CENTER FOR COMPUTER RESEARCH IN MUSIC AND ACOUSTICS
AUGUST 1996

Department of Music
Report No. STAN-M-99

CCRMA PAPERS PRESENTED AT THE
1996 INTERNATIONAL COMPUTER MUSIC CONFERENCE
HONG KONG

Chris Chafe, Alex Igoudin, David Jaffe, Matti Karjalainen, Tobias Kunze,
Scott Levine, Fernando Lopez-Lezcano, Sile O’Modhrain, Nick Porcaro,
William Putnam, Pat Scandalis, Gary Scavone, Julius Smith, Tim Stilson,
Heinrich Taube, Scott van Duyne

CCRMA
Department of Music
Stanford University
Stanford, California 94305-8180

TABLE OF CONTENTS

Chris Chafe and Sile O’'Modhrain
Musical Muscle Memory and the Haptic Display of Performance Nuance

Alex Igoudin and Fernando Lopez-Lezcano
CCRMA Studio Report

Tobias Kunze and Heinrich Taube
SEE--A Structured Event Editor: Visualizing Compositional Data in
Common Music

Scott Levine
Critically Sampled Third Octave Filter Banks

Effects Processing on Audio Subband Data

Fernando Lopez-Lezcano
PadMaster: banging on algorithms with alternative controllers

Nick Porcaro, Pat Scandalis, David Jaffe, and Julius Smith
Using SynthBuilder for the Creation of Physical Models

William Putnam and Tim Stilson
Frankenstein: A Low Cost Multi-DSP Compute Engine for Music Kit

Gary Scavone
Modelling and Control of Performance Expression in Digital Waveguide
Models of Woodwind Instruments

Julius Smith and Matti Karjalainen
Body Modelling Techniques for String Instrument Synthesis

Tim Stilson and Julius Smith
Alias-Free Digital Synthesis of Classic Analog Waveforms

Analyzing the Moog VCF with Considerations for Digital Implementation

Scott van Duyne and Julius Smith
The 3D Tetrahedral Digital Waveguide Mesh with Musical Applications

11

19

23

26

28

31

35

43

47

59

Musical Muscle Memory and the Haptic Display of
Performance Nuance

Chris Chafe

cc@ccrma.gtanford. edu

Sile O’'Modhrain

sile@ccrma.stanford.edu

Center for Computer Research in Music and Acoustics, Music Department

Stanford University

Abstract

We have begun exploring extraction and editing of nuances of a performance through the sense
of touch. Expressive variations in MIDI piano recordings were obtained, limiting the initial study
to timing and velocity information. A force-feedback interface displays in real time an analysis
of the performer’s musical conception and can be used to graft aspects of one performance onto

another.

1 Introduction

A challenging analysis problem has haunted one of
the authors for years, usually mentioned in terms
of how synthesis could benefit from a deeper un-
derstanding of performance. Posed as conjecture,
it’s to imagine if two string quartets were to per-
form the same piece on different nights: the first
night’s performance is competent, and the audi-
ence is happy enough about it. The second night
the performance is simply stunning, transcendent,
and the audience leaves ecstatic. Part of the prob-
lem poses the question of imagining the differences
in terms of quantities which would be acoustically-
measurable differences between the performances.
A second, possibly more difficult part of the prob-
lem, is in comprehending such a wealth of detail
so that the analysis is imageable and useful.

A second interest motivating this study is to
further exploit the sense of touch in music edit-
ing tasks. Beyond automated mixer controls, dig-
ital editing involves only display to the eye and
ear. However, in the physical creation of music,
sounding events are registered by the hand and
ear [Chafe, 1993] [Gillespie, 1995]. Present digi-
tal technology can be adapted to incorporate the
kinesthetic (muscular), tactile, and vibro-tactile
(cutaneous) senses, modalities well-suited for data
that depicts time and motion.

Performances of the same music can have vastly
different feelings even when constrained by a fully-
notated score. For simplicity, a short piano ex-
cerpt was chosen for this study and independent
renditions were compared in terms of event tim-
ings and key velocities. As listeners, we are
acutely sensitive to these differences, but it is more
likely that we are only aware of their aggregate

Chafe & O'Modhrain

effect, for instance, the feeling that one passage
was played more forcefully than another. What
are the note-level differences, how are they struc-
tured, and are such structures the basis for the
affect?

The hope that differences of affect can be char-
acterized and displayed leads to the further possi-
bility of manipulating recorded or synthesized per-
formances. A computer-controlled force-feedback
interface was programmed to display aspects of
performance and manipulate them in real time.
Haptic display has the advantage of communicat-
ing directly to the motor senses, the same that are
involved in musical performance. The word “hap-
tic” is employed to describe devices that engage
both the kinesthetic and tactile senses. In our
work, the quantities displayed to the observer are
ideally a replay or recasting of human motor com-
mands which might have created or accompanied
a performance. The end-result is a prototype sys-
tern that allows the observer to feel musical feeling
through the real-time display of parameters ana-
lyzed from performance. Because the controller
permits direct interaction with its display, the per-
formance can be edited in an intuitive manner.

2 Method

An excerpt from the opening of Beethoven’s Pi-
ano Sonata, Opus 109, was recorded by two excel-
lent pianists using a Yamaha Disklavier grand pi-
ano, Figure 1. Recorded data was transferred into
standard MIDI file format and analyzed in several
steps (with the Stella programming environment,
a Lisp package for symbolic musical manipulation
[Taube, 1993]). First, the two performances were

ICMC Proceedings 1996

~ . AR A a8 o* ° . 0° 84, I _._” - B
SONATE) o ’1,§' ??fg":—:"ﬁé&’ss 73z 5 -2
imidi ? - ¥ Iz =T =
”"'mx.‘:'.,f::.‘:;-""d“ performer 1 =3 -
A t o e te fo @ fe g V.o-
hare m: ““:f:p:\ Y. '1. __l’ | ':'—.. ~|' ota 1‘=. "_ _
ke =z : ’.":’ ° "!‘-._f"__.v"zg' - = ‘;;V: :P. =
: B 5T T EEFTTE S
performer 2 H
n Y e Y. ""_.
= = = 3=
=

Figure 1: Two performances of the opening
of Beethoven’s Piano Sonata, Opus 109, were
recorded by Yamaha Disklavier. Note timings
and key velocity data were transferred to standard

MIDI files.

matched up in terms of detected pitches. Our per-
formers were not supervised in any way and were
free to submit what they wished. Approximately
2% of the notes did not match up for a variety of
reasons, including wrong notes and order differ-
ences in chords. Since our project is ultimately di-
rected at acoustically recorded performances, and
we expect an even greater error rate in the tran-
scription process, this level of mismatch was ac-
ceptable [Chafe and Jaffe, 1986]. A matching
algorithm was applied, working from the begin-
ning of the data and pairing equivalent pitches be-
tween the two performances. Discrepancies were
eliminated and the resulting data set of matched
pitches provided the basis for initial experimenta-
tion.

2.1 The Moose

Performance data was transferred to a program
written in C4++ commanding a MIDI synthesizer
and the moose, a two-dimensional haptic display
device. The moose is essentially a powered mouse-
like pointing device. It consists of a puck or ma-
nipulandum in the center coupled to two linear
voice-coil motors through two perpendicularly ori-
ented flexures. The double flexures conveniently
decouple the 2-axis motion of the puck into two
single-axis motions at the linear motors. The
puck’s motion is restricted to an area in the hori-
zontal plane approximately 3 inches on a side.
The moose was designed as part of a larger

project based at CSLI, Stanford, to investigate:

the possibility of using haptic technology to dis-
play elements of graphical user interfaces such as
window edges, buttons, etc. to blind computer
users [0’Modhrain, 1995]. The prototype display
has proven the feasibility of the approach, and will
continue to be developed alongside our exploration

ICMC Proceedings 1996

Figure 2: Distinct short-term shapes are found in
raw data displayed from the first 77 notes (marked
by arrows in Figure 1). Note placement is pro-
portional to time and size is proportional to key
velocity.

into the use of haptics as a component of a digital
music editing systems.

2.2 First Results

Restricting the data to the first eight and a half
measures of the Beethoven focused initial analysis
on a passage consisting only of running sixteenth-
note rhythms. For further simplification, pedal
information and durations were ignored. The col-
lected note onsets and key velocities show short-
term shapes superimposed on longer-term phras-
ings. The moose was programmed to directly dis-
play key velocity data in the form of an elastic
wall. The observer presses the puck to a virtual
wall whose stiffness depends on the MIDI velocity
being sent to a piano synthesizer. While the per-
formance is sounding, the wall portrays a strong
sense of note-to-note variation. As can be seen in
Figure 2, some of the note-to-note instantaneous
changes are quite abrupt, and a modification was
made to display a small mixture of instantaneous
key velocity plus a moving average of key velocity
whose window is centered on the current note. A
rather satisfactory sensation of dynamic phrasing
results.

The next refinement consisted of combining on-
set timings with velocity data to establish an ab-
stract effort parameter. Effort, in this sense, rep-
resents the directions a conductor might impart to
an orchestra. High effort corresponds to faster &
louder, low effort to relaxed & softer. However, ri-
tardando & crescendo can also elicit strong effort,
as in the end of the passage studied. A formula to
represent these relationships was devised (based
on the simplification that the score excerpt only
consists of sixteenth notes, which are nominally
125 msec):

effort =nv* (1/r+ C xr?)

Chafe & O'Modhrain

performer 1

virtual wall

moose motion

Figure 3: Effort vs. time is compared for the same
passage as Figure 2. The effort quantity is derived
from note onset timings and key velocity. Total
duration has been normalized for ease of compar-
ison.

nv is normalized velocity scaled from 0.0 to 1.0
from the recorded range of velocities, r represents
the time interval from the onset of the previous
note, and C is a coefficent to bring the nominal
rhythm value into range.

Figure 3 shows a graph of effort derived for the
same passage as Figure 2. Multi-measure swells
correspond to long-term phrasing. Short-term
shapes can be seen in note groupings of 2 - 6 notes
at a time. The two performances have the keenest
difference on this short-term time-scale. Group-
ings are sometimes similar but shapes are distinct.
For example at note 17, a four-note groupin ap-
pears (marked by boxes in the figures). Through
the effect of a single note, the shape differs be-
tween the two performances.

2.3 Manipulations and Muscle
Memory

The moose displays the two time scales as sepa-
rate sensations: a background long-term motion
and superimposed, faster foreground shapes. In
the background, long-term changes are displayed
by averaging the effort parameter with a mov-
ing window and causing the virtual wall position
to change smoothly. In the foreground, instan-
taneous effort values affect the wall’s compliancy,
with higher effort values causing a stiffer spring,
Figure 4. The observer quickly trains on differ-
ences between the two performances.

A third performance can be created as a prod-
uct of the first two through linear interpolation of
onset rhythms and velocities. The wall’s length
is used as the interpolation control. At the wall
ends, the observer experiences one performance or
the other and, in between, an interpolated version.
Sliding along the wall in real time allows grafting
of one performance to the other.

Chafe & O'Modhrain

Figure 4: The moose, a powered mouse, consists
of two linear voice-coil motors controlling the lo-
cation of a puck. Virtual objects and surfaces
are displayed by force-feedback. The performance
analysis is displayed by changes to a virtual wall’s
location and compliance in real time while the mu-
sic is played.

The prototype system suggests that in-real-time
experiences through haptic devices such as the vir-
tual wall can be coupled with sound to offer a
rich display for performance analysis and editing.
Imaging and memory of patterns is enhanced by
appealing to muscle memory. One way to imagine
this is to contrast the method with an out-of-time
graphical display, such as in Figure 3, or a static
haptic display which would project Figure 3 onto a
touchable surface. Spatial displays excel for side-
by-side pattern discrimination, and performance
shapes, such as those briefly discussed, are eas-
ily found. Animated spatial displays increase di-
mensionality, often to include time. The force-
feedback system is used to go the other way, to
reduce the data into one simplified, intuitive, mu-
sical dimension such as the effort parameter. The
observer is able to experience, vicariously, the per-
former’s own feeling of effort during performance.

3 Summary:

Haptics and
Sound :
Haptic perception of the signal has been lost
through changes in music-making technology. The
mechanical musical world consists of direct ma-
nipulation of sound-producing mechanisms and a
sense of their vibration. The analog world re-
placed this with the feel of various specific con-
trol devices or the feel of motion of the record-
ing medium. The digital world has reduced this
further to a few general purpose controllers and
displays, eg. mouse, keyboard, CRT.
This study has already shown us that there are
indeed parameters within music which can be ma-
nipulated to allow a performer, composer or mu-

ICMC Proceedings 1996

sic editor to traverse the space between two to-
tally different interpretations of the same piece.
We have demonstrated that we can make these
parameters apparent to the kinesthetic and vibro-
tactile senses, those same senses which, in live per-
formance, complete the musician’s feed-back loop.
With a few simple haptic interface tools we can
bring back to the editing process some of its former
intuitiveness and flexibility {O’Modhrain, 1995].

Specifcally, what we have lost in the transition
to mouse-based digital music editing environments
is the close contact which sound engineers once en-
joyed with their media. We can design new haptic
controls and program their “feel” by making them
more or less resistant to being moved. A shuttle
wheel detent is, for example, easily mediated by
motors. And a detent could represent variously
manipulator or signal state.

Unique physical operations on sound persist to-
day as metaphors in digital audio editing tools.
For example, records are scratched back and forth,
tapes are slowed and sped up. The musical arts
themselves are strongly influenced by such tech-
nologies which often form a basis for new genres of
technologically-influenced music. We look forward
to enjoying the artistic output inspired by the pro-
grammable, multi-modal, and physically coupled
interfaces of the future which will feature haptic
components.

The authors gratefully acknowledge contribu-
tions to the project from our colleagues George
Barth, Brent Gillespie, Craig Sapp, and Frederick
Weldy. The Archimedes Project at Stanford Uni-
versity’s Center for Study of Language and Infor-
mation provides ongoing support for development
of haptic access to graphical user interfaces.

References

[Chafe, 1993] Chris Chafe. Tactile Audio Feed-
back. Proceedings of the ICMC, Tokyo, 1993.

[Taube, 1993] Heinrich Taube. Stella: Persistent
Score Representation and Score Editing in
Common Music. Computer Music Journal,
17(4), 1993.

[Chafe and Jaffe, 1986] Chris Chafe and David
Jaffe. Source Separation and Note Identifi-
cation in Polyphonic Music. Proceedings of
the IEEFE Conference on Acoustics Speech and
Stgnal Processing, Tokyo (2): pp. 25.6.1-
25.6.4, 1986.

[Gillespie, 1995] Brent Gillespie. Haptic Display
Of Systems With Changing Kinematic Con-
traints: The Virtual Piano Action. Disserta-
tion, Dept. of Mechanical Engineering, avail-
able as Stanford Music Department Report
STAN-M-92 Stanford University, 1995.

ICMC Proceedings 1996

[O’Modhrain, 1995] Sile O’Modhrain. T_hg_
Moose: A Haptic User Interface For Blin
Persons With Application to the Digital
Sound Studio. Stanford Music Department
Report STAN-M-95 Stanford University,
1995.

Chafe & O’Modhrain

CCRMA Studio Report

Alex Igoudin, Fernando Lopez-Lezcano
CCRMA (Center for Computer Research in Music and Acoustics), Stanford University
(aledin@ccrma.stanford.edu, nando@ccrma.stanford.edu)

1.0 The place and the people

The Stanford Center for Computer Research in Music and Acoustics (CCRMA) is a multi-disciplinary facility where
composers and researchers work together using computer-based technology both as an artistic medium and as a re-
search tool. CCRMA is located on the Stanford University campus in a building that was refurbished in 1986 to meet its
unique needs. The facility includes a large quadraphonic experimental space with adjoining control room/studio, an all-
digital recording studio with adjoining control room, a MIDI-based small systems studio, several work areas with
workstations, synthesizers and speakers, a seminar room, an in-house reference library, classrooms and offices.

For a detailed tour and more information feel free to visit us in the World Wide Web:

+ http://ccrma-www.stanford.edu/

The CCRMA community consists of administrative and technical staff, faculty, research associates, graduate research
assistants, graduate and undergraduate students, visiting scholars and composers, and industrial associates. Depart-
ments actively represented at CCRMA include Music, Electrical Engineering, Mechanical Engineering, Computer Sci-
ence, and Psychology. CCRMA has developed close ties with the Center for Computer Assisted Research in the Hu-
manities (CCARH), recently affiliated with the Department of Music.

Staff & Faculty: Chris Chafe-Associate Professor of Music, Director; Johannes Goebel-Technical Director; Fer-
nando Lopez-Lezcano-System Administrator/Lecturer; Heidi Kugler-Secretary; Jay Kadis-Audio Engineer/Lec-
turer; Max Mathews-Professor of Music (Research); Jonathan Berger-Associate Professor of Music; Julius Smith-
Associate Professor of Music and Electrical Engineering; John Chowning-Professor of Music, Emeritus; Leland
Smith-Professor of Music, Emeritus; John Pierce-Visiting Professor of Music, Emeritus; Earl Schubert-Professor of
Speech and Hearing, Emeritus; Jonathan Harvey-Professor of Music; David Soley-Assistant Professor of Music;
Eleanor Selfridge-Field-Consulting Professor of Music; Walter Hewlett-Consulting Professor of Music; Marcia
Bauman-Research Associate, IDEAMA Archive; William Schottstaedt-Research Associate.

2.0 The activities

Center activities include academic courses, seminars, small interest group meetings, spring and summer workshops,

and colloquia. Concerts of computer music are presented several times each year with an annual outdoor computer mu-
sic festival in July. In-house technical reports and recordings are available, and public demonstrations of ongoing work

at CCRMA are held periodically.

3.0 Theresearch

This array of research summaries will give you an idea of the current crop of research at CCRMA and who’s doing it:

Computer Music Hardware and Software: “PadMaster, an Interactive Performance Environment. Algorithms and
Alternative Controllers”, “A Dynamic Spatial Sound Movement Toolkit” Fernando Lopez Lezcano; “ATS: Analysis/
Transformation/Synthesis; A Lisp Interface for SMS (Spectral Modeling Synthesis; and CLM (Common Lisp Music)”
Juan Carlos Pampin; “SynthBuilder---A Graphical SynthPatch Development Environment” Nick Porcaro and Pat
Scandalis; “Franken Hardware: On Scalability for Real-Time Software Synthesis and Audio Processing” Bill Putnam
and Timothy Stilson; “Common Lisp Music and Common Music Notation” William Schottstaedt; “Music Synthesis
and Digital Audio Effects for UltraSparc Processor” William Putnam, Tim Stilson, and Julius Smith;”Rapid Pro-
totyping for DSP, Sound Synthesis, and Effects” Julius Smith; ”SynthScript - A Sound Synthesis Description Format”
Pat Scandalis, David Jaffe, Nick Porcaro, and Julius Smith; “The CCRMA Music Kit and DSP Tools Distribution”
David Jaffe and Julius Smith; “Capella: A Graphical Interface for Algorithmic Composition” Heinrich Taube and
Tobias Kunze.

jng ar g igr ing: “Physical Modeling of Brasses” David Berners; “Adding

Pulsed Noise to Wind Instrument Physical Models” Chris Chafe; “Synthesis of the Singing Voice Using Physically
Parameterized Model of the Human Vocal Tract” Perry Cook; “Synthesis of Transients in Classical Guitar Sounds”,
“The "Flutar” a New Instrument for Live Performance” Cem Duruoz; “Spectral Operators for Timbral Design” Jose
Eduardo Fornari; “Voice Gender Transformation with a Modified Vocoder” Yoon Kim; “Processing of Critically
Sampled Audio Subband Data” Scott Levine; “Feedback Delay Networks” Davide Rocchesso; “Acoustical Research
on Reed Driven Woodwind Instruments for the Purpose of Efficient Synthesis Models” Gary Scavone; “FFT-Based
DSP and Spectral Modeling Synthesis”, “Digital Waveguide Modeling of Acoustic Systems” Julius Smith; “A Passive
Nonlinear Filter for Physical Models” John Pierce and Scott Van Duyne; “The Digital Waveguide Mesh” Scott Van
Duyne and Julius Smith; “The Wave Digital Hammer” Scott Van Duyne and Julius Smith; “The Commuted
Waveguide Piano” Scott Van Duyne and Julius Smith.

Controllers for Computers and Musical Instruments: “Real-time Controllers for Physical Models” Chris Chafe

and Perry Cook; “Ongoing Work in Brass Instrument Synthesizer Controllers” Perry Cook and Dexter Morrill; “The
Touchback Keyboard” Brent Gillespie; “The Computer-Extended Ensemble” David Jaffe; “Haptic User Interfaces
for the Blind” Sile O'Modhrain and Brent Gillespie; “The Radio Baton Progress” Max Mathews; “Optimal Signal
Processing for Acoustical Systems” Bill Putnam; “Signal Processing Algorithm Design Stressing Efficiency and Sim-
plicity of Control” Timothy Stilson.

Psychoacoustics and Cognitive Psvchology: “Distance of Sound in Reverberant Fields” Jan Chomyszyn; “Em-

bedded Pitch Spaces an The Question of Chroma: -An Experimental Approach” Enrique Moreno; “Pitch Perception”
John Pierce; “Psychological Representation of English Vowel Sounds” Roger Shepard, Perry Cook, and Daniel
Levitin; “Applying Psychoacoustic Phenomena to the Coordination of Large Speaker Arrays” Steven Trautmann.

r Music and Humanities: “The International Digital Electroacoustic Music Archive” Max V. Mathews
and Marcia L. Bauman; “The Catgut Musical Acoustics Research Library” Max Mathews and Gary Scavone; “Im-
pact of MIDI on Electroacoustic Art Music in the mid-1980s” Alex Igoudin; “The Chorister-Chorister Interaction: an
Ethnography” Paul von Hippel.

4.0 The music

Some of the recent (during this past year) compositional works realized at CCRMA:

Michael Alcorn (Visiting Composer / Ireland) -Double Escapement (for piano and tape); alt.music.out-Wonderment
in Eb - live jazz/electroacoustic fusion involving 7 performers, several NeXTs, drums and vocals; Chris Chafe (CCR-
MA Director)-Push Pull, for Celletto and live electronics; Cem Duruoz (MA Graduate Student)-Cycles, interactive
piece for classical guitar, NeXT (physically modeled SynthBuilder Flute), and Mac (sequencer); Michael Edwards
(DMA Student) and Marco Trevisani-segmentation fault betal.0, for prepared piano and computer; Doug Fulton
(PhD Graduate Student)-Holding Betty under Water for computer generated tape; David Jaffe (Visiting Composer /
Researcher) - 5th and 6th movements of The Seven Wonders of the Ancient World, for Mathews/Boie Radio Drum-con-
trolled Disklavier and an ensemble of plucked string and percussion instruments; Nicky Hind (DMA Graduate Stu-
dent)-Awakening, computer-generated sound installation for the 18-th century garden; Jun Kim- Reverberation, for
two sopranos, percussion and computer processed sounds on tape; Peer Landa (Visiting Composer / Norway)-Down-
cast for tape using original C-based software; Lukas Ligeti (Visiting Composer / Austria)-New Music for Electronic
Percussion, performed and processed live, inspired by African drum music; Fernando Lopez Lezcano (System Ad-
ministrator / Lecturer)- Three Dreams, tape piece using CLM, performance involves pre-programmed four channel
spatialization; Espresso Machine Il and With Room to Grow, in which PadMaster splits the Radioc Drum surface into
programmable virtual pads, grouped in sets or “scenes”; Jonathan Norton (PhD Graduate Student)-Vicissitudes, com-
puter music for a documentary about a striving African-American community; Fiammetta Pasi (Visiting Composer /
Italy)-Collage, for stereo tape; Juan Pampin (PhD Graduate Student)-Transcription #1, for computer controlled Dis-
klavier; Jorge Sad (Visiting Composer /Argentina)-VOX, VOXII, for computer originated tape; Marco Trevisani (Vis-
iting Composer / Italy) Frammenti e Variazioni su Aura, a Bruno Maderna inspired tape composition.

Recent awards won by CCRMA composers:

Celso Aguiar, for Piece of Mind, "Premio Sao Paulo '95", Brazil; Chris Chafe, National Endowment for the Arts
Composer's Fellowship 1994-95, Green Faculty Fellowship 1995-96; Kui Dong, for Flving Apples, First Prize, 1994
Alea III International Composition Prize; 1995 Djerassi Foundation for Art, 1995 ASCAP Grants to Young Com-
posers; David Jaffe for The Seven Wonders of the Ancient World, Collaborative Composer Fellowship, National En-
dowment for the Arts; Juan Pampin, for Apocalypse was postponed due 1o lack of interest, Award, 22e Concours In-
ternational de Musique Electroacoustique, 1995, Bourges, France; Jorge Sad, for Vox II, Juan Carlos Paz
Electroacoustic Music Prize, 1995, National Foundation for the Arts, Argentina.

SEE—A Structured Event Editor:
Visualizing Compositional Data in Common Music

Tobias Kunze
CCRMA, Stanford University
tQ@kunze.stanford.edu

http://www.stanford.edu/ tkunze

Heinrich Taube
School of Music, University of Illinois

taube@uiuc.edu

Abstract

Highly structured music composition systems such as Common Music raise the need for data visual-
ization tools which are general and flexible enough to adapt seamlessly to the—at times very unique—
criteria composers employ when working with musical data. The SEE visualization tool consists of an
abstracting program layer to allow for the construction of custom musical predicates out of a possibly
heterogenous set of data and a separate program module which controls their mapping onto a wide
variety of display parameters. The current version is being developed on a SGI workstation using
the X11 windowing system and the OpenGL and Openlnventor graphics standards, but portability is
highly desired and upcoming ports will most probably start out with the Apple Macintosh platform.

1 Introduction

Among the vast variety of ways in which music has
been put in relation to the visual senses, only a few
have been researched or otherwise developed to a
noticeable extent. Today, sound and graphics in-
terconnect most prominently in the audiovisual do-
main, that is in multimedia applications and—more
recently—in the area of data sonification, but also
in the more arcane areas of music visualization and
graphical user interface design as well as in art. These
domains, however, are not unrelated: sonification of
data may be taken as an inverse process of music vi-
sualization and music visualization itself leads seam-
lessly to music data manipulation as in some GUI-
designs: it may form half of a genuine music author-
ing environment. Musical data visualization could,
it seems, profit on the other hand from the exten-
sive computer graphics technology and visualization
experience scientific data visualization projects today
rely upon. In contrast to scientific visualization ap-
plications, however, music visualization does not typ-
ically deal with an enourmous amount of “flat” data
such as data masses acquired by satellite photos, sur-
veys or oceanographic sonic measurements: musical
datasets are most often comparably small—but gen-
erally include heterogenous and not necessarily com-
mensurable datatypes such as, for instance, notes and
rests. They also tend to call for interpretation pro-
cesses that evolve over time to model the changing
belief contexts that characterize musical hearing. In
short, music visualization differs from data visualiza-
tion in that it deals with our understanding of music.
And musical data, unlike scientific data, may be ar-

bitrarily changed according to the aestethic criteria
we decide to apply.

2 Visualization Today

Although a number of promising approaches to sig-
nal visualization to faciliate the process of sound
(re)creation exist, research in visualization of compo-
sitional data is rare and focuses on musicology as op-
posed to creative applications. More recent examples
include the analysis of features of music by Bartdk
and Webern in the graphical plane by A. Brinkman
and M. Mesiti [2] and J.-P. Boon’s interesting ex-
amination of significant differences between three-
dimensional phase portraits of selected three-part
compositions by Bach, Mozart, and Schumann [1}.
The majority of musicological analysis toolkits, how-
ever, doesn’t go beyond a symbolic representation of
their results (cf., for instance [3]).

Alternative approaches to signal visualization lead-
ing to graphical representations of higher-order fea-
tures of sound data that approximate complexer mu-
sical predicates in a raw manner have been pre-
sented previously by J. Pressing et al. and B. Mont-
Reynaud [8, 7] as well as, most recently, by B. Feiten
and G. Behles [5].

Finally, I. Choi et al. [4] and Y. Horry [6] document
some specific research into the application of musical
concepts using graphical controllers to generate both
MIDI and digital sound output.

Graphical user interfaces for compositional ori-
ented software today has begun to venture into the
domain of 3D, with more and less success and not

much inspiration. EMAGIC’s Notator Audio, for in-
stance, consistently encourages a three-dimensional,
albeit conceptual, view of the compositional data.
Nevertheless, it sticks with a set of two-dimensional
editors to support editing operations and sells a
simple two-dimensional control for the independent
transposition and stretching of soundfiles in unneces-
sary perspective 3D look.

Visualization is a central field in the analysis of par-
ticularly vast scientific data sets and as such features
the most advanced visualization solutions found to-
day. 3D rendering techniques, as well as techniques
originally intended to simulate environmental data
such as transparency, haze, fog and texture mapping,
are widely used to represent abstract qualities such as
density or velocity. Also, most scientific visualization
packages allow for multiple different graph styles to
be combined in a single package. In addition, it had
and still has a strong influence on the design and de-
velopment of graphics packages. As a result, music vi-
sualization software packages wanting to take advan-
tage of these highly optimized graphic engines have to
adapt to a set of primitives that has been mostly de-
signed with the notion of rendering artificial, “virtual
reality” worlds. A particularly blatant problem is the
missing support in 3D toolkits for seemingly endless
scrolling: for a framework that implies the construc-
tion of a perspective, simple scrolling doesn’t make
sense. Most limitations, however, prove in hindsight
to be solvable in terms of a different concept, and
scrolling (as opposed to panning) then translates into
a matter of animation.

3 Graphing Features and

Paradigms

Since using a 3D graphics library like Openlnventor
implies such an essential commitment to its underly-
ing paradigms and since these paradigms are not nec-
essarily congruent with the demands of a music visu-
alization tool, it is wise to render an account of what
its needs are and what it can expect. The current
design of the SEE visualization tool followed these
major guidelines:

e although the 3D paradigm introduces fundamen-
tal changes in the representation of music and
imposes particularly high demands on the sys-
tem, it may be “frozen” to a two-dimensional
scene by using an orthographic camera from a
front view position and kept reasonably efficient
by providing the graphics library with optimizing
hints regarding the (invisible) 3D information

e color is widely available today and thus highly
recommended for use in data visualization; a par-
ticular visualization, however, does not have to
use color

e 3D animation is believed to be extremely useful
but is still too unexplored to be included in this
version of the SEE design

o extensibility of the 3D object library is highly
desired on both a scripting and a programming
level

e similarly, the 3D toolkit should have provisions
to access underlying (2D) graphics libraries

e display styles as well as annotations of axes and
various grids should be easy to specify

e different scenes need support for different view-
ing modes such as spin, fly-through, etc. through
reusable components or external applications

The Openlinventor graphics standard meets these
guidelines and offers in addition a straightforward in-
terchange file format as well as near compatibility
with the current VRML standard.

Common Music
Common Lisp

Figure 1: SEE Architecture

4 SEE Architecture

Figure 1 gives an coarse overview of the steps involved
in the process of creating a visualization and the tasks
SEE has to perform. For the translation from raw
data into a unified lattice of raw data structures SEE
provides standard readers as well as an programming
interface for adding custom data readers. Whether
or not it is desirable to have a higher-level interface
is unclear as of yet, but such an interface might be
added at any point. Fully programmable and easily
customizable style files then control the construction

of actual 3D data structures. Graphics tasks, such
as global geometry conversion and rendering itself, is
taken care of by the Openlnventor toolkit and other
custom components, as is the conversion to the In-
ventor interchange file format.

Since major parts of SEE are implemented as an
extension to Common Music’s graphical interface,
Capella, data, and data readers and the visualization
style files are written in Lisp. It uses CommonMu-
sic’s score representation toolbox and class hierarchy
to implement readers with a high degree of polymor-
phism.

1 pl « 32

2 p2 « 37

3 p3 « 36

4 i « 0

5 while ¢ < 300

6 dop « p2-—p3

7 ifp > 0

8 then p <« p-11
9 else p <« p+13
10 p + p+pl

11 if p <24 or p> 108
12 then p + (p— (36 +mod[p,12])) +1

13 p3 p2 +— pl « p
14 WRITENOTE(note: p, time: 1)
15 return

Figure 2: Automaton in pseudocode notation

5 An Example Run

To give a complete example of a process of music
visualization using the SEE tool, consider the algo-
rithm given in Figure 2. It sets up a history of three
pitch variables, initialized to 32, 37, and 36, respec-
tively, to generate 300 notes of a monophonic, pul-
sating line according to the code in the while loop.
For simplicity, amplitude, duration and instrumenta-
tion have been assigned default values. Figure 3 gives
a rendering of this—deterministic—algorithm’s musi-
cal output in common music notation. Not obvious
from the code but readily readable from the score are
the all-intervallic structure of the melodic sequence
and the strong reduction of the musical material.

In a first step, a default reader translates every
event into a cube of unit size and no color, using
exclusively the time and pitch information to map it
onto the z and y axis, respectively. The camera set to
orthographic mode, the display resembles traditional
piano-roll notation showing 3 different rising patterns
and striking symmetries everywhere that were hard to
spot in the score (cf. Figure 4).

Spinning the model in all three dimensions gives
an even better overview of the combined pitch-time
structure. Figure 5 zooms in on an angle from the
bottom-left corner along the slope of the rising pat-
terns, emphasizing the mechanical aspect of the cel-

Figure 4: Automaton in traditional “piano-roll” notation

lular automaton’s repetitiveness visible. Moreover,
rotating the model clockwise and to the left reveals
another set of symmetry axes, perpendicular to each
pattern’s slope (cf. Figure 6). A zoom on the first
pattern together with an added headlight shows the
slant of the current viewpoint (cf. Figure 7). As alast
example, Figure 8 uncovers the common focal point
of every other triad around the center of pattern 3 as
approximately an octave above the middle note.

Using different data reader methods, the same au-
tomaton has been colored according to each note’s
pitch class and grouped with a vertical line indicating
each note’s interval in relation to the preceding note.
To faciliate optical references, a grid of dotted ledger
lines, solid piano system lines and vertical reference
lines have been added (cf. Figure 9). A bottom view
of this model finally reveals the two dove-tailed states
of the automaton, each of which cycles through all in-
tervals, alternating between positive and complemen-
tary negative values.

References

[1) Jean-Pierre Boon et al.: “Complex Dynamics and Mu-
sical Structure” in Interface Vol. 19, pp. 3-14 (Lisse, the
Netherlands: Swets & Zeitlinger B.V., 1990)

[2] Alexander R. Brinkman and Martha R. Mesiti:
“Computer-Graphic Tools for Music Analysis” in Proceed-
ings of the 1991 ICMC, pp. 53-56 (Montreal, Canada:
McGill University, 1991)

8

A a
(L

o

L
’1

.U
w® Re od ©
Y gl ¢
L3

T
x

8
v
" % B Y 8 ©»
woay
<

Bl S ol B o
o

SERYCYRPCTYR
L

a9

i
5% O O s | & 0% § o
L)

2]
o

Figure 5: View from the bottom-left corner

Figure 6: Alternate symmetry axes revealed

[3] Peter Castine: “Whatever Happened to CMAP for Mac-
intosh” in Proceedings of the 1993 ICMC, pp. 360-362
(Tokyo, Japan: Waseda University, 1993)

[4] Insook Choti et al.: “A Manifold Interface for a High-
Dimensional Space” in Proceedings of the 1995 ICMC,
pp- 385-392 (Banff, Canada: The Banff Centre for the
Arts, 1995)

[5] Bernhard Feiten and Gerhard Behles: “Organizing
the Parameter Space of Physical Models with Sound Fea-
ture Maps” in Proceedings of the 1994 ICMC, pp. 398-
401 (Aarhus, Denmark: Danish Institute of Electroacous-
tic Music, 1994)

[6] Youichi Horry: “A Graphical User Interface for MIDI
Signal Generation and Sound Synthesis” in Proceedings of
the 1994 ICMC, pp. 276-279 (Aarhus, Denmark: Danish
Institute of Electroacoustic Music, 1994)

[7] Bernard Mont-Reynaud: “SeeMusic: A Tool for Music
Visualization” in Proceedings of the 1998 ICMC, pp. 457-
460 (Tokyo, Japan: Waseda University, 1993)

[8] Jeff Pressing et al.: “Visualization and Predictive Mod-
elling of Musical Signals using Embedding Techniques”
in Proceedings of the 1993 ICMC, pp. 110-113 (Tokyo,
Japan: Waseda University, 1993)

U
Fd

Figure 8: Using perspective: focal point of the rising
lines in pattern 3

Figure 9: Colored model with lines indicating the note’s
interval in relation to the preceding note

Figure 10: Bottom view shows the behaviour of the au-
tomaton’s two substates

-10~-

Critically Sampled Third Octave Filter Banks

Scott N. Levine
Stanford University
Center for Computer Research in Music and Acoustics (CCRMA)

scottlQccrma.stanford.edu

Abstract

This paper introduces the design of a critically sampled, third octave filter bank. Filter design
methods are shown for the octave band filter bank and the third octave sections. In addition,
the trade-offs in the design are explained among frequency selectivity, regularity, complexity,

latency, and memory.

1 Introduction

The front end of most current audio data compres-
sion algorithms use some sort of time-frequency
representation to transform the time domain sig-
nal to some other domain more closely matched to
the human ear. One accepted model is often called
the critical band model, which shows how signals
psychoacoustically mask one another, as long as
they are within a critical band [Zwicker, 1990]. A
close approximation to the critical bands of hear-
ing is a third octave filter bank, which is designed
in this paper. Thus, if a signal were bandlimited
within a critical band, and then quantized, the
resultant quantization noise would remain within
the band and would be perceptually masked by
the original signal. This is the reason that tight
frequency selectivity will become an important pa-
rameter to optimize later in the paper.

To implement this third octave filter bank, the
system first decomposes the input signal into oc-
taves. Then, the octave band signals are further
split into third octave sections. Along the way, we
will discuss various filter design methods, along
with the resulting trade-offs between complexity,
latency, and memory.

2 Octave Band Filter Banks

The first step in designing a critically sampled
third octave filter bank is to split the input sig-
nal into critically sampled octaves. A filter bank
is critically sampled if the data rate of the origi-
nal input signal is equal to the sum of the data
rates of the transform subbands. Octave band fil-
ter banks, also known in the literature as tree-
structured filter banks or discrete-time wavelet
transforms (DTWT), has been well researched for
years [Vetterli and KovaZevié, 1995].

The simplest octave band decomposition is a

single octave filter bank. This is also known as a
two channel, uniform filter bank as seen in figure
1. In orthogonal systems, the lowpass analysis
filter, Hy(z), determines the other three filters in
the two channel structure.

HI(Z) 1 #2 — *2 1 C1(z)

H@ {2 42 — G

Figure 1: Two channel, uniform filter bank

In an octave band decomposition, the low-
passed, downsampled output is iterated through
another two channel, uniform filter bank as seen
in figure 2. If the original two channel structure
is perfect reconstruction, then the iterated octave
band tree is also.

Hy@) *2 —e
x.__’ H) {2 o
Hyz) —§2 {

Hie) [{2 e

Figure 2: 4 three channel, two octave analysis filter
bank

The optimal Hy(z) would be a brick wall low-
pass filter, with a cutoff frequency of 7/2. Since
this would be an infinite length filter, we must
make several trade-offs among frequency selectiv-
ity, regularity, and filter length.

2.1 Frequency Selectivity

For the sharpest transition between pass-
band and stopband (tightest frequency selec-
tivity) regions, we first try designing a low
pass filter using the remez exchange algo-
rithm [Parks and McClellan, 1972]. It has been

~-11-

shown that its transition band width is on the or-
der of }, where L is the length of the FIR fil-
ter [Strang and Nguyen, 1996]. But, the smaller
the transition region (the tighter the frequency se-
lectivity), for a given length FIR filter, the higher
the equiripple sidelobes level will rise. As can be
seen in the filter’s magnitude responses in figure 3,
the aliasing noise floor is at —70dB and the tran-
sition width is approximately 0.07x, for L = 64.

oo

—tmo,

Haquency ipt rectmrel

Figure 3 Magnitude responses of the Ho(z) and
H1 (Z)

We attempt to reduce the transition
width while satisfying the QMF flatness
condition, [Ho(e/*)|? + |Ho(edWt™)]2 = 1
[Crochiere and Rabiner, 1983], within some error

tolerance. As seen in figure 4, and the ripple of
+0.05dB.

5. B CEy Cxg CXY e
reauenoy i rmaimne]

Figure 4: Reconstruction error with 64 tap QMF fil-
ters

2.2 Regularity

It has been shown that regularity of these filters
is an important property for image compression
[Rioul, 1993], but there is not a general consensus
in the audio compression community. While some
say there is no correlation between bit rate and
regularity [Philippe, 1995], others mention only
a significant improvement for regularity of very
short filters (around 4 taps) [Kudumakis, 1995].

Loosely, a filter bank with regular filters will
have a smooth impulse response for the low-
est frequency subbands. That is, most of the
lowest subbands’ energy will be bounded within
only the low frequencies. Daubechies has shown
that a sufficient condition for a filter to be reg-
ular would be having some amount of zeros at
7 [Daubechies, 1988]. If a filter is of length 2NV
and.there are IV zeros at 7, then this becomes a
maximally flat Daubechies filter.

The effects of regularity in the frequency do-
main can be seen in figure 5. The lower figure
corresponds to the magnitude response of the low-
est subband of a DTWT using the Daubechies

maxflat filter, which corresponds to its scaling
function. Notice how the energy for this subband
is bounded by 0.17. But, for the upper plot which
corresponds to the remez exchange designed low-
pass filter (which has no regularity), the scaling
function has higher frequency sidelobes of equal
height. The longer the remez exchange filter, the
lower the sidelobes will be. Both of the shown
plots were calculated by iterating length 32 filters.

scaling tunction of a remez achange fitter

50

magnitude [dB]

) {Y\ ;AH,,;‘”ME .[\

0.7 0.8 0.9 1

o
1roquoncy [pl radhns]

scaling function of a Daubechles maxfiat fiter
v T r T T T T

0.3

L P ,
[0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.0 1
troquency [pi radians]

Figure 5: The magnitude responses of remez exchange
(top) and Daubechies mazflat (bottom) iterated filters

Unfortunately, this high degree of regularity re-
duces the frequency selectivity, and only has a
transition bandwidth on the order of ﬁ This
Daubechies filter can be contrasted to the remez
exchange filter designed in the previous section
with no zeros present at 7, but with good fre-
quency selectivity.

As a compromise between these two extremes,
a third filter was designed with most of the fre-
quency selectivity gained from a standard remez
exchange algorithm, but with a varying amount
of zeros imposed at m for regularity. The more
zeros that are added at m, the more the higher
frequency sidelobes, as seen in the top of figure 5,
are attenuated.

In figure 6, the difference in magnitude re-
sponses between the three 32 tap filters can be
seen. Notice that the plots using the remez ex-
change and the wavelet filter with only four zeros
at 7 [O.Rioul, 1994] are almost identical; except
at m, where the dotted line drops off to —oo. Also,
notice that the maxflat Daubechies filter has rel-
atively poor frequency selectivity.

magritae [d8)
4
=

~80} |~ ramez exchanga fitar A} B!
4 waveler KHer with 4 seros ot pt \ H
~@OF | .~ - wavelo! maxtiat fillor with 16 zoros al pi \

\
o EX] ©.2 0.3 0.4 0.6 0.6 0.7 0.8 0.9 t
trequency [ol radlans}

Figure 6: The magnitude responses various lowpass
filter designs

’12

In conclusion, the trade-offs in this DTWT filter
design is between high frequency selectivity and
high regularity. A filter designed with the remez
exchange algorithm will have high frequency selec-
tivity, but will also have sidelobes in the subbands’
iterated filters. The filter with high regularity has
poor frequency selectivity, but has very small side-
lobes in the iterated filters. The design chosen in
this system was to generate long remez exchange
filters (64 taps), such that the iterated filters’ side-
lobes were pushed down 70dB. Thus, we maintain
high frequency selectivity, while the sidelobes are
low enough to be considered the noise floor for the
application. It will be seen in section 3.2 that the
noise floor for the third octave sections will also
be placed down 70dB, thus matching the charac-
teristics of the DTWT filters.

It seems that placing zeros at = made the filters
more regular and lowered the sidelobes of the scal-
ing function, but the sidelobes were not lowered
enough to warrant losing the high frequency se-
lectivity. In addition, certain algorithms that pro-
duced the wavelet filters were not numerically sta-
ble above about 40 taps, but the remez exchange
algorithm (as implemented in Matlab), could eas-
ily compute over one hundred taps.

3 Third Octave Filter Banks

Once the signal has been split into critically sam-
pled octaves, it now gets split into third octave
sections. These third octave sections, which can
be thought of as uniform bandpass filters on a log-
arithmic frequency axis, unfortunately have irra-
tional bandwidths. For example, the lowest third
octave section (in normalized frequency) will be
ro = 21/3 — 1. The middle section r, is of width
22/3 — 21/3 | and the highest section 15 = 2 — 22/3,

The subject of splitting a signal into M
critically sampled uniform sections of width
7/M has been well studied, as well as
tree structured banks with bandwidths of
(1/2,1/4,1/4] or [1/4,1/4,1/8,1/8], for example
[Vaidyanathan, 1993].

The topic of constructing perfect reconstruc-
tion filter banks with more general rational
sampling factors was more recently introduced
[Kovacevi¢ and Vetterli, 1993]. In this same pa-
per, they mention that third octave sections
could be rationally approximated by the factors
(1/4,1/3,5/12]. Notice that these factors will add
to unity to guarantee critical sampling.

In this paper, they state two different meth-
ods of realizing filter banks with arbitrary ratio-
nal sampling rates: direct and indirect. The di-
rect method is simpler in complexity and design,
but only works for certain rational rates. Un-
fortunately, the previous third octave fractional

sampling rates make this method impossible due
to aliasing problems. The indirect method works
for any rational rates, but produces frequency
shuffling for certain cases. Shuffling denotes the
process in which a part of the signal’s spectrum
has been translated to another part in the spec-
trum. In order to avoid spectral shuffling, the
rates [6/24,8/24,10/24] will now be used.

3.1 Indirect Method

The indirect design, as stated in
[Kovacevi¢ and Vetterli, 1993], first splits a
signal into a number of subbands equal to the
lowest common denominator of the three third
octave sections. In this case, there will be 24
subbands. Then, three groups of subbands will
be recombined to form the three, third octave
sections. In this design, groups of 6,8, and 10
subbands will be recombined to form the three
output signals. This scheme is graphically shown
in figure 7.

low

high

Figure 7: The indirect method of generating third oc-
tave sections

Each of the shaded boxes in figure 7 are uni-
form filter banks. The tall box on the left is a
24 channel uniform analysis filter bank, while the
three shorter boxes on the right are uniform syn-
thesis filter banks, of 6,8, and 10 channels, respec-
tively. Therefore, it is evident that non-uniform
filter banks can be designed from a cascade of uni-
form banks, while maintaining critical sampling,

3.2 Filter Design

The next design choice is how to design the uni-
form filter banks shown in figure 7. Because of
the low complexity and simple design, we chose
to implement pseudo-QMF cosine modulated fil-

13

ter banks for all the uniform filter banks in this
structure [Vaidyanathan, 1993].

For these filter banks, one needs to only design a
single lowpass filter prototype, and all other filters
will be cosine modulations of this prototype. The
prototype lowpass filter for the 8 channel uniform
cosine modulated filter bank was downloaded from
the WWW site of [Nguyen, 1996], which used the
design method of [Nguyen, 1994].

The prototype filters for the 6,10, and 24 chan-
nel filter banks were all sample rate converted
from this single 8 channel lowpass prototype
[Cox, 1986]. The sample rate conversion was per-
formed using upsampling, 32 point lowpass FIR
filtering, and downsampling. The ratio of the pro-
totype filter length to the number of filter bank
channels is kept constant at a factor of 8§ in this
design (also known as the overlap factor). The
magnitude response of this third octave section
can be seen in figure 8.

Figure 8: The third octave section magnitude response

Notice that at the third octave filter bank
boundaries, there is a small amount of ripple, on
the order of 1dB. In most applications, this should
not be a problem. To make the response flatter, a
“transition” filter could be placed between the uni-
form filter banks to eliminate any low-level alias-
ing, as suggested by [Princen, 1995].

With all the pieces now in place, they can be
combined to form a critically sampled, third oc-
tave filter bank. Initially, we begin with a five oc-
tave DTWT structure similar to the one pictured
in figure 2. On the output of all the rightmost
downsamplers, an individual third octave section,
as in figure 7, is placed. An example of the system
design of a three channel, two octave case can be
seen in figure 9.

Hy(z)

I

v2

H
Hyz) H ;2 ‘{

Figure 9: Three channel, third octave, critically sam-
pled analysis filter bank

The magnitude response of this system was
found by placing an impulse into the system, ze-
roing out all but one of the third octave sections,

and calculating the response. This procedure was
performed 15 times, once for each third octave sec-
tion, as seen in figure 10.

e duenoy Bl radienel

Figure 10: Third octave filter bank
sponse

3

agnitude re-

4 Complexity

While this third octave structure may seem cum-
bersome, all of the building blocks can be imple-
mented around FFT’s and DCT’s, which reduces
the complexity. First, the complexity of the third
octave sections will be discussed, then the DTWT.

4.1 Third Octave Complexity

The complexity of splitting several critically sam-
pled octave band signals into third octave signals
is equal to Cipird, which is independent of the
number of octaves present. In fact, Cypirg is equiv-
alent to the complexity of splitting a single fullrate
signal into third octave sections.

For example, the complexity of splitting the top
octave band signal into third octave sections is
Cthird,l = %‘Cthird- The factor of % is due to
the fact that the top octave input signal has been
downsampled by a factor of two. Given that the
lowest two frequency signals have the same data
rate, the total complexity for K octaves is:

K+1
Cthird = E Cihird;

i=1

1 X
Cthird = Cthird [5—1;— + ; _2_1_}

Cthird = Cihira - 1

The complexity of a single PQMF cosine
modulated filter bank (analysis or synthesm)
Comr(M,N) is on the order of Mﬂ—— , where
N is the length of the lowpass prototype filter and
M is the number of channels in the filter bank.
The M in the denominator is because of the dec-
imation by M, N is the cost of FIR convolution,
and MlogM is the cost of the cosine modulation
using fast DCT’s [Konstantinides, 1994].

In the forward third octave splitter, as pictured
in figure 7, there is not just one QMF bank, but
four. The leftmost bank splits the input into 24

-14_

signals, each downsampled by 24. To compensate
for this different sampling rate, the complexities
of the three synthesis filter banks must be scaled
by a factor of %%,i € {low,med, hi}. For exam-
ple, CQMF,low = %CQMF(S,ﬁl), where [is the
overlapping factor defined in section 3.2 (I = 8
is this design). Therefore, the total third octave

complexity for all octaves is:

Cihira = Comr+ComF lowtComFmid+CQMF hi
6
= CQMF(24, 241) + QZCQMF(G, 61)

8 10
+-2-4'CQMF(8, 8l) + -Q-ZC'QMF(].O, 100)

In order to synthesize the third octave signals
into the original, the same complexity is required.
In this system, the total complexity for analysis
and synthesis is 47 operations per input sample.

4.2 DTWT Complexity

A convenient fact about the complexity of an oc-
tave band filter bank such as the DTWT is that
it is bounded by 2Cprwr, where Cprwr is the
complexity involved in one stage of highpass fil-
tering, lowpass filtering, and decimation by two
[Rioul and Duhamel, 1992]. Using tricks such as
polyphase filtering and FFT overlap-add convo-
lutions, the complexity for a K octave forward
and reverse DTWT is on the order of 16logL(1 —
2~k using length L FIR low and highpass filters
[Vetterli and Kovacevié, 1995]. In this design, the
DTWT complexity amounts to 95 operations per
input sample.

5 Latency

Along with the complexity, latency is another im-
portant metric to consider depending on the ap-
plication. For any two-way, interactive system, la-
tency must be very low to be useful. If the system
only needs to run in real-time, for example decod-
ing compressed audio from file, some amount of
latency can be tolerated.

5.1 Third Octave Section Latency

To simplify initial calculations, we will first com-
pute the latency of splitting one fullrate signal into
critically sampled third-bandwidth sections. In
section 5.3, we will compute the latency of these
third octave sections embedded within the sub-
bands of a DTWT.

The delay of any given fullrate pseudo-QMF fil-
ter bank of M channels and length NV prototype
is Domr(M,N) = Q%M In the third octave sys-
tem of figure 7, the left most bank of 24 channels

will have a latency of Do r(24,24l) = 84 sam-
ples. The latency of the three parallel QMF banks
are all equal to that of the 24 channel bank. Even
though the (M, N) parameters are different for the
three synthesis banks, they all must be scaled by
a factor of % to compensate for their lower sam-
pling frequencies.

Therefore, to split a fullrate signal into third-
bandwidth sections, the latency is 2 - 84 = 168
samples. To recombine these third-bandwidth sec-
tions back into one fullrate signal, the latency is
again doubled to Dipirg = 336 samples.

5.2 DTWT Latency

As in the previous section, we will first compute
the latency of just the DTW'T, Dw, without the
third octave sections. In section 5.3, we will com-
bine the two factors.

To begin with, the latency of a two channel
QMF structure like that seen in figure 1 is L sam-
ples, where L is the length of each of the four
filters.

For a three channel, two octave DTW'T, a delay
line must be inserted into after the highpass and
downsampling of the highest channel in order to
properly time synchronize all the subbands. The
length of this delay line will be twice the latency
of the structure embedded after the lowpass and
downsampling stage (due to the lower sampling
rate). The latency of the entire structure will be
2L + L = 3L samples. The factor of 2L is twice
the length of the delay line inserted (due again, to
the lower sampling rate). The extra factor of L
is due to the latency of the first iteration of the
QMF bank.

To summarize, delays must be inserted after ev-
ery highpass filter in the DTWT structure. The
inserted delay needed for a given octave k, can be
recursively calculated:

delay(k) = 2 x delay(k — 1) + L

where delay(1) = L. The total latency for a K
octave bank will be Dwr = delay(K). In this
design for a four octave DTWT, and length 64
tap filters, the latency comes to 945 samples.

5.3 System Latency

To compute the latency for the total system, Dy,
it can be solved recursively in the same manner
as in section 5.2, except that the initial condition
must also include the delay of the third octave
sections. Therefore, with delay(l) = L + Dinirg,
then D, = 6321 samples.

‘]5

6 Memory Requirements

In this system, the amount of memory required
comes from two places: the delay lines inserted
into the DTWT to ensure subband time synchro-
nization, and the FIR filters inside the third octave
QMF filter banks.

For the DTWT, the memory needed for the in-
serted delay line lengths increases exponentionally
for the number of octaves K:

(2% — (K 4+ 1))[L + Dinird)

which comes to 10,374 samples in this design. The
number of memory required by the lowpass and
highpass filters for the DTWT is 4L(K +1), which
is 1,260 samples for this system.

For the third octave sections, memory is needed
for the polyphase filtering within the QMF banks.
A cosine modulated QMF analysis bank of length
N prototype lowpass filter requires N elements
of delay, while a synthesis bank requires twice as
much memory, 2V samples. For K octaves, it can
be shown that this memory tallies to 6-192(K +1),
which amounts to 6,912 samples. Thus, for all of
the previous sources of memory, the entire system
requires 18,546 samples of memory.

7 Comparisons to other Fil-
ter Banks

There are many other time-frequency representa-
tions used in audio data compression, using both
uniform and nonuniform filter banks. In this sec-
tion, we will attempt to just name a few.

7.1 Uniform Filter Banks

The most widely used audio coding algorithms
today, MPEG [Brandenburg and Stoll, 1994] and
AC-3 [Todd, 1994], both use variations of
uniform, cosine modulated lapped transforms
[Malvar, 1992]. MPEG uses a 512 point win-
dow with a 32 point transform [Rothweiler, 1983],
while AC-3 uses a 512 point window with a 256
point transform [Princen, 1987]. Both systems
use some form of window length adaptation to
compensate for pre-echo effects during transients.
These commercial filter banks were primarily cho-
sen due to their low complexity and their low
memory requirements, which are large factors
when implementing these solutions in hardware.
In exchange, the filter banks do not match the
critical bands of hearing,.

7.2 Wavelet Filter Banks

A recent study in nonuniform filter banks for audio
coding was presented by [Sinha and Tewfik, 1993].

They implemented an 8 stage, 29 subbands
wavelet packet representation using uniform, two
channel FIR filters at each node of the tree. This
structure is another approximation to the critical
bands of hearing. All the filters used were maxi-
mally flat wavelet filters. Thus, their study chose
to maximize regularity in exchange for poorer fre-
quency selectivity.

More recently, perfect reconstruction filter
banks using IIR filters were developed for au-
dio coding [Creusere and Mitra, 1996]. In or-
der to gain better frequency selectivity, shorter
(fourth order) IIR filters were used inside an 32-
band full tree-structured allpass filter bank. In
exchange, the latency and memory requirements
became much larger, while complexity remained
low. To gain perfect reconstruction using IIR fil-
ters, the synthesis filters must be non-causal. To
implement this, long buffers must be used to store
up the subband samples in order to perform the
time-reversal necessary.

7.3 Final Notes

The third octave filter bank described in this pa-
per attempts to make the closest approximation
possible to the critical bands of hearing, while
letting latency and memory expenses get large.
Low latency is usually only important for two way,
real-time communications. For playing sound files
from a server, or listening to broadcast audio, la-
tency is not that much of an issue. Low memory
is important for low cost, hardware implementa-
tions. But, if the algorithm is running in software
on a general purpose computer, memory usage is
not as vital.

It should also be noted that in any data com-
pression scheme, the filter bank is only one of three
major building blocks; the other two being quan-
tization and entropy coding. The quality of an au-
dio data compression system, as a whole, can only
be measured with all three of thee blocks working
together. Only the filter bank is considered within
the scope of this paper.

Acknowledgments

The author would like to thank Dana Massie and
the Joint E-mu/Creative Technology Center for
the original research project idea, along with their
support.

8 Conclusion

This paper introduces the critically sampled, third
octave filter bank. This structure, which could be
used as a front end for an audio data compression

...]6_

system, closely models the critical bands of human
hearing. Filter design methods were shown for
the octave band filters and the third octave filters,
as well as calculating the corresponding costs in
latency, memory and complexity.

References

[Zwicker, 1990] E. Zwicker and H. Fastl. Psychoa-
coustics, Berlin: Springer-Verlag, 1990.

[Vetterli and Kovagevié, 1995] M. Vetterli and J.
Kovagevié. Wavelets and Subband Coding,
Prentice Hall, 1995.

[Parks and McClellan, 1972] T. Parks and J. Mec-
Clellan. Chebyshev Approzimation for Non-
recursive Digital Filters with Linear Phase,
IEEE Trans. on Circuit Theory, Vol. CT-19,
No. 2, pp. 189-194, May 1972.

[Strang and Nguyen, 1996] G. Strang and
T. Nguyen. Wavelets and Filter Banks,
Wellesley-Cambridge Press, p.-172.

[Crochiere and Rabiner, 1983] R. Crochiere and
L. Rabiner. Multirate Digital Signal Process-
ing, Prentice Hall, 1983.

[Rioul, 1993] O. Rioul. On the Choice of
“Wavelet” Filters for Still Image Com-
pression, ICASSP 1993.

[Daubechies, 1988] 1. Daubechies. Orthonormal
Bases of compactly supported wavelets, Com-
muin. on Pure and Applied Math., 41:909-
996, Nov. 1988.

[Philippe, 1995] P. Phillipe, et. al. On the Choice
of Wavelet Filters for Audio Compression,
ICASSP, 1995.

[Kudumakis, 1995] P. Kudamakis, et al
Wavelets, Regularity, Complexity, and
MPEG-Audio, AES Convention, New York,
October 1995.

[O.Rioul, 1994] O.Rioul and P. Duhamel. A Re-
mez Ezchange Algorithm for Orthonormal
Wavelets, IEEE Trans. on Circ. and Sys. II,
Vol 41, No. 8, August 1994.

[Vaidyanathan, 1993]
P.P.Vaidyanathan. Muliirate Systems and
Filter Banks, Prentice Hall, 1993.

[Kovatevi¢ and Vetterli, 1993] J. Kovacevi¢ and
M. Vetterli. Perfect Reconstruction Filter
Banks with Rational Sampling Factors, IEEE
Transactions on Signal Processing, Vol. 41,
no. 6, June 1993.

[Nguyen, 1996] T.Q. Nguyen. http://saigon
.ece.wisc.edu/~waveweb/QMF/COSIN/NPR
/N.8.64 . html

[Nguyen, 1994] T.Q. Nguyen. Near-Perfect-
Reconstruction Pseudo-QMF Banks, IEEE
Transactions on Signal Processing, Jan.
1994, pp 65-76.

[Cox, 1986] R. Cox. The Design of Uniformly and
Nonuniformly Spaced Pseudoquadrature Mir-
ror Filters, IEEE ASSP, Vol. 34, No. 5, Oc-
tober 1986.

[Princen, 1995] J. Princen. The Design of
Nonuniform Modulated Filterbanks, 1EEE
Transactions on Signal Processing, Vol 43,
No. 11, Nov. 1995.

[Rioul and Duhamel, 1992] O. Rioul and P.
Duhamel. Fast Algorithms for discrete and
continuous wavelet transforms, IEEE Trans-

actions on Information Theory, Vol. 38, pp.
569-586, March 1992.

[Konstantinides, 1994] K. Konstantinides. Fast
Subband Filtering in MPEG Audio Coding,
IEEE Signal Processing Letters, Vol. 1, No.
2, February 1994.

[Malvar, 1992] H. Malvar. Signal Processing with
Lapped Transforms, Artech House, 1992.

[Rothweiler, 1983] J. H. Rothweiler. Polyphase
Quadrature Filters - A New Subband coding
Technique, International Conference IEEE
ASSP 1983, Boston, 5.1280-1283.

[Brandenburg and Stoll, 1994] K.Brandenburg
and G. Stoll. ISO-MPEG-1 Audio: A
Generic Standard for Coding of High- Quality
Digital Audio, Journal of the Audio Engi-
neering Society, Vol. 42, No. 10, October
1994.

[Princen, 1987] J. Princen, A. Johnson, A.
Bradley. Subband/Transform Coding Using
Filter Bank Designs Based on Time Do-
main Aliasing Cancellation. ICASSP, 1987.
pp. 2161-2164.

[Todd, 1994] C. Todd, G. Davidson, et. al. AC-3:
Flexible Perceptual Coding for Audio Trans-
mission and Storage, 96th AES Convention,
1994.

[Sinha and Tewfik, 1993] D. Sinha and A. Tewfik.
Low Bit Rate Transparent Audio Compres-
sion using Adapted Wavelets, IEEE Trans. on
Signal Processing, Vol. 41, No. 12, December
1993.

....]7..

[Creusere and Mitra, 1996] C. Creusere and S.
Mitra. Efficient Audio Coding Using Perfect
Reconstruction Noncausal IIR Filter Banks,
IEEE Trans. on Speech and Audio Process-
ing, Vol 4, No. 2, March 1996.

18

Effects Processing on Audio Subband Data

Scott N. Levine

Stanford University
Center for Computer Research in Music and Acoustics (CCRMA)

scottl@ccrma.stanford.edu

http://www-ccrma.stanford.edu

Abstract

This paper will show that computing standard audio effects algorithms such as reverberation,
echo, chorus and flange will use less memory and computations when performing the operations
on the critically sampled subband data than on the fullrate time domain signal. Not only can
effects in the subband domain be obtained to sound close to the effects in the time domain,
but new types of effects are now possible because different effects can be placed in separate
subbands. The MPEG Audio filter bank, which also splits the audio into subbands, is used
in this discussion to show that standard MPEG audio decoders could easily be augmented to

include effects processors as well.

1 Introduction

Since the MPEG Audio (layers LIIT) standard has
become a prominent data compression algorithm
in the consumer multimedia market, it exists on
many platforms ranging from personal computers
to workstations to video games. For most of these
applications, some sort of audio post-processing
is desired by the end-user. A simple example
could be the addition of artificial reverberation for
watching a movie in a home theater.

These post-processing algorithms are widely
available today, but usually require special hard-
ware for its computation and large amounts of
memory. It will be shown that these post-
processing algorithms can be performed on the au-
dio subband data itself present inside the MPEG
decoding standards [Rothweiler, 1983]. By com-
puting the effects while performing the MPEG de-
coding, the need for external effects processors is
eliminated. Since effects are computed separately
for each subband, custom tailored effects can now
be placed on different regions of frequencies.

2 Standard Effects Process-
ing Algorithms

Before delving into the benefits of computing ef-
fects in a multirate domain, some of the simpli-
fied, standard effects algorithms will be quickly
explained. For a thorough explanation on these
effects, see [Orfanidis, 1996).

2.1 Echo

The simplest effects example would be an echo
simulation. An echo algorithm models discrete
acoustic reflections from surfaces far away from
the listener. If the surfaces are too close in space
and the reflections are too close together in time,
the ear will not recognize them as discrete echoes,
but rather as a reverberation {which will be dis-
cussed later). To model an echo, all that is needed
is a feedback comb filter with D uniformly spaced
poles, as seen in figure 1.

* output
=D

feedback gain 7

Figure 1: Echo effect

2.2 Flange

With digital technology, flanging translates to a
delay line whose feedforward read pointer from the
delay line to the output is sinusoidally modulated
at around 0.2 Hz, as seen in figure 2. To make
the structure general, the feedback read pointer
from the delay line to the input summation is
also shown as modulated. Traditional time do-
main flangers use no feedback modulation (i.e. a
modulation of 0 Hz) due to its inherent pitch mod-
ulations. It will be shown later that this feedback
modulation frequency is important when design-
ing multiband flangers.

..19...

{eedforward gain

Input @ 2D output

gain

Figure 2: Flange effect
2.3 Chorus

The chorus effect is meant to make a single vo-
calist or instrumentalist sound like a whole group
or section performing. When a group of people
perform together, they are not all signing or play-
ing at the exact same time, but are slightly non-
synchronous. The chorus effect tries to model the
time variations between players with several mod-
ulated delay lines. Its topology is much like the
flanger, except there is no feedback gain, and there
are three parallel modulated delay lines instead of
one, as shown in figure 3. The delay lines are
longer than the flanger, around 25-30 milliseconds
and the modulating frequency is still under 1 Hz.

input

Figure 3: Chorus effect

2.4 Reverberation

A huge amount of papers have been published in
the area of artificial reverberation, but many of
them point towards [Schroeder, 1962] as the pio-
neer. The basic problem is how to make efficient
models of diffuse acoustic reverberation without
having to convolve a signal with the impulse re-
sponse of the room. This response could last for
seconds, and would require an FIR filter with
tens of thousands of taps. The basic building
blocks of these types of artificial reverberators
consist of parallel banks of feedback comb filters
(FBC), along with a series chain of allpass (AP)
filters. The earliest such structure was shown by
Schroeder, as seen in figure 4.

teedforward gain

inpt

Figure 4: Reverberation effect

~100H
W, B) LB k“J : 3

3 MPEG Filter Bank

When choosing a filter bank in which to
implement frequency domain effects, the fil-
ter bank from the MPEG audio standards
[Brandenburg and Stoll, 1994] proves to be a wise
choice. First of all, the 32 channel, uniform co-
sine modulated pseudo quadrature mirror filter
has high frequency selectivity. With a length of
512, the steep window response has their first side-
lobes down over 100dB. The magnitude response
of this filter bank is shown in figure 5. Secondly,
the computationally expensive matrix multiplica-
tion associated with the filter bank can be re-
placed with efficient, fast discrete cosine transform

(DCT) algorithms.

fraquency response of the MPEG Audio Layer { fiter bank

-80}

~80

[0.5 1 15 2
Hz

Figure 5: Magnitude response

Perhaps as important, the MPEG audio stan-
dard and its filter bank is already implemented on
millions of platforms around the world. Therefore,
the effects described in this paper could easily be
inserted into the huge number of existing MPEG
audio decoding systems. There would be no need
to add other external hardware or software solu-
tions to gain effects processing algorithms; the ef-
fects can be combined into the MPEG decoder
itself.

4 Subband Effects Processing

This section will explain how effects are trans-
formed into this MPEG filter bank scheme and
remain sounding close to the effects computed on
the time domain, fullrate signal. Then it will be
shown that by altering these effects algorithms,
one can gain sizable savings in computation and
memory.

4.1 Simple Subband Effects

The first step to mapping an effects algorithm into
the individual subbands is to reduce the length
of any delay element in the original algorithm by
32, and multiply any modulation frequency by 32.
These initial modifications are necessary because

~-20~

the subbands are critically downsampled by a fac-
tor of 32.

As a simple example of the effects transforma-
tion, a echo effect is desired with a delay line
length of 300 msec. To replicate this effect ex-
actly in the subband domain, first design another
comb filter like the one shown in figure 1, with the
same feedback scalars but with a 300msec./32 =
9.4msec delay line length. This altered comb filter
is placed on every subband, as in figure 6. Then
the processed subbands are run through the same
MPEG synthesis filter bank, and the output will
sound just like a standard, fullrate echo effect.

—ie]ed:, subband 32 }»—-«
effects, subband 31

analysis hd
input _{filterbank ©
@
| (e T
Figure 6: Subband effects structure

synthesis
fiterbank |-24PHL

4.2 Customized Subband Effects

Because there are now 32 parallel, independent
effects processors working over different band-
widths, we can now tailor the coefficients in each
band separately. This gives the sound designer
many more degrees of freedom than using a single
fullrate effects algorithm.

4.2.1 The Multiband Flanger

With all these new degrees of freedom, we de-
signed a frequency dependent flanger. Refer to
figure 2 for the filter structure that will be placed
in all subbands. First of all, we sinusoidally modu-
late both the feedforward and feedback pointers in
all subbands. In a fullrate flanger, feedback mod-
ulation is usually avoided due to inherent pitch
shifting qualities. But in this structure, any pitch
shifting will be limited to a 687 Hz wide subband,
so it is not as noticeable. Also, feedback modu-
lation makes the multiband flanger sound closer
to the fullrate version, for reasons we have yet to
explain.

Secondly, we shorten the delay line lengths as
the subband center frequency gets higher. In this
system, we begin with 10 msec. delay lines at
the lowest frequency subband, and linearly reduce
their lengths to 3 msec at the 15th subband (at
around 10 kHz). Above this frequency, the energy
levels are so low, it is not worthwhile spending the
memory and computation to process the signal.
Thus, the subband data is passed through dry.

Also, more subtle changes can be heard if the
gain magnitudes are decreased towards zero as
the subbands get higher in frequency. In this

way, the deepest harmonically spaced frequency
notches are at lower frequencies only.

4.2.2 Multiband Reverberators

Most commercial reverberators are bandlimited
to around 8kHz. This cutoff is due to the fact
that the materials from most room interiors only
reflect low frequencies. When looking at the
magnitude responses of most rooms, the higher
frequencies have quicker exponential decay rates
than the lower frequencies. This translates to
smaller delay line lengths for the higher frequen-
cies. In [Schroeder, 1962], he defines the Tgo time,
which equals the time the reverberating sound
level drops by 60 db. In a feedback comb fil-
ter, the delay line length D is related to the Tgq
and the feedback scalar |g| < 1 by the equation:
D = -};Tﬁo . log(-lé-l-). For a fixed g, as the Tgo de-
creases, so does D. With this subband structure
in place, one can tailor these three preceding co-
efficients to resemble generic rooms.

For the included reverb sound example, only
the first ten subbands were processed; the other
22 subbands were left dry and unprocessed. The
first subband, which is lowest frequency band, had
a Tgo = lsec. Subbands 2 through 10 had lin-
early decreasing Tgo times (with correspondingly
shorter delay lines), and subband 10 had a T
time equal to one-third of the first subband. In
this algorithm, the feedback factor g stays con-
stant for all subbands. The allpass filters retained
the same coefficients for all ten subbands, which
used very little memory (under 5 msec.). In or-
der to remove any periodicities in the frequency
domain, some low level noise was added to these
three parameters. A short-time Fourier transform
of this reverberator’s impulse response is shown in
figure 7.

&5

Figure 7: Reverberator magnitude response

4.3 Memory and Computational
Savings

Assuming the cost of MPEG decoding is already
provided for, the amount of calculations and words

-21-

of memory required for effects processing of 32
critically sampled subbands are equal to that of
a fullrate signal. This property is due to the fact
that all the effects delay line lengths have been
reduced by a factor of 32. The savings in mem-
ory come when the effects algorithms are indi-
vidually altered for each subband. As shown in
the previous two sections, only 10-15 of the to-
tal 32 subbands were processed. Additionally, the
higher frequency subband effects algorithms used
up to one-third the memory of the lower frequency
ones. These multiband algorithms can shrink the
amount of memory necessary by up to a factor of
five, while still sounding like a convincing, fullrate
commercial effect.

4.4 Using the Side Information

An optimization problem present is how to get
an effects algorithm to sound the best with us-
ing a limited amount of memory and computa-
tions. Looking at the side information from the
psychoacoustic masking function data provided by
the MPEG encoder would be a good initial start-
ing point for deciding which subbands are more
perceptually relevant. If the MPEG encoder algo-
rithm previously decided to allocate many bits to
a certain subband, it would be worthwhile to al-
locate more memory and computation to the that
particular subband’s effect algorithm. This pro-
cess is very efficient since it would be utilizing
all the calculations previously performed in the
MPEG encoder’s complex psychoacoustic model
[Brandenburg and Stoll, 1994]. Similarly, the en-
coder’s transient detection information could help
these algorithms adaptively change their coeffi-
cients in new and novel ways.

4.5 Layering Subband Effects

Instead of allocating all memory and computa-
tions for one effects algorithm, one could apply
several effects over different (and possibly over-
lapping) frequency ranges. For example, the user
could allocate all available memory for one good
reverberator over all audible frequencies. Or, the
user could split the memory between a slightly
worse reverberator from 0 — 8k Hz, plus a flanger
from 2 — 12kHz and a chorus from 4 — 10kHz by
placing the effects in the corresponding subbands.

4.6 Alias Cancellation

If no processing were to take place between the
analysis and synthesis filter banks in figure 6,
then the any aliasing noise would remain below
a 100db noise floor. The problem arises when
the critically sampled subbands are processed. In
[Schoenle, Fliege, and Zolzer, 1993], they avoided

critically sampled systems and chose to implement
artificial reverberation using an oversampled filter
bank. By carrying around twice the amount of
subband data, they avoid the problems of alias-
ing. To stay within the MPEG standards and re-
duce the memory requirements, their method is
avoided.

In the experimental work with this MPEG mul-
tirate effects framework, no audible aliasing errors
have been noticed. Even if there are aliasing prob-
lems, it could easily get perceptually buried under
the alterations that the effect itself is creating. In
addition, due to the structure of the MPEG filter
bank, any aliasing by an effects algorithm in one
band will be bandlimited by half a subband (343
Hz) on each side. Therefore, since the aliased re-
gions are highly attenuated, it is most likely that
their energy will be masked.

5 Conclusion

This paper has shown that memory and computa-
tion can be saved by moving post-processing audio
effects such as reverb, chorus, flange and echo from
the time domain to the subband domain. These
subband domain audio signals are present in the
current MPEG Audio compression standards. It
was shown that effects processing can be calcu-
lated on the subbands while the audio is being
MPEG decompressed. This combination of com-
putations eliminates the need for specialized exter-
nal effects processing hardware. Since the effects
are calculated on the audio subbands separately,
new and different effects can be placed on different
regions of frequencies.

References

[Rothweiler, 1983] J. H. Rothweiler. Polyphase
Quadrature Filters - A New Subband coding
Technique, International Conference IEEE ASSP
1983, Boston, S5.1280-1283.

[Orfanidis, 1996] S.J.Orfanidis. Introduction to Signal
Processing. Prentice-Hall, 1996. pp. 355-383.

[Schroeder, 1962] M.R.Schroeder. Natural Sounding
Artificial Reverberation, Journal of the AES, Vol.
10, No. 3, July 1962.

[Schoenle, Fliege, and Zélzer, 1993] M. Schoenle, N.
Fliege, and U. Zdlzer, 1993. Parametric Approz:-
mation of Room Impulse Responses by Multirate
Systems, ICASSP 1993.

[Brandenburg and Stoll, 1994] K.Brandenburg and
G. Stoll. ISO-MPEG-1 Audio: A Generic Stan-
dard for Coding of High-Quality Digital Audio,
Journal of the Audio Engineering Society, Vol.
42, No. 10, October 1994.

22

..23..

PadMaster: banging on algorithms with alternative controllers

Fernando Lopez-Lezcano (nando@ccrma.stanford.edu)
CCRMA (Center for Computer Research in Music and Acoustics), Stanford University

ABSTRACT

This paper will describe the current implementation of PadMaster, a real-time improvisation environment running un-
der the NextStep operating system on both NeXT hardware and Intel PCs. The system was designed with the Mathews/
Boie Radio Drum in mind, but can now use alternative controllers, including widely available graphics tablets. The
current version adds soundfile playback and algorithms to the preexisting paleite of performance options.

1.0 The PadMaster program

PadMaster is a real-time improvisation environment writ-
ten in Objective C that currently runs on NeXT worksta-
tions or Intel PCs running the NEXTSTEP operating sys-
tem. PadMaster uses the MusicKit [4, 5, 6] as the basic
foundation for controlling and performing musical events
and the NeXT Soundkit as the basic resource for soundfile
playback (an extension is in the works which will allow
PadMaster to control other networked workstations for
soundfile and or MIDI information playback).

L)

2.0 Basic concepts: a virtual surface,
controllers, pads and scenes

The performer interacts through the selected controller
with a virtual surface that is modelled on the screen of the
computer. This virtual surface contains one of more “Pads”
which are the basic performance units of PadMaster. Pads
are non-overlapping rectangular sections of the surface (of
arbitrary size) and can be triggered through actions of the
performer. Pads can control the playback of MIDI infor-
mation or soundfiles either through sequences or algo-
rithms. A Pad can react in different ways to a trigger event
and can also link some of its control parameters to contin-
uous position information provided by the selected con-
troller. A set of Pads that are defined within the same sur-
face are called collectively a “Scene”. PadMaster allows an
indefinite number of Scenes to be defined. The performer
interacts with the current scene and can switch between
them during the performance, in effect redefining the be-

havior of the virtual surface. A Pad can be performing even
though its Scene is not the current one, that is, the per-
former can trigger Pads in one of the Scenes and then move
on to another one while the Pads keep performing in the
background (they are not visible on the computer screen
which always shows the state of the current Scene).

2.1 Controllers

PadMaster was originally designed to be controlled by the
Mathews/Boie Radio Drum, which provides for six inde-
pendent axes of control. The current software architecture
has been opened to allow the use of alternative controllers.

2.1.1 The Radio Drum

Triggering of a Pad is effected by striking the surface of the
drum with one of the batons and is further modified by the
state of the two foot switches. When using the Radio Drum
as a controller the number of available pads is constrained
by its resolution, as the hit and position MIDI messages

create a basic non-linear grid of 128x128 points. For the
purpose of calibration and hit detection the surface is split
into a matrix of 10x12 tiles, which are the building blocks
of Pads. All pads are made up of tiles and can potentially be
as small as one tile or as big as the whole drum surface. A
frequently used configuration splits the surface into 30 pads
arranged in a 5x6 matrix, each pad being composed of four
tiles. Although smaller pads can be useful at times, they are
not recommended because it can be difficult to get reliable
hits (it is possible to inadvertently hit the contiguous pad).

2.1.2 Other MIDI controllers

Software is currently being written to allow the use of al-
ternative MIDI controllers. As an example, a normal MIDI
keyboard can be used, where keys are mapped to Pads and
pitch bend, modulation wheels or pedals are mapped to
axes of position control. Percussion controllers and the
Lightning are also being considered as options.

2.1.3 Graphics tablets as performance controliers

As in the previous case the software is not finished at the
time of this writing. Tablets provide a performance envi-
ronment that is close to that of the Radio Baton. The three

—24“

dimensional control is missing and with it goes a very im-
portant part of the gestural element that makes the Radio
Drum so appealing as a controller. Tablets offer two alter-
native dimensions of control in addition to x-y position in-
formation. The first is pressure, which provides (sort of) a
third dimension. The second is sensitivity to tilt of the pen,
both in the x and y axes. Additional advantages of the tablet
include the fact that it does not use MIDI bandwidth (in the
case of the PC only, it uses one of the serial ports in NeXT
hardware) and is an easily obtainable controller.

In addition to these options the mouse and keyboard can
also be used to control most of the performance functions.

2.1.4 Mixing and matching controllers

The fact that now several different controllers might be
available, even at the same time, raises the issue on how to
map things so that a piece can be written in a “controller in-
dependent” way. The current approach being worked on
depends on establishing a mappings of axes of control to
“virtual axes” for each controller, and then using those
when creating the piece. Several maps would enable the
performer to play the same piece with different controllers
by activating the proper map depending on the detected
controller configuration. Controller maps are user config-
urable.

3.0 The browser

PadMaster is a document oriented program. All the pro-

gramming that the composer does to define the behavior of
the virtual surface can be stored to or loaded from binary
documents. Documents are edited through a browser where
the composer or performer can selected the scene and pad
to be edited. Once the selection is done one of the scrollable
panes of the browser shows all editing parameters for the
selected scene or pad. The program also offers the possi-
bility of saving or loading the document to text files.

4.0 Performance Pads

A Performance Pad is the basic performance element of the
program and can be programmed to control the playback of
MIDI information or soundfiles. The graphical representa-
tion of the Pads on the screen gives visual feedback to the
performer on their performing state.

Each type of Performance Pad has a number of fixed con-
trol parameters and a number of optional “Elements” that
can be added or removed at will.

4.1 Sequence Pads

Sequence Pads control the performance of MIDI informa-
tion. The following figure shows the editing pane of a Se-
quence Pad with all elements closed. Elements and subele-
ments are shown as lines in an outline and can be opened

for editing or closed so they don’t clutter the editing pane of
the browser.

The composer can select the MIDI port, channel and an op-
tional program change number. If the program change
number is enabled, PadMaster keeps track of which pads
are using a particular combination of port, channel and pro-
gram change number so that Pads across the document can
share the same channel but use it with different patches.
Any active Pad using a particular combination disables dur-
ing its performance any other Pad that uses the same port
and channel but a different program change number.

Three types of trigger action can be defined in the current
version of the program: start, pause/resume and stop the
performance of a Pad. Actions can also have global side ef-
fects, for example stopping all performing Pads in the cur-
rent Scene when the Pad starts performing. The “start” ac-
tion can be further specified as starting only one sequence,
several overlapping sequences with multiple triggers or a
note by note performance of the score or algorithm (any of
them can perform in single shot or looped modes).

Let’s open one of the elements of this particular Pad (in this
case the Note Velocity control pane):

The two transfer functions represent the upper and lower
limits over which the existing velocity of notes will be

25

mapped depending on the input parameter. The input itself
is a mix of the delayed or smoothed versions of the last trig-
ger velocity and one axis of continuous position informa-
tion. The position information can come from several

sources, depending on the selected controller. In the case of
the Radio Drum there are six axes of control plus two ad-
ditional axes that are computed at trigger time (relative x
and y coordinates inside the triggered Pad). Here’s another
element, this time an open Transfer Function control pane:

As before, a mix of velocity and position information is fed
to the transfer function which is used to generate a contin-
uous MIDI information stream (pitch bend, pressure or
continuous controllers).

Score elements contain a MusicKit MIDI score that stores
the sequence of notes to be played. Several keywords have
been added to the scorefile syntax so that performance of
the score can be controlled from within the score itself. For
example, a note containing the “pause: 0” keyword will im-
mediately pause the performance of the Pad.

Algorithm elements contain a small Objective-C program
that generates note objects during the performance. Pad-
Master supplies a well defined API (Application Program-
mer Interface) to the composer that provides most of the
functionality that is necessary to write small algorithms.
An algorithm can have some of its parameters controlled by
the virtual axes of control.

These are just some examples of the elements that are avail-
able. The introduction in the current software release of el-
ements that are in themselves separate objects opens the
door to sharing elements between Pads, something very im-
portant in simplifying the task of programming the envi-
ronment (the composer could, for example, program sev-
eral interesting transfer functions, name them and then use
them to create similar behavior in different Pads).

4.2 Soundfile Playback Pads

This type of Pad controls the performance of soundfiles.
The composer can specify the file to be played and the ac-
tion to be performed by the trigger (start, pause/resume and
stop as before). An internal manager keeps track of the
number of currently performing sounds and enables or dis-
ables Pads from being triggered to keep playback reliable.

5.0 Control Pads

Control Pads are used to trigger actions that globally affect
the performance of a Scene. A pad can be programmed to
change the current Scene when hit, thus redefining the be-
havior of the virtual surface of the drum. Control Pads can
also be used to pause, resume or stop all playing Pads in the
currently Scene.

6.0 PadMaster in performance

Although in many ways the current version of PadMaster
has the same look as the previous, the program has been
completely rewritten, almost from scratch in many cases.
The result is a much more efficient way of doing things in-
ternally. A couple of significant examples are: the delay
from triggering to activation of a performer has been re-
duced; switching between scenes no longer causes an auo-
dible pause in the performance and so on...

PadMaster has been used to compose and perform two
pieces so far: “Espresso Machine”, for PadMaster and Ra-
dio Drum, two TG77’s and processed electronic cello
(Chris Chafe, playing his celletto) and “With Room To
Grow” for solo performer using the Radio Drum as con-
troller.

7.0 Future developments

Most of the architectural changes in the current version
have opened doors to new functionality, in particular the
creation of several controller drivers. One of the most
promising future developments is the use of remote work-
stations through network protocols to enhance the number
of controllable devices.

References:

[11 Max Mathews, The Stanford Radio Drum, 1990

[2] Carlos Cerana (composer) / Adrian Rodriguez (program-
mer), MiniMax, a piece for Radio Drum

{31 Fernando Lopez-Lezcano, PadMaster: an improvisation en-
vironment for real-time performance. Proceedings of the
1995 International Computer Music Conf., Banff, Computer
Music Association.

[4] J. Smith, D. Jaffe and L. Boynton. Music System Architec-
ture on the NeXT Computer. Proceedings of the 1989 Audio
Engineering Society Conference, Los Angeles, CA.

[5] D. Jaffe. Musical and Extra-Musical Applications of the
NeXT Music Kit. Proceedings of the 1991 International
Computer Music Conf., Montreal, Computer Music Asso-
ciation, pgs. 521-524.

[6] D. Jaffe, J. O. Smith, N. Porcaro. The Music Kit on a PC.
Proceedings of the First Brazillian Symposium of Compu-
tation and Music, XIV Congress of the Brazillian Society
of Computation, Caxambu, MG, 1994. pgs. 63-69.

[7] D. Jaffe and L. Boynton. 1989. An Overview of the NeXT
Music and Sound Kits. Computer Music Journal, MIT Press,
14(2):48-55.

Demonstration: Using SynthBuilder for the Creation of
Physical Models

Nick Porcaro (nick@ccrrma.stanford.edu),
Pat Scandalis (gps@ccrma.stanford.edu),
David Jaffe (daj@ccrma.stanford.edu),
Julius Smith (jos@ccrma.stanford.edu)
CCRMA (http://www-ccrma.stanford. edu)

SynthBuilder is a user-extensible, object-oriented, Nextstep Music Kit application for
interactive real-time design and performance of synthesizer patches, especially physical
models. Patches are represented by networks consisting of digital signal processing
elements called unit generators and MIDI event elements called note filters and note
generators.

In this demonstration we will present an overview of SynthBuilder, and an example of
how to develop an electric guitar physical model. We will also show recently-developed
SynthBuilder patches, including bowed strings, piano, guitars, harpsichords, and others.

We are porting our patches to other platforms. Toward this goal, we have developed an
interchange format called SynthScript, and defined a portable server, SynthServer, which
will enable execution of SynthBuilder patches on other computers. Part of the
demonstration will illustrate the importing and exporting of a SynthScript patch.

Recently, SynthBuilder has been significantly optimized and extended. DSP allocation
speed, memory usage and drawing performance have been greatly improved. Many new
features have been added, including: sound file writing support for various Intel-based
DSP cards, an improved driver for the Frankenstein box, new unit generators and note
filters, mouse tracking, drop-in subpatches, subpatch variations, inspector improvements,
a new trace window, and more robust help/tutorial. These features along with numerous
bug fixes and paradigm refinements have enabled rapid development of complex patches.

In the near future, we plan to continue to build more patches and improve SynthBuilder.
Among these improvements: tighter SynthScript integration and a mechanism for General
MIDI program change.

-26~

Jazz
play =
stop .
Hamner
play s
stop .
S Walle
play

stop

play

stop

play

stop

play

stop

globalMidi

Dry/Distortion pan.{

Amplifier Distance

27

Midi Channel Number

FeedbackScaling

WaWa <

Wawa @
tookup gighalMidi
Cable

Q;\

Excitalion
Table

ampFeedbackPath

A six string electric guitar model with distortion, feedback and wawa, implemented in
SynthBuilder. This model runs on on a single 72Mhz Motorola 56002 DSP.

Frankenstein: A Low Cost Multi-DSP Compute Engine for Music

Kit

William Putnam (putnam@ccrma.stanford.edu)
Tim Stilson(stiltieccrma.stanford. edu)
CCRMA (http://www-ccrma.stanford.edu/)

Electrical Engineering and Music Departments, Stanford University

Abstract

In this paper, we discuss the design of a multiple DSP system intended for musical synthesis.
The current system was designed to be low cost, while still providing enough processing power for
real-time complex synthesis voices and extended polyphony. A design based on readily available,
low cost DSP processors, along with specific examples of real-time synthesis algorithms made

possible by this hardware will be presented.

1 Introduction

This paper discusses the architecture and use of a
multiple digital signal processor (DSP) system in-
tended primarily for musical synthesis, but appro-
priate for other tasks as well. Primary among the
design goals, were cost as well as sufficient process-
ing power for polyphonic physical modeling syn-
thesis applications. Furthermore, it was necessary
to design a system which would be compatible
with the NeXT based Music Kit [Jaffe 1989], as
well as our Synth Builder [Porcaro 1995] software
without major additional effort. Within these
constraints and goals, the decision was made to
design a system based on the readily available,
low cost Motorola DSP56002 Evaluation Module
[Moto 1993]. Our current system incorporates
eight of these modules, allowing for several pos-
sible fixed processing topologies.

We will first discuss the design and overall
philosphy of the system in general terms, and then
the architecture in more detail. Folowing this,
we will briefly describe available software, and the
availability of information for persons wishing to
build similar systems. Finally, future work and
open issues will be addressed.

2 Motivation
Philosophy

and Design

At CCRMA, SynthBuilder is one of our primary
tools for the development and prototyping of mu-
sical synthesis algorithms. Built upon the NeXT’s
Music Kit, Synth Builder is a graphical environ-
ment for building DSP algorithms in a rapid man-
ner. Although efficient in its use of DSP resources,
it is very easy to quickly use all available process-

ing power when the designer is allowed to copy
and paste high level signal processing blocks. The
development of this tool pointed out some impor-
tant issues concerning the necessary scalability of
DSP systems, specifically in the context of musical
synthesis.

One of the most critical issues in multi-
processor systems concerns the level of connectiv-
ity and communication necessary between proces-
sors. For most of our work in the area of musi-
cal synthesis, we found that individual algorithms
were typically small enough to fit on a single DSP
chip. For a large number of applications, it is only
when extended polyphony and effects processing
are desired that one needs to add multiple pro-
cessors. Under this philosophy, one only needs to
allow for processors to communicate at the au-
dio signal level. The recognition of these factors
served as the underlying design philosphy behind
the Frankenstein system.

EVMa Analog Mixing

host port
intaface

N

. signal
1SA Cand Wutiplo output

Interfoce

00

Putnam and Stilson: Multi-DSP Compute Engine

Figure 1: Frankenstein Architecture.

3 Architecture

The Frankenstein system was designed to be used
with Intel based computers. For the sake of sim-
plicity and cost, the standard ISA interface was

ICMC Proceedings 1996

-28~

the clear choice. As mentioned previously, pri-
mary among the design issues was compatability
with existing software. This necessitated a de-
sign based on interfacing to the Motorola proces-
sor through its 8-bit host port. Asshownin Fig. 1,
there are several parts to the design. The first is
the ISA card which resides inside the computer,
and performs the basic interfacing tasks. The sec-
ond is an external card which handles communi-
cation with the eight DSP cards. The final block
is the signal routing and mixing which is all done
in the analog domain.

Polyphony dictates a parallel connection of
DSPs, whereas post processing of a signal re-
quires a cascade connection of DSPs. Ultimately,
it would be nice to allow for a completely general
interconnection of DSPs, with signal routing and
mixing performed digitally. Although such a flex-
ible topology would be extremely useful, and per-
haps necessary at some point, it was decided that
in the context of our near term needs, a couple
of key fixed topolgies would be sufficient. Two of
these are depicted in Fig. 2. The first is a topology
in which 6 DSPs are connected in parallel, their
individual outputs are summed, and fed into a cas-
cade connection of 2 DSP cards. In this topology,
the first 6 DSPs are typically used for synthesis of
musical instruments, while the last 2 are used for
overall effects processing such as reverberation or
chorus.

All information concerning this design
is available at http://www-ccrma/ put-
nam/frankenstein/frank.html. The Music
Kit along with the appropriate software
drivers is available by anonymous ftp from
ftp.ccrma.stanford.edu.

Information on the design and construction of a
single DSP version of the above system is also ava-
iable on the previously mentioned web site. This
system is low cost, while sufficiently powerful to
handle extensive synthesis algorithms.

An MS-Windows based software library is also
available which allows for loading of DSP pro-
grams as well as subsequent communication be-
tween the host and DSP processor. A Matlab tool-
box which uses this software has been written and
also is available. This toolbox allows one to load
and control DSP progams from within the Matlab
environment. Available existing examples include
real time filtering, a pseudo real-time spectrum
analyzer / oscilloscope, and the measurement of
room impulse responses.

Putnam and Stilson: Multi-DSP Compute Engine

paraliet

Synthesis

DSPO Etfacts Processing
6 DSPsin output
(o]
° + » DSP6 > DSP7 |
o]
2D8Psin
cascade
DSPs
6-2 topology
Synthesis
DSPO
8 DSPsin ° output
parailel o
o
DSP7
8-0 topology
Figure 2: System Topologies.
4 Examples
Piano

One of the prime motivations for building this
system was the piano model developed by Scott
Van Duyne [VanDuyne 1995] [Smith 1995]. Using
the Frankenstein hardware it was possible to im-
plement 36 note polyphony at a sampling rate of
44KHz. Each note of the piano includeda bimodal
string as well as commuted soundboard model.

Guitar

A guitar model implemented at CCRMA serves as
a good example of the amount of processing pos-
sible with a single Motorola DSP56002 processor.
Running at a processor speed of approximately
70MHz, it has been possible to implement 6 string
guitar with wah-wah, distortion, and an amplifier
/ feedback model. We have also found it possible
to run up to 16 simple plucked string models per
DSP.

5 Future Work

As implied throughout this paper, this was clearly
an exercise in compromise for the sake of design
simplicity and cost. Despite this we feel that it
has been extremely succesful, and has become an
integral part of of our research efforts. One of the
major areas that we would like to address is that of
signal routing and mixing. It would be nice to do
this digitally, both from a noise standpoint, as well
as the ability to control processing topologies from
software. Other potential improvements include

ICMC Proceedings 1996

...29...

additional memory, digital audio I/O, and alter-
native host interfaces sych as PCMCIA or parallel
port making it possible to use the systems with
laptop computers.

References

[Jaffe 1989] Jaffe, David A., Lee Boyton, “An
Overview of the Sound and Music Kits for the
NeXT Computer.” Computer Music Journal
14(2):48-55,1989.

[Porcaro 1995] Porcaro, Nick, Pat Scandalis, Julius
Smith, David Jaffe, Tim Stilson 1995. “Synth-
Builder Demonstration — A Graphical Real-Time
Synthesis, Processing and Performance System.”
ICMC Proceedings 1995.

[Moto 1993] DSP 560002 Digital Signal Processor
Users Manual Motorola.

[VanDuyne 1995] VanDuyne, Scott A., Julius O.
Smith 1995. “Developments for the Commuted Pi-
ano.” ICMC Proceedings 1995.

[Smith 1995] Smith, Julius O., Scott VanDuyne, 1995
“Commuted Piano Synthesis.” ICMC Proceedings
1995.

Putnam and Stilson: Multi-DSP Compute Engine

ICMC Proceedings 1996

..30...

Modeling and Control of Performance Expression in
Digital Waveguide Models of Woodwind Instruments

Gary P. Scavone
gary@ccrma.stanford.edu

Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University
Stanford, California 94305 USA

Abstract

Most digital waveguide models of woodwind instruments to date have provided only basic con-
trol parameters such as frequency, breath pressure, and vibrato. It is clear that if these models
are to gain popularity as real-time performance synthesizers or as composition tools, more flex-
ibility is necessary. This paper discusses the implementation of expressive controls for flutter
tonguing, growling, tone-bending, multiphonics, and variation of attack style. These effects
are implemented on existing clarinet and flute waveguide instruments using the application
SynthBuilder on a NeXTStep computer platform. Finally, control of these expressive effects

using MIDI controllers is discussed.

1 Introduction

Research in physical modeling of woodwind in-
struments has largely focused on methods to ac-
curately represent the instrument bore (Valimaki
and Karjalainen, 1994), toneholes (Valimaki et al.,
1993), and nonlinear excitation mechanism (Scav-
one, 1995). The understanding of these issues is far
from complete and work should continue to improve
the existing models. However, there is a growing
demand by composers and musicians to use phys-
ical medels in new compositions and performance
settings. In these cases, the models need more flex-
ibility so as to produce a wide variety of sounds,
both similar to real instruments and sounds which
would be physically impossible in the real world.
This paper first presents methods for achieving
such flexibility within the context of digital wave-
guide modeling. The control of these extensions us-
ing MIDI controllers is discussed in the second part
of this paper. The implementation of performance
expression within the context of stringed instru-
ments was previously discussed by Jaffe and Smith
(1995), but issues of real-time MIDI control were
not considered.

2 DModeling Performance
Expression

The expressive controls discussed here fall into
three principal categories — attack variation, breath
pressure modification, and bore manipulation. The
attack or onset of sound generation in musical in-

struments is a particularly important aspect of in-
strument performance and offers enormous expres-
sive flexibility to both the composer and performer.
Further, this attack information is a critical ele-
ment in distinguishing different instruments from
one another. Breath pressure modifications, such
as flutter tonguing, growling, and singing into the
instrument, are possible in all wind instruments,
though they are a more common element of wood-
wind instrument performance. The production of
multiphonics, achieved by non-traditional finger-
ings, is particular to woodwind bores with tonehole
lattices.

2.1 Attack Variation

A variety of attack styles are possible in wood-
wind instruments, ranging from breath attacks to
extremely percussive, “slap tongue” effects. Most
models typically implement only breath-like styles
of attack. Hard tonguing effects are achieved by
using the tongue to briefly push the reed against
the mouthpiece facing, stopping the reed vibra-
tions and air flow into the mouthpiece. The rapid
increase in pressure and air flow into the mouth-
piece upon removal of the tongue from the reed,
together with noise produced by this highly tur-
bulent initial air flow, produces the resulting at-
tack sound. Lighter tonguing effects are created
by briefly interrupting the reed vibrations with the
tongue and lesser degrees of flow interruption. The
upper half of Figure 1 represents a common method
for implementing a breath attack. The breath noise

_3‘]..

scaler controls the level of noise present in the
steady-state sound. A tongued attack is imple-
mented with an additional burst of DC pressure
and noise, as shown in the lower half of Figure 1.
The tonguing envelope controls the magnitude and
duration of the attack and should have a shape of
the form xze™®. Scaling of the tonguing envelope
corresponds to “hardness” of attack and provides
an important performance expression control pa-
rameter. The relative degree of air flow stoppage is

controlled with the tonguing noise scaler.

Typical Breath Attack Implementation

!
t Breath t
: Envelope :
' !
' 1
| !
| Breath 1
} Noise t
1
LI e esrmepmerecs SN [P — - Breath
Pressure
Output
Tonguing
Noise
: Scaler
Tonguing
Envelope
Switch Closed for

Keyboard Control

Figure 1: Tonguing System

Slap tonguing is an effect whereby the reed is
pulled away from the mouthpiece lay using a suc-
tion force between the reed and tongue. When the
elastic restoring force of the reed becomes greater
than the suction force between the tongue and reed,
the reed separates from the tongue and “slaps”
against the mouthpiece lay. Varying amounts of
breath pressure are then added to produce a range
of effects from dry to fully sounding. Implemen-
tation of this effect can be accomplished in sev-
eral ways. One method involves the recording of
a dry slap with the mouthpiece removed from the
instrument. This signal is then added to the nor-
mal breath pressure signal and input to the instru-
ment’s nonlinear excitation. This effect can also be
achieved by approximating the slap with a prede-
termined filter impulse response, which is added to
the breath pressure signal.

2.2 Breath Pressure Modulation

Several extended performance techniques involve
the superposition of higher frequency components
with the DC breath pressure applied to the instru-
ment. This type of modification is referred to here
as modulation, though not in the strict sense of am-
plitude or frequency modulation. Flutter tonguing,
accomplished using either the tongue or ventricular
folds (false vocal folds), simply amounts to the ad-
dition of a 15 — 30 Hz signal to the breath pressure.

Growling and singing are audio rate modulations of
breath pressure. One interesting non-physical ex-
tension possible in the digital domain is modulation
with speech signals, particularly fricative sounds.

Typical Breath Attack Implementation

Oscillator

Figure 2: Breath Pressure Modulation System

The implementation of these effects can be
achieved using the system depicted in Figure 2. A
sinusoidal signal of some desired modulation fre-
quency is added to the original breath pressure
and the modulation frequency is randomly var-
ied around its mean to attain a more realistic
modulation signal. Modulation of breath pressure
with speech can be achieved using recorded signals,
though memory considerations in real-time DSP
implementations often make this prohibitively ex-
pensive. A more desirable implementation provides
real-time digital input via a microphone, which can
be scaled and added directly to the breath pressure
signal. As discussed later in conjunction with wind
controllers, a breath pressure sensor sampled in the
range of 2 kHz would be ideal for breath pressure
control and eliminate the need for most of the sys-
tem in Figure 2.

2.3 Multiphonics and Pitch Bending

Multiphonics are a common contemporary perfor-
mance technique produced on musical instruments
which have a tonehole lattice. Acoustically speak-
ing, non-traditional fingerings produce air column
resonances which are not harmonically related, but
which are strong enough to entrain simultaneous
inharmonic reed oscillations. The resulting tone
is heard as comprised of two or more synchronous
and distinct pitches, or as a tone with a rough and
beating quality.

The most accurate method of modeling this
phenomenon is to implement a full series of tone-
holes which exactly reconstruct the real instrument
behavior. The present understanding of tonehole
behavior and interaction does not allow realization
of this goal and designs using current tonehole mod-
els would prove extremely difficult to properly tune.
Further, the complexity of such a model would

32

make real-time performance difficult to achieve in
most situations. An efficient, though non-physical,
technique for generating multiphonics is to add
more bores to the model, each of different length.
In terms of digital waveguide modeling, this corre-
sponds to the addition of more delay lines and a
summing operation for feedback to the excitation
mechanism, as shown in Figure 3. Each delay line
represents a particular resonance and set of over-
tones, while the input scalers roughly control their
relative strengths.

Breath
Pressure O3
Input

g:c‘:lt::: > > Delay Line 9

1 1

-y

Reflection |,
Filter

Figure 3: Multiphonic Generation System

Another performance technique is pitch bend-
ing. On single reed instruments, equilibrium reed
position can be manipulated by the performer’s
lower jaw, allowing the sounding pitch to be low-
ered by as much as a quartertone. Some increase
in pitch is possible by tightening the embouchure
but this effect is much less significant. Oral cav-
ity manipulations allow a further lowering of pitch,
the magnitude of which varies over the range of
the instrument and can be greater than a fifth.
This effect is most easily implemented in a digi-
tal waveguide context using a smooth delay line
interpolation method. Linear and lagrangian inter-
polation techniques produce no transients due to
filter coefficient changes, but care must be taken
to avoid signal discontinuities when changing de-
lay lengths. For the small incremental delay length
changes necessary for pitch bend, these techniques
generally work well without producing audible dis-
continuities. Allpass interpolation can prove trou-
blesome because of the transients associated with
coefficient modifications in a recursive filter struc-
ture. Two methods exist for minimizing these tran-
sients in waveguide models (Valimaki et al., 1995;
Van Duyne et al., 1996).

3 Controlling Performance
Expression

The enormous flexibility originally proclaimed on
behalf of physical modeling is finally coming to
fruition and in many ways, we are unprepared to
control it. Implementation of the expressive tech-
niques discussed above is straight forward and intu-
itive within the physical modeling context. Find-

ing ways to control these behaviors in real time
is far from simple given current MIDI standards
and controller technology. It is obvious that MIDI
was not designed to handle extended techniques.
Is it possible to adequately control these parame-
ters without inventing a new protocol? The clear
choice for controlling woodwind synthesis models
is a MIDI wind controller. However, the few wind
controllers commercially available offer only basic
features and prove inadequate for the control of
most of the extended techniques discussed in this
paper. The MIDI keyboard is also far from ideal in
this context, but it must be supported for histori-
cal and pragmatic reasons. The limitations of the
keyboard are sometimes circumvented by providing
wind-like controllers, such as the breath pressure
controller supplied with Yahaha’s VL1 synthesizer.
In order to accommodate the advantages and dis-
advantages of these two controller types, different
control schemes are necessary for each.

3.1 Wind Controller Issues

Flexible attack control requires two degrees of free-
dom and can be achieved using both breath pres-
sure and velocity MIDI messages. The breath pres-
sure messages control the breath pressure envelope
while velocity controls the tonguing noise level, or
tonguing noise scaler in Figure 1. In this way, a
wide range of combinations of breath attack and
tonguing level are possible. The Yamaha WX series
of wind controllers generate both breath pressure
and velocity MIDI messages via the pressure sen-
sor in its mouthpiece. It is unclear how the veloc-
ity messages are determined in the WX controllers,
though playing experiments show precise control of
this parameter to be difficult. Of all the wind con-
trollers commercially available at present, those of
Yamaha are the only ones which generate breath
dependent velocity messages. Physically relevant
breath velocity messages can be obtained, however,
by differentiating the breath pressure signal, so that
velocity control using controllers without MIDI ve-
locity output can still be possible if implemented
onboard the synthesizer or computer.

The performance techniques based on modula-
tion of the breath pressure signal present significant
challenges in developing a realistic means of con-
trol. The most physically accurate solution would
incorporate a breath pressure sensor that is sensi-
tive enough to detect the modulations in the per-
former’s breath input. Audio rate modulations,
however, would require pressure sensor sampling
rates on the order of 2 kHz. Under current MIDI
standards, message rates can theoretically run as
high as 1.5 kHz using running status and 2-byte
messages, but such a strategy would be inefficient
and hinder control of other aspects of the model.
A more ideal solution would be to output breath

33

sensor readings on a separate data line for real-
time digital breath pressure input to the instru-
ment model. Under the limitations of current wind
controller technology, one possible scheme for the
control of flutter tonguing and growling provides
the performer with a foot switch mechanism that
allows control of the modulation rate.

Multiphonics present an even greater control
problem when using a wind controller. Poten-
tially, non-traditional fingerings could be detected
and output with special MIDI parameter values.
The Synthophone wind controller provides this flex-
ibility, allowing non-standard fingerings to be pro-
grammed with particular parameter values. How-
ever, the Yamaha WX and Akai EWI wind con-
trollers output a standard MIDI key number for
all fingerings without allowing the key combina-
tions to be reprogrammed. This limitation might
potentially be circumvented by using a particular
MIDI program change message to control a “multi-
phonic” mode of operation, but any control scheme
developed under this scenario would only func-
tion as a poor substitute to the desired behavior.
Clearly, the programmable environment offered by
the Synthophone should serve as a model for future
wind controller development.

3.2 Keyboard Controller Issues

The mapping of MIDI keyboard control mecha-
nisms to wind instrument expressive parameters is
less obvious than when using a wind controller.
However, the keyboard provides more flexibility
than current wind controllers when used in con-
junction with a breath pressure sensor. This is
largely due to the fact that only one hand is needed
to play the keys of the keyboard, leaving the other
hand free to modify additional parameters. With-
out a breath pressure sensor, attack control via
the keyboard is completely dependent on key ve-
locity messages, resulting in significant loss of flex-
ibility. In this context, low velocity values might
be made to correspond to soft breath attacks and
high velocity values to loud, hard tongued attacks.
Lost in this scheme would be such effects as strong
breath and lightly tongued attacks. The addition
of a breath controller gives the keyboard musician
much of the same attack flexibility enjoyed by users
of wind controllers equipped with breath sensitive
velocity detection.

As previously mentioned, natural control of
breath pressure modulation requires a high breath
pressure sampling rate. Until new controller tech-
nologies make this possible, the system of Figure 2
can be implemented and the various modulation
parameters can be assigned to such keyboard con-
trollers as modulation wheels or foot pedals. In this
instance, the keyboard’s wide array of controllers
give it more flexibility than the wind controller.

Control of the multiphonic implementation of
Figure 3 using a keyboard can be achieved by de-
pressing multiple keys at the same time and as-
signing the various delay line lengths by the corre-
sponding key numbers.

4 Conclusions

Physical models of woodwind instruments pro-
vide flexible control over a wide range of pexfor-
mance expression techniques. The implementation
of these effects is reasonably straight forward be-
cause of the one-to-one correspondence between the
model elements and physical elements. Unfortu-
nately, control of these techniques is less straight
forward, even when using a MIDI wind controller.
With current technology, schemes can be developed
which allow control of performance expression us-
ing both wind controllers and keyboards, though
such control is not always intuitive or natural. The
flexibility of physical modeling should result in the
future development of new controller technologies
that make such control more natural.

References

ICMC (1995). Proc. 1995 Int. Computer Music
Conf., Banff, Canada. Computer Music Associa-
tion.

Jaffe, D. A. and Smith, J. O. (1995). Performance
expression in commuted waveguide synthesis of
bowed strings. In ICMC (1995), pp. 343-346.

Scavone, G. P. (1995). Digital waveguide modeling
of the non-linear excitation of single-reed wood-
wind instruments. In ICMC (1995), pp. 521-524.

Vilimaki, V. and Karjalainen, M. (1994). Digi-
tal waveguide modeling of wind instrument bores
constructed of truncated cones. In Proc. 199/
Int. Computer Music Conf., pp. 423-430, Arhus,
Denmark. Computer Music Association.

Valimaki, V., Karjalainen, M., and Laakso, T. I.
(1993). Modeling of woodwind bores with finger
holes. In Proc. 1993 Int. Computer Music Conf.,
pp- 32-39, Tokyo, Japan. Computer Music Asso-
ciation.

Valimaki, V., Laakso, T. I, and Mackenzie, J.
(1995). Elimination of transients in time-varying
allpass fractional delay filters with application to
digital waveguide modelling. In ICMC (1995),
pp. 327-334.

Van Duyne, S., Jaffe, D. A., Scandalis, G. P., and
Stilson, T. (1996). The signal controlled all-

pass interpolated delay line. Presented at the
CCRMA Affiliates Meeting, 1996.

3[}._

Body Modeling Techniques for String Instrument Synthesis

Matti Karjalainen

Matti.Karjalainen®hut.fi

http://www.hut.fi/TKK/Yksikot/Osastot/S/Akustiikka/
Laboratory of Acoustics and Audio Signal Processing

Helsinki University of Technology

Julius Smith

jos@ccrma.stanford. edu
http://wwv~-ccrma.stanford.edu/
CCRMA, Music Department
Stanford University

Abstract

Techniques are described for obtaining efficient computational models of stringed instrument
resonators such as guitar bodies. Warping the frequency axis to an approximate Bark scale
using a first-order conformal map decreases the required body filter order by a factor of 5 to
10 for a given quality level. Structures which implement frequency-warped filters are described.
Techniques are described for factoring a body resonator into its least-damped and most-damped
modes so that the most-damped modes can be commuted with the string and stored in a
shortened look-up table or approximated by a filtered noise burst for commuted synthesis.

1 Introduction

All acoustical string instruments have some kind
of a body or soundboard which is the main source
of sound radiation. Such an “amplification” is nec-
essary since a vibrating string alone has a very lim-
ited capability to move air and radiate efficiently.
Another function of a body or a soundboard is
to add coloration and reverberation to the radi-
ated sound. Since acoustic amplification is more
or less based on resonating structures, the spectral
content of string output signals is thus changed.
Due to a relatively slow decay of the body reso-
nances, the temporal structure of the string signals
is also changed to exhibit a reverberant quality.
The third acoustic role of a body or a sound-
board is to create complex directivity patterns so
that the intensity in the radiated sound field is a
function of direction. Combined with room acous-
tics, this adds spaciousness to the perceived sound.
High-quality real-time sound synthesis of string
instruments, based on physical modeling and
DSP techniques, has been available for several
years, [Smith 1983, Karjalainen and Laine 1991,
Smith 1993a, Karjalainen et al. 1993]. The string
itself is very efficiently modeled by digital wave-
guide filters and extensions of the Karplus-Strong
model [Smith 1983, Karplus and Strong 1983,
Jaffe and Smith 1983, Smith 1987, Smith 1992,
Viliméki et al. 1996], and the excitation may
be simply implemented as a wavetable or a set
of wavetables. The body (or a soundboard),
although in most cases a linear and time-invariant
system, is found to be computationally very
expensive if a full quality synthesis is desired.
Two kinds of efficient solutions are given in

Karjalainen and Smith

literature. The commuting of the body response
and consolidation with the string excitation into a
wavetable, [Smith 1993a, Karjalainen et al. 1993],
is a very practical and straightforward
method but lacks parametric control of
body features. Body filters with a small
or moderate number of resonating modes
(e.g., [Smith 1983, Stonick and Massie 1992,
Bradley and Stonick 1995]) provide another
efficient method, but lacking the quality of
full-featured instrument bodies. These two
approaches can be blended to give parametric
control over the most important resonances, while
retaining the full richness of remaining resonances
in wavetable form.

In this paper, we give a survey of body mod-
eling techniques for model-based sound synthesis
by covering methods from full-quality filter mod-
els to commuted synthesis, as well as hybrid meth-
ods, including new body filter designs. Both tra-
ditional and new filter structures are utilized, with
discussion of estimation techniques for the calibra-
tion of model parameters from measured responses
of acoustic instruments. The acoustic guitar is
used as the primary example in these studies.

2 Body Impulse Responses

The acoustics of string instrument bodies and
soundboards is a relatively widely studied topic
[Fletcher and Rossing 1990].

A natural starting point for body modeling is to
measure or compute the body impulse response.
Figure 9a shows the first 100 milliseconds of the
impulse response from the body of an acoustic gui-

ICMC Proceedings 1996

35.

tar of classical design. The response was measured
by tapping the bridge vertically with an impulse
hammer (strings were damped) and by measuring
the response with a microphone located one me-
ter in front of the sound hole. Figure 2 depicts the
magnitude behavior in the frequency domain for
the full impulse response.

the first 70 milliseconds of the response. A gen-
eral increase in the decay rate at higher modal
frequencies can be easily observed. We may also
notice that resonance modes do not follow the sim-
ple exponential decay that would be linear curves
on the dB scale. This ripple can be explained by
multiple resonances that interact since they are

-36_

closer together than the spectral resolution of the

Tmpulse response of a guitar body) ana].yms. (At very low frtequencxes the alignment

first 100 ms 1 of window in relation to signal cycles may also be
1 asource of ripple.!)

A

010 20

30 40 30 60 70 80 Gmelms 0{’ e oy
dB “ 15 ji " il "
Figure 1: An ezample of a body impulse response " “u’ I"' ‘ "/"’M A
for an acoustic gqui 120+ /‘\ M ﬂ/) /, ',, ,,
guitar. \ ,, " ’ ' il
110+ r\ 'Wl‘ U /l, Vll [/
100+ ' '/A{» ’,
'/ u‘

/“"M ’\ 4’“ ’M‘ 0; ‘MV) ‘
i 4\\’(,) "‘ ',, ‘a. f A/; i))
’, il /i'*:; " 'w;mv

a) Magnitude spectrum of 1 80+
30 guitar body response 470 4

’M“ﬁ o

\.'o" t‘ il il il
\ \, “'m‘t“('o‘p'

Ik 2k 3k 4k Sk 6k 7k frequency/Hz

Figure 3: Time-frequency plot of the guitar body
response using short-time Fourier analysis. A
Hamming window of 12 ms was used with a 3 ms
hop size.

b) Magnitude spectrum up to 1 kHz

30+
20+
10t

[1]8
-10}-.- -

2000200 300 400 500 60070 800 900 Hz
Figure 2: Magnitude spectrum of the impulse re-
sponse shown in Figure 1: a) full spectrum, b) low
frequencies up to 1 kHz.

Figure 1 suggests that the impulse response of
the body is a combination of exponentially decay-
ing sinusoids, i.e., signal components correspond-
ing to the resonance frequencies of Figure 2. This
must be the case if the transfer function of the
body is linear, time-invariant, and finite order.
In the frequency domain, the signal will be spec-
trally colored depending on how the harmonics of
a string signal are located in relation to peaks or
valleys of the body frequency response. It is obvi-
ous that both the magnitude spectrum shape and
the temporal structure of the impulse response are
important from the point of view of auditory per-
ception.

A more comprehensive look at the body re-
sponse characteristics may be achieved by a time-
frequency representation which is more like the
audio spectrum analysis of hearing. Figure 3 il-
lustrates a short-time Fourier spectrum plot for

Karjalainen and Smith

3 Traditional Digital Filters
as Body Models

The signal transfer properties from strings to ra-
diated sound can be considered to be linear and
time invariant (LTI) in most string instruments.
In this case, an efficient way of implementing the
body or soundboard for sound synthesis purposes
is by means of digital filtering. Here we first con-
sider the use of traditional filter structures—FIR
and I1R filters—as direct implementations of body
impulse responses. Then we introduce warped fil-
ter techniques and their application to body mod-
eling.

! Actually, there is no perfect window size for this anal-
ysis since low frequencies require better frequency resolu-
tion and high frequencies better temporal resolution. A
constant-Q or “wavelet” short-time spectrogram would be
closer to an audio transform than the standard short-time
Fourier transform.

ICMC Proceedings 1996

FIR and IIR Filters as Body Models

A discrete-time LTI system may be represented
using the z transform by

_B(z) TN, B!
TAGR) T 1+ S izl

H(z2) 1)

The most straightforward way to realize a
known body response is to use the samples of a
measured or computed impulse response as taps
in an FIR filter, for which the coefficients o; in (1)
are zero. If NV is larger than the impulse-response
duration, this implements the desired convolution
of the string output and the body response yield-
ing a full accuracy body model to the extent that
the whole audible portion of the response is avail-
able free of noise and artifacts.

An obvious problem with FIR modeling is the
filter length N and thus the computational ex-
pense of the method. In the current guitar ex-
ample, in order to cover a period of a single decay
time-constant for the lowest mode, an FIR filter
of order N = 5000 taps is needed when a sampling
rate of 22 kHz is used. For a 60 dB dynamic range
and full audio bandwidth, an FIR order of about
N = 25000 is required! In practice, using only the
first 100 ms of the response is found to be quite
satisfactory, which means a 2200 tap filter for a 22
kHz sampling rate. Even this is computationally
much more expensive than a model for six guitar
strings, and it may be more than a modern signal
processing chip can do in real time. The conclu-
sion is that FIR models are generally impractical
unless very efficient FIR hardware is available.

The sharply resonating and exponentially de-
caying components of a body response imply that
IIR filters are more appropriate for efficient syn-
thesis models than FIR filters. In order to see how
well straightforward all-pole modeling works, we
may apply autoregressive (AR) modeling using the
autocorrelation method of linear prediction (LP)
[Markel and Gray 1976] to the impulse response
shown in Figure 1. This yields an all-pole filter
model where the coefficients §; of (1), fori = 2 to
N, are equal to zero, are the predictor coefficients,
and P is the order of the filter. Experiments with
all-pole modeling have shown that, in our exam-
ple, an order of P = 500 to 1000 is needed to yield
a well matched temporal response. Lower filter
orders, although relatively good from a spectral
point of view, make the lowest resonances decay
too fast. This can be addressed using a spectral
weighting function (preemphasis) at the expense
of the high-frequency fit.

The next generalization with traditional digi-
tal filters is to model the impulse response with a
pole-zero (or ARMA) model. We have tried this
using Prony’s method [Parks and Burrus 1987,

Karjalainen and Smith

pp. 206-209]. The results show that this does not
relax the requirements for the order P, but adding
100 zeros or so to the model improves the fit of the
transient attack of the impulse response. From the
point of view of auditory perception, however, this
has only a small effect.

4 Warped Filters

Many filter design and model estimation meth-
ods allow for an error weighting function versus
frequency in order to control the varying impor-
tance of different frequencies. Here, however, we
take a different approach: Instead of an explicit
weighting function we use frequency scale warp-
ing that is in principle applicable to any design or
estimation technique. The most popular warping
method is to use the bilinear conformal mapping
[Churchill 1960, Parks and Burrus 1987] since it
is the most general conformal mapping that pre-
serves order. It can be used to warp the impulse
response, frequency response, or transfer function
polynomials. The warped FFT was introduced by
[Oppenheim et al. 1971] and warped linear predic-
tion was developed by [Strube 1980]. General-
ized methods using the FAM functions have been
developed by [Laine et al. 1994]. Smith has ap-
plied the bilinear mapping in order to design filter
models for the violin body [Smith 1983].

The bilinear warping is realized by substituting
unit delays by first-order allpass sections, i.e.

27l =\
27 Dl(z) = '1—-_:7\-;:1— (2)
This means that the frequency-warped version of a
filter can be implemented by such a simple replace-
ment technique. (Modifications are needed to
make warped IIR filters realizable.) The trans-
fer function expressions after the substitution may
also be expanded to yield an equivalent IIR filter
of traditional form. It is easy to show that the in-
verse warping can be achieved with a similar sub-
stitution but using —\ instead of .

The usefulness of frequency warping in our case
comes from the fact that, given a target transfer
function H(z), we may find a lower order warped
filter H,,(D;(2)) that is a good approximation of
H(z). For an appropriate value of A, the bilin-
ear warping can fit the psychoacoustic Bark scale,
based on the critical band concept, relatively accu-
rately [Strube 1980, Zwicker 1990]. For this pur-
pose, an approximate formula for the optimum
value of A as a function of sampling rate is given
in [Smith and Abel 1995]. For a sampling rate of
44.1 kHz this yields A = 0.7233 and for 22 kHz
A = 0.6288. When using the warping techniques,
the optimality of A in a specific application de-

ICMC Proceedings 1996

-37..

pends both on auditory aspects and the charac-
teristics of the system to be modeled.

Warped FIR (WFIR) Filters

The principle of a warped FIR filter (WFIR) is
shown in Figure 4a, which may be written as

Bu(z) = B (D7'(2)) Zﬁz Di(2)]" (3)

i=0

A more detailed filter structure for implementa-
tion is depicted in 4b. As the latter form shows, a
warped FIR is actually recursive, i.e., an IIR filter
with M poles at 2 = A, where M is the order of
the filter.

Bo
xO ;
Di(z
1(2) Bl
Xy '_{>>€a
\ A
D1(z) a)
B2
x2¢-__l >><_...
¥ A>
D1(z)
x3¢ etc.
Figure 4: Warped FIR modeling: (a) general

principle, (b) detailed filter structure for imple-
mentation.

A straightforward method to get the tap coeffi-
cients 3; for a WFIR filter is to warp the origi-
nal impulse response and to truncate it by “win-
dowing” the portion that has amplitude above a
threshold of interest. (Notice that the bilinear
mapping of a signal by (2) is linear but not shift in-
variant [Strube 1980]). There exist various formu-
lations for computing a warped version of a signal
[Strube 1980, Smith 1983, Laine et al. 1994]. An
accurate and numerically stable method is to ap-
ply the FIR filter structure of Figure 4a or 4b with
tap coeflicients being the samples of the signal to
be warped. When an impulse is fed to this filter,
the response will be the warped signal. Figure 5
shows the warped (A = 0.63) guitar body response
as a time-frequency plot for comparison with the
original one in Figure 3. As can easily be seen,
the warping tends to balance the decay rates and
resonance bandwidths for all frequency ranges.

Karjalainen and Smith

.————‘
\
Xy

/“" ‘ ‘
i

"
! /."

il ’ h '
" ‘ / ” i'"‘l‘ fi ‘ i
1407 \ﬂ " "'h‘ ”II/’I"'""/,
um L
‘r" /‘"\" M '" ” " ’f Ilfl " 30

1907 i »f/'. ""‘mm, i ‘wu//'h“ o

RS I ' ' ‘ 45 S
80 J ;c'o?,."" ,' “’ il ',““‘ /) §b

; Ll /1‘ 60 -
)

60 -4

Warped frequency scale

10kHz

Figure 5: Time-frequency plot of warped guitar
body response. A Hamming window of 24 ms*
was used with a 8 ms* hop size, where * denotes
warped time.

Warped IIR (WIIR) Filters

When linear prediction is applied to a warped im-
pulse response it yields a warped all-pole filter.
Other methods for warped LP analysis (WLP)
are studied in [Laine et al. 1994], including an effi-
cient way to compute warped autocorrelation co-
efficients r,(¢) directly from the original signal.
This is based on the warped delay-line structure
of Figure 4a, whereby

w() =) zo(n)ai(n) 4)

is summed over a time interval or window of inter-
est. After that, the warped predictor coefficients
are achieved from warped autocorrelation coeffi-
cients as usual [Markel and Gray 1976] to yield a
filter model

Ho(Dy(2)) = Gu

1+ 38, as[Dy (2))f

A somewhat surprising observation is that the
filter structure of (5) cannot be implemented di-
rectly since there will be delay-free loops in the
structure for A # 0. (Of course the bilinear map-
ping, inherent in the filter structure, may be ex-
panded at design time to yield a normal IIR filter.
This, however, can lead to numerical difficulties
if the filter order exceeds about 20 to 30 in 64-
bit double precision floating-point.) Figure 6 de-
picts two realizable forms of WIIR filters. Strube
[1980] suggested an approximation in which low-
pass sections are used instead of allpass sections
(see Figure 6a). In practice, it works only for low
orders and warping values A due to excessive high-
frequency attenuation otherwise. The version in
Figure 6b is more general for warped pole-zero
modeling but it has also a more complex struc-
ture. The coefficients ¢; can be computed from

(%)

ICMC Proceedings 1996

38

coefficients a; of (5) using a recursion or matrix
operation as shown in [Karjalainen 1996].

Figure 6: Filter structures for implementation of
warped IIR filters: (a) lowpass structure that does
not work with high orders, and (b) modified allpass
structure (warped pole-zero filter).

Body Modeling with Warped Filters

For a given quality level, the warped filter strategy
using a Bark-scale warping yields a reduction in
filter order by a factor 5 to 10. This means that a
WFIR of order M less than 500 gives results simi-
lar to those of an FIR filter of order NV = 2000. For
warped all-pole filters, an order of about R = 100
is equivalent to normal IIR order of about P = 500
to 1000. A body filter resulting from using Prony’s
method for a warped filter, with M = 50 to 100
and R = 100 to 200, will represent both transient
and decay properties relatively well, although a
Bark warping (A = 0.63, sampling rate 22 kHz)
has a tendency to shorten the impulse response of
the highest frequencies a bit too much.

The reduction in filter order due to warping
translates to a similar reduction in computational
complexity only if unit delays and allpass sections
are equally complex computationally. In reality,
many digital signal processors have hardware sup-
port to run ordinary FIR and IIR filters very ef-
ficienly. The complexity of the first-order allpass
section used as a warped delay is several times
higher than that of a unit delay. Due to this
complexity of realization, reduction in computa-
tional cost with warped all-pole and IIR struc-
tures remains smaller than indicated by the order
savings. In a typical case, for the TMS320C30
floating-point signal processor, a WIIR body fil-
ter model is only about two times faster than an
equivalent normal IIR filter. On the other hand,
if the warped filters are converted to conventional
structures (using ultra-high precision computa-
tions, e.g., in Mathematica), the extra complex-
ity disappears; since the warping preserves order,
it does not have to increase filter complexity ex-
cept when the number of poles is different from

Karjalainen and Smith

the number of zeros in which case the warping (or
unwarping) will introduce new poles or zeros so
that their number is the same.

A nice benefit of implementing the body filter in
warped form is that A is available as a qualitative
body size parameter. The size parameter can be
modulated to obtain new kinds of effects, or it can
be used to “morph” among different members of
an instrument family.

5 Body-Model Factoring

Trigger ——= Excitation [—= Resonator — Sting [Cutput

Figure 7: Schematic model of a stringed instru-
ment tn which the string and resonator are com-
muted relative to their natural ordering.

Commuted synthesis is a technique in which the
body resonator is commuted with the string
model, as shown in Fig. 7, in order to avoid
having to implement a large body filter at all
[Smith 1993a, Karjalainen et al. 1993]. In com-
muted synthesis, the excitation (e.g., plucking
force versus time) can be convolved with the res-
onator impuilse response to provide a single aggre-
gate excitation signal. This signal is short enough
to store in a look-up table, and a note is played
by simply summing it into the string.

A valuable way of shortening the excitation
table in commuted synthesis is to factor the
body resonator into its most-damped and least-
damped modes. The most-damped modes are then
commuted and combined with the excitation in
impulse-response form. The least-damped modes
can be left in parametric form as recursive dig-
ital filter sections. Advantages of this factoring
include the following:

e The excitation table is shortened.

e The excitation table signal-to-quantization-
noise ratio is improved.

e The most important resonances remain para-
metric, facilitating real-time control.

e Multiple body outputs become available.

e Resonators may be already available in a sep-
arate effects unit, making them “free.”

e A memory vs. computation trade-off is avail-
able for cost optimization.

Mode Extraction Techniques

The goal of resonator factoring is to identify and
remove the least-damped resonant modes of the

ICMC Proceedings 1996

..39..

impulse response. In principle, this means as-
certaining the precise resonance frequencies and
bandwidths associated with each of the narrow-
est “peaks” in the resonator frequency response,
and dividing them out via inverse filtering, so
they can be implemented separately as resonators
in cascade. If in addition the amplitude and
phase of a resonance peak are accurately mea-
surable in the complex frequency response, the
mode can be removed by complex spectral sub-
traction (equivalent to subtracting the impulse-
response of the resonant mode from the total
impulse response); in this case, the parametric
modes are implemented in a parallel bank as in
[Bradley and Stonick 1995]. However, in the par-
allel case, the residual impulse response is not
readily commuted with the string.

Various methods are available for estimating the
mode parameters for inverse filtering:

e Amplitude response peak measurement
Weighted digital filter design

Linear prediction

Sinusoidal modeling

Late impulse-response analysis

In the body factoring example presented be-
low, the frequency and bandwidth of the main
Helmholtz air mode were measured manually us-
ing an interactive spectrum analysis tool. It is also
easy to automate peak-finding in FFT magnitude
data, as is routinely done in sinusoidal modeling,
discussed further below.

Equation-Error Fit, Noise = 1, In-Band Weighting = 100 {isid.m)

Yo T T

-
(=]
T

Magnitude (dB)
L

0 500 1000 1500 2000
Frequency (Hz)

Figure 8: Illustration of one way to determine the
parameters of a least-damped resonant mode.

Many methods for digital filter design support
spectral weighting functions that can be used to
focus in on the least-damped modes in the fre-
quency response. One is the weighted equation-
error method which is available in the matlab
invfreqz() function. Figure 8 illustrates use of

Karjalainen and Smith

it in a simple synthetic example with only one
frequency-response peak in the presence of noise.
Unless the weighting function is very tight around
the peak, its bandwidth tends to be overestimated.

Another well known method for converting the
least-damped modes into parametric form is Lin-
ear Prediction (LP) followed by polynomial fac-
torization to obtain resonator poles.. LP is par-
ticularly good at fitting spectral peaks due to
the nature of the error criterion it minimizes
[Smith 1983, pp. 43-50]. The poles closest to the
unit circlein the z plane can be chosen as the least-
damped part of the resonator. It is well known
that when using LP to model spectral peaks for
extraction, orders substantially higher than twice
the number of spectral peaks should be used.

Another way to find the least-damped mode pa-
rameters is by means of a sinusoidal model of the
body impulse response such as is often used to de-
termine the string loop filter in waveguide string
models [Smith 1993b, Valimaki et al. 1996]. (See,
e.g., [Serra and Smith 1990] for further details on
sinusoidal modeling and supporting C software).
The sinusoidal amplitude envelopes yield a par-
ticularly robust measurement of bandwidth. The-
oretically, the modal decay should be exponen-
tial. Therefore, on a dB scale, the amplitude en-
velope should decay linearly. Linear regression
can be used to fit a straight line to the measured
log-amplitude envelope of the impulse response of
each long-ringing mode. Note that even when am-
plitude modulation is present due to mode cou-
plings, the ripples tend to average out in the re-
gression and have little effect on the slope mea-
surement. This robustness can be enhanced by
starting and ending the linear regression on local
maxima in the amplitude envelope.

All methods useable with inverse filtering can
be modified based on the observation that late
in the impulse response, the damped modes have
died away, and the least-damped modes dominate.
Therefore, by discarding initial impulse-response
data, the problem in some sense becomes “easier”
at the price of working closer to the noise floor.

High-Frequency Modes =~ Noise

Figure 9b suggests that the many damped modes
remaining in the shortened body impulse response
may not be clearly audible as resonances since
their decay time is so short. This is confirmed
by listening to shortened and spectrally flattened
body responses which sound somewhere between
a click and a noise burst. These observations sug-
gest that the shortened, flattened, body response
can be replaced by a psychoacoustically equiva-
lent noise burst, as suggested for modeling piano
soundboards [Van Duyne and Smith 1995]. Thus,

ICMC Proceedings 1996

~L0-

the signal of Fig. 9b can be synthesized qualita-
tively by a white noise generator multiplied by
an amplitude envelope. In this technique, it is
helpful to use LP on the residual signal to flat-
ten it. As a refinement, the noise burst can be
time-varying filtered so that high frequencies de-
cay faster [Van Duyne and Smith 1995]. Thus,
the stringed instrument model may consist of
noise generator — ezcitation amplitude-shaping
— time-varying lowpass — string model — para-
metric resonators — maultiple outputs. In addi-
tion, properties of the physical excitation may
be incorporated, such as comb filtering to ob-
tain a virtual pick or hammer position. Mul-
tiple outputs provide for individual handling of
the most important resonant modes and facilitate
simulation of directional radiation characteristics
[Valimaki et al. 1996).

Body Factoring Example

a 1
05

[¢] Y
-05

i
¥
10 50 100 150 200 250

b) g
0.5
Y g
-0.5

T 50 100 150 200 250 300 o 400
Time {msac)

Body Impulse Response

AP AR
W

Amplitude

300 350 400
Body IR Shortenad by Ramoving Main Alr Resonarnce

Amplitude

Figure 9: Impulse response of a classical guitar
body before and after removing the first peak (main
air resonance) via the inverse filter defined by
Eq. (6), with a; = —1.9963 and a; = 0.9972.

Figure 9a shows the measured guitar-body
impulse-response data plotted in Fig. 1 but ex-
tended to its full duration. Figure 9b shows the
same impulse response after factoring out a single
resonating mode near 100 Hz (the main Helmholtz
air mode). As can be seen, the residual response
is considerably shorter than the original.

Figure 10a shows the measured guitar-body
amplitude response after warping to an approx-
imate Bark frequency axis. Figure 10b shows the
Bark-warped amplitude response after the main
Helmholtz air mode is removed by inverse filter-
ing. On the Bark frequency scale, it is much easier
numerically to eliminate the main air mode.

The modal bandwidth used in the inverse filter-
ing was chosen to be 10 Hz* which corresponds

Karjalainen and Smith

Warped Body Frequency Response

&
=3

Gain (dQ)
3

i

B

<

Galn (dB)
-]

$

4 8 8
Warped Frequency (kHz*)

Figure 10: Normalized Bark-warped amplitude
response of a classical guitar body before and af-
ter removing the first peak (main air mode) via
Eq. (6), with a; = —1.9801 and a; = 0.9972.

to a @ of 46 for the main air mode. If the Bark-
warping is done using a first-order conformal map
[Smith and Abel 1995], its inverse preserves filter
order [Smith 1983, pp. 61-67]. Applying the in-
verse warping to the parametric resonator drives
its pole radius from 0.99858 in the Bark-warped z
plane to 0.99997 in the unwarped z plane.

Note that if the inverse filter consists only of two
zeros determined by the spectral peak parameters,
other portions of the spectrum will be modified by
the inverse filtering, especially at the next higher
resonance, and in the linear trend of the overall
spectral shape. To obtain a more localized mode
extraction (useful when the procedure is to be re-
peated), we define the inverse filter as

A(z) a l14a;z7! +ayz72

a
He(z) = A(z/r) " 14 ayrz=! +agr2z—2

(6)

where A(z) is the inverse filter determined by the
peak frequency and bandwidth, and A(z/r) is the
same polynomial with its roots contracted by the
factor r. If 7 is close to but less than 1, the poles
and zeros substantially cancel far away from the
removed modal frequency so that the inverse filter
has only a local effect on the frequency response.
In the computed examples, r was arbitrarily set
to 0.9, but it is not critical.

6 Conclusions

A number of techniques were discussed for improv-
ing the quality of virtual stringed instrument res-
onators and reducing implementation cost. These
methods make it possible to simulate high quality
stringed instruments using inexpensive software
algorithms. As an example, a basic classical gui-
tar model requires less than two percent of a 120

ICMC Proceedings 1996

..1_”-

MHz Pentium processor for each actively vibrat-
ing string. Therefore, such models are practical
today, even for low-cost multimedia applications.
For the future, physical models suggest how to
make good use of increased processing power as it
comes along,.

References

[Bradley and Stonick 1995] Bradley, K., and V. Ston-
ick. 1995. “Automated Analysis and Compu-
tationally Efficient Synthesis of Acoustic Guitar
Strings and Body.” In: Proc. IEEE Workshop
on Appl. Signal Processing to Audio and Acoustics,
New Paltz, NY. New York: IEEE Press. Session 9a,
paper 7. :

[Churchill 1960] Churchill, R. V. 1960. Complez Vari-
ables and Applications. New York: McGraw-Hill,

[Fletcher and Rossing 1990] Fletcher, N. H., and
T. D. Rossing. 1990. The Physics of Musical In-
struments. New York: Springer Verlag.

[Jaffe and Smith 1983] Jaffe, D. A., and J. O. Smith.
1983. “Extensions of the Karplus-Strong Plucked
String Algorithm.” Computer Music J., 7(2):56—
69. Reprinted in The Music Machine, Roads, C.,
(ed.), MIT Press, 1989.

[Karjalainen 1996] Karjalainen, M. 1996. Unpublished

manuscript.

[Karjalainen and Laine 1991] Karjalainen, M., and
U. K. Laine. 1991. “A Model for Real-Time Sound
Synthesis of Guitar on a Floating-Point Signal Pro-
cessor.” Pages 3658-3656 of: Proc. Int. Conf.
Acoustics, Speech, and Signal Processing, Toronto,
vol. 5. New York: IEEE Press.

[Karjalainen et al. 1993] Karjalainen, M.,
V. Valimiki, and Z. Jdnosy. 1993. “Towards
High-Quality Sound Synthesis of the Guitar and
String Instruments.” Pages 56-68 of: Proc. 1993
Int. Computer Music Conf., Tokyo. Computer
Music Association.

[Karplus and Strong 1983} Karplus, K., and
A. Strong. 1983. “Digital Synthesis of Plucked
String and Drum Timbres.” Computer Music J.,
7(2):43-55.

[Laine et al. 1994] Laine, U. K., M. Karjalainen, and
T. Altosaar. 1994. “Warped Linear Prediction
(WLP) in Speech and Audio Processing.” Proc.
Int. Conf. Acoustics, Speech, and Signal Processing,
Adelaide, Australia, pp. 111:349-352.

[Markel and Gray 1976] Markel, J. D., and A. H.
Gray. 1976. Linear Prediction of Speech. New York:
Springer Verlag.

[Oppenheim et al. 1971] Oppenheim, A. V., D. H.
Johnson, and K. Steiglitz. 1971. “Computation of

Spectra with Unequal Resolution Using the Fast
Fourier Transform.” Proc. IEEE, 59:299-301.

[Parks and Burrus 1987] Parks, T. W., and C. S. Bur-
rus. 1987. Digital Filter Design. New York: John
Wiley and Sons, Inc.

Karjalainen and Smith

[Serra and Smith 1990} Serra, X., and J. O. Smith.
1990. “Spectral Modeling Synthesis: A Sound
Analysis/Synthesis System Based on a Determin-
istic plus Stochastic Decomposition.” Computer
Music J., 14(4):12-24. Software available under
http://www.ina.upf.es/ "xserra/.

[Smith 1983] Smith, J. O. 1983 (June). Techniques for
Digital Filter Design and System Identification with
Application to the Violin. Ph.D. thesis, Elec. Eng.
Dept., Stanford University.

[Smith 1987] Smith, J. O. 1987. “Waveguide Filter
Tutorial.” Pages 9-16 of: Proc. 1987 Int. Comp-
uter Music Conf., Champaign-Urbana. Computer
Music Association.

[Smith 1992] Smith, J. O. 1992. “Physical Model-
ing Using Digital Waveguides.” Computer Music
J., 16(4):74-91. Special issue: Physical Modeling of
Musical Instruments, Part I.

[Smith 1993a] Smith, J. O. 1993a. “Efficient Synthe-
sis of Stringed Musical Instruments.” Pages 64-71
of: Proc. 1998 Int. Computer Music Conf., Tokyo.
Computer Music Association.

[Smith 1993b] Smith, J. O. 1993b. “Structured Sam-
pling Synthesis: Automated Construction of Physi-
cal Modeling Synthesis Parameters and Tables from
Recorded Sounds.” (Presentation overheads, 51
pages), CCRMA Associates Conference, May.

{Smith and Abel 1995] Smith, J. O., and J. S. Abel.
1995. “The Bark Bilinear Transform.” In:
Proc. IEEE Workshop on Appl. Signal Processing
to Audio and Acoustics, New Paltz, NY. New
York: IEEE Press. Available online at http://www-
ccrma.stanford.edu/~jos/.

[Stonick and Massie 1992] Stonick, V., and
D. Massie. 1992. “ARMA Filter Design for
Music Analysis/ Synthesis.” Pages II:253-256
of: Proc. Int. Conf. Acoustics, Speech, and Signal
Processing, San Francisco. New York: IEEE Press.

[Strube 1980] Strube, H. W. 1980. “Linear Prediction
on a Warped Frequency Scale.” J. Acoustical Soc.
of America, 68(4):1071-1076.

[Valim&ki et al. 1996] Vilimiki, V., J. Huopaniemi,
M. Karjalainen, and Z. Janosy. 1996. “Physical
Modeling of Plucked String Instruments with Ap-
plication to Real-Time Sound Synthesis.” J. Audio
Eng. Soc., May.

[Van Duyne and Smith 1995] Van Duyne, S. A., and
J. O. Smith. 1995. “Developments for the Com-
muted Piano.” Pages 335-948 of: Proc. 1995 Int.
Computer Music Conf., Banff. Computer Music As-
sociation.

[Zwicker 1990] Zwicker, E. 1990.
New York: Springer Verlag.

Psychoacoustics.

ICMC Proceedings 1996

-42-

Alias-Free Digital Synthesis of Classic Analog Waveforms

Tim Stilson(stiltieccrma.stanford.edu)
Julius Smith (joseccrma. stanford. edu)
CCRMA (http://www-ccrma.stanford.edu/)

Music Department, Stanford University

Abstract

Techniques are presented for alias-free digital synthesis of classical analog synthesizer waveforms
such as pulse train and sawtooth waves. Bandlimited impulse trains are generated as a super-
position of windowed sinc functions. Bandlimited pulse and triangle waveforms are obtained by
integrating the difference of two out-of-phase bandlimited impulse trains. Variations for efficient

implementation are discussed.

1 Introduction

Any analog signal with a discontinuity in the wave-
form (such as pulse train or sawtooth) or in the
waveform slope (such as triangle wave) must be
bandlimited to less than half the sampling rate be-
fore sampling to obtain a corresponding discrete-
time signal. Simple methods of generating these
waveforms digitally contain aliasing due to having
to round off the discontinuity time to the nearest
available sampling instant. The signals primarily
addressed here are the impulse train, rectangular
pulse, and sawtooth waveforms. Because the latter
two signals can be derived from the first by inte-
gration, only the algorithm for the impulse train is
developed in detail.

2 Related Techniques

Additive synthesis (see [Roads 1996] for a summary
of this and other synthesis techniques discussed in
this section) can be trivially bandlimited simply by
not generating harmonics higher than F;/2. A ban-
dlimited impulse train at fundamental frequency f,
can be generated using additive synthesis by sum-
ming N = |(F;/2)/f1] cosine oscillators.

Periodic wavetable synthesis [Mathews 1969)
(not to be confused with sample playback syn-
thesis which is also called wavetable synthesis
these days) can be made free of aliasing by use
of bandlimited interpolation when accessing the
wavetable [Smith and Gossett 1984]. In this case,
the wavetable contains a 1 followed by all zeros (an
impulse).

Discrete-Summation Formulae (DSF)
[Moorer 1975] can be used to synthesis a ban-
dlimited impulse train algorithmically based on
a closed-form expression for a sum of cosines.
The Systems Concepts Digital Synthesizer imple-
mented this method in hardware, and it is used

Stilson and Smith: Alias-Free Synthesis

in CSound’s buzz and gbuzz unit generators. A
disadvantage of DSF relative to the previous two
is that, when calculating harmonics all the way
to F3/2, the number of harmonics changes with
frequency, which causes the highest harmonic to
“pop” in or out as the pitch frequency glides down
or up. The previous methods (and the method we
will discuss) can allow the harmoncs to die out (or
come in) slowly and imperceptibly.

Formant synthesis techniques, such as
VOSIM [Kaegi and and S. Tempelaars 1978],
Chant [Rodet et al. 1989], and linear prediction
[Roads 1996] can be modeled as an impulse train
driving a formant filter where the timing of the im-
pulses is rounded to the nearest sampling instant.
This impulse-time rounding causing pitch-period
jitter which is a form of aliasing. Eliminating this
jitter in Chant or VOSIM requires resampling the
filter impulse response each period which would
be very expensive. Using a bandlimited impulse
train as described here to drive a formant filter
will eliminate this pitch-period jitter.

3 Bandlimited Impulse Train
(BLIT) Synthesis

The standard operation before sampling is to apply
an anti-aliasing filter. The ideal anti-aliasing filter
has a continuous-time impulse response that is a
sinc function with a zero-crossing interval of one
sample;

a sin(nFt)

A .
s = st
hs(t) = sinc(Fst) Tt

The ideal unit-amplitude impulse train with period
T seconds is given by

2(t) = i S(t+IT})

I=—o0

ICMC Proceedings 1996

Q3

Applying the anti-aliasing filter hy to this signal
and sampling at the sampling rate F; = 1/T gives

oo

Z sinc(n + IP)

l=—o00

y(n) =

where P = T /T is the period in samples (not nor-
mally an integer). The above expression can be
interpreted as a time aliasing of the sinc function
about an interval of P samples, and it can be shown
to be given by

y(n) = (M/P)Sinc,(M/P)n] 1)
where in(r2)
Sincy (z) = Msin(rz /)

This function provides a closed-form expression for
the sampled bandlimited impulse train (BLIT), and
it can be used directly for synthesis in a manner
similar to DSF. While P is the period in samples,
M is the number of harmonics. It is always odd
because an impulse train has one “harmonic” at
DC, and an even number of non-zero harmonics,
provided no harmonic is allowed at exactly half the
sampling rate (which we enforce). Note that M/P
is always close to 1. When P is an odd integer,
P = M, and y(n) is simply Sinc,(n). As P departs
from M, Eq. (1) implements a time scaling along
with a compensating amplitude scaling. We can
relate the number of harmonics M to the period P
of the impulse train as

i.e., M is the nearest odd integer to the period P
in samples.

Sum of Windowed Sincs (BLIT-SWS)

A more efficient method for synthesizing digital
impulse trains may be based on the windowed-
sinc method for general bandlimited interpolation
[Smith and Gossett 1984]. The technique is equiva-
lent conceptually to bandlimited periodic wavetable
synthesis of an impulse train, as mentioned in the
previous section: Bandlimited interpolatation is to
convert the sampling rate of a discrete-time unit
sample pulse train from a pitch which divides the
sampling rate to the desired pitch. The rate con-
version causes each unit sample pulse §(n) to be re-
placed by a windowed sinc function w(t)hs(t) sam-
pled at some phase which generally varies each pe-
riod.

Because the windowing imposes a finite fall-off
rate in the harmonics, some aliasing is inevitable.
We can, however, control this by our choice of win-
dow. It is also helpful to helpful to have a small
oversampling factor so that there is a good sized

Stilson and Smith: Alias-Free Synthesis

Number of Harmonics <{,/2 Number of Required Pulse Generators

N

Figure 1: Comparing number of harmonics to number

of overlapped pulse instances for a pulse 8 samples long.

guard band between the upper limit of human hear-
ing and half the sampling rate. This reduces the
window length required.

A further optimization comes from comparing
the number of sincs that must be overlapped in the
BLIT-SWS method to the number of harmonics of
the BLIT that land below F;/2. At very high fre-
quencies, the number of bandlimited harmonics be-
comes quite small. Indeed, in the top octave, only
the fundamental is in band. Thus for a large per-
centage of the frequency range, it is quite likely that
it may be more efficient to generate a BLIT (or any
other harmonic waveform) by simple summation of
sines. At lower frequencies, we can again revert
to the BLIT-SWS method because it is obviously
more efficient at low frequencies, where the number
of harmonics is very large.

Like additive synthesis and bandlimited
wavetable synthesis, and unlike DSF, in BLIT-SWS
synthesis the highest harmonic need not audibly
“pop” in or out as it comes down from or gets
up to half the sampling rate, since the window
function can be chosen to exhibit any harmonic
falloff rate.

Example Spectrum

Corner at 0.9*Fs/2, 32 ZC in window

EInn?

120 0.1 0. 2 0.3 0.5
normalized frequency

Figure 2: Spectrum of BLIT-SWS impulse train with
a line drawn through the harmonic peaks, both in-band
and aliased.

Figure 2 shows the spectrum of a bandlimited im-
pulse train generated using the BLIT-SWS method
with 32 sinc zero-crossings under a Blackman win-
dow. Note that, as is done in bandlimited interpo-
lation, the cut-off frequency of the windowed sinc
function is lowered below half the sampling rate so
that its transition band is folded in half as it falls

ICMC Proceedings 1996

-Lh-

into half the sampling rate and reflects. Only the
upper 10% of the spectrum is heavily aliased. If
the limit of human hearing is 20 kHz, this means
we need a 2 kHz guard band, so the sampling rate
should be at least 44 kHz.

4 Square-Wave and Sawtooth-
Wave Generation

The next major class of analog waveforms are
Square waves and Sawtooth waves.! We will show
how to easily derive these from a BLIT via inte-
grations which are linear transforms (that can be
implemented with trivial filters), so that they pre-
serve the bandlimited nature of the BLIT.

Successive Integration of BLIT
Sawtooth

A sawtooth function can be generated as follows:

Saw(n) = Zn:BLIT(k) - C

k=0

where C; = &1— 5"0"** BLIT(k), the DC compo-

nent of the BLIT.

BLIT(n) Saw(n)

*i}ﬁ»

C;

Figure 3: Direct Sawtooth Generation

Which is trivally impementable with a single sum
and one-pole digital filter. The offet C] is the aver-
age value of BLIT, which should be subtracted off
to keep the integration from ramping off to infinity
(or saturating).

Rectangle

Rect(n)

I

> " BLIT(k) — BLIT(k — ko) — C;

k=0

> BP-BLITy, (k) — Ca

k=0

Where BP-BLIT is a “BiPolar” BLIT, whose
pulses alternate sign. See Section 5 for discussion
on hacks for efficiently generating BP-BLIT when

1To avoid confusion, we will use the following naming con-
vention: A “square wave” is a rectangle wave with 50% duty
cycle (i.e., “rectangle wave” means a wave that can have
other duty cycles). A “triangle wave” can have asymmet-
ric up/down slopes (including the 50% duty-cycle version),
and a “sawtooth” wave must have infinite-slope transitions
(either up or down). Thus a sawtooth wave is a triangle
wave with either 0% or 100% duty cycle. All waves can have
unipolar, bipolar, or arbitrary-offset versions.

Stilson and Smith: Alias-Free Synthesis

using DSF BLITs. It turns out that a bipolar im-
pulse train has a DC component of zero, which
means that C; = 0. The rectangle width is con-
trolled with k¢, which can be varied to give PWM
(pulse-width modulation). The range of ko in these
equations is [0,Period]. Depending on the imple-
mentation of the BLIT, the PWM control may also
be in the range [0,1].

Triangle
n
Tri(n) =) Rect(k) — Cs
k=0
BLIT(n) Rect(n)
. ﬁamxz BP-BLIT(n) amp
Jfrequency: f} P/ ~ I——l_l__ ez Tri(n}
| BP-BLIT s s { E—D—)
duty-cycle: d X{ K ! anp

G Cs

Figure 4: Rectangle and Triangle Generation

The offset C3 is a function of the rectangle wave
duty cycle and of a DC offset that arises from
the initial conditions of the integration that pro-
duces the rectangle wave. For the Triangle to
have the same amplitude as the rectangle wave, a
frequency- and duty-cycle-dependant scaling must
be performed on the Triangle integration:

Tri(n) = Y _ g(f,d)(Rect(k) - Cs)
k=0

2f
9(f,d) = PO

Where f is the frequency in units of (cy-
cles/sample), and d is the duty cycle (d € [0,1]).

Appropriate Scalings/Offsets and

Non-Steady-State Fixups

In order to keep the integrators from ramping their
outputs to infinity, any DC offset in the input to the
integrator must be avoided. As already noted, BP-
BLIT has no DC offset, so there need be no special
offsets for the first integration. The initial condi-
tions of the first integrator, however, can produce
a DC offset on the output that must be canceled
before the second integration. The value of this
offset is also dependant on the duty-cycle of the
signal so that the correct (zero-offset) initial con-
dition will depend on: (1) desired phase, and (2)
desired duty cycle. It is important to remember
that the old state (right before the change) acts as
the initial condition for the integrator when the pa-
rameters are changed. Since the Second integraotr
has a frequency-dependant gain, chaning frequency
will also cause an offset that must be accounted for.

ICMC Proceedings 1996

QS

Leaky Integrators

The use of pure integrators can numerical errors
to accumulate in the integrators, causing unwanted
offsets in the signals, making the second integra-
tion essentially useless. Therefore, we move the in-
tegrator poles wirom the unit circle slightly. These
“leaky” integrators slowly forget bad initial condi-
tions and numerical errors. Forthermore, in steady-
state, the outputs of the integrators will have no DC
component (because BP-BLIT has none), regard-
less of initial conditions, since the leaky integrators
eventually forget them. Thus, if one can live with
occasional transient DC offsets (which decay at the
leak rate), then just the presence of the leaky inte-
grators can handle all offset cases. These transients
can be reduced by temporarily increasing the for-
getting rate of the integrators.

If one still requires the absence of any DC off-
set, transient or not, then the presense of the leaky
integrators makes the problem of computing appro-
priate offsets much more difficult.

Defs of Amplitude

Moore presents a discussion of amplitude compen-
sation in his DSF paper. Similar compensation is
necessary in BLIT generation. The compensation
to be used depends on how one defines amplitude,
which depends on how the signal is to be used. If
the signal is to be used as an audio signal, signal
power or some psychoacoustic loudness measure is
appropriate, but if the signal is to be used as a con-
trol signal, a maximum-value (Chebychev) measure
is more appropriate.

5 Generating Bipolar BLITSs
with DSF

Although it is not the most efficient method for
generating BLITs, DSF can be used, and is quite
interesting theoretically. Here we describe how to
generate BP-BLIT using DSF without having to
resort to the straight-forward difference-of-shifted-
BLITs scheme.

First, we note that BLITs can be generated via
DSF by replacing the sin by cos in the DSF formu-
las.

50% duty cycle: Next, it can be shown that us-
ing a negative a in the DSF formula Zﬁ___l a* sin(0+
kfit) produces a signal that is shifted from the
positive-a signal by exactly half a cycle, this gives a
slightly more efficient (or elegant...) way of produc-
ing the shifted BLIT than offsetting ¢. This leads
to showing that:

N N
Z a* cos(b + ck) — X:(—a)'c cos(b + ck)
k=1 k=1
N2

= 2a E(cﬁ)k cos((b+ c) + 2ck)
k=1

Stilson and Smith: Alias-Free Synthesis

Thus a 50% duty-cycle bipolar DSF BLIT can be
generated almost as efficiently as a single DSF
BLIT. For other duty cycles, there is another vari-
ation on DSF that is of interest.

If we let a be complex and take either the real
or imaginary part of the DSF, this imposes a
sin(k£(a)) (or cosine) amplitude envelope onto the
harmonics, which is equivalent to a comb filtering,
which in turn is equivalent to summing a real DSF
with a shifted version of itself (possibly with a sign
flip). See Figure ??. Thus we generate BP-BLIT
simply by making a complex.

y = Im[sum((.99*exp(j pi/4)}*k sin(0 + 3 t))], N=20

10

05 1 15 2
t/pi

Figure 5: Using complez multiplies in DSF to generate
BP-BLIT

References

[Kaegi and and S. Tempelaars 1978] Kaegi, and
W. a S. Tempelaars. 1978. “VOSIM—A New
Sound Synthesis System.” J. Audio Eng. Soc.,
26(6):418-24.

[Mathews 1969] Mathews, M. V. 1969. The Technology
of Computer Music. Cambridge, MA: MIT Press.

[Moorer 1975] Moorer, J. A. 1975. “The Synthesis of
Complex Audio Spectra by Means of Discrete Sum-
mation Formulae.” J. Audio Eng. Soc., 24(Dec.):717-
727 (Also svailable as CCRMA Report No. STAN-
M-5).

[Roads 1996] Roads, C. 1996. Computer Music Tuto-
rigl. Cambridge, MA: MIT Press.

[Rodet et al. 1989] Rodet, X., Y. Potard, and
J. Barriére. 1989. “The CHANT Project: From
the Synthesis of the Singing Voice to Synthesis in
General.”. Pages {{9-465 of: Roads, C. (ed), The
Music Machine. Cambridge, MA: MIT Press.

[Schafer and Rabiner 1973] Schafer, R. W., and L. R.
Rabiner. 1973. “A Digital Signal Processing Ap-
proach to Interpolation.” Proc. IEEE, 61(June):692—
702.

[Smith and Gossett 1984] Smith, J. O., and P. Gos-
sett. 1984. “A Flexible Sampling-Rate Conversion
Method.” Pages 19.4.1-19.4.2 of: Proc. ICASSP,
San Diego, vol. 2. New York: IEEE Press (An
expanded tutorial based on this paper is available at
ftp://ccrma-ftp.stanford.edu/pub/DSP/Tutorials/
The tutorial can be browsed online at
http://www-ccrma.stanford.edu/"jos/).

A longer version of this paper can be found at
(http://www-ccrma.stanford.edu/ stilti/papers)

ICMC Proceedings 1996

-Lg-

Analyzing the Moog VCF with Considerations for Digital
Implementation

Tim Stilson(stiltioccrma. stanford.edu)
Julius Smith (joseccrma. stanford. edu)
CCRMA (http://www-ccrma.stanford. edu/)
Music Department, Stanford University

Abstract

Various alternatives are explored for convertin

g the Moog four-pole Voltage Controlled Filter

(VCF) to discrete-time form for digital implementation in such a way as to preserve the useful-
ness of its control signals. The well known bilinear transform method yields a delay-free loop

and cannot be used without introducing an ad-

hoc delay. Related methods from digital control

theory yield realizable forms. New forms motivated by root locus studies give good results.

1 Introduction

The Voltage-Controlled Filter (VCF) designed and
implemented by Robert Moog is an influential fil-
ter in the history of electronic music. In this paper,
the filter is analyzed in continuous time and then
several transformations of the filter into discrete
time are analyzed for various properties such as effi-
ciency, ease of implementation, and the retention of
certain of the original filter’s good properties, such
as constant-Q, and separability of the Q and tun-
ing controls. The Root-Locus, a particularly useful
tool from control systems, is used extensively in the
analysis of the VCFs.

The various transformations that turn
continuous-time filters into discrete-time fl-
ters each have different characteristics that affect
how the properties of the continuous-time system
map into the discrete domain. Some transforms
that will be studied are the backwards-difference
transform and the bilinear transform. In a filter
such as the Moog VCF, a possible goal in the move
to the discrete domain is to preserve constant-Q.
Under our definition of constant-Q, a transforma-
tion cannot made which is finite-order rational.
We will see how well the rational transforms
approximate constant-Q.

In this work, Root-Locus techniques were found
to be extremely useful. The Root-Locus comes from
control-systems analysis and has particular useful-
ness in the analysis of systems with sweepable con-

Stilson and Smith

trol inputs (inputs intended to have signal-rate up-
dates, such as audio-rate modulation or smooth
sweeps of parameters susceptible to zippering). Be-
cause the amount of processing available to trans-
late these parameters into algorithm parameters is
typically in short supply (so the algorithm is typ-
ically designed around these parameters), the pa-
rameter usually enters into the filter’s equations
simply, maybe even linearly. The traditional Root-
Locus can plot the locations of the system’s poles
with variations in the parameter if the parameter
enters in linearly, and many techniques in control-
system synthesis can be applied to the design to
keep the complexity down. The rules of how the
root locus works also give the designer new tools
and hints for sweepable filter design.

2 The Moog VCF

The VCF used in Moog synthesizers employs the
filter structure shown in Fig. 1.

x(n

Figure 1: The Moog VCF.

Analyzing the Moog VCF

-47_

The transfer function of each section is

1
P T
The four real poles at s = —w, combine to pro-

vide a lowpass filter with cut-off frequency (~3 dB
point) at w = w.. The overall transfer function with
feedback as shown is

Gi(s) 1

H(s) & X0 _ =

T X(s) T 14EGHs) k4 (1+ s/we)?

where g is the feedback gain which is varied be-
tween 0 and 4. Each real pole section can be im-
plemented as a simple (buffered) RC section. Moog
implemented the RC sections using a highly inno-
vative discrete analog circuit known as the “Moog
ladder” [Moog 1965, Hutchins 1975].
At w = w,, the complex gain of each pole section
is
1 1 s 2
Gi{jwe) = —— = —=e’%
Therefore, the gain and phase of all four sections
are

_ 1. 1
G1(jwe) = Ze] = Z(_l)

Le., the total gain is 1/4 and the phase is —180
degrees (inverting). In contrast, at w = 0, the gain
is 1 and the phase is 0 degrees (non-inverting), while
at w = 00, the gain is 0, and the phase is —360
degrees (also non-inverting). In summary, the four
one-pole sections comprise a lowpass filter with cut-
off frequency w = w,, which is inverting at cut-off.
Therefore, the use of inverting feedback provides
resonance at the cut-off frequency. This is called
“corner peaking” in analog synthesizer VCF design
[Hutchins 1975, p. 5d(12)]. As the feedback gain k
approaches 4, the total loop gain approaches 1, and
the gain at resonance goes to infinity.

Figure 2 shows a family of frequency response
functions for the Moog VCF for a variety of feed-
back levels. As the feedback gain g goes from 0 to
4, the poles of the overall filter expand outward in
an “X” pattern from s = w, until the two poles on
the right reach the jw axis at w = w.

Lowpass Nature: Since the one-pole filters are

Gi(s) = 755, we get
4
. _ We
HGe) = GoToy i

s0 at w K we, [H(jw)| = 7, and at w > w,,
|H(jw)| ~ =

wt*

Stilson and Smith

0
Frequency (rad/sec)

Figure 2: Amplitude response of the analog Moog VCF
for different levels of feedback (w. = 10rad/sec). At
k =0, the dc gain is 1 and the filter is a lowpass without
corner peaking. Also shown are k = 4{0.3,0.6, 0.9, 0.99].
As k increases, corner peaking develops at the cut-off
frequency. At k = 4, the lowpass filter oscillates at its
cut-off frequency.

Root-Locus Interpretation

We can also analyze the VCF with the root-locus
technique. Root Locus is a method popular in the
field of control systems analysis that gives various
rules for feedback-loop pole location movement in
terms of the open-loop transfer function and the
variations of the feedback gain. While originally
intended for analysis of control systems, there is
no reason why it cannot be used to analyze audio
filters (indeed, linear control systems are filters, just
dealing with different frequency ranges).

Introduction to Root Locus

H(s)
/"—\
x(t) -)(?~> G(s) -—>l->)
« 5 ¥

Figure 3: A simple feedback system.

Let’s assume a system as shown in Figure 3, a sim-
ple feedback system with the transfer function G(s)
in the forward path. We know from block-diagram
algebra that the total (closed-loop) transfer func-
tion is:

__G©)
A6 = 1506w

Now, if G(s) = 5,

N(s)
D(s) + kN(s)

then:

H(s)=

Analyzing the Moog VCF

-48-

If G(s) is in the feedback path, then:

D(s)

Hs) = D(s) + kN (s)

Note that in both cases the poles are the same:

D(s)+ EkEN(s)=0 (1)
o D)
k= N(S) G_()

Since k is real and positive, we see that the total
root-locus (the locus of all points in the s-plane that
are roots of eq. 1 as k traverses [0,00)) is all s for
which £G(s) = .

Two rules for root locus are immediately clear
from eq. 1: for k = 0, the roots of eq. 1 are the
roots of D(s) (the poles of G(s)); and for k — oo,
the roots of eq. 1 are the roots of N(s) (the zeros of
G(s)). Thus as k traverses [0,c0), the closed-loop
poles start at the open-loop poles and head towards
the open-loop zeros.

The rules for root locus were developed to aid
in hand-drawing the loci, and can be found in
any introductory book on control systems (such as
Franklin & Powell 1994)!. Although it is now trivial
to use computers to calculate root-loci via brute-
force numerical root finders, familiarity with the
rules and the common root-locus shapes allows one
to use root-locus as a design tool.

The MoogVCF Analyzed

The Moog VCF is in the simple feedback form of
Figure 3. Therefore, we can immediately draw the
root locus for changes in the feedback gain.

Root-Locus Rules state that the four coincident
poles of the open-loop filters break away from the
real axis at 45-degree angles and head to the zeroes
at infinity along straight-line asymptotes, which
in this case happen to be the same as the break-
away lines. Thus, the root locus consists of these
45-degree lines that cross the imaginary axis at
w = we, the open-loop pole location. Quick calcu-
lation also shows that the feedback gain at which
this happensis k = 4. Thus one has a trivial corner-
frequency control via the pole location of the cas-
caded one-pole filters.

!The same rules apply in discrete-time filters (root-locus
in z}) as in continuous-time (root-locs in s), the only differ-
ence being the pole-location interpretation.

Stilson and Smith

__2_;.: NG

Figure 4: Root-Loci for the Moog VCF, various We,
sweeping k € [0,5].

Resonance Control: One can also evaluate a
root locus of the VCF with w,, the open-loop pole
location as the free variable.?

Algebraic solution of (s + w,)* + kw? = 0 gives

5 = we (=1 /35 k4
s = we (=1 £ kM eti™/4)

Which shows the 45-degree root-locus lines men-
tioned earlier. If we keep k constant, and look at
the dominant poles (the ones that approach the Jjw
axis), we get:

s = ae® where

— k%
« g + tan™ (“\/'5—'1‘-—4)

v 4

So sweeping w. while keeping k constant gives
root-locus lines that keep a constant angle from the
Jjw axis. This gives the filters a constant Q across
sweeps in wc, so that k becomes a Q control. Thus
the Moog VCF has simple, uncoupled controls of
corner frequency and resonance.

2Unfortunately, most of the standard root-locus rules do
not apply anymore. The root-locus rules work for any sys-
tem that can be put into the form A(s) + ¢B(s) = 0, so
that the coefficients of s in the expanded polynomial are at
most affine in ¢ (linear plus an offset, i.e. the highest power
of ¢ in the polynomial is 1.). In the VCF, the above equa-
tion is 4’th-order in w.. Thus the root-locus can only be
evaluated numerically, or in simple situations, solved alge-
braically, since there are no simplified rules for the patterns
in this “higher-order” root locus (yet— work is being done
to this end).

Analyzing the Moog VCF

49

Figure 5: Root-Locus ws. w., various k.

2.0.1 Definition of Q

For this paper, @ will be defined in terms of
pole location rather than the center/bandwidth
definition. In particular, it will be defined ac-
cording to the impulse response of the poles (as-
suming dominance): “the number of cycles for
the envelope of the impulse response to decay to
1/e™ (Morse, p. 25) . With dominance, pole lo-
cation and impulse-response decay time are essen-
tially equivalent. When we define Q) in terms of
the impulse response, we can arrive at a discrete-
time definition of @ via the impulse-invariant
transform z = %7, which gives us constant-Q
pole locations as z = r e = e~*% which
are logarithmic spirals in the z-plane, and Q =
1/(2sin(tan™(a))) (thus the @ of the pole z, is
Qz) = [2sin(tar (~ In 2|/ £2,))]).

3 Discretizing the VCF

It is desired to create digital filters with frequency
and resonance controls as simple and efficient as
those in the analog VCF. In particular, we desire
filters whose controls (1) are uncoupled, (2) control
useful parameters, such as frequency and Q, and
(3) are efficient to control (not requiring expensive
conversions, such as transcendentals, to get from
the desired parameter to the actual control value).
Filters based on the Moog VCF topology are ex-
plored here because it is hoped that at least some
of the good features of the filter will translate well
into the digital realm.

In order to preserve controllability, the

Stilson and Smith

continuous-time (CTS) VCF equations must
be translated to discrete-time (DTS) using some
transformation of the transfer function. as op-
posed to doing a impulse-response discretization,
or a DTS filter design based on the CTS fre-
quency response, because these methods typically
aren’t parameterizable, nor do they preserve any
parameterization of the original system.

For similar reasons, the VCF’s topology (cas-
caded one-pole filters with feedback around the
whole loop) will be used for the DTS filters. This
means that the filter equations to be transformed
will be those of the one-pole filters rather than the
equations of the whole system. This keeps the con-
trols simple, because otherwise, when the equations
for the VCF are determined (i.e. by multiplying out
the cascaded filters and collapsing the feedback),
the resulting coefficients are no longer simple func-
tions of the controls (including higher powers of the
controls and divisions involving the coefficients),
which destroys the efficiency of the controls.

Some popular transforms are the Backward-
Difference Transform, the Bilinear Transform, and
the Pole/Zero Mapping. These techniques ac-
complish the transform by applying some map-
ping to convert from the CTS variable s to the
DTS variable z. The backward-difference map-
ping is s «+ (14 2")/T = (z - 1)/(z T), (T
is the sampling period); the bilinear transform is
§ = 2(z — 1)/(2 + 1)T; and the pole/zero mapping
is z ¢ e*T for the poles®[Franklin & Powell 1990,
Ch. 4].

The pole/zero mapping can’t be used as a direct
substitution for s into transfer functions, because
the resulting equation in z is non-rational and thus
not implementable. It can be used, however, to
guide the design of an equivalent DTS filter, with
the poles and zeros in the positions described by
the z + e*7 mapping. This can, still, increase the
complexity of a design (and decrease the efficiency)
because complex exponentials (or at least transcen-
dentals) can easily crop up in the control equations
of the new system.

Implementability:

An unfortunate fact in the discretization of the
VCF topology is that most of the above-mentioned
transforms will produce one-pole filters that have a
delay-free path from input to output. That means
when they are placed in the feedback loop, the

3And the finite zeros, with all but one of the zeros at
infinity being placed at z = —1.

Analyzing the Moog VCF

..50_

system is unrealizable?. Thus the systems must
be modified to make them realizable, typically by
adding a unit delay into the loop. Unfortunately,
this addition interferes with many of the features
of the filters, including, most notably, causing the
controls to no longer be uncoupled.

Therefore, a major part of the design process is
finding transforms (or directly designing DTS sys-
tems in the Moog VCF topology) that minimize the
distortions required in the realizations.

Bilinear Transform

Figure 6: The Complete Root Locus for a given p,
bilinearly-transformed VCF.

The bilinearly transformed onepole - - s
1 z+1 .
Gi(z) = §(p+1)z+p (Bilinear)
where
_a—2
P = a+ 2
so that
0.5 1 DY
() = (P+ 1=+))
(z+p)
and
_ _ G®
H(z) = 14+ k22G(z2)

G(z) has a delay-free path, so to implement this,
a unit delay has been added to the loop. This kills

4Unless the feedback loop is collapsed with block-diagram
algebra, but as mentioned earlier, this destroys the efficiency
of the control.

Stilson and Smith

Figure 7. Feedback gains wvs.
Bilinear case.

p to get various Q,

the uncoupled nature of p and k for frequency and
resonance control, see Figure 7 (If the controls were
uncoupled, the curves would be horizontal).

‘We can see from the Figure 7 that k must be kept
below 1.0 if one wants to sweep the whole range of
p while keeping k constant yet stay stable at the
high frequencies. Unfortunately, this causes the @
at low frequencies to be quite low. The current fix
for the coupled controls is to use a “separation”
table to scale the feedback gain as function of the
pole location p:

kactua] = kdesiredTable(p)

Where Table(p) is given by the top trace of Fig-
ure 7, and K,.pirea € [0,1).

The lower traces in Figure 7 are not simple scal-
ings of the top trace, but the are rather close. This
causes the @) along a given sweep of p to rise at
very high frequencies, making this not exactly a
constant-Q) sweepable filter (see Figure 16). This
inaccuracy is considered tolerable because it only
becomes major for corner frequencies in the top oc-
tave, which are typically unused at f; = 44.1 kHz,
and if used, typically only for special effects, where
total accuracy is not completely necessary.

To get exact constant-Q) sweeps, table(p) would
also have to be a function of @, which vastly in-
creases the storage requirements for the table.

Another table lookup must also me done if exact
tuning is deemed necessary (Figure 8). Note that at
low frequencies, the tuning curve is almost linear,
so may be unnecessary. The use of tuning tables

Analyzing the Moog VCF

-51=

pi

freq (theta)
B
N

Figure 8: Tuning curve at infinite Q,Bilinear.

is often less of a problem for efficiency because in
many cases exact tuning is needed at slower rates,
such as only at the beginning and end of sweeps.

PZMap Onepole Placement

This case acts almost the same as the bilinear case,
but it achieves realizability by removing one of the
zeros at z = —1 instead of adding the unit delay
(which puts a pole at = = 0). Otherwise it acts
similarly, so will not be considered further.

Backward Difference Transform

gain (k)

~1 -0.75 -0.5

Figure 9: Feedback gains for various Q, Back-Diff.

The backward-difference transformed onepole - ia
is:

z
= 1) —— Back-Diff
Gi(z) = (p+)z+p (Back-Diff)
where
p= a+1
so that

Stilson and Smith

6o = (222

(z+p)

Again, this requires an extra delay in the loop to
become implementable, And, as in the bilinear case,
a table is required for separability. This filter, how-
ever, can be used without a separation table with
better results than in the bilinear case because, as
we can see from Figure 9, the Q) falls as p increases,
for a given k. This allows the user to sweep p with-
out worrying about stability as long as the @ at low
frequencies is desirable. For many effects where ex-
act @ isn’t necessary, the variation in @ vs. p that
this filter presents (Figure 17) may be acceptable.

If more closely constant () is required, then the
techniques described for the bilinear case (the use
of a separation table) apply with similar results, al-
though this filter may be able to be implemented
slightly more efficiently because of numerator of
the onepole is simpler {typically this affects the to-
tal system efficiency only slightly, since the bilinear
case can be implemented very efficiently.)

pi

freq (theta)
=3
N

—0-1 -0.75 -0.5

Figure 10: Tuning curve at infinite , Back-Diff.

The tuning curve is more drastic (Figure 10) than
in the bilinear case, which makes the use of a tuning
table more necessary in practice.

‘Compromise’ Version

The reader may have noticed that the gain curves
for the two preceding cases have nearly opposite be-
haviors (for the bilinear,) goes up with p when not
using a separation table, and for the backwards dif-
ference, it goes down). The big difference between
these two architecturally is the placement of the
one-pole filters’ zeros: the bilinear case places them
at z = —1, and the backwards difference places
them at z = 0. This suggests finding an interme-
diate position that may flatten out the gain curves
and give p-sweeps more close to constant-Q.

A few eyeballed tries gave a zero position of z =

Analyzing the Moog VCF

52

gain (k)

-1 -0.75 -0.5 -0.25 0 0.16

p

Figure 11: Feedback gains for various Q, Compromise.

pi

freq (theta)
e,
N

Figure 12: Tuning curve at infinite Q, Compromise.

-0.3:
_ (p+1)z+4+0.3]
Gi(z) = 13 g (Compromise)
_ (+1)(E+03)Y
Gz) = (1.3 (z+p)

Again, a delay is put in the loop.

Referring to Figure 11 and Figure 18, we see that
in the frequency range [0, f;/4] and for Q up to
about 100, the filter is quite close to constant-Q and
the controls p and k are almost uncoupled controls
of frequency and Q, without the use of a separation
table, although a tuning table may be necessary, as
in all these cases.

An optimization could be performed to arrive at
the “best” zero location, maybe even optimizing the
four zeros to different locations.

Thoughts on Exact Constant-Q: It is likely
that the auditory system is not eztremely sensitive
to variations in @ (i.e. the JND is probably large).
Unfortunately I don’t have any references on the
subject other than a mention of a study on speech
formant-width sensitivty [Smith86, p. 130]. If true,

Stilson and Smith

and if a number for JND (such as percentage) were
found, then it would tell us how close to constant-
@ we need to get in filters that don’t exactly follow
constant-() sweeps, such as all the ones mentioned
above. It would also help in the design of stopping
conditions for optimization procedures that may be
used to design or tweak these kinds of filters. It
is likely that there is quite a bit of leeway in the
variation of @ with corner frequency that we can
tolerate.

On the other hand, JNDs for amplitude are quite
small, and since messing with Q usually messes with
amplitude (or loudness), this might place a tighter
condition on Q. What we really need is a JND
for resonance amplitude variation across corner fre-
quency sweeps.

Comparisons

Root Loci: The Root Loci for the above-
mentioned filters (Figures 13-15) are quite infor-
mative. These plots show dominant-pole locations
versus sweeps of p and k (in the bilinear case, k
is scaled with the separation table). Constant-Q
pole locations are shown on the z-plane grid, so we
can see how the filters deviate from constant-Q (at
least at high frequencies). The loci also show how
the tuning acts versus p.

Note that in all cases, k = 0 gives the positive real
axis. Also note how the use of a separation table
(Figure 13) guarantees stability, at the expense of
the extra table lookup.

Figure 13: Dominant pole locations for p and k sweeps,
Bilinear with separation table.

Constancy of Q: These plots (Figures 16-18)
show the frequency ranges and Q ranges over which

Analyzing the Moog VCF

53

4

Sl
.::‘i*v‘;s‘\\\\\\\\\\\\\w\\
PR
N

oz

2%
LS
s

=

o7
i

o2

=5

2%
v
5

N
éss&o
W
‘.l'

22
o
o2
=

2%
>
%
o
S

2255
o
r s

s

2
z
2o

25

%

7l

N
N
W

e
e

v

N

N
R
\\

7

Z

AN
N

Figure 14: Dominant pole locations for p and k sweeps,
Back-Diff, no separation table.

\
e
S X
e SR
S I S TR
e T R R

H
H

g
/
i
[/
‘ﬂ
H
7
H 11

L

: 117

|
7711
7
7777

W N\

S OSSO, TL LYY
SSSCIINAAAEL
st
e

oSN
/ .“‘“‘
/ i P s @A W gy yy L
/////m‘,-:«‘&‘a‘-\‘.\-

L]
17
Y

Figure 15: Dominant pole locations for p and k sweeps,
Compromise, no separation table.

the filters approximate constant-@} (again, this is
based on the location of the dominant poles). These
show the () as p varies, with k held constant at
various values (except in the bilinear case, where
the separation table is used®). This type of plot is
one of the more useful pieces of information when
designing VCF's that are intended to be constant-Q).

Bode Plots: A completeset of Bode plots would
take up much too much space, so instead a single p
sweep is shown for each filter, with k held constant
(with separation table in Bilinear case) at a value

5 Again, separation tables would also work in the other
cases to get better curves, but the intention is to find filters
for which the use of a separation table is unnecessary. It is
necessary in the bilinear case for stability reasons.

Stilson and Smith

107° 1072 % °

10
freq (radians)

Figure 16: Q vs. corner freq. for various (pre-scaling)

k, Bilinear with separation table.

10°

107 107 107"
freq (radians)

Figure 17: Q vs. corner freq. for various k, Back-Diff,
no separation table.

that gives a medium @ (Figures 19-21).

Oversampling: Another way to approach
constant-() is to oversample. Almost all filters of
this type can be tweaked to act very well over
a small frequency range. Oversampling reduces
the range of desired frequencies significantly, thus
making the VCF design problem easier. This is
also understandable from the viewpoint that highly
oversampled systems are better approximations of
continuous-time systems, because the region about
z = 1 can be linearized down to a rectangular co-
ordinate system (just like the CTS coordinates) by
the approximations

Analyzing the Moog VCF

54

107 107" 10°
freq (radians)
Figure 18: Q ws. corner freq. for various k,

Compromise, no separation table.

-3 -2 107!
freq (rad)

10°

Figure 19: Bode plots, constant pre-scaling k (medium
Q), various p, Bilinear with separation table.

furthermore, for r =~ 1,

rsin(f) 23 ¢

r cos(6) ot g

On the other hand, oversampling is less efficient.
For an oversampling factor of M, the oversam-
pled filter is M times more expensive. This may
be useful, however, if because of the oversampling,
the cost of the filter can be significantly reduced
(cf. the above argument that the design is sim-
pler). Oversampling can also aggravate certain nu-
merical errors, such as coefficient roundoff, because
all the poles become bunched up around z = 1,
which increases sensitivity to the coefficient errors
(Franklin & Powell 1990, p. 339)

Stilson and Smith

20

(=)
i

gain (dB)

Lo

- 1672 107 10°
freq (rad)

—_
o

Figure 20: Bode plots, constant k (medium Q), various
p, Back-Diff, no separation table.

o
T

gain (dB)

!
N
(=

5

-3 -2 1 O-1
freq (rad)

0
10

Figure 21: Bode plots, constant k (medium Q), various
p, Compromise, no separation table.

Constant-@) Filters, Algebraic Deriva-
tion

If efficiency is not a problem, we can directly write
the equations for the denominator of the desired
filter:

2 poles:
(z _ e—a9e—j9)(z - e—-aeejG)
4 poles:
(z— e %) (2 — e7*%I%) (2 — a)(z — b)

In the four-pole case, the placement of the other
two poles is a matter of design. If we compare with
the root-locus of the bilinear case (Figure 6), which
has the other two poles somewhere closer to the
origin, it may be that some good choices for the
other poles are: (1) both at z = 0, (2) same angle
as the main poles, but with a reduced radius, (3)
same angle, lower @, or (4) at the same positions
as the main poles (so they become repeated).

Multiplied out, the two-pole denominator is:

22 +2e7%% cos(8)z + e 20

As a first pass at making this efficient, we could
use table lookups for the exponent and cosine, mak-
ing for 2 table lookups (probably interpolated) and
2 multiplies for each new pole location.

Analyzing the Moog VCF

..55_

A further efficiency increase comes in constant-
rate frequency sweeps, where the update rateis con-
stant. This satisfies the equation:

e-——aa(t) = e»a(a+bt) — eoaae—abt

at t = to + At,

e~a9(t0+At) = e—aae—-abtoe-—ab At

So that at the denominator is:

22 +e1(t) cos(8(t))z + ea(t)
where

61(t -+ At) = el(t)éel
e2(t + At) = ez(t)deq or) (t + At)?
and

51_e~abAt
el =

562 = 5e%

dcy need only be evaluated at the beginning of
the sweep, thus we get rid of one table lookup per
At. This technique can be used to smooth low-rate
6 updates. If necessary, this method can also be
used on a sweeps (or both).

4 Root-Locus Filters

Other patterns that show up in root-locus analy-
sis can also be used to create useful sweepable fil-
ters. In particular, we can directly look for patterns
that are useful for digital filters, rather than find-
ing useful continuous-time patterns and then trans-
forming the filters to discrete-time. We can call fil-
ters designed this way “Discrete-Time Root-Locus
Filters”S.

A common pattern in root-loci is a circle sur-
rounding a zero. Circles are particularly interest-
ing from a discrete-time perspective because of the
region of stability in z, which is also a circle.

The Two-Pole Constant-Bandwidth
Root-Locus Filter

By placing an open-loop zero on the origin, and two
poles on the positive real line (so, using the notation
of Figure 3, G(s) = z/(z — a)(z — b)), we can get
a root-locus (in k) that is a circle centered on the
origin with a radius that is the geometric average

5By analogy, the Moog VCF is a Continuous- Time Root-
Locus Filter

Stilson and Smith

of the pole locations. A particularly simple choice
of pole locations is therefore to put them both on
the desired radius: G(s) = z/(z — r)? (Figure 22).

Figure 22: Root locus of this 2-pole RL Filter, r = 0.8.

We thus have two trivial controls: (1) k controls
pole angle (corner frequency), and (2) the open-
loop pole location controls the pole radius. Because
the root locus is a perfect circle (this can be easily
shown), the radius is constant over all frequencies
(to the limits of the number system), so stability
is not a problem. The controls are also completely
uncoupled. frequency is related to k as k = 2r(1 —
cos(f)), and radius as r = (pole location).

This filter is not necessarily any more efficient
than a direct-form filter (denom = 22 + 2rcz +r?),
which also has uncoupled radius and angle controls
with 8 related to ¢ as ¢ = cos(f) — essentially the
same control complexity. It may, however, have
different numerical properties.

Root-Locus Filters

Constant-Q

It is commonly held that constant-bandwidth fil-
ters are less useful than constant-Q) filters. We can
therefore modify the above root-locus filter to try
to approximate constant-¢J. The first pass is to
note that at large @, the constant-Q root trajec-
tories look visually like circles, and shift the root-
locus circle over to touch the unit circle at z = 1,
like the constant-() tracks do. This would give a
pseudo-@) control with the open-loop zero location
(G(s) = (2—¢)/(z—1)?), with zero locations nearer
z = 0 giving higher average @ (here the open-loop
poles would be fixed at z = 1). Unfortunately, root-

Approximating

Analyzing the Moog VCF

-56-

locus rules state that the root-locus tracks must
leave the real axis at +90°7 so that at low fre-
quencies, Q — 0o, no matter where the zero is (see
Figure 23).

polesatz = 1.0

2 107" 10°
freq (rad)

Figure 23: Q vs. angle, various zero locations.

The next modification would be to move the
open-loop poles in from z = 1, so that () doesn’t
go to oo at DC (G(s) = (z—c¢)(z — (1 —€))?). This
causes) to go to zero at DC, rise quickly at low
frequencies, and then settle in to the same pattern
as above at high frequencies (see Figure 24).

poles at z = 0.9999

1072 10”7 10°
freq (rad)

Figure 24: Q vs. angle, various zero locations.

Further flattening of @ can be achieved by adding
pole/zero pairs inside the unit circle. This tech-
nique, well known in control-systems design, is used
to locally warp the root locus. A pole/zero pair

Tthe actual constant-Q tracks leave 2 = 1 at angles
greater than +90°

Stilson and Smith

has a large effect on ZG(z) near the pair (remem-
ber, the root-locus is all z for which /G(z) = =),
but away from the pair, they cancel each other and
have little effect on the root locus. One can con-
trol the effects of the pair by controlling their sep-
aration and distance from the locus (close together
= more localized effect = most be closer to locus,
but has stronger effect because of proximity to lo-
cus; further apart = more widespread, but weaker
effect due to usually being placed further from the
locus).

A quick design using this effect is shown in Fig-
ure 25, its root locus is shown in Figure 26. By
adding pole/zero pairs and shifting the main open-
loop pairs, one can follow an ad-hoc optimization
path and minimize the deviation from some desired
Q. The filter shown was designed by eyeballed trial-
and-error®, but an optimization procedure could be
designed.

101 -

4 107° 10°
freq (rad)

Figure 25: @ vs. angle, eyeballed minimum-Q-error
filter.

Unfortunately, this technique doesn’t easily lend
itself to parameterizing (J, because a new optimiza-
tion may need to be done for each @ (although a
pattern could develop upon which a parameteriza-
tion could be based). Also, it is likely not very effi-
cient, due to the number of pole/zero pairs greatly
increasing the order of the system.

5 Conclusion

Implementability issues make the conversion of the
Moog VCF to a digital form nontrivial. Once con-
verted using standard techniques, the filter must
be tweaked to recover some of the original features.
Some transforms preserve features better than oth-
ers, but best results come from redesigning the fil-

8The pole/zero pairs were on the real axis to make
things easier: poles at z = [.5 .9 .97 .9975 1 1], zeros at
z = [.1 .55 .92 .975 .9983]. This particular Q ~ 5 is admit-
tedly an easy design compared to a very high Q, but it serves
as an example of the idea.

Analyzing the Moog VCF

...57..

Figure 26: root locus, eyeballed minimum-Q-error fil-
ter.

ter directly in the discrete domain. Methods from
control-systems theory prove useful in this redesign.
These methods also suggest new topologies that
prove interesting.

References

[Hutchins 1975} Hutchins, B. 1975. Musical Engineer’s
Handbook. Ithaca, New York: Electronotes.

[Moog 1965] Moog, R. A. 1965. “A Voltage-Controlled
Low-Pass High-Pass Filter for Audio Signal Pro-
cessing.” Audio Eng. Soc. Convention, Preprint
413(Oct.).

[Zwicker 1990] Zwicker, E. 1990. Psychoacoustics. New
York: Springer Verlag.

[Franklin & Powell 1990] Franklin, G., J. D. Powell,
M. L. Workman, 1990 Digital Control of Dynamic
Systems, 2nd Edition Reading: Addison Wesley

[Franklin & Powell 1994] Franklin, G., J. D. Powell, A.
Emami-Naeini, 1994 Feedback Control of Dynamic
Systems, 8rd Edition Reading: Addison Wesley

[Morse 1981] Morse, P. 1981 Vibration and Sound
Acoustical Society of America.

[Smith 1983] Smith, J. O. III 1983 “Techniques for
Digital Filter Design and System Identification With
Applicatio to the Violin.” Ph.D. Thesis, Stanford
University, Report STAN-M-14

This paper can be found online at the web page:
http://www-ccrma.stanford.edu/~stilti/papers

Stilson and Smith

Analyzing the Moog VCF

58

59

The 3D Tetrahedral Digital Waveguide Mesh
with Musical Applications

Scott A. Van Duyne
savdQ@ccrma.stanford. edu

Julius O. Smith II]

jos@ccrma.stanford. edu

Center for Computer Research in Music and Acoustics (CCRMA)
Dept. of Music, Stanford University, Stanford, CA

Abstract

The 2D rectilinear digital waveguide mesh algorithm to simulate wave propagation in the
ideal membrane was introduced three years ago as a multiply-free, parallel computation
scheme suitable for high speed hardware implementation. Since that time, various alterna-
tive structures and add-on elements have been developed to make the mesh musically useful.
We review some of these developments and outline the new tetrahedral mesh structure which
now permits efficient multiply-free simulation of wave propagation in 3D space.

1 Background

The fundamental intuition-building observation to
make, in order to understand how the waveguide
mesh algorithm works, is that when you kick a
chicken wire fence, waves seem to propagate on
it much as on an ideal membrane. The chicken
wire fence, like the waveguide mesh, is a regular
interconnection of short vibrating string elements
joined at nearly lossless scattering junctions. In [9,
10] we showed that a rectilinear arrangement of 4-
port junctions is mathematically equivalent to the
standard finite difference equation approximation
to the lossless 2D wave equation. In fact, there
are a variety of regular geometric mesh structures
which compute valid difference approximations to
the wave equation, for example, the hexagonal 3-
port structure shown in Figure 1.

The 2D digital waveguide mesh has proven to be
effective in the modeling of musical membranes
and plates, particularly in combination with re-
cent simplifications in modeling stiffness [8], non-
linearities [7], and felt mallet excitations [7]. One
of the more interesting musical applications is the
waveguide mesh gong model, a section of which
is illustrated in Figure 2: The J’s mark ordinary
4-port lossless scattering junctions, in which the
four inputs are summed and scaled by one half
to form the so-called junction wvelocity, and the
four outputs are computed by subtracting the re-
spective inputs from this junction velocity. The
PNF’s mark passive nonlinear filters attached at
the upper rim. The passive nonlinear filter is, in
its simplest form, an first order allpass filter whose
coefficient is varied between two values depending
on the sign of the filter state value [7]. This fil-

Figure 1: Chicken Wire Mesh Structure

JeMe 96

ter structure was developed in collaboration with
John R. Pierce, to model the passive, nearly loss-
less, spreading of energy between modes of vibra-
tion in certain important classes of musical instru-
ments. These allpass structures may also be used
to simulate a “stretching” of the modal frequen-
cies due to stiffness [8]. In the center of Figure 2,
S marks a special time varying scattering junction
which is attached to a wave digital hammer mal-
let model through the signals marked v} and vy,
The wave digital hammer simulates the nonlinear
compression forces and hysteresis in the soft mal-
let or piano hammer [7]

i
%W 1

Figure 2: The Waveguide Gong

b %ﬂ%ﬂ
E‘%E% f %ﬂ%ﬂ

Davide Rocchesso and Federico Fontana have pro-
posed a new percussion instrument based on an
efficient 8-port triangular mesh structure with a
wave digital air-loading filter and wave digital mal-
let port at each junction [1).

The 3D 6-port rectilinear extension to the mesh
had been hypothesized [10], and was applied to
the study of room acoustics by Savioja, Rinne,
and Takala [2]. Tim Stilson first implemented the
3D rectilinear mesh to study wave propagation in
a bent tube [4]. Figure 3 shows several frames
from Stilson’s animation of a pressure pulse plane
wave in an acoustic tube trying to make its way
around a U-turn. The computation was actually
performed using a dense 3D mesh, and then the
results were consolidated into a 2D image repre-
sentation. Notice that as the white pressure pulse
rounds the corner, a black negative pressure wake
develops as some of the pulse reflects and inverts
off the turning wall of the tube. This is followed by
some significant coupling of energy into the cross-
sectional modes of the tube as the pulse continues
around out of the turn.

The simulations by both Stilson and Savioja’s
team used a rectilinear 3D mesh computational
structure. However, such a structure requires the

AR

Figure 3: Stilson’s Animation of a Pressure Wave
in a Tube Using o Dense 3D Rectilinear Mesh

use of 6-port scattering junctions, which make
a multiply-free implementation impossible in the
isotropic case. Implementation of multiplies in
high speed hardware can get expensive, and re-
duces the practicality of a densely sampled paral-
lel mesh implementation useful for room acoustics
or accurate physical simulations. The {-port scat-
tering junctions of the 2D mesh required only an
internal divide by 2, which could be implemented
as an inexpensive right shift in binary arithmetic.
However, the 6-port junction requires a divide
by 3. The multiply-free cases occur for N-port
junctions in which N is a power of two [3].

We describe here a tetrahedral distribution of
multiply-free 4-port scattering junctions filling 3-
space much like the molecular structure of the dia-
mond crystal, where the placement of the scatter-
ing junctions corresponds to the placement of the
carbon nuclei, and the bi-directional delay units
correspond to the four tetrahedrally spaced sin-
gle bonds between each pair of nuclei. Figure 4
illustrates the structure. The tetrahedral mesh
is mathematically equivalent to a finite differ-
ence approximation to the 3D lossless wave equa-
tion. The frequency- and direction-dependent
plane wave propagation speed dispersion error
is comparable with that of the rectilinear mesh
structure; however, computational and memory
requirements are much improved in the tetrahe-
dral structure, and now within the realm of prac-
tical high speed hardware implementation. The
authors are grateful to Prof. Wen-Yu Su of Chung-
Hua Polytechnic Institute of Taiwan for fruitful
discussions on the structure and implementation
of the tetrahedral mesh [11].

2 What is Dispersion Error?

The term dispersion is somewhat overloaded, but
in the field of finite difference approximations it
refers to an error in the speed of travel of waves.
For example, in the solution to ideal membrane
equation, waves of all frequencies travel at the
same speed in all directions. However, in the
standard difference approximation, and, therefore,
in the equivalent rectilinear 2D waveguide mesh,
plane waves travel at slightly different speeds de-
pending on their frequency and on their direction
of travel relative to the orientation of the mesh.
In fact, it was shown [10] that all waves traveling
in the diagonal directions travel at the same cor-
rect speed, but that waves traveling in the direc-
tions of the grid axes travel a little slower at higher
frequencies. Figure 5 shows a circular wavefront
expanding on a 4-port rectilinear mesh. Observe
how the wavefront has remained sharp along the
diagonal directions, whereas it has smoothed out

Figure 4: The Tetrahedral Mesh Structure

along the axes directions, resulting from the higher
spatial frequencies lagging behind.

Figures 6 and 7 illustrate a frequency domain
view of wave speed dispersion in various two-
dimensional mesh structures. These plots were
calculated using a method which will be described
in more detail for the 3D tetrahedral mesh case in
the succeeding sections. The upper right plot in
Figure 6 shows contours of the normalized wave
travel speed on the 4-port mesh versus plane wave
frequency and direction. The center region of the
plot corresponds to low plane wave frequencies:
the outer regions of the plot correspond to higher
plane wave frequencies. The angular position on
the plot, as seen from the frequency plane ori-
gin (at the center), corresponds to the direction
of plane wave travel on the mesh. Notice that in
the diagonal directions of the 4-port mesh, all fre-
quencies travel at full speed, whereas the contour
lines show that wave travel speed falls off along the
azes directions as frequency increases, i.e., nearer
the outer edges of the plot. The contour lines are
marked off in 1% intervals at 99%, 98%, etc., of full
speed. (The dark circles indicate the maximum
useful plane wave frequency and will be explained
in a subsequent section.) In the lower right of Fig-
ure 6 a contour plot of wave speed dispersion in
the multiply-free 8-port rectilinear mesh structure
is compared. In the 8-port case, things improved
over the 4-port case in the axes directions, but got
much worse in the diagonal directions.

Figure 5: Time Domain View of the Effects of
Dispersion Error in the 4-port Rectilinear Mesh

_6] -

-1.5 -1 -0.5 0

0.5 1 1.5

Figure 6: Comparison of Dispersion Error in the Multiply-free 4-port and 8-port Meshes

~1.5 -1 -0.5 0
Figure 7: Comparison of Dispersion Error in the 3-port Hezagonal and the 6-

0.5 1 1.5

port Triangular Meshes

_62-

-0.5

-1.5 -1 -0.5 0 0.5 1 1.5

Figure 8: An Isotropic Multiply-free 6-port Mesh

Figure 7 compares the dispersion properties of
the 3-port hexagonal and the 6-port triangular
mesh structure. These mesh structures are not
multiply-free; however, the triangular mesh seems
to exhibit an optimal direction-independent dis-
persion. This is the underlying mesh used by
Fontana and Rocchesso mentioned above [1]. Fig-
ure 8 shows a tricky variation to the 6-port trian-
gular structure to achieve a multiply-free junction
computation (although it requires one extra bi-
nary right shift). Here, two of the six waveguide
segments connected at each junction are twice as
thick as, i.e., twice the wave impedance of, the
other four segments. This results in faster wave
travel in one direction (much greater than that
caused by dispersion error), but may be compen-
sated for by resampling the spatial grid compress-
ing the z-direction by a factor of 1/5/3. There
is a similar trick making the 3D rectilinear 6-
port mesh multiply-free, though it is rather heavy-
handed in light of the tetrahedral alternative.

In a bounded mesh, wave speed dispersion results
in a slight mistuning of the higher resonant modes.
This mistuning can be adjusted by allpass filtering
[8] and/or warping of the membrane boundary in
a compensating manner. We note that the high
frequency modes of a membrane become so dense
that, in musical contexts, this error may not be
psychoacoustically important. If higher accuracy
is required, then an accordingly higher sampling
rate may be used.

3 The Tetrahedral Difference

Rectilinear meshes compute finite difference ap-
proximation of the lossless wave equation [2, 10].
It is less obvious in the tetrahedral case. Fig-
ure 9 shows a small chunk of the tetrahedral
mesh. We take the distance between adja-
cent junctions to be 1, and the junction point

Figure 9: Tetrahedral Structure Detail

marked A to lie at the origin of an (z,y, z) carte-
sian coordinate system. We arrange the junc-
tions B(0,2v2/3,1/3), C(v/2/3,~v2/3,1/3),
D(0,0,-1), and E(—+/2/3,—v2/3,1/3) tetra-
hedrally about point A(0,0,0). The line seg-
ments between these junction points represent bi-
directional delay units as shown in Figure 10.
The equations describing the computation of the
lossless 4-port scattering junctions are [3, 9, 10],

S vit (1)
r

Va-Vi* (2)

Vi =

Vi =

where I ranges over the four junction points sur-
rounding A, namely I' € {B,C,D,E}. V4 rep-
resents the junction velocity at junction A. VX‘L
and VX‘ represent the input and output signals,
respectively, of junction A in the direction of junc-
tion I

Since the junctions are interconnected with bi-
directional delay units, the input to junction A4

— A ——
VB . Vs
Scattering Tz Scattering
Junction Junction
A [1}] B
B+ L2 AVAR.S

Figure 10: Bi-Directional Delay Unit

..63..

from the direction of I is equal to the output from
T" delayed by one sample. In the Z-transform do-
main we my write this relationships as,

Vit =Tl (3)

Using (2) and (3), we obtain an expression for the
input signal to junction A from the I direction in
terms of the junction velocities A and T only,

VIt = AT = s (G- VAY) ()
T - (- VI (9)

which implies,

-1

e () v

We substitute (6) into (1) to get an expression
for the junction velocity V4 in terms of the four
surrounding junction velocities Vf,

uei(e=)Tne

Unfortunately, the orientations of the tetrahedra
vary from point to point. In Figure 9 the tetrahe-
dron around point A and that around point B are
in wvertically opposite orientations. However, con-
sider the relationship between the center point A
and the twelve equally spaced junctions marked 1
through 12, which are all equidistant from A, and
which are two time steps away from A. With some
imagination, one can see that the directional rela-
tionships between point A and the outer twelve
points repeats itselfl around every point in the
mesh, regardless of orientation of the inner four
points, B, C, D, and F.

Therefore, we take note of the following relation-
ships, which may be derived in a manner similar
to (7),

1/ z71
w=3 (=) a2V | ®
r

where I" € {B,C,D,E} and v € {2,8,9}, ¢ €
{3,4,5}, vp € {10,11,12} and ¢ € {1,6,7}.
Plugging (8) back into (7), we get an expression
for V4 in terms of the junction velocities of the
twelve junctions, V;:

1 z72 2
=z Vi 9
Va 4(1+z"2+z‘4); ©)

To see that this partial difference equation ap-
proximates the 3D wave equation, we first mul-
tiply through by the denominator in (9), inverse
Z-transform, and gather all the terms onto the

left hand side. Then we view the equation as a
continuous time and space expression of the form
F(t,p) = 0, where F(t,p) is,

2 12

> v(t - 2ke,p) - % > w(t—2e,p+ Pie) (10)

k=0 L3

and p is now the arbitrary spatial position of junc-
tion A, and the P; represent the twelve direc-
tional vectors from point A to the junction points
marked 1 through 12 in Figure 9, respectively.
The unit time and space steps are defined as ¢.
We may expand (10) in a four dimensional Taylor
series about the point p = (0,0,0) at time ¢ = 0,
replacing each term of (10) with something of the
form,

o0 0O 00 0o ntv"r»"u:"z)tntxnxyn,,zn:

ot
ZZZZ - nylnglngin,! (11)

ng Ny ny n,

Collecting terms and computing the limit as the
grid size shrinks reveals that
1

el_r)% Zég)g = Uy — '3‘ [u:c:c + Uyy + uzz] (12)
Evidently, the tetrahedral waveguide mesh is
equivalent to an finite difference approximation
of the continuous 3D wave equation. The appar-
ent wave speed is ¢ = 1/1/3, which is the nu-
merically optimal speed in the Courant-Friedrichs-
Lewy sense [5]. (Incidentally, we found it conve-
nient to use the symbol manipulating feature of
the mathematics processing language Mathemat-
ica to verify the algebra.)

To quantify dispersion error in the tetrahedral
mesh, we apply a spectral transform analysis di-
rectly on the finite difference equation [5, 9]. Es-
sentially, we transform the difference equation into
the frequency domain in both time and space, re-
placing spatial shifts with their corresponding spa-
tial linear phase terms. Then we observe how the
spatial spectrum updates after one time sample.
With this information, we can determine how fast
the various plane waves travel in the mesh at each
frequency. There can be no attenuation since the
mesh is constructed from lossless scattering junc-
tions. Therefore, the only departure from ideal
behavior, aside from round-off error, is traveling-
wave dispersion.

We may now take the spatial Fourier transform of
(9) and replace the spatial positions of the twelve
outer junction points with their corresponding lin-
ear phase terms, V; +— V(g)ejf-?'-“i, where w is
the three-dimensional spatial frequency vector, to
obtain the following quadratic expression in z~2:

1 12 s
bél—zzef& “ (13)

i=1

1+b272 4274 =0,

-6l

~0.5

~-1.5 -1 -0.5] 0.5 1 1.5

-1.5 -1 -0.5 0 0.5 1 1.5
mx

Figure 13: Tetrahedral Dispersion: |w| = m/2

-1 -0.5 0 0.5 1
®, 0, —>

Figure 14: Rectilinear Dispersion: w, = w,

~1.5 -1 ~-0.5 0 0.5 1 1.5

©y —

Figure 15: Rectilinear Dispersion: w, =0

-1.,5 -1 -0.5 0 0.5 1 1.5
mX

Figure 16: Rectilinear Dispersion: |w| = /2

65

where 2~2 represents two time samples of delay.
Due to the symmetrical orientation of vectors P,
as indicated in Figure 9, it may be shown, rather
remarkably, that the value of b remains a real num-
ber between —2 and 2 for all values of w. Hence,
we may define

b V4 —b?

2 A Y,
G*(w) = 5 i~

where G is the spectral amplification factor of the
spatial spectrum after one time sample.

(14)

Plane waves propagate losslessly, since |G| = 1.
We note that the phase of G corresponds to the
spatial phase shift of a plane wave in the direction
of travel in one time sample, where

+v4—b?

1
LG = 5 arctan ———-—— (15)

Hence, the phase distance traveled in one time
sample by a spatial plane wave of frequency |w|
and direction w is ¢/(w) = 4G/ |w|, where ¢'(w)
is the frequency dependent speed of plane wave
travel measured in space samples per time sample.
(Phase distance corresponds to phase advance in
time domain language.)

Figures 11 and 12 show contour plot slices along
the planes w, = 0, and w, = 0, respectively, of
the normalized plane wave speed ¢/(w)/c in the
tetrahedral mesh. The innermost contour line is
drawn at 99% of full speed and subsequent lines
are drawn at 1% intervals. Because of the spa-
tial sampling interval, there is a Nyquist limit on
the spatial frequencies which may be supported on
the mesh, namely |w| < 7. In addition, all trans-
fer functions definable at any one junction, and
the denominators of all transfer functions defin-
able between any pair of junctions, are functions
of 272, as may be seen from Figure 10. Therefore,
frequencies above 7/2 are not independent, and
are constrained to be a copy of the frequencies be-
low 7/2. We have superimposed a circle marking
this limit in the contour plots. The central area of
each plot corresponds to lower spatial frequencies,
and the outer regions correspond to higher spatial
frequency. The angular position of a point on each
plot indicates the direction of the wave travel in
the planar slice being shown. Figure 13 shows the
response on the hemispherical surface, |w| = /2,

where w, = \/(71'/2)2 — w2 — Wl

By way of comparison, we show dispersion plots
for the 6-port rectilinear 3D waveguide mesh
[10, 2] with the same contour line settings. We
computed these following a similar procedure as
that outlined above for the tetrahedral case. Fig-
ure 15 shows a horizontal slice through the ori-
gin, and Figure 14 shows a diagonal slice through
wy = w,. Figure 16, again, shows the response on
the hemispherical surface, |w| = 7/2.

4 Conclusions

Both the rectilinear and the tetrahedral 3D
meshes have reasonable dispersion characteristics.
And both model a wave speed of ¢ = /1/3 space
samples per time sample. We compute that the
number of tetrahedrally arranged junctions re-
quired to fill a given volume is 35% less than that
required for the rectilinear mesh; and the num-
ber of bi-directional delay units required for the
tetrahedral mesh is 57% less than that required for
the rectilinear mesh to fill the same given volume,
thus saving substantial memory. Furthermore, the
tetrahedral mesh is multiply-free and may be im-
plemented efficiently in high-speed hardware. Ap-
plications in concert hall design, acoustical re-
search, musical instrument synthesis, and rever-
beration are now practical.

References

[1] Rocchesso, D. and F. Fontana. “A New For-
mulation of the 2D-Waveguide Mesh for Per-
cussion Instruments”, Colloguium on Musical
Informatics, Bologna, November 1995.

[2] Savioja, L; Rinne, T. and Takala, T. “Simu-
lation of Room Acoustics with a 3-D Finite
Difference Mesh”, Proc. ICMC, Arhus, 1994.

[3] Smith, J. Music Applications of Digital
Waveguides. CCRMA, Stanford Univ., Stan-
ford, CA, Tech. Rep. STAN-M-39, 1987.

[4] Stilson, T. Technical presentation, Eighth
Annual Meeting of the CCRMA Associates,
Stanford Univ., May 1994.

[5] Strikwerda, J. Finite Difference Schemes and
Partial Differential Equations. Wadsworth &
Brooks, Pacific Grove, CA, 1989.

[6] Van Duyne, S. and J. Smith. “The Tetrahe-
dral Digital Waveguide Mesh.” Proc. IEEE
Workshop on App. of Sig. Proc. to Audio and
Acoust., Mohonk, 1995,

[7] Van Duyne, S.; Pierce, J. and J. Smith.
“Traveling Wave Implementation of a Loss-
less Mode-Coupling Filter and the Wave Dig-
ital Hammer.” Proc. ICMC, Arhus, 1994.

[8] Van Duyne, S. and J. Smith. “A Simplified
Approach to Modeling Dispersion Caused by
Stiffness in Strings and Plates.” Proc. ICMC,
Arhus, 1994.

[9] Van Duyne, S. and J. Smith. “The 2-D Digi-
tal Waveguide Mesh.” Proc. IEEE Workshop
on App. of Sig. Proc. to Audio and Acoust.,
Mohonk, 1993.

[10] Van Duyne, S. and J. Smith. “Physical Mod-
eling with the 2-D Digital Waveguide Mesh”,
Proc. ICMC, Tokyo. 1993.

[11] Wen-Yu Su. Personal communications, 1994.

~66-

