

boid to be played it must be collided with any playhead first and
then it is queued in the appropriate playqueue.

3.2 Flocks and Boids
A “boid” is a minimal unit in the system, which is equivalent to
an individual note in traditional sequencers. A boid can have
many different audiovisual attributes including pitch,
amplitude, color, position, size, and velocity vector (figure 4).
They can be played as musical notes when colliding with any
playhead. A “flock” is a group of boids and we see it as a
musical phrase. (flocks in figure 5 are circled with dashed
lines.)

The intriguing fact about boids and flocks is their movement is
not totally random, but very organic and natural, thank to a
special behavior simulation algorithm called “flocking
algorithm.” Flocking is the behavior exhibited when a group of
birds, called a flock, are foraging or in flight. Craig Reynolds
first simulated this behavior in 1986. This algorithm simulates
simple agents (boids) that are allowed to move according to a
set of basic rules. The result is akin to a flock of birds or a
school of fish [9].

4. THE LUSH ARCHITECTURE
The Lush architecture is incorporating various technologies into
one system based on C++ programming language. We have
implemented Lush as a standalone application, while designing
it readily available to any type of projects necessitate real-time
visualization based on the particle system. We believe the
particle system is the most powerful way to create sound
visualization because of its parametric trait and adjustable
degree of randomness.

4.1 C++ Class Hierarchy
In terms of its architecture, Lush is hierarchically abstracted and
structured. The aforementioned boid is the smallest object in the
system and its instances calculate own velocity vector and
collision at every frame, in other words, it is an autonomous
entity. Flocking is considered an emergent behavior arising
from simple rules that are followed by individuals and does not
involve any central coordination.

The “flock” class is a container class for boid instances of
which main tasks are iterating processes of boids. This
mechanism provides flexibility and performance to the system.

Grouping multiple boids by flocks offers two advantages. First
of all, the user recognizes it as a musical phase due to its visual
representation. Secondly, flocking simulation normally requires
huge amount of calculation as it takes account of every boids in
the system, however, it is possible to reduce computational load
by making them interact only with ones in the same flock.

Likewise, the “sea” class is a container as well as an iterator of
flock instances. It is also the biggest object (singleton class) in
the system that embraces everything inside including playheads
and playqueues (figure 5).

4.2 Vector Calculation and Flocking
In the Lush, the collision is the most important event in either
musical or visual aspect. A custom class for convenient vector
calculation has been implemented to solve collision and
intersection. It plays a significant role in operating flocking
algorithm as resulting a number of parameters to be tweaked.
Besides, all of these parameters are readily available to
visualization. The “vector-madness mode” is a good example of
visualization utilizing one of these parameters – a steering
vector of a boid, which is the most interesting parameter to
watch in the system (figure 1 right).

4.3 Nondeterministic Finite Automata
Lush generates music from nondeterministic finite automata,
and this is the most effective and easiest way to create musical
sequence algorithmically while maintaining melodic/scale
contour of the original music. The system analyzes a standard
MIDI file, only for the pitch of notes, to build automata and
assign weighting factors to links between states by the number
of appearance of MIDI notes.

4.4 Integration: OpenGL + STK + OSC
OpenGL is the core of the system that drives other parts. STK
(Synthesis TookKit) is deployed for MIDI feature and the built-
in synthesizer. In addition, RtAudio functions as the audio API
allowing the system to communicate with the audio interface in

Figure 4. Two types of playhead and playqueues. The green
ones are to play sound with the built-in synthesizer, and the

blue ones are to send control data to OSC-compatible software.
(e.g. ChucK, PureData, Max/MSP, and etc.)

Figure 5. The Lush Architecture.

Score File
Analysis

Other Lush
Clients

OSC-compatible
Applicaitons

The Lush C
ore

Playqueue (Local) Playqueue (Network)

OpenGL/
GLUT

OSC
Transmitter

STK
Synthesizer

Other Lush
Clients

OSC-compatible
Applicaitons

Playheads
(Network)

Playheads
(Local)

b bb bb bb

Automata OSC Receiver
boid

generation

collision
detection

collision
detection

Flock
b b

b bb
b
b

Flock
b b

b bb
b
b

Flock
b b

b bb
b
b

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

114

the computer [14] [15]. Ross Bencina’s OSCPack is also used
to implement OSC communication [16].

5. ANALYSIS AND FUTURE WORK
We believe this system offers algorithmic composers countless
possibilities to interact with generated music sequence in real-
time. Also its visual aesthetic motivates audiovisual performers
to present their working process to audiences as a modern form
of abstract audiovisual art. Furthermore, the intuitive user
interface of Lush has the potential to evolve into music games
or audiovisual games for the non-musician population.

5.1 Limitations
A number of disadvantages have been found in actual practice.
First of all, it is impossible to play notes along the musical time
base. (e.g. measures, beats and ticks) The other one comes from
its incomplete analysis of score files. Currently, NFA cannot
convey the complete characteristics of original music because
of the analysis process bypassing some of the crucial
parameters such as duration, velocity and pause in score data.
Lastly is the lack of a recording feature. We found that many
users wanted to record or capture their audiovisual performance
or composition while using the system.

5.2 Contributions
However, Lush has a number of novelties to improve
limitations that are commonly found on traditional sequencers.
Compared to their disinterest on visual aesthetics, Lush
provides a greater level of visualization and responsive
interaction. On account of NFA, the user can balance the
characteristics of its musical product between stochastic and
deterministic quality by selecting notes from computer-
generated music sequence. In addition, the practical observation
of the system shows playing boids in flocks can be considered
as sonification of flocking algorithm. The color distribution of
generated music sequence is one of the interesting points.
Finally, based on these advantages, it offers chances to reuse a
huge collection of MIDI files while generating music sequences
with a similar sense of the original music.

5.3 Future Work
We realized building NFA by analyzing existing score files has
the potential in it, so enhancing and complementing it is the top
priority of our next step. The secondary task is to make the
system communicate with the other one over the OSC
connection. (e.g. ChucK-ChucK Rocket [17], SbLAC [18])
Furthermore, more components provoke user’s interaction and
inspiration will be added. It includes more intelligent behavior
patterns for boids, force field, warp hole, and etc.

6. CONCLUSION
We developed a music creation environment by incorporating
interaction, visualization, and aesthetic. This system offers
various functionalities that conventional sequencers lack
including music sequence generation based on score file
analysis, visualization of musical notes by behavior simulation
and networking for the other OSC-compatible applications. We
propose Lush as a playground for algorithmic composers and
audiovisual performers, promoting this environment as a
starting point for the concept of “performative composition” or
“compositional performance.”

7. PROJECT URL
http://ccrma.stanford.edu/~hongchan/lush/

8. ACKNOWLEDGMENTS
We appreciate the valuable feedback from the people in MUSIC
256a class (Music, Computing and Design I) at CCRMA.

9. REFERENCES
[1] Iwai, T. “Images, Music, and Interactivity - the Trace of

Media Art” Keynote Speech. International Computer
Music Conference. June 2004.

[2] Wang, G. “The Audicle: A Context-Sensitive, On-the-fly
Audio Programming Environ/mentality” In Proceedings of
the International Computer Music Conference. June 2004.

[3] Hamilton, R. “Q3OSC Or: How I Learned to Stop
Worrying and Love the Game” In Proceedings of the
International Computer Music Conference. 2008.

[4] Levin, G. Painterly Interfaces for Audiovisual
Performance. M.S. Thesis, MIT Media Laboratory,
August 2000.

[5] Levin, G. “The Table is The Score: An Augmented-Reality
Interface for Real-Time, Tangible, Spectrographic
Performance” In Proceedings of the International
Computer Music Conference. 2006.

[6] Yamaha Corp. “Tenori-on”
http://www.global.yamaha.com/design/tenori-on/
Retrieved January 2010.

[7] Merrill, D., Kalanithi, J., Maes, P. “Siftables: towards
sensor network user interfaces” In Proceedings of the 1st
international conference on Tangible and embedded
interaction. 2007.

[8] McAlpine, K., Miranda, E., Hoggar, S. “Making music
with algorithms: A case-study system” Computer Music
Journal. Vol. 23, No. 2.1999.

[9] Reynolds, C. W. “Flocks, Herds, and Schools: A
Distributed Behavioral Model” In Computer Graphics
(Proceedings of SIGGRAPH ’87). 1987.

[10] Wright, M. and Freed, A. and Momeni, A. “Opensound
control: State of the art 2003” In Proceedings of the
conference on New interfaces for musical expression.
2003.

[11] Wang, G. The ChucK Programming Language: a
Strongly-timed, On-the-fly Environ/mentality. PhD Thesis.
Princeton University Press. 2008.

[12] Puckette, M. “Pure Data: another integrated computer
music environment” In Proceedings of the Second
Intercollege Computer Music Concerts. 1996.

[13] Cycling 74’. http://www.cycling74.com Retrieved January
2010.

[14] Cook, P.R. and Scavone, G. “The synthesis toolkit (stk)”
In Proceedings of the International Computer Music
Conference. 1999.

[15] Scavone, G.P. and Cook, P.R. “RtMidi, RtAudio, and a
synthesis toolkit (STK) update” Synthesis Journal. 2004.

[16] Bencina, R.
http://www.audiomulch.com/~rossb/code/oscpack/
Retrieved January 2010.

[17] G. Wang and M, Ananya and Cook, P.R. “Building
Collaborative Graphical interFaces in the Audicle” In
Proceedings of the International Conference on New
Interfaces for Musical Expression. 2006.

[18] Choi, H. http://ccrma.stanford.edu/~hongchan/sblac/
Retrieved January 2010

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

115

