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ABSTRACT 

The ChucK programming language lacks 
straightforward mechanisms for extension beyond its 
built-in programming and processing facilities. Chugens 
address this issue by allowing programmers to live-code 
new unit generators in ChucK in real-time. Chubgraphs 
also allow new unit generators to be built in ChucK, by 
defining specific arrangements of existing unit 
generators. ChuGins allow a wide array of high-
performance unit generators and general functionality to 
be exposed in ChucK by providing a dynamic binding 
between ChucK and native C/C++-based compiled 
code. Performance and code analysis shows that the 
most suitable approach for extending ChucK is 
situation-dependent.  

1. INTRODUCTION 

Since its introduction, the ChucK programming 
language [14] has become a popular tool for computer 
music composers, educators, and application software 
developers. However, to date, its catalogue of audio 
processing unit generators and general programming 
functionality has been largely limited to those that are 
built-in when the ChucK binary executable is compiled. 
Adding new unit generators mandates recompilation of 
the entirety of ChucK, requiring a level of expertise and 
motivation reserved for an elite group of power-users. 
Furthermore, community-based development efforts are 
hampered by this centralization of functionality, as 
developers of new unit generators have no easy way to 
share their work.  

The aim of the work described herein is to provide 
ChucK with multiple levels of extensibility, each 
essential and appropriate to specific tasks and levels of 
user expertise. On the one hand, ChucK’s pervasive 
ethos of on-the-fly development creates the desire to 
design and implement new audio processors in ChucK 
itself in real-time, working down to the per-sample level 
if necessary. Furthermore, implementing these 
components in ChucK allows their use on any operating 
system ChucK supports with no additional effort from 
the developer. For these cases we have developed 
Chugens and Chubgraphs.  

On the other hand, real-time performance 
requirements often mandate the use of compiled native 
machine code for complex audio-rate processing. There 
also exists a wealth of C/C++-based software libraries 
for audio synthesis and effects, such as FluidSynth [4] 
and Faust [9]. These situations can be straightforwardly 
handled given portable bindings between ChucK and 

native compiled code, which is precisely the intent of 
ChuGins.   

2. RELATED WORK 

Extensibility is a primary concern of music software of 
all varieties. The popular audio programming 
environments Max/MSP [15], Pure Data [10], 
SuperCollider [8], and Csound [4] all provide 
mechanisms for developing C/C++-based compiled 
sound processing functions. Max also allows control-rate 
functionality to be encapsulated in-situ in the form of 
Javascript code snippets. Max’s Gen facility dynamically 
compiles audio-rate processors, implemented as either 
data-flows or textual code, to native machine code. 
Csound allows the execution of Tcl, Lua, and Python 
code for control-rate and/or audio-rate manipulation and 
synthesis. The Impromptu environment supports live-
coding of audio-rate processors in a Scheme-like 
language [3], and LuaAV does the same for Lua [13]. 
Pure allows programmers to dynamically write and 
execute audio signal processors using Faust [5]. A 
thriving ecosystem revolves around extensions to 
popular digital audio workstation software, in the form 
of VST, RTAS, AudioUnits, and LADSPA plugins 
developed primarily in C and C++. For general-purpose 
computing, JNI provides a highly flexible binding 
between native machine code and the Java virtual 
machine-based run-time environment [7]. RubyGems is 
a complete plugin and package management tool for 
both Ruby-based plugins and C/C++ libraries compiled 
with Ruby bindings [11].  

3. CHUGENS, CHUBGRAPHS, CHUGINS 

3.1. Chugens 

The goal of Chugens (pronounced “chyoo-jen”) is to 
facilitate rapid prototyping of audio synthesis and 
processing algorithms. Additionally, Chugens provide a 
basic framework for extending ChucK’s built-in audio 
processing functionality. Using the Chugen system, a 
programmer can implement sample-rate audio 
algorithms within the ChucK development environment, 
utilizing the full array of programming facilities 
provided by ChucK. These processing units can be 
naturally integrated into standard ChucK programs, even 
in the same script file, providing seamless control of 
audio-rate processing, control-rate manipulation, and 
higher-level compositional organization.  

A Chugen is created first by subclassing the built-in 
Chugen class. This subclass is required to implement a 

  
 
tick function, which accepts a single floating-point 
argument (the input sample) and returns a single 
floating-point value (the output sample). For example, 
this code uses a Chugen to synthesize a sinusoid using 
the cosine function:  
 
class MyCosine extends Chugen 
{ 
   0 => int p; 
   440 => float f; 
   second/samp => float SRATE; 
 
   fun float tick(float in) 
   { 
       return Math.cos(p++*2*pi*f/SRATE); 
   } 
} 
 

In the case of an audio synthesizer that does not process 
an existing signal, the input sample may be ignored. 

A Chugen defined so may be integrated into audio 
graphs like any standard ChucK ugen. Since the tick 
function is just a standard ChucK class member function, 
it can be as simple or as elaborate as required. Standard 
library calls, file I/O, multiprocessing (using spork), and 
other general ChucK programming structures can be 
integrated into the tick function and supporting code. 
For performance reasons, its important to consider that 
the tick function will be called for every sample of 
audio, so simple tick functions will typically perform 
better. Moreover, the intrinsic overhead of ChucK’s 
virtual machine architecture will cause Chugens to 
underperform compared to a native C/C++ 
implementation. Lastly, since Chugens are 
fundamentally a specialization of a ChucK class, it may 
define functions to provide structured access to 
whichever parameters it wishes to expose to the 
programmer. 

3.2. Chubgraphs 

Chubgraphs (pronounced “chub-graph”) provide a way 
to construct new unit generators by composition, 
arranging multiple existing ugens into a single unit. In 
this way, common arrangements of existing unit 
generators can be defined and instantiated. Furthermore, 
Chubgraph parameters can be exposed in a structured 
manner via class member functions.  

A Chubgraph is defined by extending the Chubgraph 
class. The Chubgraph class has member variables named 
inlet and outlet; inlet is a ugen that represents the 
input signal to the Chubgraph, and outlet is the output 
signal. The Chubgraph’s internal audio processing graph 
is created by spanning a sequence of ugens between 
inlet and outlet. The following Chubgraph 
implements a basic feedback echo processor:  
 
class Feedback extends Chubgraph 
{ 
   inlet => Gain dry => outlet; 
   dry => Delay delay => outlet; 
    
   delay => Gain feedback => delay; 
        
   0.8 => feedback.gain; 

   1::second => delay.delay; 
} 
 

(Chubgraphs that do not wish to process an input signal, 
such as audio synthesizing algorithms, may omit the 
connection from inlet.)  

Compared to Chugens, Chubgraphs have obvious 
performance advantages, as primary audio-rate 
processing still occurs in the native machine code 
underlying its component ugens. However Chubgraphs 
are limited to audio algorithms that can be expressed as 
combinations of existing unit generators; implementing, 
for example, intricate mathematical formulae or 
conditional logic in the form of a ugen graph is possible 
but, in our experience, fraught with hazard. 

3.3. ChuGins 

ChuGins (pronounced “chug-in”) allow near limitless 
possibilities for expansion of ChucK’s capabilities. A 
ChuGin is a distributable dynamic library, typically 
written in C or C++ compiled to native machine code, 
which ChucK can be instructed to load at runtime. When 
loaded, the ChuGin defines one or more classes that are 
subsequently available to ChucK programs. These 
classes may define new unit generators or provide 
general programmatic functionality beyond that built in 
to ChucK. Since these classes are normal ChucK classes 
implemented with native code, member functions and 
variables can be used to provide an interface to control 
parameters.  

ChuGins are best suited for audio algorithms that are 
reasonably well understood and stand to gain from the 
performance of compiled machine code. The “write-
compile-run” development cycle and C/C++-based 
programming mandated by ChuGins makes 
implementation of audio processors require 
comparatively more effort than the Chubgraph or 
Chugen approaches. However for ugens a programmer 
intends to use over an extended period of time, the effort 
to implement a ChuGin will quickly pay off in the form 
of lower CPU usage.  

An additional advantage of ChuGins is that they may 
provide functionality far outside the intrinsic 
capabilities of ChucK. Complex synthesis C/C++ based 
synthesis packages can be imported wholesale into 
ChucK, opening up an abundance of sonic possibilities. 
For example, ChuGins have been implemented to bring 
audio processing programs from the Faust programming 
language into ChucK. Similarly, the SoundFont renderer 
FluidSynth has been packaged as a ChuGin. This 
functionality is not limited to audio processing; a serial 
port input/output ChuGin is under development, as are 
other general purpose programming libraries.  

Development of a ChuGin is somewhat more complex 
than Chubgraphs or Chugens, and does not lend itself to 
explicit presentation of code herein. Using a set of 
convenience macros, a ChuGin developer first defines a 
query function, which ChucK calls upon first loading 
the ChuGin. ChucK provides the query function with 
routines with which to define unit generators and 
classes, specify what member variables and functions 
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tick function, which accepts a single floating-point 
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compile-run” development cycle and C/C++-based 
programming mandated by ChuGins makes 
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Chugen approaches. However for ugens a programmer 
intends to use over an extended period of time, the effort 
to implement a ChuGin will quickly pay off in the form 
of lower CPU usage.  

An additional advantage of ChuGins is that they may 
provide functionality far outside the intrinsic 
capabilities of ChucK. Complex synthesis C/C++ based 
synthesis packages can be imported wholesale into 
ChucK, opening up an abundance of sonic possibilities. 
For example, ChuGins have been implemented to bring 
audio processing programs from the Faust programming 
language into ChucK. Similarly, the SoundFont renderer 
FluidSynth has been packaged as a ChuGin. This 
functionality is not limited to audio processing; a serial 
port input/output ChuGin is under development, as are 
other general purpose programming libraries.  

Development of a ChuGin is somewhat more complex 
than Chubgraphs or Chugens, and does not lend itself to 
explicit presentation of code herein. Using a set of 
convenience macros, a ChuGin developer first defines a 
query function, which ChucK calls upon first loading 
the ChuGin. ChucK provides the query function with 
routines with which to define unit generators and 
classes, specify what member variables and functions 
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are associated with these, and indicate a tick function 
in the case of unit generators. These functions are then 
defined in C/C++, using predefined macros for 
interactions with the upper-level ChucK runtime, such 
as retrieving function arguments, getting and setting 
member variables, and handling input/output samples. 
This code is then compiled into a dynamic library using 
the standard facilities for doing so on the target 
computing platform (gcc for Mac OS X and Linux 
systems, Visual C++ for Windows systems). Additional 
C/C++ code or libraries, such as STK, may be compiled 
into the dynamic library using the mechanisms standard 
for those operations on the target platform. Furthermore, 
Faust DSP code can be automatically converted to 
ChuGin form using FaucK, a Faust architecture file and 
an accompanying compilation script.  

4. PERFORMANCE CASE STUDIES 

Execution speed of audio software is typically a vital 
metric for computer musicians, as real-time audio 
synthesis requires timely production of tens of thousands 
of samples per second. To evaluate the performance of 
our mechanisms for extending ChucK, we designed and 
implemented several reference unit generators using 
each method. For each method, we measured the time 
required to offline-render 5 minutes of audio using the 
resulting unit generator.  

In many situations not only is CPU time at a premium, 
but a programmer’s time to implement a specified 
application is also limited. Therefore, often “less 
complex” programs are more desirable than “more 
complex” programs because they can be developed 
faster and be better understood by other programmers. 
While quantifying code complexity is a nuanced and 
volatile field of inquiry, we have chosen to represent it in 
the form of lines of code required to implement the unit 
generator using each method. In addition to 
characterizing code complexity, lines of code gives an 
approximation of much time the extension may have 
taken to develop.    

To construct an overall picture of performance vs. 
development effort, we have created a composite 
statistic formed by the product of these two metrics, 
named “aptness.” A lower aptness indicates that a 
particular technique is more appropriate for a particular 
processing application than a technique with a higher 
aptness.  

4.1. CombFilter 

For this case study we implemented a simple comb 
filter, the “plucked string filter” described in [12]. For 
reference, the comparatively concise Chubgraph version 
is as follows: 
 
public class CombFilter extends Chubgraph 
{ 
    inlet => Delay d => outlet; 
    d => OneZero oz => d; 
     
    -1 => oz.zero; 
    100::samp => d.delay; 
    0.75 => oz.gain; 

} 

As can be seen in Table 1, the ChuGin variant of 
CombFilter performs best, but the Chubgraph version is 
not far behind. The Chugen version performs poorly as a 
result of requiring execution of ChucK code at audio-
rate, and also requires more code than the Chubgraph, as 
the delay line and moving average filter needed to be 
implemented from scratch. Given the vastly superior 
lines of code and aptness metrics, the Chubgraph is 
probably the best approach to use in this case. 
Chubgraph excels here because CombFilter is essentially 
a particular arrangement of existing unit generator 
primitives, i.e. Delay and OneZero, allowing a concise 
and efficient implementation. A ChuGin may be more 
appropriate if speed is the utmost concern, but its 
inferior code complexity makes it largely undesirable in 
this class of audio processing algorithm.  

Table 1. Performance and complexity measurements for 
CombFilter.  

4.2. Bitcrusher 

This audio processor performs sample rate reduction by 
decimation and destructive sample-width compression 
to recreate its input at a specific sample rate and sample 
width. The result typically sounds as if it was 
synthesized by vintage, low-resolution audio or video 
game hardware such as the Casiotone family of 
consumer keyboards or the Nintendo Entertainment 
System. For reference, the shortest version, a Chugen, is 
listed here: 
 
public class Bitcrusher extends Chugen 
{ 
    8 => int bits; 
    4 => int downsample; 
    float sample; 
    int count; 
    Math.pow(2,31) => float fINT_MAX; 
     
    fun float tick(float in) 
    { 
        if(count++ % downsample == 0) 
          Math.min(1,Math.max(-1,in))=> sample; 
         
        (sample * fINT_MAX) $ int => int q32; 
        32-bits => int shift; 
        ((q32 >> shift) << shift) => q32; 
         
        return q32 / fINT_MAX; 
    } 
} 
 

The results in Table 2 once again show the ChuGin as 
the performance leader. Chugen is the most concise, and, 
unsurprisingly, the poorest performing contender. 
Chubgraph performs better than Chugen, but much 
worse than ChuGin, and is far more complex in this 
case. The built-in unit generators at the disposal of 

CombFilter Time (s) Lines of Code Aptness 

Chugen 10.944 18 197 

Chubgraph 2.841 9 26 

ChuGin 2.001 65 130 

  
 
Chubgraphs are ill suited to tasks involving conditional 
logic and intricate non-linear arithmetic manipulation. 
Therefore, this algorithm would be ideal to develop and 
prototype as a Chugen. If a computer musician finds him 
or herself using this Chugen often, or requires faster 
execution time, reimplementation as a ChuGin would be 
appropriate. 

Table 2. Performance and complexity measurements for 
Bitcrusher.  

5. FUTURE WORK 

Further developments we are pursuing include 
mechanisms for creating general purpose programming 
libraries in ChucK. Additionally we are investigating a 
unified ChuGin repository and distribution system, 
similar to Debian APT [1] or RubyGems, to simplify the 
task of finding and installing ChucK extensions.  

Our current system of importing ChuGins does not 
scale well, as ChuGins cannot be loaded on demand. 
Rather, ChucK will load every ChuGin that is installed 
on a system, which may take a noticeable amount of 
time if there are many ChuGins present. In the future we 
wish to more intelligently load ChuGins only when their 
component ugens and classes are invoked by active 
ChucK code.  

Chugens generate audio by executing ChucK virtual 
machine code at audio-rate; dynamically compiling 
Chugens instead to native machine code may introduce 
significant performance gains. Environments such as 
LuaAV, Gen, and Pure do just this, compiling high-level 
programs to native code for audio-rate execution.  

Additional improvements may be required in the form 
of process and memory safety in ChuGins. Currently, 
ChuGins execute in the same process space as ChucK 
itself, which means that buggy ChuGins can crash 
ChucK outright. Technological approaches can alleviate 
these problems somewhat, but organizational solutions 
may also be desirable, such as having registries of 
vetted and thoroughly tested ChuGins.  
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ChuGin form using FaucK, a Faust architecture file and 
an accompanying compilation script.  

4. PERFORMANCE CASE STUDIES 

Execution speed of audio software is typically a vital 
metric for computer musicians, as real-time audio 
synthesis requires timely production of tens of thousands 
of samples per second. To evaluate the performance of 
our mechanisms for extending ChucK, we designed and 
implemented several reference unit generators using 
each method. For each method, we measured the time 
required to offline-render 5 minutes of audio using the 
resulting unit generator.  

In many situations not only is CPU time at a premium, 
but a programmer’s time to implement a specified 
application is also limited. Therefore, often “less 
complex” programs are more desirable than “more 
complex” programs because they can be developed 
faster and be better understood by other programmers. 
While quantifying code complexity is a nuanced and 
volatile field of inquiry, we have chosen to represent it in 
the form of lines of code required to implement the unit 
generator using each method. In addition to 
characterizing code complexity, lines of code gives an 
approximation of much time the extension may have 
taken to develop.    

To construct an overall picture of performance vs. 
development effort, we have created a composite 
statistic formed by the product of these two metrics, 
named “aptness.” A lower aptness indicates that a 
particular technique is more appropriate for a particular 
processing application than a technique with a higher 
aptness.  

4.1. CombFilter 

For this case study we implemented a simple comb 
filter, the “plucked string filter” described in [12]. For 
reference, the comparatively concise Chubgraph version 
is as follows: 
 
public class CombFilter extends Chubgraph 
{ 
    inlet => Delay d => outlet; 
    d => OneZero oz => d; 
     
    -1 => oz.zero; 
    100::samp => d.delay; 
    0.75 => oz.gain; 

} 

As can be seen in Table 1, the ChuGin variant of 
CombFilter performs best, but the Chubgraph version is 
not far behind. The Chugen version performs poorly as a 
result of requiring execution of ChucK code at audio-
rate, and also requires more code than the Chubgraph, as 
the delay line and moving average filter needed to be 
implemented from scratch. Given the vastly superior 
lines of code and aptness metrics, the Chubgraph is 
probably the best approach to use in this case. 
Chubgraph excels here because CombFilter is essentially 
a particular arrangement of existing unit generator 
primitives, i.e. Delay and OneZero, allowing a concise 
and efficient implementation. A ChuGin may be more 
appropriate if speed is the utmost concern, but its 
inferior code complexity makes it largely undesirable in 
this class of audio processing algorithm.  

Table 1. Performance and complexity measurements for 
CombFilter.  

4.2. Bitcrusher 

This audio processor performs sample rate reduction by 
decimation and destructive sample-width compression 
to recreate its input at a specific sample rate and sample 
width. The result typically sounds as if it was 
synthesized by vintage, low-resolution audio or video 
game hardware such as the Casiotone family of 
consumer keyboards or the Nintendo Entertainment 
System. For reference, the shortest version, a Chugen, is 
listed here: 
 
public class Bitcrusher extends Chugen 
{ 
    8 => int bits; 
    4 => int downsample; 
    float sample; 
    int count; 
    Math.pow(2,31) => float fINT_MAX; 
     
    fun float tick(float in) 
    { 
        if(count++ % downsample == 0) 
          Math.min(1,Math.max(-1,in))=> sample; 
         
        (sample * fINT_MAX) $ int => int q32; 
        32-bits => int shift; 
        ((q32 >> shift) << shift) => q32; 
         
        return q32 / fINT_MAX; 
    } 
} 
 

The results in Table 2 once again show the ChuGin as 
the performance leader. Chugen is the most concise, and, 
unsurprisingly, the poorest performing contender. 
Chubgraph performs better than Chugen, but much 
worse than ChuGin, and is far more complex in this 
case. The built-in unit generators at the disposal of 

CombFilter Time (s) Lines of Code Aptness 

Chugen 10.944 18 197 

Chubgraph 2.841 9 26 

ChuGin 2.001 65 130 

  
 
Chubgraphs are ill suited to tasks involving conditional 
logic and intricate non-linear arithmetic manipulation. 
Therefore, this algorithm would be ideal to develop and 
prototype as a Chugen. If a computer musician finds him 
or herself using this Chugen often, or requires faster 
execution time, reimplementation as a ChuGin would be 
appropriate. 

Table 2. Performance and complexity measurements for 
Bitcrusher.  

5. FUTURE WORK 

Further developments we are pursuing include 
mechanisms for creating general purpose programming 
libraries in ChucK. Additionally we are investigating a 
unified ChuGin repository and distribution system, 
similar to Debian APT [1] or RubyGems, to simplify the 
task of finding and installing ChucK extensions.  

Our current system of importing ChuGins does not 
scale well, as ChuGins cannot be loaded on demand. 
Rather, ChucK will load every ChuGin that is installed 
on a system, which may take a noticeable amount of 
time if there are many ChuGins present. In the future we 
wish to more intelligently load ChuGins only when their 
component ugens and classes are invoked by active 
ChucK code.  

Chugens generate audio by executing ChucK virtual 
machine code at audio-rate; dynamically compiling 
Chugens instead to native machine code may introduce 
significant performance gains. Environments such as 
LuaAV, Gen, and Pure do just this, compiling high-level 
programs to native code for audio-rate execution.  

Additional improvements may be required in the form 
of process and memory safety in ChuGins. Currently, 
ChuGins execute in the same process space as ChucK 
itself, which means that buggy ChuGins can crash 
ChucK outright. Technological approaches can alleviate 
these problems somewhat, but organizational solutions 
may also be desirable, such as having registries of 
vetted and thoroughly tested ChuGins.  
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