise
and efficient implementation. A ChuGin may be more
appropriate if speed is the utmost concern, but its
inferior code complexity makes it largely undesirable in
this class of audio processing algorithm.

Table 1. Performance and complexity measurements for
CombFilter.

4.2. Bitcrusher

This audio processor performs sample rate reduction by
decimation and destructive sample-width compression
to recreate its input at a specific sample rate and sample
width. The result typically sounds as if it was
synthesized by vintage, low-resolution audio or video
game hardware such as the Casiotone family of
consumer keyboards or the Nintendo Entertainment
System. For reference, the shortest version, a Chugen, is
listed here:

public class Bitcrusher extends Chugen
{
 8 => int bits;
 4 => int downsample;
 float sample;
 int count;
 Math.pow(2,31) => float fINT_MAX;

 fun float tick(float in)
 {
 if(count++ % downsample == 0)
 Math.min(1,Math.max(-1,in))=> sample;

 (sample * fINT_MAX) $ int => int q32;
 32-bits => int shift;
 ((q32 >> shift) << shift) => q32;

 return q32 / fINT_MAX;
 }
}

The results in Table 2 once again show the ChuGin as
the performance leader. Chugen is the most concise, and,
unsurprisingly, the poorest performing contender.
Chubgraph performs better than Chugen, but much
worse than ChuGin, and is far more complex in this
case. The built-in unit generators at the disposal of

CombFilter Time (s) Lines of Code Aptness

Chugen 10.944 18 197

Chubgraph 2.841 9 26

ChuGin 2.001 65 130

Chubgraphs are ill suited to tasks involving conditional
logic and intricate non-linear arithmetic manipulation.
Therefore, this algorithm would be ideal to develop and
prototype as a Chugen. If a computer musician finds him
or herself using this Chugen often, or requires faster
execution time, reimplementation as a ChuGin would be
appropriate.

Table 2. Performance and complexity measurements for
Bitcrusher.

5. FUTURE WORK

Further developments we are pursuing include
mechanisms for creating general purpose programming
libraries in ChucK. Additionally we are investigating a
unified ChuGin repository and distribution system,
similar to Debian APT [1] or RubyGems, to simplify the
task of finding and installing ChucK extensions.

Our current system of importing ChuGins does not
scale well, as ChuGins cannot be loaded on demand.
Rather, ChucK will load every ChuGin that is installed
on a system, which may take a noticeable amount of
time if there are many ChuGins present. In the future we
wish to more intelligently load ChuGins only when their
component ugens and classes are invoked by active
ChucK code.

Chugens generate audio by executing ChucK virtual
machine code at audio-rate; dynamically compiling
Chugens instead to native machine code may introduce
significant performance gains. Environments such as
LuaAV, Gen, and Pure do just this, compiling high-level
programs to native code for audio-rate execution.

Additional improvements may be required in the form
of process and memory safety in ChuGins. Currently,
ChuGins execute in the same process space as ChucK
itself, which means that buggy ChuGins can crash
ChucK outright. Technological approaches can alleviate
these problems somewhat, but organizational solutions
may also be desirable, such as having registries of
vetted and thoroughly tested ChuGins.

6. ACKNOWLEDGEMENTS

Special thanks to Kassen Oud, Casper Schipper, Jorge
Herrera, and Hongchan Choi for their invaluable beta
testing, bug finding, and feature requesting. Additional
support for this research was made possible by a
National Science Foundation Creative IT Grant, No. IIS-
0855758.

7. REFERENCES

[1] Apt. http://wiki.debian.org/Apt. Accessed
February 10, 2012.

[2] Cook, P., and Scavone, G. 1999. “STK: The
Synthesis Toolkit.” In Proceedings of the
International Computer Music Conference.
Beijing, China.

[3] Brown, A. R. and Sorenson, A. 2007.
"Dynamic Media Arts Programming in
impromptu." In Proceedings of the 6th ACM
SIGCHI conference on Creativity & Cognition.
Washington, DC, USA.

[4] FluidSynth. http://www.fluidsynth.org/.
Accessed February 11, 2012.

[5] Gräf, A. 2011. “Functional Signal Processing
with Pure and Faust Using the LLVM Toolkit.”
In Proceedings of the Sound and Music
Computing Conference. Padua, Italy.

[6] Lazzarini, V. 2005. “Extensions to the Csound
Language: from User- Defined to Plugin-
Opcodes and Beyond.” In Proceedings of the
Linux Audio Conference. Karlsruhe, Germany.

[7] Liang, S. 1996. The Java Native Interface:
Programmers Guide and Specification.
Addison-Wesley, Reading, MA.

[8] McCartney, J. 2002. “Rethinking the Computer
Music Language: SuperCollider,” Computer
Music Journal, 26(4): 61-68.

[9] Orlarey, Y., Fober, D., and Letz, S. 2009.
“Faust: an Efficient Functional Approach to
DSP Programming,” New Computational
Paradigms for Computer Music. Edition
Delatour, France.

[10] Puckette, M. S. 1997. "Pure data." In
Proceedings of the International Computer
Music Conference. Thessaloniki, Greece.

[11] RubyGems. http://rubygems.org/. Accessed
February 10, 2012.

[12] Steiglitz, K. 1996. Digital Signal Processing
Primer. Addison-Wesley, Reading, MA.

[13] Wakefield, G., Smith, W., and Roberts, C.
2010. “LuaAV: Extensibility and
Heterogeneity for Audiovisual Computing.” In
Proceedings of the Linux Audio Conference.
Utrecht, the Netherlands.

[14] Wang, G. 2008. The ChucK Audio
Programming Language: A Strongly-timed,
On-the-fly Environ/mentality. PhD Thesis.
Princeton University.

[15] Zicarelli, D. 1998. “An Extensible Real-Time
Signal Processing Environment for MAX.” In
Proceedings of the International Computer
Music Conference. Ann Arbor, MI.

Bitcrusher Time (s) Lines of Code Aptness

Chugen 10.600 21 223

Chubgraph 6.544 41 268

ChuGin 1.965 84 165

