CENTER FOR COMPUTER RESEARCH IN MUSIC AND ACOUSTICS
NOVEMBER 1994

DEPARTMENT OF MUSIC
REPORT NO. STAN-M-90

ON FAST FIR FILTERS
IMPLEMENTED AS TAIL-CANCELING IIR FILTERS

AVERY LI-CHUN WANG AND JULIUS O. SMITH IlI

RESEACH SPONSORED BY
THE NATIONAL SCIENCE FOUNDATION
FELLOWSHIP PROGRAM

CCRMA
DEPARTMENT OF MUSIC
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305-8180

COPYRIGHT © 1994
AVERY LI-CHUN WANG AND JULIUS O. SMITH ll]

On Fast FIR Filters Implemented as Tail-Canceling IIR Filters

Avery Wang, Julius O. Smith III *

Center for Computer Research in Music and Acoustics
Stanford University, Stanford, CA 94305

1 Introduction

Infinite impulse response (IIR) recursive linear digital filters are widely used because of their low
computational cost and low storage overhead requirements. Finite impulse response (FIR) filters,
on the other hand, allow the possibility of implementing linear-phase linear digital filters which
have constant group delay across all frequencies. The tradeoff is that to achieve similar magnitude
transfer functions, FIR filters usually require much larger filter orders than their IIR counterparts.
For example, a general N-th order FIR filter requires IV + 1 multiplies and N adds. In certain cases,
however, FIR filters may be designed which have an operation count comparable to that of an IIR
filter while maintaining the linear phase property.

The set of finite impulse responses which may be efficiently implemented includes those which
are truncated IIR (TIIR) sequences of low order. Although the following results were derived
independently of Saramiki and Fam [1, 2], the idea of using truncated IIR filters to generate linear-
phase filters was originally introduced by Fam [1]. Fam and Saraméki [1,2] deal with unstable
hidden modes due to pole-zero cancellations outside of the unit circle by employing a switching and
resetting algorithm to reduce the effects of quantization error buildup. We introduce a slightly more
efficient version of this idea, as well as an error analysis.

In this paper, we describe a similar algorithm for the efficient implementation of certain classes
of FIR filters. We introduce an extension of the TIIR algorithm which allows the truncation of
arbitrary IIR filter tails. Our algorithm allows the possibility of implementing polynomial impulse
responses. Additionally, we present an analysis of the effects of limited numerical precision and
provide design guidelines for designing systems with acceptable noise tolerance.

2 Definitions

A general causal N-th order FIR filter consists of a tapped delay line IV elements long and a table
of N + 1 impulse response coefficients {ho,...,hn} such that at each time step n the output

N
yln) = 3 hazin — k] 1)
k=0
is formed. The transfer function has the simple form
Hrr(2) Sho+hizV +...+hyzV (2)
=2"NC(2), (3)

*This work was supported in part by a National Science Foundation Graduate Fellowship

where C(z) is the N-th degree polynomial formed by the h;. On the other hand, a causal P-th
order IIR filter has the relation

P P
yln] = - Z aryln — k] + Z bez[n — €. 4

k=1 £=0

The corresponding transfer function is

abo+bizl+...+bpz”F
Hyg(2) = 1+a;z-' +... +apz—P ®

_ bozP+b1zP‘1+...+bp

T ZP ¥ a12P-14 ... tap (6)
B(z)
=10)
=ho+hiz7 + hpz7i 4., (8)
where both
AR)=2"+azF ' +.. . +ap 9)
and
B(z) = bozP +b1zP ...+ bp (10)

may be assumed to be relatively prime P-th degree polynomials in 2, and A(z) is monic by
construction.! We use the forms in Eqns. (5) and (6) interchangeably. Eqn. (8) is the expan-
sion of the transfer function in terms of the impulse response {ho, hy,...}. A(z) is also known as the
characteristic polynomial of the filter, and its roots, i.e., the poles, determine the filter dynamics.
Group delay [3] is defined by
w
5(w) 2 -d—a"-‘-;ig)(iﬂ. (1)

The group delay at normalized frequency w = 2w f/f,, where f, is the sampling frequency, is the
number of samples of delay experienced by the amplitude envelope of a narrow-band input signal
centered at w.

A linear-phase filter is one such that the phase response at a given frequency is a linear function of
frequency, i.e. arg { H(e’*)} = K w+ K; for some constants K and K. From this property we see
immediately that the group delay is constant for all frequencies. Filters with linear phase response
are often desirable because they have no frequency-dependent temporal distortion. A stableIIR filter
with non-zero poles cannot have linear phase. However, an FIR filter with coefficients {hq,...,An}
has linear phase if there exists a 1 such that for all ¥ € {0,...,N}

hn-k = e'¥h}, (12)

i.e., if the reversed coefficients are the complex conjugates of the forward sequence plus a constant
phase shift. This may be seen by considering

N
H(e™) =) hyei*
k=0

N A
= % > (hke*i"w +h N—ke—j(N_k)“')
k=0

1A monic polynomial of degree N has 1 as the coefficient of the highest degree term N,

e—iNw/z N . .
= Z (hke—g(zk-N)w/z +ei? h:ej(zk—N)w/z)

2
=0
—-i(Nw=—9)/2 N
= f__’f_"_'_'fl’__|h,‘| Y (eit@-men-ouern HBE=We/1-0+4/D)
2 k=0
N
~§(Nw— 2k — N)w + 26 +
a
where 0 = arg(hi). Thus,
. -Nw +
arg (H (') = —5— v, (14)

and the group delay is

&=

N
‘R (15)

3 Truncated IIR (TIIR) Filters

Consider an FIR filter having a truncated geometric sequence {hg,hop,...,hop"} as an impulse
response. This filter has the same impulse response for the first N + 1 terms as the one-pole IIR
filter with transfer function A

0

Hnn(z) = ITP—;-I-. (16)
If we subtract off the tail of the impulse response we obtain
Hpr(z) = ho + h()pz°l +...+ hopNZ—N a7
= {ho + hopz™' +...} (18)
_ {h opV 1z (VD) 4 on(N+2) ;= (N+2) | }
h N+1,—(N+1)
- 0 - - hOP z — (19)
1-p2-? 1—-pz-?
11— pN+l 2~(N+1)
= hg Tz (20)
The output relation for this filter is
N
yln) = hop*z[n — &] (21)
k=0
= pyln — 1] + ho (zln] - p¥+1aln — (N +1)]). (22)

We see that the first formulation, Eqn. (21), requires N + 1 multiplies and IV adds to implement
directly, whereas the second formulation, Eqn. (22), requires only 3 multiplies and 2 adds, inde-
pendent of N. Thus we see that if we can represent an FIR sequence as a truncated exponential
sequence, a tremendous savings in computation can be achieved. Note that the z[n — (N +1)] term
in Eqn. (22) still requires a delay line to be maintained, and thus there are no savings in storage.
With modern digital signal processing (DSP) chips, however, ring buffers may be implemented with
virtually no computational overhead and the full savings in computational cost may be achieved.
Notice that there is a pole-zero cancellation in the representation given by Eqn. (20). If [p| < 1
there is no problem since the system is inherently stable. If |p| > 1, however, then there is a potential

problem due to the hidden mode. We will deal with this in Section 4 where we will see how to run
TIIR filters with unstable modes.

The idea of this section was used by Fam [1] where a partial fraction expansion of a transfer
function is taken and each mode is truncated separately using Eqn. (20). This method works only
for cases in which the multiplicity of each pole is one, so that the each mode exhibits a simple
exponential decay.

3.1 Extension to Higher-Order TIIR Sequences

We may extend the idea of the previous section for computing the TIIR sequence of any rational
H(z). The general procedure is to find the “tail” IIR transfer function

HI’IR(z) = hloz—l + h"z_z +...
é hN.HZ_1 + hN+2Z—2 +... (23)

whose impulse response, except for a time shift of IV steps, matches the tail of the transfer function
Hyr(z) which we would like to truncate after time step V.
We multiply Eqn. (8) by zV and obtain

ZNHUR(Z) = hozN +...+hyaz+hy (24)
+hnpz Fhypzz” i 4L
= C(2) + Hyp(2) (25)
_ Z¥B(2)
=~70) (26)
= C(:)+ -ﬁ% (27)

where Deg {B'(z)} < Deg {A(z)} = P. We may assume that Deg {B’(2)} = P — 1. B'(z) is unique
and may be obtained by performing synthetic division on zV B(z) by A(z) and finding the remainder.
Thus, zVNB(z) = B'(z) (mod A(z)).

Once we have obtained B’(z) we have Hj;g(z) = B'(2)/A(z) and we may write

Hrir(2) = Hur(z) — 2~V Hyjp (2) (28)
2)—2"NB'(2
_ 2=))
The corresponding system is
P P
yinl ==Y aryln — k] + Y _ bea[n - 4] (30)
k=1 =0
P-1
=Y bzl —m— (N +1)]

using the representation in Eqn. (29).

The fact that the denominators of the transfer functions Hyr(2) and Hfjg (2) are the same allows
additional savings in computational cost due to the fact that the original IIR and tail IIR dynamics
are the same and do not need to be performed twice. The term z~(N+1)z=(P=1) B/(2) serves to zero
out the dynamics at the end of the delay line and requires only an additional P multiplies and P—1
adds. The computational cost of this general truncated P-th order IIR system is 3P + 1 multiplies

4

and 3P —2 adds, independent of N. Thus, a net computational savings with this class of FIR filters
is achieved if N > 3P.

The storage costs for this filter are P output samples for the IIR feedback dynamics, N input
samples of the FIR filter, and an additional P input samples for the tail-cancellation dynamics,
yielding N + P input delay samples, of which only the first and last P are used, and P output delay
samples. Thus, the fast FIR algorithm actua.lly requires 2P more storage samples than a direct FIR
unplementatlon

As in the previous section, we observe cautiously that the effect of subtracting the tail IIR
response z~~ Hj;p (2) from Hyr(z) is to cancel all the poles in Eqn. (29), which is to be expected
since an FIR filter is an all-zero filter.

3.2 Other Architectures

The direct implementation specified by Eqn. (30) may not be desirable for various reasons. For
example, one may choose to use a factored structure such as the cascaded biquad or the parallel
partial fraction form.

. The basic biquad factorization for a P = 2Q-th degree transfer function is given by

Q -1 -2
_ 1401627 +bopz
H(z) = bo kl;[x 14+a1 .27 +ag 22" (31)
Each sample is calculated in a cascade

:Bo[n] = boz[n], (32)
zi[n] = ze—1[n] — a1 kzi[n — 1] — az kzi[n — 2] (33)

+ bl,kmk—l[n - 1] + bz,kxk_lln - 2], k>1, and
yln] = zqn}, (34)

thus requiring 4Q + 1 = 2P + 1 multiplies and 4Q = 2P adds per sample. Biquad structures are
especially suited for the efficient and numerically stable computation of large-order IIR filters which
often have large coefficients when left unfactored. Additionally, complex-conjugate pole pairs may
be conveniently grouped together. Since the TIIR filter structure does not lend itself to biquad
factorization, the form in Eqn. (28) must be taken and the recursive dynamics must be computed
twice, resulting in a computational cost of 8Q + 1 = 4P + 1 multiplies and 8Q + 1 = 4P + 1 adds
per sample. Thus, this realization is somewhat more computationally expensive than the direct
realization.
We may also factor H(z) modally into a partial fraction expansion:

Ny M,

HE) =YY oo (35)

k=1 £=1

where N, is the number of distinct poles, and M, is the multiplicity of the k-th pole. The (k,£)
partial fraction gives rise to a filter which has as impulse response

n+f-1
hien = Ck,t(-1)Pi'- (36)

To form the TIIR filter, a tail IIR filter is derived for each partial fraction using synthetic division
as outlined in Section 3.1. Each TIIR response is calculated separately, and the results are added
together to form the complete response. The factorization need not be as complete as outlined in Eqn.
(35). one may choose an intermediate level of factorization, leaving some factors lumped together

and others separated from each other. For example, one may want to group complex-conjugate pairs
together, thus avoiding complex arithmetic.

Alternatively, one may wish to leave terms with the same poles together as in

N’
H(z) = Z (__..B_fﬁ. (37)
k=1

z—pp)M’

since calculating the tail IIR response for each n-th order multiplicity term yields a degree n — 1
polynomial numerator anyway. The impulse response of the k-th partial fraction in this case is

My
n-—{¢ + Mk -1 -2
hin = E bk.z()Pz (38)
=0 Mk -1

where the bi ¢, £ =0,...,M; are the coefficients of Bi(z).
Another example is to group together the stable factors, i.e., with poles p; such that |p;| < 1,

and implement the unstable poles with |pi| < 1 separately. These strategies will become useful in
Section 5.

4 Unstable Hidden Modes

n=0 (mod N) n#0 (mod N)
Primary TIIR Filter
wN+k +« 0, k=1,...,P~1 wilk] « wfk-1], k=N<+P,...,1
wilk] ~ wlk-1], k=N,...,1 w1{0] « z[n]
wif0] 3{’{'] alk] « q1[’;—11, k=1:;---,1
alk] « k-1, k=P...,1
; P alt] + =Y aalk+) bl
@] « - Z“WI %] + Zb‘w‘ (4] k=1 =0
k=1 =0 it ,
yln] « 0] =3 tawim+ N +1)
max0
yin] + al0)
Auxiliary TIIR Filter
wyk] « 0, k=1,...,P-1 walk] « wi[k-1], k=P,...,1
waf[0] + z[n] we{0] + z[n]
@lk] « 0, k=1,...,P-1 @lk] ~ @[k-1}, k=P...,1
@l0] + bows(0] F F
alt] + =Y aalkl+) bl
k=1 ¢=0

Table 1: Fast FIR algorithm for an unstable Truncated IIR (TIIR) filter.

We now address the issue of pole-zero cancellation and the resulting hidden modes in the fast FIR
algorithm. Although the naive Fast FIR algorithm of Eqn. (30) works in theory there is the practical
matter of quantization error due to finite register lengths when dealing with truncated unstable IIR
systems, i.e., those with poles pj such that |px| > 1. Consider the system in equation (22). We may

6

n=0 (mod N) n#0 (mod N)
Primary TIIR Filter
wi[N+k] « 0, k=1,...,P-1 wifk] « w[k-1), k=N+P,...,1
wilk] + wi[k-1), k=N,...,1 w[0] « z[n]
wi[0] « z[n] qlk] + alk-1], k=P,.

- = P-1
e T | al e -3 delPH "*[.P !
0] + Z giq|] qll.] =) ap ap

k=l aP ap blo [P 1-—]
+ 3 anlr i
b" w;[P 1- m]
+ Z —_— ma=0
ap
m=0 _Ebluh[N'*'P—t]
£=0 a;’
vin] « al0]
Auxiliary TIIR Filter
wyfk] « 0, k=1,...,P~1 walk] & wik-1], k=P,...,1
wa[0] « z[n] wy[0] « z[n]
@lk] « 0, k=1,...,P-1 @lk] « @lk-1), k=P,
B wa[0) =
@l0] « S22 ai@(P -k qz[P]
2[0] ar @l « =) = s
E=l
L]
+ Z b wz[P 1—m]
m=0

Table 2: Fast FIR algorithm for a reversed unstable Truncated IIR (TIIR) filter derived from a
stable TIIR filter.

model quantization error as an independent, identically distributed (IID) noise signal v[n] with zero
mean and variance o2 input to the system of Eqn. (22).2 The output equation is then

y[n] = pyln — 1] + ho (z[n) - p¥*gn - (N + 1)]) + v[n] (39)
N-1 n
=ho Z pEzln — k) + Zp"u[n - k. (40)
k=0 k=0

Thus, the accumulated noise has zero mean, but its variance grows as

oaeln] = ool (41)
k=0
S O Iplz(u+1)
= Uzw (42)

so that
+00, lp] 21
. 2 -
nh—xrlgo U‘CC[n] - { ﬁ{%)-'-f, |p| <1l
For a higher-order system, as described in Section 3.1, this analysis gives an estimate of the noise
accumulation behavior if p is the largest-magnitude pole since its dynamics dominates the behavior
of the system. A direct implementation of an FIR system, such as in equation (21) does not have
noise accumulation problems because of its finite memory. We trade computational cost for noise
sensitivity in TIIR systems.
Recalling the discussion in Section 3.2, we may factor the unstable modes of a system apart from
the transfer function so that

(43)

H(z) = HY(2) + H'(2) (44)
_ BMz) . B()
T ANz) T AtR)

where the “}” and “4” superscripts denote “stable hidden modes” and “unstable hidden modes,”
respectively. Thus, we may implement the two filters of orders P! and Pt, where P+ 4+ Pt = P, and
add together the outputs. H+(z) may be implemented as described in Section 3.1, but H1(z) must
be handled carefully.

Alternatively, we may factor the transfer function into stable and unstable parts

(45)

H(z) = HY(2)H'(2) (46)
_ BY(z) B'(2)
= F QA “)

in which case the stable and unstable filters are cascaded. Note that in this factorization B(z) and
B1(z) are not uniquely determined.

A possible algorithm for stabilizing an unstable TIIR filter using two parallel sets of state variables
is given in Table 1. The algorithm cycles with a period of N time steps. Given a cycle number k, at
time step n = kN the auxiliary filter’s input delay line ws[-] of length P and P state variables ¢2|]

2Finite-register effects may be modeled as the sum of ¢ uniformly distributed IID [—¢,+¢], where ¢ > 0 is the
smallest quantity such that = + € # z in machine arithmetic, and q is the number of additive terms. If g is relatively
large, the total noise may be modeled as a Gaussian distribution. For fixed-point arithmetic ¢ is constant Vz. Floating
point arithmetic presents difficulties since the. effective ¢ varies proportionally to the magnitude of z. Assuming
independence and fixed-point arithmetic, we may model quantization noise as a Gaussian random variable with
variance 02 = ge?/3. A thorough analysis of quantization noise statistics is beyond the scope of this paper.

are cleared to zero. Otherwise the primary and auxiliary systems evolve with the same dynamics.
We have taken into account the fact that during the first IV time steps the tail canceling terms due
to z~¥B'(z) in the auxiliary filter are identically zero, hence those terms are not included. Since
the FIR impulse response has length IV + 1 we see that at time n = kN + N the two systems have
identical output values, except for the amount of accumulated noise. The state variables g;[-] and
g2[-] are not identical because the input histories are slightly different. However, since we are only
concerned with the output, this does not matter. We then copy the auxiliary system’s state variables
to the primary system and repeat the cycle. This algorithm may be optimized by realizing that the
values for wp[m] are zero for m > N during each cycle. Thus the last summation in the dynamics
for the auxiliary system shown in Table 1 is omitted for the cases wheren=1,...,N (mod N).

Under this scheme the amount of time that quantization errors can accumulate varies from a
minimum of N time steps to a maximum of 2NV, depending on when each error occurs. The minimum
is due to the amount of time necessary to allow the auxiliary system to evolve to having the same
output value as the primary system. For noise accumulation analysis in this system, we may assume
that the unstable system dynamics are dominated by the mode with the largest eigenvalue pmax
such that |pmax| > 1. We assume for the present analysis that the multiplicity of pmax is one. Thus
we must reckon for tolerable performance with

1- 4N
Oinax 2 UE'JJPTT:!I" (48)

If the maximum tolerable noise variance is ¢7,; then we must have ¢2,,, < o, so that, approximately,

2 _ 2
log(HﬁmJ_rlLﬁd)
N« .

g,

Tioa(lpmas])

(49)

Thus, given pmax, 02, and quantization noise variance o2, we have a fundamental limitation on the
length of the effective impulse response. A refinement of this bound is given below in Section 5.3.

The computational cost for implementing an unstable TIIR filter is at most twice the cost of a
stable TIIR filter. The extra cost is due to the cost of implementing the auxiliary TIIR filter, which
costs about 2P operations per sample. Thus the computational cost of the unstable TIIR filter is
approximately 5P multiples per input sample. The number of adds is about the same. If we take
into account the fact that the feed-forward terms due to B(z) are the same (except for cases where
wg[k] has been set to zero) in both the primary and auxiliary systems, we may optimize by avoiding
duplicate calculation of these terms and thus reduce the total number of multiplies and adds to
about 4P per input sample. The shifts of the state variables and input delay lines may be simulated
by using pointer arithmetic, and need not actually be performed.

5 Fast Linear-Phase FIR Filters

The implementation of filters as TIIR systems is rather pointless unless there is an advantage that
is unavailable to untruncated IIR filters. That advantage is that it is possible to implement exactly
linear-phase filters. We present two basic strategies for designing filters based on TIIR filters. The
first uses the factorization given in Eqn. (44), and the second uses the factorization used in Eqn.
(46).

5.1 Additive Factorization Design Method

We saw in Section 2 that an FIR filter has linear phase if Eqn. (12) holds. It is possible to attain
such a relation using TIIR filters. Let Hifz (2) be a TIIR transfer function such that

N ,
Hs‘tm(z) = Z ht;“" (50)
k=0
_ B*(2) = 2~VB"*(2)
=) . (51)
We form the time-reversed truncated transfer function
N
Hpg(2) =) hyz~* (52)
k=0
N
=) hfAN (53)
k=0
=2z {Hirm (1/2‘)}‘ (54)
_ VB /) - (B (/)Y 5)
{4+ (1/20))
_ z7N2"PB(2) = =P~ B~ (2)
- 2=PA-(2) . (56)
_ =2B'""(2)+z"¥B~(2)
= y=p) , (57)

where the “+” and “~” superscripts denote “forward” and “reverse-conjugated” filter respectively,

and the “*” superscript denotes complex conjugation, as usual. Thus, comparing with Eqns. (9)
and (10), we have

A= (z2)=1+ajz+... +apz’, (58)
B~ (2) = by + bjz+ ...+ bpz", (59)

and
B'~(z)=bl + b z+...+bp_ 2P (60)

We have assumed that B*(z) and B'~(z) have degrees P and P — 1, respectively. If we assume
that Hip(2) is a stable TIIR filter then Hijp(2) is an unstable TIIR filter whose hidden modes are
conjugate-reciprocals of those of Hi;x(2). An example implementation for Hgg(2) is given in Table
2. There we have normalized the numerator and denominator of the filter by dividing through by
ap.
Using the arbitrary time shift M > 0 and phase shift ¢ we define the filter

Hiprir(2) £ Hip(2) + €2~ MHpp (2) (61)
N N
S Rprh e 3 hp AN (6
k=0 k=0

We note that this new FIR filter of length M + N + 1 is invariant with respect to reversing the
order, conjugating the coefficients, and multiplying by the phase factor exp(j¥). Eqn. (12) holds,
and thus Hyprir(2) is a linear-phase FIR filter. We may see the linear-phase property more directly
by first noticing that, on the unit circle,

Hgp (%) = e {Hg (¢)), (63)

10

so that

Hiprmr () = Hijp (/) + e MY Hyp () (64)
= Hfjp () + /Ye TN+ (Hp (¢4)) (65)
= e~ I(N+M)w+¥) /2R { SN+M)AN /2 frt (eif-*)} . (66)
Eqn. (15) gives us the result
s=M ; N (67)

It is rather difficult to design fast FIR filters to a given set of specifications using this additive
factorization design method because it is not intuitively obvious how to control the magnitude
|HLppm (ej“)l due to Eqn. (66). Nonetheless, for certain impulse response waveforms which are
well characterized, this technique provides a useful tool for designing corresponding fast FIR filters
to realize them. Some examples are given in Section 6.2.

5.2 Magnitude-Squared Design Method

We begin by choosing a desired non-negative real-valued transfer function H?(2) > 0 for which there
exists a stable transfer function H(z) such that

H? () & |H ()| (68)
= H(*)"H (¢/*) (69)
and polynomials A*(z) and B*(z) such that

H(z)= ihkz"’ (70)
k=0
_ B*(2)
=70 (7))

If the coefficients of A*(z) and B*(z) are real then Eqn. (68) yields

H? (') = H (¢"*)H (e7v). (72)
We form the TIIR transfer function
N
Hfg(z)= huz™* (73)
k=0
_B*(z)—2z"NB"(2)
=) , (74)

as in Eqn. (51). Similarly, we form Hpg(2), as in Eqn. (57). We see immediately, in light of Eqn.
(63) that the filter

A -
H}ip(2) = Hpp(2)Hepr(2) (75)
has the property that

Him (¢) = =™ | Hin ()1 (76

and this is obviously a linear-phase filter with group delay
éd=N. (77)

This filter may be simply implemented as a cascade of Hi;p(z) and Hgg (2), which may be imple-
mented by Eqn. (30) and Table 2, respectively.
The relationship between HZ, (z) and H?(z) is seen by considering the cyclic convolution [4]

[]
Hfg () = Z wyhee ™ (78)
k=0
1 2% . .
- jé (w~0)
_21r/° H () Wi (e-9) d (79)
where
_{1, -N<k<N (80)
Wk = 0, otherwise,
and
N
Wn(z)= E 2* (81)
k=~-N
=N _ o 41
so that in{(N +1/2)w}
iwy _ S0 w
Wi () = —toTD) (83)

The extension of the window to negative values does not affect the result and is made to simplify the
periodic convolution by eliminating the phase modulation of the window transfer function Wy (2)
as well as narrowing its main lobe by a factor of two. Thus,

Hig () = e~V |(Wy « H) (¢)°, (84)

where the “#” is understood to be periodic convolution as in Eqn. (79).

We notice that the phase of the filter H(z) utilized in the design of Hp(z) is irrelevant, and
thus, IIR filters which are usually considered to have excessive phase distortion near sharp cutoffs
may be used. Additionally, the fact that the magnitude response for H?(2) is twice the distance
from 0 dB compared to the magnitude response of H(z) implies that constraints in the stop band of
H(z) need only be half the desired dB design specification, whereas, on the other hand, the ripples
in the passband of H(z) must be better than half the desired dB design specification. Thus, any
stable discrete-time IIR filter design such as elliptic, Chebyshev, and Butterworth filters may be
chosen as H(z) in Eqn. (68) and transformed into a magnitude-squared filter with linear phase. The
filter length N for Hyp(2) and Hp\p(2) must be chosen long enough so that the blurring induced
by the periodic convolution of H (e’ (“"'o)) by Wn (e-"(“"a)) does not induce too much distortion
in the frequency response. Indeed, disregarding quantization noise for the moment, as N grows to
infinity, Wy (e’“) approaches an impulse centered at w = 0, and Hyp (2) converges to H(z). There
are constraints due to Eqn. (49) on the filter length which are considered in the next section.

5.3 A Refined Truncation Algorithm

In both the additive and multiplicative designs of the previous two sections, the length N is con-
strained by the growth of quantization error in the unstable, reverse-conjugated filter Hg;p(2). This

12

bound is given in Eqn. (49). We note that it is the most stable hidden mode of Hgy(z) which
gives rise to the most unstable hidden mode of Hg;,(2) due to the conjugate-reciprocal correspon-
dence between their modes. These problematic conjugate-reciprocal modes may restrict the direct
implementation in Table 2 to undesirably short lengths. One way around this problem is to set a
significance floor Ag above the floor for numerical precision Ap so that errors with magnitude less
than As are insignificant, and quantization errors are bounded by Ap. Let H(z) be the untruncated
IIR impulse response associated with Hpx (2) as in Eqn. (71). Since H{(2) is stable, we have

|Pk| <1, (85)

where the pi’s are the poles of H(z), and consequently the hidden modes of Hyp(2). The hidden
modes of Hpp(z) are thus 1/p}, and are unstable. We perform a partial fraction expansion on H(z)
as in Eqns. (37) and (38). We then observe the impulse response for each partial fraction. We
set the cutoff point N; for the k-th partial fraction response to be the smallest time after which
the maximum impulse response becomes insignificant, i.e., Y¥n > N, |phin]| € As, where y is the
largest magnitude input. We may solve

» lhe.vi| = As/p (86)
numerically for N by using Eqn. (38) or by using the approximation
M), My~-1,n-t
b g(n - t) . Py
hin= : 87
k,n ; (Mk — 1)! ()
b ep
M,.-—l n k
Z < (M, -1)! (88)
= BinM» 'lp,c (89)

for large n, where By, is implicitly defined by Eqns. (88) and (89). For M} = 1, we have exactly

log (l—'\g;-l)
Ne= los(l:’kl) '

Thus, if N < N we may truncate the k-th partial fraction response at N} instead of N without
losing significance. However, since H(z) is stable and responses due to the k-th partial fraction
beyond the Nj-th time step are below the significance floor, this does not make any difference. The
refinement comes from implementing Hp;p () as a sum of reversed partial fractions based on Eqn.
(37) and Egn. (57) but with the k-th partial fraction truncated after n = N; samples instead of
n = N if N < N. Thus, the unstable mode of Hp;z(z) due to the pole at 1/p} only needs to grow
from having an initial magnitude above the significance floor Ag and has less time to accumulate
exponentially growing quantization noise. We have

(90)

N
- - (z)+z N.Bk (Z,Nk)
Hgp(z) = (91)
FIR ; (1 P Z)Mb
where
TN, N> N

Eqn. (48) indicates how much quantization noise will accumulate due to the truncated response
of length N = N, of the k-th partial fraction of Hgz(2) . Assuming that quantization error occurs
on the order of the precision floor Ap, we have

02 m AL, (93)

19

Also, the significance floor sets a convenient level of noise tolerance, so that may set

atzol = Xg’ (94)
We may recast Eqn. (48) as
1 — [pe| 4N+
2 5)2
As 2 /\p—l—_—lp';lT (95)
2 ol
~ N =1 (96)

and thus
Ap <)\slpklzN‘—l Vi- kalz. (97)

Combining Eqns. (97) and (90), assuming M; = 1, we arrive at

Ap < Asv1-lpel? (98)

P =Tl Bl

We see that the precision, in bits, for the state variables must be about 3 times greater than the
precision of the data in order to prevent significant noise accumulation. This result is intuitive
since the significant part of the impulse response must span the dynamic range specified by the
largest magnitude output (which may be assumed to be normalized to 1) and As over a period of
N}, samples, whereas the noise in Hgp(z) may grow over a period of up to 2V} samples using the
same dynamics. The preceding analysis is not generally applicable when dealing with floating point
quantities because the range of significance varies with the exponent. Assuming a constant-energy
input, we see that the analysis still holds since the significance and precision floors are approximately
constant at steady-state.

5.3.1 Unit-Magnitude Mode TIIR filters

A third class of linear-phase filters consisting of pure TIIR responses is available. If we choose H,(2)
to be a TIIR filter of length N such that all of its (hidden) modes are on the unit circle and each
mode has multiplicity one, then we are assured that H,(z) will have linear phase. This may be seen
by observing that such a filter must satisfy Eqn. (12). If there are modes with multiplicity greater
than one, then Eqn. (12) is not generally satisfied. However, care may be taken to place the zeros
so that Eqn. (12) holds.

Applying the analysis of the previous section, we see from Eqn. (90) that the N,’s for this type
filter will all be infinity. In this case, it is not necessary to reset the state variables very often because
the growth of quantization error will be additive, and not exponential.

From a worst-case point of view, the number of samples in which error in the least significant
bit may accumulate before reaching the significance floor A, is approximately

N =)/, (99)

assuming that there is one bit’s worth of error in the LSB per sample processed. If the noise is
zero-mean, then the accumulated error is a random walk whose standard error grows proportionally
to the square root of the number of samples processed. We would like the standard error to be some
distance away from the least significant bit of the output signal. For an error accumulation such
that the 3-sigma error is below the significance floor, we have the relation

30VN < A, (100)

14

N < (A/3),)° (101)
~ 49/10, (102)

where G is the number of guard bits. Hence, we see that TIIR filters with hidden modes only on the
unit circle have desirable stability properties over the filters described in the previous two sections.

Since unit-magnitude mode TIIR filters are quasi-stable and do not need to be reset every N
cycles, the number of computations necessary to stabilize them may be reduced by performing the
state-variable reset infrequently. Since an FIR filter has finite memory, it is sufficient to run two
parallel filters starting only IV steps before the state-variable transfer.

The impulse responses of TIIR filters with unit-magnitude hidden modes are sums of modal
responses of the form

hiln] = Pi(n)pk (103)
= Pi(n)ezp(jwn) (104)

forn =0,..., N, where p; is the k-th unique pole and Pi(n) is an m;—1-th degree polynomial, where
my, is the multiplicity of the k-th pole; these are truncated polynomials times complex exponentials.
Some examples of TIIR filters of the unit-magnitude-modes class are given in Section 6.2.

5.4 Time-Varying TIIR Filters

The ability to change filtering characteristics in real-time may be a desirable characteristic for
discrete-time filters. FIR filter coefficients in conventional tapped delay-line implementations may
be adjusted dynamically without much regard to stability; such FIR systems are intrinsically stable.
One simply needs to take care not to change the coefficients so quickly that transients are introduced
into the filter output.

Stable IIR systems may also have their coefficients changed on-line, if the changes are slow
enough. It is possible to inject energy into an IIR system by changing the filter coefficients in such
a way as to make the filter output unbounded, even though the filter coefficients at each instant
in time may correspond to a stable fixed-coefficient IIR system. If the coeflicient changes are slow
enough with respect to the filter time constant then mismatches between the state variables and
coefficients are absorbed by the exponential decay of the filter.

Since the TIIR formulation depends on the careful cancellation between the impulse responses
of two IIR systems, changes in filter coefficients of a TIIR system would result in a very complicated
mixture of modes which are difficult to cancel out exactly. The behavior of such non-steady state
operation of TIIR filters is beyond the scope of this paper. Hence, it may seem at first glance that
TIIR filters would not be suited for deployment in situations where adjustable filters are necessary.

There do exist several possibilities for time-varying TIIR implementations, however. One way
is to change the coefficients of the TIIR system dynamically as we would change the coefficients
of a stable IIR system, taking care to match the tail-canceling IIR filter according to the impulse-
generating filter using synthetic division. In this case, we must depend on the resetting algorithm
given in Section 4 used to stabilize unstable TIIR systems. The use of this algorithm induces a
finite memory into the state variables of the system; after 2N samples are processed, the system will
again have the normally expected steady-state behavior. However, the period between the coefficient
change and the state-variable refresh gives plenty of time for an unstable TIIR system to accumulate
significant, exponentially growing errors. The result would then be quite unacceptable.

A better solution is to leave the filters invariant in time, thus avoiding the difficult analysis.
We simply need to calculate the desired target TIIR filter of length N, say Hj(z), with its states
initialized to zero. At the appropriate time, the input stream into Hj(2) is turned on and the filter
begins operating. After N time steps, the filter’s input delay line is full and its output has no startup

1R

transients. Given that H;(z2) is the starting filter, we may then transition to Hj(z) by cross-fading.
Let a[n] be some kind of ramping function such that

aln] = { (1): : _ g,’ (105)

and has smoothly changing values in between, and where T is the transition time. For example,
a[n] could be a linear ramp or some kind of exponential decay. T is assumed to be sufficiently long
that any transients induced by the transition are negligible. Then, the time-varying filter response
may be given by the cross-faded output

hi * z[n], n<ng
y[n] = { (1 —a[n —no))hy *z[n] + a[n — nolhz ¥ z[n}, no<n<ng+T (106)
hs * z[n), n>2ng+T,

where ng is the time step at which the transition begins. It is assumed that H3(z) has been properly
initialized, starting at least N time steps before the transition begins. At time ng + T the filter
output is determined by H3(z) so that Hy(z) may be turned off and its computational and storage
resources reclaimed.

Such a set-up may be used where H;(2) and H3(2) are linear-phase FFIR filters. In order to
preserve phase alignment, H;(z) and H,(z) should have the same FIR length of N.

Hence, we see that the TIIR and linear-phase FFIR algorithms may be used where time-varying
filters are required.

5.5 Computational Cost

Assuming that Hgjp (2) is a stable filter, we may implement it with 3P + 1 multiplies and 3P adds
per sample. Hgp(2) is then unstable and must be calculated with parallel state variables as outlined
in Section 4, Table 2, and the previous section. Table 2 reflects a few changes from the algorithm
outlined in Table 1 which are necessary to implement the reversed filter Hy;p(z). The cost for
Hgir(2) is about 4P adds and multiplies per sample, as discussed in Section 4. We see, then, that
the number of operations is about 7P multiplies and adds per sample.

It is interesting to note that implementing a partial fraction (parallel) structure for a transfer
function as opposed to a direct implementation, as in Eqn. (30) does not significantly alter the
number of multiply-accumulates used as long as the characteristic polynomials are monic and the
numerators have degree one less than the denominator. However, each separate factor requires an
additional input delay line of length Nj 4 M, which might be avoided by clever indexing. Also, the
algorithmic overhead may increase, not to mention a greater amount of design effort. The advantage
is that greater numerical stability is achieved, and /N may then be chosen arbitrarily large. Also, each
mode is present only where it is above the significance threshold As. Of course, a full factorization
is not necessary: it is sufficient to group together modes with the same magnitude, or to implement
only the troublesome modes separately.

The unit-magnitude-mode, linear-phase filters described in Section 5.3.1 are particularly compu-
tationally efficient. Since such filters are intrinsically self-hermitian, there is no need to implement a
mirror filter as in the additive and magnitude-squared design methods. Additionally, the resetting
only needs to be implemented infrequently, and may be absorbed into the overhead cost. Hence, the
computational cost should be approximately 3P operations per sample, plus the refresh overhead.

6 Simulations and Examples

16

: ;]

1800

1000
Time (Samples)

(e)

Figure 1: (a) Impulse response of TIIR system of Eqn. (107) truncated after 300 steps using stable
implementation. (c) Same as (a) except using unstable implementation—state variables refreshed
every 300 steps; thus the system has finite memory. (e) TIIR impulse response of reversed system of
Eqn. (112) using the stable implementation. Note that the quantization error grows without bound.
(g) Same as (e) except using unstable implementation. Again, state variables refreshed every 300
steps. (b,d,f, and h) Same as (a,c,e, and g), respectively, except on a decibel scale. The arithmetic
was done using double-precision floating point, but with 32-bit single-precision floating-point state
variables,

To illustrate the basic idea of a truncated IIR (TIIR) system, we examine the system

22

HG)= z—19; 700 (107)
+(z
= §+§zg (108)

which we wish to truncate after N = 300 samples; thus we wish to have an FIR response of 301
steps. We first form the tail-canceling polynomial as in Eqn. (29). We perform synthetic division
on z3%°B(z) by A(z) and obtain the remainder

B'*(2) = —0.1621262 + 0.139770 (109)

so that Hyp (2) of Eqn. (51) is defined. We plot the impulse response of the direct implementation
given in Eqn. (30) in Figures 1(a) and 1(b). We see that at step n = 301 the tail of the response
has been subtracted off and the response magnitude drops by about 115 dB. Due to quantization
errors, there is a residual response. Figures 1(c) and 1(d) show the same system, but implemented
using the algorithm presented in Section 4 and Table 1. Here, the system is forced to have a finite
memory and thus the residual response is completely canceled at time step n = 600 because the
state variables are refreshed every IV = 300 time steps.
We next form the reverse-conjugated system Hp;g(2) as described by Eqn. (57) and arrive at

—zB'~(2)+ 2~ VB~(2)

Hgp(2) = y=p) (110)
_ —0.1397702% + 0.162126z — z~V (a11)
- 0.9822 - 1.9z+1
—0.14262222 + 0.1654352 — 1.0204082~"
= , (112)

2% - 1.938776z + 1.020408

where, in the last equation, we have normalized by 0.98 in order to have a monic characteristic
polynomial. This system has unstable hidden modes and its impulse response is plotted in Figures
1(e) and 1(f). The tail is canceled with about 125 dB attenuation, but the quantization noise grows
without bound to overwhelm the signal eventually. Figures 1(g) and 1(h) show how the state variable
refresh technique completely cancels the quantization noise before it becomes significant.

6.1 Elliptic-Filter-Based FFIR Design Example

Elliptic Filter Coefficients
ao 1.00000000 || by | 0.05149489
a; | —5.20086294 || b, | —0.25706694
az | 11.46455205 || b | 0.57645267
a3 | —13.68525876 || by | —0.74102189
G4 9.32002688 || by | 0.57645267
as | —3.43103178 || by | —0.25706694
ag 0.53331689 || bs | 0.05149489

Table 3: Elliptic filter coefficients for the example in Section 6.1

We illustrate here the design of a low-pass linear-phase FFIR filter using the magnitude-squared
technique outlined in Section 5.2. We wish to design a filter which meets the following criteria:

18

¥ T T
o] \; (\\ |
S . : ;
My JARY ¢
L i : v ‘ v n i ',~'3-.q-—
't‘_i'*'i'u' [" AN
Ly 1 E‘\ l:
- : oL J

»!

OO
olioad hoquency

_(b)m _(c)

s/ \\ i ‘ — s ';\“" :

. A al H ‘N
= . l A R kTl
Q'i_j.__oi::‘fn:}l [Y) [y} '#_u AE" -Q.L.;:. Ot

(©) ®

! i 1
17 \ \
] / \ \ ' R
PP S— .y“:"':':&i‘,‘:'-‘ ":"'".l: "I"f'y‘"'l
g . N A
haa 3 I« 3 o.'u W e "#—u -.gn G ti' o un ™
aumalived Poguonsy ernined fequngy
(h) ®
Y T T T
T
i
i
i
@) m

Figure 2: Filter responses from the linear-phase elliptic filter design example in Section 6.1. (a-c)
Views of the untruncated response of H? (¢/“). (d-f) Views of the response of HZ g (¢/), with
truncation at N = 497. Note the ringing in the passband in (e) due to Gibb’s effect. (g-i) Views of
the hybrid filter H (e/“) Hgyp (¢/). Views (c), (f), and (i) have portions of an order 500 FIR filter
designed by the Parks-McLellan algorithm to have the same specs as the target filter, superposed
for comparison. (j) Group delay of the forward filter H(2) used as the design basis of Hgp (2). (k)
Group delay of the HZp (/). It is exactly 497 time steps. () Group delay of the hybrid filter

H (¢%) Hiyg (¢7).

19

Poles Residue | Ni | Ap(dB)
0.93560805 + 70.31706231 | 0.00710587 4 50.01100914 | 497 | —211.6943
0.93560805 — j0.31706231 | 0.00710587 — ;0.01100914 | 497 | —211.6943
0.88941945 + 70.28954430 { —0.06609826 + j0.02150355 | 116 | —233.0556
0.88941945 — 50.28954430 | —0.06609826 — 50.02150356 | 116 | ~233.0556
0.77540397 + 50.15290736 | 0.06436785 — 50.21546997 | 38 | —247.2166
0.77540397 — 70.15290736 | 0.06436785 + ;0.21546997 | 38 | —247.2166

Direct term: hg = 0.05149489

DU A W R

Table 4: Elliptic filter poles, magnitudes and decay times to significance level As for the example in
Section 6.1. The Ni’s are calculated using Eqn. (90) with As = 2~® and maximum input amplitude
p = 1. The Ap’s denote the precision floor necessary to implement this filter.

£=1 £=2
a1, | —1.87121609 0.97589092
bie | 0.01421174 —0.02027779
| o | 6.08847078e05 | —5.74152962e-05 |
az, | —1.77883890 0.87490286
ba,e | —0.13219652 0.10512570
)¢ | —3.88583695e-06 | —1.38234153¢-05
a3, | —1.55080795 0.62463198
bse [0.12873570 —0.03392829
e | 5.80618310e-05 | —4.35418795e-05

Table 5: Coefficients for the modal decomposition of the elliptic filter in Eqn. (113) and Eqn. (114).
The b}, , are calculated using synthetic division as outlined in Table 8 and N; from Table 4.

20

(1) Passband (0.00,0.10), in fractions of f,/2 with at most 0.080dB maximum peak-to-peak
ripple, where f, is the sampling frequency

(2) Stopband (0.11,1.00) with at least 50 dB minimum attenuation

(3) Linear phase

(4) 15 bits of fixed point significance in the mantissa.

(5) Maximum input amplitude is 4 = 1.0

Because of the sharp transition band in the interval (0.10,0.11), we select an elliptic filter as the
basis for our design [5]. We realize that our choice of H(z) only needs to meet half the specifications
of (1) and (2) above, and that (3) is irrelevant. Using Matlab, we find that an order 6 filter suffices
to give us a filter H(z) with the desired properties such that H?(z) satisfies the above criteria. The
arguments to the ellip function are

e N=6

¢ Passband ripple = 0.035 dB

¢ Stopband attenuation = 25 dB

o Cutoff frequency = 0.10 (normalized units).

We have allowed an additional 0.005 dB margin in the passband to anticipate Gibbs ringing due
to sequence truncation expressed in Eqn. (78). For the form given in Eqn. (5) the coefficients are
given in Table 3. Since the multiplicity of each pole is one, we may use Eqn. (90) to calculate the
decay times N; to the significance floor. We round up in each case. The poles are given in Table 4
as well as the magnitude and N}, for each pole. Because the coefficients come in complex-conjugate
pairs we may rearrange H(z) into three 2nd-order real terms so that

b11z=t +by 2272
14+a1327 +ay 2272

b1z7 + by 0272 bs127! + b3 922
1+ 02,12"1 + az,zz"z l14as; z-1 4 aa,zz"" ?

H(z)=ho + (113)

where the coefficients are given in Table 5. We then implement each term separately in the truncated
form given in Eqn. (30) to form Hy,(2) using each term’s decay-to-significance times Ny, N3, and
Nj for the cutoffs. The coefficients are calculated by using synthetic division as explained in Table
8 and are listed in Table 5. We choose N = 497 as the cutoff point for truncating the filter since
this is the largest Ni. Thus we may implement the forward filter as

b1zt by g2 = b 2=t —) 2~ (M1 +2)
1+a1227 +a; 222
b2,1z—l + bz’zz"? - b;,lz—(Nﬂ-l) - b’z’zz"(Nﬂ'z)
+ 1+a21271 +az2272
+ ba,lz-l + bs,zz"z - bé,lz'(N"H) — bs’zz—(N5+2)

1+as 1271 +a322™2

Hiip(2) = ho + (114)

Using Eqn. (57) we form

—b = b,z by g2 4 by 2 (M1 HD)
— = -N—N] 172 l'l U U 115
Hgp(2z)=ho+z 12+ G112 + 22 (115)
byg — by 127! H b2z 4 by 1z~ (Mot
Gz +az 271 + 272
2 — b3zt +byazNe 4 by 12~ (Net1)

asz2 + aa,lz'l +2-2

+ 2z~ N-Ns —

+ g—N=Ns "bg,

21

from the corresponding parts in Eqn. (114). Notice that each term is delayed by an appropriate
N — Nj, steps in order to align the phases of the response properly. To implement this filter we use
the algorithm of Table 2 and Section 4 due to the unstable hidden modes of each dynamic term.
We may wish to normalize the coefficients by a2 so that the characteristic polynomials are monic

in each term. At this point we form H%IR(Z) by cascading the output of Hpp(2) into the input of
Hip (2). This order may be preferable since the state-variable reinitialization scheme used in Section
4 ma.y introduce some discontinuities near or below the significance floor As. Thus, postfiltering by
Hix (2) attenuates any such additional noise, however insignificant.

We show in Figure 2 the results of our filter implementation. Flgures 2(a)-(c) show the ideal
untruncated H?(z) response from our design. Its decibel response is simply double that of H(2)
from Eqn. (113). Figures 2(d)-(f) show the truncated response of HEp(2) = Hpg(2)Hir(2)-
Notice the presence of Gibbs overshoot due to the truncation of the filter response. Figures 2(g)-(i)
show the implementation Hgjg (2)H(2) in which the tail of the forward response is not truncated.
The response is smoother, but there may be some slight deviations from phase linearity due to the
asymmetry. The error due to the tail response of H(z) should be small, however, since the tail of
each mode for Hitp (2) is cut off at the significance floor As. The phase responses for H(2), H(g(2),
and Hgp (2)H(2) are shown in Figures 2(j)-(1).

6.2 Windows and Polynomials

Unit-magnitude mode TIIR responses are convenient for generating well-known impulse response
functions for computing weighted averages of an input sequence. Often in signal processing appli-
cations, an exponential window is undesirable for averaging highly non-stationary data because of
the long tail. Finite-length windows with polynomial terms may be generated using multiple poles
at z = 1 and using Eqn. (38). The terms due to the binomial coefficients generate the polynomial
coefficients. The FFIR algorithm provides a cost-effective method for implementing such weighting
sequences. For example, the simple N-point rectangular window may be generated as a quasi-stable
TIIR filter with filter dynamics

1-2zN
Hrectangulu(z) = ‘I—:'F- (116)
The 2N-point Bartlett window is
11— 2N — z=(N+1) | ;=(2N+1)
HButlett(z) N 1-2z-1¢ 22 (117)
The N-point Hanning window, also known as the Hann window, is
1—z-N 1l-—cos (%) (z7'+ z‘N) + z—(N+1)
HHanning(z) =9 oy it . (118)
2 1—-2 2x - -2
1—2c0s(w—)z 142
The N-point Hamming window is
1— 2N 1—cos (e) (271 4+ 2~ N) 4 2~ (V4D)
Hgamming(2) = 0.547——— — 0.46 (119)

1- 2cos(~ 1) 27V 422

An example of a useful polynomial impulse response is the Kay window [6] used for statistically
efficient frequency estimation based on averaged phase differences with weighting coefficients

e~ 2L (3~ (2)) -

22

for1<n<N-1.

Hyay(2) = 'N'(N?G—_l) (121)
V- 1)z ' —(N41)2724 (N+ 1)z~ V-1 - (N-1)2"N—2

1-2z1)°

This implementation requires only six adds and two multiplies, independent of V.

7 Applications

We list here some of the many possible applications for TIIR filters.

7.1 Digital speaker crossover networks and mixers for digital audio ap-
plications

In the past, commercial digital audio systems designers have had to choose between efficient,
nonlinear-phase IIR filters and linear-phase, but computationally expensive, FIR filters. - Mixing
the outputs from non-linear phase filters may result in unwanted nulls in the combined frequency
response due to cancellation of signals with different frequency-dependent group delays. The linear-
phase TIIR algorithm combines the best of these features from both types of filter.

Group delay remains a potential problem, however, for real-time mixing applications with feed-
back to a performing musician. Delays of greater than 10ms have been known to be disorienting to
performers. Given an allowance of about 6ms for miscellaneous system delays in a digital mixer, we
may have about 4ms group delay in which to perform filtering. Quite reasonable filtering can be
performed within 4ms at studio sampling rates.

Consider that, with a 48kHz stereo sampling rate, a 25MHz Motorola DSP56001 can devote at
most 130 operations per sample to filtering, corresponding to an FIR group delay of about 1.46ms.
Thus, the DSP56001 would fall behind real-time performance with one stereo channel pair before
excessive group delay became a problem. On the other hand, a nice 2-pole Chebyshev type II
filter may be converted into a linear-phase TIIR filter with a cost of about 14 multiply-accumulates
per sample. This example illustrates the expense of FIR filtering and the potential gains from the
application of linear-phase TIIR filtering.

For off-line applications, group delay is not a large concern. In either case, considerable compu-
tational savings may be attained, depending on the filter specifications. Even in the age of rapidly
expanding hardware capabilities, a factor of N increase in algorithmic efficiency is valuable because
it allows N times more discrete-time filters to be simulated on the same hardware with the same
time requirements.

7.2 Multirate Filtering

One disadvantage of the fast FIR filtering methods is that, although they are computationally
efficient, they are limited to hop sizes of one. Multirate [7] or STFT techniques, which decimate
the data stream to account for a reduction in bandwidth, can be quite efficient, thus reducing
the relative advantage of TIIR filtering over FIR filters. However, polyphase interpolating filters for
upsampling in multirate systems may be easily implemented as TIIR filters, providing a great savings
in computation, thus gaining the best features of both filter design ideologies. The development of
applications of TIIR theory to multirate filter design is beyond the scope of this paper.

27

7.3 High-Resolution, Optimal Frequency Estimator

Kay derived the optimal weighting sequence for estimating the frequency of a pure-frequency sinusoid
in Gaussian noise from finite phase differences [8]. The window given in Eqn. (120) attains the
Cramér-Rao bound for moderate SNR. Eqn. (121) shows how a running average may be computed
using only 2 multiplies and 6 adds per sample, independent of the window length. Such a system
may be used for computing a running estimate of instantaneous frequency.

7.4 Polynomial Impulse Responses

Sometimes a finite-length window is desired for processing non-stationary signals where long expo-
nential tails are undesirable. Running windows such as the Bartlett, Hamming, or Hanning Window
give a more localized and symmetric average than a decaying exponential. Additionally, polynomial
responses with sinsuoidal modulation may be constructed easily, as seen in Section 5.3.1.

8 Summary

The power of the fast FIR algorithm stems from the ability to form complicated FIR sequences as the
quotient of two polynomials with relatively few non-zero coefficients. The resulting cancellation of all
the dynamic modes yields the desired FIR sequence. This may be thought of as “filter compression,”
in which low-entropy redundancies in certain kinds of FIR sequences are encoded using generating
functions based on IIR dynamics. We utilize unstable as well as stable IIR dynamics in creating our
TIIR responses by exploiting a state-variable-resetting technique which takes advantage of the fact
that FIR responses have finite memory. Another technique introduced here is the use of synthetic
division to generate a tail-canceling complement filter. Finally, the technique described in Section
5.2 allows the straightforward use of conventional IIR filter design methods for creating linear-phase
fast FIR filters.

References

[1] A.T. Fam, “FIR filters that approach IIR filters in their computational efficiency,” in Twenty-
First Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, pp. 28-30, Nov.
1987.

[2] T. Saramiki and A. T. Fam, “Properties and structures of linear-phase FIR filters based on
switching and resetting of IIR filters,” in Proc. IEEE International Symposium on Circuits and
Systems, (Piscataway, NJ), pp. 3271-3274, IEEE Service Center, 1990.

[3] A. Papoulis, Signal Analysis. New York: McGraw-Hill, 1977.

[4] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Englewood Cliffs, N.J.:
Prentice Hall, 1989.

[5] A. Gray and J. Markel, “A computer program for designing elliptic filters,” IEEE Trans. Acoust.
Speech Signal Process., vol. 24, pp. 529-538, Dec. 1976.

[6] S. Kay, “Statistically/computationally efficient frequency estimation,” in Proc. ICASSP, (Pis-
cataway, NJ), pp. 2292-2295, IEEE Service Center, 1988.

[7] P. P. Vaidyanathan, Multirate Systems and filter banks. Englewood Cliffs, NJ: Prentice-Hall,
1993.

24

[8] S. Kay, “A fast and accurate single frequency estimator,” IEEE Trans. Acoustics, Speech, and
Signal Processing, vol. 37, pp. 1987-1990, Dec. 1989.

25

Appendix: TIIR Code Listing

/*

Fast FIR code

Avery Wang

October 15, 1993

(c) 1993, Avery Wang
*/

#import <math.h>

#import <stdio.h>

#import <stdlib.h>

#define real float // Choose your precision: double or float

void make_tail_canceller(

int P, // This is the order of the IIR dynamics

double *a, // The coefficients of A(z)sz"P + a_1 z"(P~1) + ... + a_P.
// Thus A(z) is monic. There are P+1 elements in this array.
// In order to remain consistent, we make the assumption that
// al0l=1, a[1]l=a1, ... a[P)=a_P,
// so that the value of a[0] is actually ignored.

double *b, // The coefficients of B’(z)=b_0 z"P + b_1 z"(P-1)+ ... + b_P.
// There are P+1 elements in this array.

double *bb,// The coefficients to B"(z) -- The result of this routine are
// rTeturned here. Must be preallocated with P+1 elements.
// B’(z) has degree P-1 and thus has P coefficients.
// The reason space is allocated for P+1 coefficients
// is that sometimes we have to account for the reversed h_O
// component. See make_reverse_filter().

int N // The number of samples to propagate the impulse response
// in order to form B"(z).

)

/*
This routine performs the Euclidean algorithm
(also known as synthetic division) on 2°N B’(z) by A(z).
The remainder is the unique polynomial B’(z) of degree P-1 such that
z"N B’(z)~B"(2) is divisible by A(z), i.e. 2°N B’(z) is congruent to
B"(z) mod A(z). We assume that all coefficients are real.

*/

{

int i,j;

real #w; // working space. Holds running remainder.
real factor;

we(real *)malloc((P+1)ssizeof(real));
/**% load the numerator ##=/
for(i=0;i<P+1;i++){
wlil=b[i];

/**+ do synthetic division **»/
for(i=0; i<=N;i++){
factor=w([0];
for(j=1;j<=P; j++){
w[j=-1]=w[j]l-factor*aljl;

}
w([P]=0;
/#*#*+ The remainder after the i~th step is in w[0..(P-1)] sex/
}
/%%% copy the result to the output array s=+/
for(i=0;i<P;i++){
bbli+1]=uli];

26

}

bb[0]=0;

/#%% Notice that bb[0]==0. This is used to take into account
the fact that we may wish to add an extra term from
make_reverse_filter().

sex/

free(w);

void make_reverse_filter(

int P, // This is the order of the IIR dynamics
double *a, // The coefficients of the forvard
/1 A+ (2)=z"P + a_1 2°(P-1) + ... + a_P.
// A+(2) is monic. There are P elements in this array.
// In order to remain consistent, we make the assumption that
// al0l=1, a[1l=ai, ... a[Pl=a_P,
// 8o that the value of a[0] is actually ignored.
double #*b,// The coefficients of the forward
// B+(2)=b_0 z°P + b_1 z"(P-1)+ ... + b_P.
// There are P+1 elements in this array.
int N, // The number of samples to propagate the impulse response
// in order to form B-(z).
double *ar, // This is the output array for the coefficients of
/1 A-(2)=z°P + a_(P-1)/a P z°(P-1) + ... + a_1/a_P z + 1/a_P.
// Thus A-(z) is the result of reversing the
// coetficients of A+(z). We normalize by a_P in order
// to make A-(z) monic. There are P+1 elements in this array.
// We return ar[0]=1, ar[i] = a_(P-1)/a_P,...,
1/ ar[P-2] = a_1/a_P, ar{P] = 1/a_P.

double *br, // Output array holding the coefficients of
// B-(z)=b_P/a_P z°P + b_(P-1)/a_P z"(P-1)+ ... + b_0/a_P.
// There are P+1 elements in this array.
double *bbr // The coefficients to B-(z) -- The result of this routine are
// returned here. Must be preallocated with P+1 elements.
// B-(z) has degree P an thus has P+1 coefficients.

This function takes the parameters P, a[], b[], and N, and calculates
ar[],br[], and bbr{J. The input arguments correspond to the system
coefficients for a TIIR filter H+(z) with the tail-canceller specified
implicitly. The system given by the output arguments is a TIIR

filter H-(z) whose impulse-response is the reverse of H+(z). Note that
in the general case we want the impulse response H-(z) to be the
reverse-CONJUGATE of H+(z), however since these routines only handle
real coefficients there is no need to conjugate the system coefficents.
We assume furthermore that the output arguments are all pre-malloc’ed.

int §;
;:oal a_P;
double *bb;

/**% create ar[] *=#/

a_P=a[P];

for(is=0;i<P;i++){
ar[P-i)=afi)/a_P;

}

ar[0])=1.0;

/*%%x create br[] s»s/

bb=(double *)malloc((P+1)*sizeof (double));
make_tail_canceller(P,a,b,bb,N);

27

for(i=0;i<=P;i++){
br[P-i]=bb[il/a_P;
}

/#%x create bbr[] ***/
for(i=0;i<=P;i++){

bbr[P-i]=b[il/a_P;
}

free(bb);

void do_stable_tiir_filter(

double *input, // Input signal
int input_length, // Length of input in samples
double *output, // Preallocated output array, same length for
// input and output samples.
int P, // Order of IIR filter
double *a, // Characteristic polynomial of IIR filter. Assumed

// to be monic and of the form

/7 A(z)=z"P + a_1 z~(P-1) +...+ a_P, s0
// that a[0]l=1, a[1)=a_1, ... a[Pl=a_P.
// Hence a[] has P+1 elements.

// The value of af0] is actually ignored.

double *b, // Numerator of IIR transfer function B(z)=b_0 z°P.
// ©[0]=b_0, ... b[PJ=b_P. P+1 elements in b[].
double *bb, // Rumerator of tail-canceller

// B’(z) = b’ 02°P + ... +b’_P, vhere

// ©vb[0]=b’_0, ... , bb[P-1]sb’_P. P+1 elements.
int N // Etfective order of FIR response.

// Note that length=N+i !

We assume that the roots of A(z) have abs value <i.

int i,j;
int input_dl_length;
int input_dl_mod;

real #*input_dl;
real *q; // State variables
real new_result;

q= (real *)malloc((P+1)*sizeof(real));

[xex
Need to make a delay buffer with length = 2°n >N+P+1,
On some DSP chips we may directly implement a ring buffer
of arbitrary length.

(119

for(input_dl_length=1;

input_dl_length<N+P+1;
input_dl_length+=input_dl_length);
input_dl_mod=input_dl_length-1; // Should be 2°n -1
input_dl=(real *)malloc(input_dl_length*sizeot(real));
/%%% zero out delayline #s=/
for(is0;i<input_dl_length;i++)
input_d1[i]=0;
/#%x%clear out state variablessss/
for(i=1;i<=P;i++) // Note that q[0] is not used.
qlil=0;

28

/esxkers Do filter iterations s*ssxssas/

for(i=0;i<input_length;i++){
new_result=0;
/%% put current input sample in delay line *#/
input_d1[i&input_dl_modl=input[i];

for(j=1;j<=P;j++){
nev_result-=a[jl*q[jl;
}

for(j=0; j<aP; j++){
new_result+=b[j]l+input_dl[(i-j)&input.dl_mod];

}

for(j=0;j<=P;j++){
nevw_result-=bb[jl*input_dl[(i-j-N)&input_dl_mod];

}

/**+ ghift states ®*=/

for(j=P;§>1;j--){
q[j)=qlj~13;

q[1)=nev_result;
output [i]=new_result;

}

/* free any pointers here */
free(q);
free(input_dl);

void do_unstable_tiir_filter(

double *input, // Input signal
int dinput_length, // Length of input in samples
double *output, // Preallocated output array, same length for
// input and output samples.
int P, // Order of IIR filter
double *a, // Characteristic polynomial of IIR filter. Assumed

// to be monic and of the form

// A(z)=z"P + a_1 z"(P~1) +...+ a_P, 80
// that a[0]=1, a[1)=a_1, ... a[Pl=a P.
// Hence a[] has P+1 elements.

// The value of a[0] is actually ignored.

double *b, // Kumerator of IIR transfer function B(z)=b_0 z"P.
// bl0]=b_0, ... b[P]=b_P. P+1 elements in b[].
double *bb, // Numerator of tail-canceller

// B*(z) = b’ 0 z°(P-1) + ... +b’_(P-1), vhere

// bb[0)=b’_0, ... , bb[P-1]1=b’_(P-1). P elements.
int X // Effective order of FIR response.

// ¥ote that length=N+1 !

We assume that the roots of A(z) have abs value >1.
We have to use the dual-buffer trick for removing quantization
error. Anybody know if there is a reference for this??

int i,j;
int input_dl_length;
int input_dl_mod;

real »input_dll, *input_dl12; // Input delay lines

Teal *q1,#q2; // State variables: primary and auxilliary
real nevw_result;

20

qi=(real *)malloc((P+1)#*sizeocf(real));
q2=(real *)malloc((P+1)*sizeof(real));

FAIT]
Need to make a delay buffer with length = 2°n >N+P+1.
On some DSP chips we may directly implement a ring buffer
of arbitrary length.

wxn/

for(input_dl_length=1;
input._dl_length<N+P+i;
input_dl_length+=input_dl_length);
input_dl_mod=input_dl_length-1; // Should be 2°n ~1
input_dli=(real *)malloc(input_dl_length+#sizeof(real));
input_dl2=(real *)malloc(input_dl_length#sizeof(real));
/%%% zoro out delaylines »»s/
for(i=0;i<input_dl_length;i++)
input_dl1[i)=0;
//input_d12[il= 0;
/+**%clear out state variabless**/
for(i=0;i<=P;i++)
q2[il=0;

/##ssess Do filter iterations ssssssssx/

/

for(i=0;i<input_length;i++){

do primary TIIR filter first /
int mod_count;
nev_result=0;
/*%% ghift states **x/
12 (1% (W) ==0){
mod_count=0;

/#%+ copy over auxilliary state periodically s*s/
for(j=P;j>0;j--){
q1{jl=q2[j-13;

for(j=1; j<=P;j++){
input_d11[(i~-j-N)&kinput_dl_mod]=0;
}

for(j=0;j<=P;j++){
new_result-=bb[j]
sinput_d11[(i-j-N)&input_dl_mod];
}
}
else{
/#esxss othervise, just shift old states »ssssx/
for(j=p;§>0;j--){
qiljl=q1[3§-11;

for(j=0; j<=P;j++){
new_result-=bb[j]
*input_d11[(i-j~N)&input_dl_mod];

}
}
/#%* put current input sample in delay line ##/
input_d11[i&input_dl_mod]=input[i];
/+%% Do filter dynamics ssx/
for(j=1;j<=P; j++){

new_result-=a[jl*q1[jl;

}

for(j=0; j<=P; j++){
new_result+sb[j]*input_dl1((i-j)&input_dl_mod];

}

q1[0]=new_result;

30

output [i]=nev_result;

[enx do auxilliary TIIR filter next ssssssssxssxsns/

/%% shift states #xs/
input_dl2(i&input_dl_mod]=input[i];
12(iN(N)==0){

/e*xxx perjodically zero out states *s«ss/
for(j=1i;j<P;j++)
/%* zero input delay line *x/
input_d12[(i-j)&input_dl_mod])=0;

for(j=1;j<=P;j++)
/%% zero input states *s/
q2[jl=o;
q2[0]=b[0] *input[i];
else {
/s%+%x othervise just compute auxilliary filter normally ##ss/
for(j=P;§>0; j-~){
q2{j1=q2[j~1];
new_result=0;
tor(j=1;j<=P;j++){
new_result-=a[jl*q2[j];
}
for(j=0;j<=P; j++){
new_result+=b[j]*input_d12[(i-j)2input_dl_mod];
}
q2[0)=new_result;
}
}
/%%» free any pointers hers »**/
free(ql);
free(q2);
free(input_dl1);
free(input_dl12);

void do_linear_phase_fir_filter_additive(

double *input, // Input signal
int input.length, // Length of input in samples
double *output, // Preallocated output array, same length for
// input and output samples.
int P, // Order of IIR filter
double *a, // Characteristic polynomial of IIR filter. Assumed

// to be monic and of the form

1/ A(Z)sz"P + a_1 z~(P-1) +...+ a_P, s0
// that a[0)=1, al1l=a_1, ... a[P]l=a_P.
// Hence a[] has P+1 elements.

// The value of a[0] is actually ignored.

double *b, // Numerator of IIR transfer function B(z)=b_0 z"P.
// ©[0)=b_0, ... b[PIsb_P. P+1i elements in b[].

int N, // Effective langth of FIR response segment.

int M, // oftset

int sign // +1 or 1. These are the real-valued choices

// for phase. 1If this were a complex-valued
// routine, this would be exp(i phi).

Given the input parameters a[], b[], M,N, and P, this function
creates the linear-phase filter as outlined in the paper by Wang

and Smith. The output samples are computed and returned in output(].
It is assumed that the stable response is encoded in a[]J. The
routine generates the forward and backwards FIR responses.

int i;

double *aux_output;
double *bbx;

double *ar,*br;

aux_output=(double *)malloc((input_length-M)+*sizeof (double));
ar =(double *)malloc((P+1)*sizeof(double));
br =(double *)malloc((P+1)*sizeot(double));
bbx=(double *)malloc((P+1)*sizeof(double));

make_tail_canceller(P,a,b,bbx,N);
do.stable_tiir_filter(input,input_length-M,
aux_output,P,a,b,bbx,N);

make_reverse_filter(P,a,b,N,ar,br,bbx);
do_unstablo_t1ir_tiltor(input,input_longth,output.P,ar,br,bbx.l);
for(i=0;i<input_length-M;i++){

output[i+M] += sign+aux_output[i];
}

free(aux_output);
free(ar);
free(br);
free(bbx);

void do_linear_phase_fir_filter_cascade(

double #*input, // Input signal
int input_length, // Length of input in samples
double *output, // Preallocated ocutput array, same length for
// input and output samples.
int P, // Order of IIR filter
double *a, // Characteristic polynomial of IIR filter. Assumed

// to be monic and of the form

// A(z)=z"P + a_1 z~(P-1) +...+ a_P, s0
// that a[0]=1, a[1)=a_1, ... a[Pl=a P.
// Hence a[] bhas P+1 elements.

// The value of a[0] is actually ignored.

double *b, // Numerator of IIR transfer function B(z)=b_0 z"P.
// ©{0]=b_0, ... b[P]sb_P. P+1 elements in b[].
int N // Effective length of FIR response segment.

Given the input parameters a[]l, b[], X,N, and P, this function
creates the linear-phase filter as outlined in the paper by Wang

and Smith. The output samples are computed and returned in output(].
It is assumed that the stable response is encoded in a(]. The
routine generates the forward and backwards FIR responses.

double *aux_output;
double #*bbx;
double *ar,*br;

aux_output=(double *)malloc((input_length)+*sizeof(double));
ar =(double *)malloc((P+1)*sizeot (double));
br =(double *)malloc((P+1)*sizeof(double));
bbx=(double *)malloc((P+1i)ssizeof(doudble));

make_tail_canceller(P,a,b,bbx,N);
do_stable_tiir_filter(input,input_length,

32

aux_output,P,a,b,bbx,N);
make_reverse_filter(P,a,b,N,ar,br,bbx);
do_unstable_tiir_filter(aux_output,input_length, output,P,ar,br,bbx,K);

free(aux_output);
free(ar);
free(br);
free(bbx);

an

