CENTER FOR COMPUTER RESEARCH IN MUSIC AND ACOUSTICS
OCTOBER 1993

Department of Music
Report No. STAN-M-85

SLAPPABILITY:
A NEW METAPHOR FOR HUMAN COMPUTER INTERACTION

Daniet V. Oppenheim

CCRMA
DEPARTMENT OF MUSIC
Stanford University
Stanford, California 94305

Slappability:
A New Metaphor for

Human Computer Interaction

12 M\je

Daniel V. Oppenheim

Center for Computer Research in
Music and Acoustics (CCRMA)

Stanford University 1993

Slappability:

A New Metaphor for Human Computer Interaction

Daniel V. Oppenheim

Computer Music Center
IBM T. J. Watson Research Center
P.O. Box 218, Yorktown Heights, NY 10598

Music @ watson.ibm.com

Foreword!

Under current technology, as applications evolve
into more complex systems they also become
harder to use. Multiple views and representations,
direct graphic manipulation, configure graphic
interfaces, and extensibility via user programming
are techniques widely recognized as improving the
human computer interaction (HCI), However, there
is no uniform methodology for using multiple
views or, more important, for being able to use
different underlying representations and move
between them within a single application ([Honing
92], for a general discussion of music
representations see [Dannenberg, 93] and [Wiggins,
93]). Moreover, user-environments often take a
unidimensional approach that enables either direct-
graphic-manipulation or user programming—the
former is typically chosen for non-technical users
and the latter for ‘computer experts’.

The thesis put forward in this paper is that a
blending and wnification of the above techniques
within a single user-environment is highly
desirable. This should enable the design of more
comprehensive and complex software systems that
are yet more natural to use, quick to learn, easy to
extend, and accessible to a more diverse
community of users.

Slappability is an object-oriented mechanism that
helps bring out many of these capabilities. T
developed it at the Center for Computer Research
in Music and Acoustics (CCRMA), Stanford
University, between 1992 and 1993. This paper
explains Slappability, provides specific examples
from its implementation within the DMIX
environment, and discuss its potential
applicability to human computer interaction, The
reader should bare in mind that the ideal place to

1 This work was carried out at the Center for

Computer Research in Music and Technology
(CCRMA), Stanford University.

implement Slappability would be within the
framework of an operating system rather than
within specific application.

1. Motivation: Harnessing the
Complexity

My recent work at CCRMA has focused on the
design and implementation of software to support
composing and performing music, namely, the
DMIX environment [Oppenheim, 1993], written in
ParcPlace Smalltalk-80. A major concern has been
to support the user's creativity, or at least to
minimize the system's interference with his/her
natural flow of ideas. As a result, DMIX has
evolved into a large and complex environment. It
includes many different components which are not
grouped together in any other system: a
programmable algorithmic input language (Quill
fOppenheim, 901), MAX-like real-time interactive
modules, high-level graphic and real-time editors,
numerous high-level tools such as Modifiers,
Extractors, and Enumerators, score tracking
capabilities, and more. The rationale for this
diversity in tools, and hence overall complexity, is
that each such tool has a different appeal to
different people and that its usefulness changes as
musical conditions evolve. The overall goal is to
enable composers to move easily between such
diverse tools and representations, thus aiding them
in expressing their creativity.

Unfortunately, the ever evolving environment
eventually became overwhelmingly complex. In an
effort to make it more natural to use, yet without
sacrificing functionality, system complexity, or
extendibility, I finally came up with the idea of
Slappability. Slappability has been fully
incorporated into the DMIX environment. My
evaluation of Slappability is based on my
observations of composers using the system and
on my experiences in teaching composition using
the DMIX systemn at CCRMA, Laboratorio de
Investgacion y Procuccién Musical (LIPM) in

Argentina, Bar Ilan University in Israel, and the
National Chaio Tung University in Taiwan. Users
background was varied and included non musicians,
seasoned instrumental composers with little prior
experience in computer music, as well as
experienced computer musicians. The ease with
which they performed complex tasks that otherwise
require expert programing skills, and the short time
in which novices could harness the system towards
their creative goals, illustrates the merits of
Slappability.

2. Slappability

Drag and drop allows the user to select a source
object by clicking. A target is selected by dragging
the source and releasing the mouse button. This
mechanism merely initiates a transfer of data
between the source and target objects. Typically,
the source pastes data into a global clipboard so
that the target may retrieve it. This mechanism is a
convenient shortcut that, in its very essence, is
limited to simple operations involving data
transfer, such as Copy and Paste.

Slappability takes this mechanism a crucial step
further. Once the source and target have been
selected, a direct communication between the two
objects is initiated. The target object receives a
single message with the source object as an
argument:
target getSlappedWith: source

It is now entirely up to the source and target
objects to negotiate a response. Different objects
respond in different ways and since the two objects
themselves are now interacting directly, a world of
endlessly rich possibilities becomes available. In
DMIX, for example, Slapping text onto Graphics
enables non-technical users to extend graphic
manipulation in ways that would otherwise require
skilled programming (see the example in section
4.2); carefully worked out compositions can be
Slapped onto interactive Max-like objects that
allow the user to 'perform' them and add expressive
nuances, and much more (extensive examples
follow).

The method getSlappedWith: is
implemented in Class Object, ensuring some
default action that will always take place, Every
subclass may override this method in order to
implement more appropriate behaviors. There are
several additional bells and whistles, such as using
menus when several Slap-behaviors make sense,
passing the screen points at which the user clicked

as an argument, or using a double-dispatch
message passing technique—but these additions do
not change the basic concept,

Three basic responses might take place: the source
or target objects might be modified, they could
both participate in modifying a third object, or a
new object might be created. There are often
several plausible responses, in which case a pop-up
menu would offer different alternatives.

Slappability seems to have a magical effect on
users: they quickly take advantage of the system's
complexity and frequently jump between different
tools and representations, or find ways of
transforming their musical materials into tools,
and vice versa. In fact, it apparently takes users
less time to become comfortable in using DMIX
than is the case with other high-end environments
that implement only a single facet (i.e. either
programming, or graphic editors, or real-time
interaction, etc.).

3. Examples in DMIX

The first two examples will demonstrate the basic
concepts of Slappability in some detail. The
examples that follow illusirate less obvious
possibilities.
3.1. Modifying music
objects via Slappability

Figure 1-a is a DMIX piano roll view of the Bach
Preluded no. 1 in C major. Time is represented on
the X axis and pitch on the Y axis. The length of a
note is proportionate to the length of its rectangle.

Editing Dmix: Demo

playviews |pfS)] + View [- View Score
1 Slm BachPreluded Edit 1

?

o) [s.s] (0:127)

11.0

Figure 1-a: a graphic view of the Bach Prelude no. 1

Figure 1-b is a standard DMIX sine Function. Note
the default window settings of the Function
(second line in the label above the view): the X
axis is interpreted as time and is set from O to 1

second, the Y axis is set to accommodate MIDI
values of 0 to 127,

FunctionView: sine
Times: [0.0 : 1.0] Y-values: [0 : 127] {87}
[£] # | nip Junes| & [o |2
Ve
d . .
N /
»
e
1 T T "'l""l"'\l\l‘ ._-r.’/l
0.1 0.3 0.5 0.7 0.8

Figure 1-b: standard DMIX sine Function

The Slapping mechanism is initiated by keying
COMMAND-S within the Function’s view, Here
the Function is dragged and Slapped onto the Bach
Prelude.

‘Edltlng Dmix: Demo
playviews |p Fiadrata View | Seora |? m“'ﬁ‘
iy JsImiThg BaohPrelttigl (Edit 1] [88] (0:127)

Figure 1-¢: Slapping the sine Function onto the Bach
Prelude

Unlike a drag and drop, a dialog now takes place
between the Function and the music-object
representing the Bach Prelude. The Function finds
out the duration of the Prelude and adjust its X axis
accordingly (note the new window setting in
Figure 2-b). Then, the music-object requests the
Function to apply itself on its pitch-parameter (a
default). The result of this process is seen in the
following Figure:

Editing Dmix: Demol
playvlews ph] + Viewl - viow I Scora |'3 mﬁ-‘_ﬂ

BachPreluded Edit 1 [[86] ¢os127)
- 11.0

W0 - 11.0]

Figure 1-d: The result (by default pitch is affected)

3.2. Additional Slap
options: modifying tempo

Note that there are many different ways in which a
function might affect the Prelude. For example, it
might be used to set any other parameter, such as
velocity, duration, or MIDI channel number. It
might also be used to scale a parameter, to modify
time, or to modify tempo. A completely different
intent might be fo first transform the function into
a music object and then merge or insert it into the
Prelude. In the current implementation, a SHIFT-
Slap pops-up a hierarchical menu that offers the
non default alternatives:

@ channel

ndify paramarer| pltch delta -shannel
modify time)| Delta-pitch duration
PASTE Into vlew [other parametei] - pitch
save as Time—Grid delta-pitch
velocity
delta~velocity

@ TIME
medify parameterH deltaTime

modify time b TEMAPG
FIT Rhythm
save as Time=-Grid [Fit-Quantize Tempo)

Figure 2-a: other Slap options become available by
SHIFT-Slapping

The following example demonstrates how the same
TFunction can now be used to further modify the
tempo of the already modified Prelude. Medifying
tempo requires a scaling of the delta-times between
notes. To facilitate this, the Function’s mode is set
from ‘=‘ to */* (division). The Function’s Y axis is
also changed and sef to the range of 0.5 to 2 so
changes in tempo are set between half and double
that of the original. Note that the Function’s X
axis is already set between 0 and 11 seconds—this
was changed by the music object during the dialog
that took place in the previous Slap.

Functionview: sine
Times: [0.0 ¢ 11.0] Y-values: [0.5 1 2] {87}
[} ® [t [ines| & o [T o1y
.’,/
e .
™
AN /]
-
¥
\ e
T T T T T T T T T T
1.0 .0 5.0 7.0 9.0

Figure 2-b: setting the function to enable tempo
modification

The Function is SHIFT-Slapped onto the graphic
view, and the option: *modify time; TEMPO’ is

selected from the hierarchical menu shown in
Figure 2-a. The result is seen in figure 2-c:

Edlting Dmix: Demnl

playViews p + Yiew | - View | Scare |? mﬂ—
i BachPreludel .Edit 1 | t38] (ou1z7y

[0.0 - 11.0] 1.0

Figure 2-c: result of modifying tempo

3.3. Transmogrification

In the previous examples a Function was Slapped
onto the Bach Prelude and modified the music.
Slapping a music object onto a Function has a
completely different effect. Now, the music object
is modifying the Function. The Function’s data
(collection of x-y points) are replaced with new
points that are collected from the Slapping music
object. In the following example a 4.6 second
phrase from of the Bach Prelude (a) Slapped onto
an arbitrary Function (b). As a result, each x-y
point in the Function’s data now corresponds to a
begin-time / pitch of a note in the corresponding
phrase (c). The pitches are represented in the Y
axis, and the onset times, or rhythms, on the X
axis:

{dis] J X S [m [rT] BachPrefudeq .Edit 1 | [38] cori27y

[0.42 - 11.42]

representation of the music, though some
information was lost (i.e. velocity and MIDI
channel). In fact, the technique demonstrated above
could be used to represent the music as a collection
of functions, one for each parameter (pitch,
velocity, etc.). In other words, the user is thus able
to actually modify the underlying music
representation he/she is using. Secondly, whereas a
user would naturally think of the piano roll
notation as a representation of music, and of the
Function as representing an abstract, high-level,
mathematical tool, Slappability helps blur these
conceptual differences. Now the user may think of
the Function in musical terms, such as a phrase
from the Prelude, or as a collection of the thythms,
or as gestural or dynamic information,

This property of Slappability that enables the
transformation of one object, or representation,
into another, seems particularly usefyl and I call
Transmogrification. In the following example a
Jazzy improvisation is Slapped onto a Function
(a), the resulting rhythms are extracted and become
the Function's data (b}, The new Function, or
rather the Jazzy rhythm, is then Slapped onto
Bach's Prelude in C major (¢) with the result being
a thythmically Jazzed-up Prelude {d)—the onset
time of each note in the Prelude is shifted to the
closest onset time in the Jazzy improvisation,
often forming interesting chords.

FunctionView: - unNamed —

= [L] = |ﬂip|lines|€ﬂ”|uo|‘3 [1o
T e ey ———

el o

(“)'0.1 " bs U hs oy T b |

Function¥iaw: —

| RN T
il |

g

(m Tool
{(function)

o U so U Ha T Tee T e T
Revil>

[Functionview: from: Salection | I

: (g e o] F[we]P] on |

C Pitches (Y-axis) . !

ity et a] Music
(function!)

Rhythms (X-asis) 1
b5 s ' o5 Bs %s |

Figure 3: Slapping a music object onto a Function
Two subtle, yet extremely important, points
should be noted. Firstly, the Function is now a

FunctlunVlew —~ unMamed ~

" [ﬁ] * 'ﬂlptline:lé\:‘"l Ilolo E {0y

fid J Slm} Thg)

BachPreludeq .Edit 1

TEEATTI BachPreludet .Edit 1 [e8] (0:127)

[0.0 - 14.0] 1.0

..u_n.n.l.'..'n.'d.'m.-h.l_m__u.q
©

Figure 4: Transformations between music and tools

3.4. Creating new objects

Slapping can also produce new objects. Slapping
one Function onto another can create a new
Function that is the resultant of some
mathematical operation between them. In Figure 5
a sine-wave Function is Slapped onto an up-ramp
Function (a). In (b} the Functions are multiplied
by each other and in (c) they are added. Tools can
thus easily be personalized either by
transmogrifying some other object into a tool, or
by creating new tools based on existing tools.

Functlonview; up |
=

FunctionVlaw: up * sina

FunctlonView: up + 5lnal

» | tiip|iine 1r0|'s | {267}

] ® e fined & |vo|? | (300

Figure 5: Slapping one Function onto another

3.5. Graphics and

Algorithms

In the following example (Figure 6}, music was
selected in a graphic view and then Slapped onto an
empty edit window of a QUILL algorithmic music
generator [Oppenheim 90]. The music-event, that
is 13 notes long, is transformed into an ASCII
algorithmic description using the QUILL syntax.
Compiling this text will regenerate the same
music. However, the algorithm can now be
changed to produce a musical result that cannot be
obtained via graphic manipulation.

GQuill Editer: uncompiled text

fiy| 170 Y
wvoiceloop: fromSelection notes; 13
wart pitohes durations
initit

I tempEvent I de | ?

A A

pitches + Pattern on: #(*as' "d6" ’f6’ "o4" "ds"
g5 'dE” MfG° *gs? *d6” 67 Yad? fes’),
durations + Pattern om #(150 150 150 4200
150 150 150 150 150 150 150 1200 150).
!
lewpis
celf piteh! piteches next.
self duration: durations next.

Figure 6: Converting music-events into algorithms

The voiceLoop syntax above is closely modeled
after the VOICE construct in PLA [Schosttstaedt
1983] and the PART construct in Common Music
[Taube, 1981]. In the above example a loop creates
a voice named *fromSelection’. The loop
will iterate 13 times (notes: 13), once for each
note in the original phrase. Two variables are
declared: pitches and durations. In an
initialize block (init : :) each variable is assigned
a Pattern—a list accessing object. The list provided
to each Pattern is the collection of a parameter field
from each of the I3 notes. The loop (loop: :)
simply assigns the next parameter in the list each
time it iterates.

The voiceLoop syntax used above is almost pure
Smalltalk, and a composer that is also an
experienced Smalltalk programmer could add
conditionals, use Functions to modify parameters,
and many other objects made available by
Smalltalk and DMIX. However, a novice user will
need a considerable investment in time in order to
acquire the programming skills needed to work on
this level. In order to make Quill accessible to non
programmers, a much simpler input format was
implemented. The first five notes could be entered
in this manner (comments are surround by double
quotes):

“list of pitches”
p: a5 & f6 b4 d5

“list of durations”

d 150 150 150 1200 150

An interesting discovery I made was that
Slappability enabled me to significantly extend the
power and flexibility of this simple syntax. The
key to this improvement was the ability to Slap
any object into Quill, where it would become
available to the user. For example, the Bach
Prelude in Figure 4-c could be Slapped into Quill
as a motive. Similarly, the Function uvsed to ‘Jazz
up’ its rhythm in Figure 4-b could be Slapped and
saved in Quill. Assuming this has been done, the
entire syntax needed to obtain the exact same result
that was obtained graphically in Figure 4 would be

the following:

“mark begin time (t:)”
t: [beginFunction: ‘Jazzy Rhythm’}
insertMotive: ‘Bach Prelude’

“mark end time”
t: [endFunction: ‘Jazzy Rhythm’]

3.6. Composition and

Performance

Figure 7 shows a graphical view of already
composed music being Slapped onto an ECHO—a
MAX-like real-time algorithmic music processor.
The ECHO accepts the music as if it were being
input by a performer in real-time. The composer
can now interact with the music and add expressive
nuances as it is being processed.

EchoEditor: unHamedl
7 Ja | hRevord |57 do
0.0 62 [1830] | 2] -7(4.0 - 34%9]] &
'Y
FHE i 3 o .
i wi i
|1}
nedelaylrat mHNethepasi "
sz JtconfPOrShacon{ Cs1 [PrOeyeOrCioice
Editing DenJx: HappyEnd
playViewsdl p [&] Record | + Viewl- View'-» Slgna.' Score |? FBHI-S
bid N s[m Rythm Edit 1 [r131] cor127)

[0.0 - 34,48}
0 Oty . o Oy
."‘,‘-_nsf’m'ég'h' oS et

T T T T L e ey
16.0 25,6

34,49

Figure 7: Performing Compositions

4. Complexity versus Usability

As programs become more complex, they also
become harder to use. Examining this problem
from several perspectives will demonstrate how
Slappability should prove useful.

4.1. Menus, Buttons, and

Libraries

In the evolution of commercial applications, it
seems that as newer versions become more
sophisticated they also become maore complicated
to use. For example, Microsoft Word used only
about 20 menu-items in the 1984 release, but by
1992 there were over 50 [Microsoft 1992].
Similarly, the first version of Aldus SuperPaint
required about 350K of disk space. Two versions
later it occupied about 3.2 Megabytes, and the
number of menu-items and tools increased
proportionally. Unfortunately, so did the
difficulties in using it (based on my experiences
and those of my colleagues). The direct relation
between complexity and difficulty of use may be
an inevitable result of what I term a Linear Design
Paradigm. The issue of interface is taken quite

literally: for each operation that the program can
support there is one menu item (or button} for the
user to click on. As applications get more
sophisticated their user-interface invertibly
becomes more cluttered and therefore harder to use.

My premise is that no matter how many menu-
options are available, a creative user will always
want to do something NEW for which there is no
menu button. Simply increasing the number of
menu-items in new releases to accommodate for
users 'wish lists' is counterproductive since the
added complexity in the user interface hampers the
efficient use of the application.

With Slappability I have discovered two things.
Firstly, for many operations menus can be
bypassed altogether, making the system much
more manageable and natural to use. Secondly, I
discovered unexpectedly that users who were
working via Slappability rather than menus started
doing things that I, as a designer, never thought of
and for which no menu-item was available. In
other words, not only was the user's creativity less
impaired by the system's design, but also the
system's design was enhanced by the user's actions,
and that is no small matter!

4.2. Graphic manipulation

Vs. Programming

There seems to be a dichotomy between two
fundamental approaches to user-interface design:
namely direct-graphic-manipulation and
programming. Compare Microsoft Word, which is
menu driven and simple to use, with EMACS or
TEX, which are more flexible due to their
programmable interface but require a large
investment in time to take full advantage of their
flexibility. Similarly, compare commercial MIDI
sequencers (with graphical interfaces) to high-end,
programmable, ASCII-based environments such as
Common Music [Tanbe, 1990]. Regrettably, the
application designer must compromise and choose
between one approach or the other.

Through Slappability, however, I found ways that
avoid such a compromise and bridge between the
two. By typing text (source code) into any text-
window and Slapping it onto a graphic editor
DMIX users can achieve results that otherwise
require expert programming skills. Moreover, by a
careful factoring of the design I eliminated the need
to know about the underlying data-structures or
implementation. Thus even novices can enjoy
many of the benefits of programming while
working with a familiar, and reassuring, graphical
interface. For example, Slapping the following

line of text onto a graphic view will cause the
MIDI pitches (key numbers) to equal that of the
same notes’ velocity + a random value between 0
and 5:

event pitch:event velocity
+ (random next * 5)

The following text will access the currently
selected notes in the graphic editor, extract their
#pitch parameter, transform that into a Function ,
then open a graphic editor on that Function:

(activeSelection asEvent
asFunction: #pitch) edit

4.3. Formalism and the

Creativity Flowchart

Software design has traditionally consisted of two
stages. First the domain, and then the task (the
way a user works), are formalized and modeled in
software. The domain is modeled as a set of data
structures and primitives. The task is modeled and
implicitly formalized in the overall application
design and user-interface. In many domains this
works well—NASA can fly astronauts fo the
moon in auto-pilot mode. But in domains where
the user's creativity plays a vital role, such as
music composition, or graphic design and
animation, pre-determining how a user must work
can have a profoundly negative effect on the end
result. Below is an example and discussion of this
potential problem, but due to the limited scope of
this paper it must be kept somewhat simplistic.

Let us go back in time and consider a computer
system that might have aided Classical musicians
to compose. The user might have gone through
three stages:

stage 1. define akey;
stage 2. write (an 8 bar) melody;
stage 3. harmonize.

This is obviously oversimplified, but plausible:
many Classical works could have been composed
using such a system since most works of this
period conform, more or less, to this sequence. But
now comes an intriguing question: could
Beethoven's Fifth Symphony have been conceived
and/or implemented with such a system? I claim
unequivocally that the answer is no: in the
Symphony's first introductory measures the key is
ambigucus, no melody is presented, and the
motive is not harmonized—even though things
become clear soon after. If Beethoven would have

limited his creative thinking to the above three-
stage process this profound creation would never
have come to be. Whereas this hypothetical system
would indeed support creativity, it would be
restricted to a superficial level that shares a broad
common denominator with many compositions.
However, it is precisely the individuality of each
composer, his or her nnique way of thinking, of
putting ideas together, personal techniques for
working out materials, and so forth, that give birth
to new creations (this is not to claim that every
work of art must be innovative). I suspect that no
system having a formalized preconception of how a
huoman should use it will ever fully support
creativity in the sense that it will encourage a
‘Beethoven' to create a work as unique as the Fifth
Symphony or the late Quartets; rather, such a feat
would probably be accomplished in spite of the
system's limitations. Current formal approaches
seem oriented less towards encouraging the
discovery of the new and the unique, and more
towards a rehashing of the mundane and mediocre.
This problem stems from the implicit need to
formalize the task, and I refer to to this problem as
a creativity flowchart syndrome: computers are
formal systems; but humans that use computers
are not, and should not be expected to behave as
such. Object-Oriented technology offers interesting
alternatives.

4.3.1. Non-formal
Alternatives

Object-oriented methodologies provide a powerful
paradigm that might help avoid the rigidity implied
by the creativity flowchart syndrome and better
support the unexpected ways people might decide
to use systems creatively. In such applications,
objects seemingly 'float’ in the system with no
preconception of what other objects they will
interact with or when. Thus, a careful design could
leave all notions of 'where to begin' and 'what to
do next' to the user’s discretion (for a more detailed
discussion see [Oppenheim, 917),

Regrettably, such a design still requires an equally
flexible user-interface to take full advantage of its
potential, and to enable unpredictable interaction
with the system. Direct-graphic-manipulation
using Slappability implements this interface in a
unique and powerful way. It not only allows the
user to jump quickly between presentations, but
also extends the idea of multiple presentations by
enabling one object-type to transform itself into
another. For example, in DMIX music can be
transformed into Functions (tools) as seen In
Figure 4, but also into Quill algorithms (Figure
6), Filters, Patterns, and more. Slappability also

offers a natural way to jump between different
modes of creation: improvisation, programming
and algorithms, scoring, and graphics, among
others. Moreover, the user can continuously switch
between a top-down, bottom-up, side-in, or side-
out approach. In short, the system can provide an
extremely rich, unconstrained compositional
environment. The user is able to express himself
or herself uniquely, and in ways that seem more
natural, Moreover, by and large the structure of the
underlying applications gets configured by the user
as he or she works, rather than be determined by
the programmer.

4.4. Tools, individuality and

transmogrification

Tools wsed by composers tend to be highly
personalized. Every artist uses different tools which
play an important role in developing a unique style
that expresses his or her individuality. Software
tools enable users to perform high-level operations
of a more general nature than those obtainable
through buttons or menu-items. There is a trade-off
between high-level, ease of use, generality, and
individuality. High-level tools are easy to use but
perform a more generic action; low-level tools
require configuration and hence can be made more
personal, but are harder to use. Paradoxically, the
tools intended to ‘free’ one's creativity often end up
limiting it via the narrowness of the channel of
common choices. For example, if books were
written by hand I expect we would find much more
variety in layouts or ways of attracting attention to
important points. High-level formatting tools tend
to produce documents that appear similar to each
other (this is not necessarily a drawback) but they
also tend to discourage individual expression.
Slappability enables the creation of tools from
musical materials, or from combinations of other
tools, and thus encourages the building of unique
tools.

5. Conclusions

The strength of Slappability lies in the ways in
which it allows users to control complex systems
with ease. With the availability of Slappability,
DMIX uvsers now welcome the complexity of the
system, whereas before they were often
overwhelmed by it. The fact that non technical
users can achieve results that otherwise require
expert users suggests that it might be ideal in
fields such as music education, where programs

could be devised for children to use without
sacrificing the more complex musical issues.

Like copy-and-paste or drag-and-drop, Slappability
is a but a mechanism. It becomes especially useful
as a metaphor for users if the underlying
application is flexible, modular, extensible, and
supports object-transformations. It should ideally
be located in an operating system, where it could
enable the sharing of applications in novel ways.
For example, editing a sound file in a music
program, defining a digital fiiter in an unrelated
application such as Mathematica, and then
Slapping the sound file onto Mathematica to have
it processed (see Figure 8). I believe this would
have a beneficial impact both in the way
applications would be designed as well as on the
overall user environment, user interface, and
general human computer interaction.

/\/W/\/NW/\/\ (Application #1)

<

I Mathemalica ‘

Filter:
XIS X b e

I Soundfile Editor I

{Application #2)

Figure 8: using Slappability between applications

Creativity is a fundamental component of human
thinking and behavior, and this is by no means
limited in its domain to the arts. Hence the
problem of supporting creativity is general and
relevant to all domains of human computer
inferaction. Slappability is one way to improve the
support of users in their creative work.

Acknowledgements

This work could not have come to be without the
continuous support and encouragement from
everyone at CCRMA. It was Bill Schottstaedt that
pointed out that an easy way to move between the
numerous representations in DMIX would be
useful-—an innocent remark without which
Slappability would not bhave come to be. I am
especially grateful to the numerous composers and
students who used DMIX and gave precious
feedback and much encouragement, including
Joanne Carey, Eitan Avitsur, Kui Dong, Jan
Vandenheede, Celso Aguiar, Peter Bramble, and
many many others.

References

[Dannenberg, 1993] “Music Representation Issues,
Techniques, and Systems.” Computer Music
Journal Vol. 17(3):20-30. MIT Press.

[Honing, 92] "Issues in the Representation of
Time and Structure in Music." in Desain P.
and Honning H. "Music, Mind and Machine:
Studies in Computer Music, Music Cognition
and Artificial Intelligence.” Amsterdam :
Thesis Publishers. Also in Proceedings of the
ICMC 1990, Glasgow, Scotland,

[Oppenheim, 1990] "QUILL: An Interpreter for
Creating Music-Objects Within the DMIX
Environment”, Proceedings of the ICMC,
Moentreal, Canada.

[Oppenheim, 1991] "Towards a Better Software
Design for Supporting Creative Musical
Activity (CMA)", Proceedings of the ICMC,
Montreal, Canada.

[Oppenheim, 1993] "DMIX—A Multi Faceted
Environment for Composing and Performing
Computer Music: its Design, Philosophy, and
Implementation”, Proceedings of the
SEAMUS Conference, Austin, Texas; also in
proceedings of the Arts and Technology
Symposium, Connecticut College,
Connecticut,

[Schosttstaedt 1983] “PLA; A Composer’s Idea of
a Language.” Computer Music Journal 13(3)
:49-55,

[Tanbe, 1991]. "COMMON MUSIC: A Music
Composition language in Common Lisp and
CLOS.” Computer Music Journal 15(2):21-
32.

[Wiggins, Miranda, Smail, and Harris, 1993] “A
Framework for the Evaluation of Music
Representation Systems.” Computer Music
Journal 17(3):31-42.

[Microsoft 1992] Microsoft Word manual,
Microsoft Corporation,

