CENTER FOR COMPUTER RESEARCH IN MUSIC AND ACOUSTICS
OCTOBER 1993

Department of Music
Report No. STAN-M-84

TOWARDS A BETTER SOFTWARE-DESIGN FOR SUPPORTING
CREATIVE MUSICAL ACTIVITY (CMA)

Daniel V. Oppenheim

CCRMA
DEPARTMENT OF MUSIC
Stanford University
Stanford, California 94305

© copyright 1992 by
Daniel V. Oppenheim
All Rights Reserved

Towards a Better
Software-Design for Supporting
Creative Musical Activity (CMA)

12 M\

Daniel V. Oppenheim

Center for Computer Research in
Music and Acoustics (CCRMA)

Stanford University 1993

Towards a Better Software-Design for
Supporting Creative Musical Activity (CMA)

Daniel V. Oppenheim

Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University
Stanford, CA 94305

Dan@CCRMA .Stanford.Edu

Abstract

It is argued that many current systems for composition of Experimental Computer Music
(ECM) do not encourage the composer to explore the full potential embedded within computer-
controlled systems for composition. Several fundamental problems that affect the user-interface
design seem to have been by and large neglected, and are here carefully examined. The internal
representation of music within a computer and the external presentation through which the
composer works is discussed, with emphasis on their combined effect on the quality of the user-
interface. The user-interface design in several main-stream music systems is critically examined.
Some suggestions are made that may lead toward a better design and to enable composers a

higher degree of musical expression.

"A major unsolved problem is putting all
of the software components together to
form a unified music system with a
consistent design philosophy.” (Roads 85).

Background: Music, Meaning
and Expression

Is the King Naked?

During the past three decades the computer has
gradually taken its place as one of the most
important tools for creating music. Whereas the
production of commercial music is heavily
dependent on the computer, it had only a limited
effect on musical style and none on musical
language. The main motivation for using the
computer in pop music is to cut down on
production time and costs. On the other hand, in
art music, analog and digital technology did have
a profound and fundamental effect on both
musical style and language, and resulted in
electroacoustic music. New musical materials
unknown during almost 2000 years of the
western music tradition suddenly became

Daniel Oppenheim

available to composers. This happened after a
breakdown of the classical tonal system, when
there was a strong need for a new musical
language. It is not surprising that many
composers felt computer-music had an
outstanding potential, one which could lead to a
new era of musical style and expression.

Has this actually happened? There are two
observation I would like to make in this respect,
and I regret that they are somewhat disturbing.

The first is that many of today's better known
composers have indeed experimented with
computer music, but eventually gave it up and
returned to instrumental music. A few names that
immediately jump to mind include Berio,
Penderecki, Stockhausen, Crumb and Ligeti
(many more could be cited).

A second observation has to do more with style
and originality. If the works of the 60s were still
experimental and somewhat crude, the mid 70s
and early 80s formed a peak of excellent new
works which were highly original and
innovative. One should note that, during this
period, many of these works were still composed
using analog devices. During the last decade

ICMC-91

Towards a Better Software-Design

analog devices have gradually become obsolete
and are being replaced by the computer and
advanced digital technology. However, it is
debatable whether this new digital technology has
led composers to discover new musical means of
expression that are fundamentally different from,
or at least a substantial improvement upon, that
which was achieved by the mid 70s using analog
or outdated digital technology.

All this may have led to a (false) conclusion that
hopes for a new means of musical expression
were unfounded, and therefore time spent on the
pursuit of this romantic illusion has been wasted.
I think it is extremely important to ask 'why is
this so?', or 'is the king (the computer) really
naked?'. Several reasons are often given as
possible answers: the technology is slow and
limited, the learning curve for mastering new
technology is prohibitively long, by the time it
is mastered it often becomes obsolete, it is hard
to match the expressive quality of a live
performer, a composer will not readily give up
years of mastering musical craftsmanship to
become dependent on a 'bad tempered computer’,
and so on. While these arguments are indeed true,
I think they are an inevitable outcome of deeper,
more fundamental, problems.

I firmly believe that the computer does indeed
possess a wonderful potential for creating new
music. Max Mathews once said that "the
‘problems’ of Computer Music are no longer
those of technology but rather of our ability to
control it "(Mathews, 1989). This shifts the
emphasis from the rationalistic concepts in
which we are used to thinking of technology to a
much deeper, phenomenological level that should
be given careful consideration as a basis for good
user-interface design. Systems for creating music
were too often designed by engineers who did not
have a sufficient understanding of deep musical
issues such as: what is music? what is a musical
idea? how does a composer express a musical
idea? and what is the compositional process?
However, not only are these problems extremely
complex but one must also realize that there may
not be an answer to many of them! Even if an
answer were found, there may well be more than
one 'correct’ answer. On top of that, there will
always be a fundamental contradiction between
the way humans think about such issues, using
non-explicit natural language, and the rational
and explicit way in which this knowledge will

Daniel Oppenheim

have to be used by the engineer when designing
the user-interface.

The remainder of this presentation will discuss
some of the more fundamental problems that
affect software design; explain how music is
modeled in a computer and the consequences for
the user interface; discuss approaches in design
taken by several systems; and, will outline some
points that may lead toward a better overall
design. It should be stressed that this presentation
is not a comprehensive scholarly investigation of
these topics, though I do hope it will encourage
such work. The ideas that follow are based on my
experience as both composer and software
designer during the past four years at the
Stanford's Center for Research in Computer
Music and Acoustics (CCRMA). I think that
being aware of these problems, and ultimately
understanding them, is crucial to the ability to
design an environment that is better suited for
Creative Musical Activity (CMA).

Some Problem

Conventional Versus Experimental
Computer Music (ECM)

In our discussion we shall be referring to two
kinds of music: conventional music composed
using conventional notation and performed by
live musicians; and, Experimental Computer
Music (ECM) that uses new musical materials
obtainable only via computer. Many fundamental
differences between the creative process when
composing conventional music and ECM have
been observed (Oppenheim 1986). The
conventional composer is well experienced in the
use of standardized sound elements and is
therefore able to compose directly from a
'musical idea' and to develop it with the aid of
notation. In ECM the composer experiences new
materials by experimenting with them, and
organizes his materials into a work in an
interactive and experimental process. In the
following discussion we shall try to point out
some aspects that are common to both.

Meaning and Context: the Poet
Versus the Composer

What is the 'meaning' of a musical idea? Whereas

this may not be easily expressed in verbal terms,
we understand this intuitively as we listen to the

ICMC-91

Towards a Better Software-Design

music. Research in artificial intelligence has
attempted to understand 'meaning’ by creating
systems that establish a well defined association
between an object whose meaning is sought and
another object which explains its meaning. In
such systems a given object will always have the
same meaning; i.e. meaning is not context
dependent.

In music this is not the case. The 'meaning’ of a
musical idea, motive, or phrase, is highly
dependent on the surrounding musical context.
The same musical material will often have a
different meaning when appearing in different
parts of a composition. Moreover, musical
'meaning’ is also highly subjective—a listener
might find different meanings within a given
recording each time he listens to it.

How does all this affect the design of a system
for composition? I will demonstrate this with a
comparison to a word processor used by a poet as
a creative workbench. A poet creates his work by
putting words together, and words can be
represented as alphanumeric symbols that are
displayed on the computer screen. The
MEANING of a word, its interpretation, its
relationship to other words and ideas—the poetic
context—is understood in the poet's head and is
in no way dependent on the computer. We can
safely assume that the computer has a negligible
effect on the poet's ability to understand the
meaning of his poetic ideas, or to develop them
into a work of art. If the poet types the word
'dog', then whether it is meant as a feeling of
admiration towards man's best friend or used as a
curse word, is NOT affected by the computer
system, by the type and size of font, or by the
color on display.

On the other hand, this is not the situation in
ECM. A musical idea remains MEANINGLESS
unless the composer can make it concrete by
synthesizing it. This can only be accomplished
via a computer system. The process of
composition can only begin once a musical idea
is made concrete. This initiates a cyclic process
of experimentation and interaction which is
greatly dependent on the system and affected by
it. Whereas a word processor cannot distort a
poet's idea, a musical idea often gets distorted in
the process of making it concrete. Whereas the
context of a poem is clear in the poet's mind,
musical ideas must be experienced within the
overall music-context before it can be determined

Daniel Oppenheim

whether the composer's intentions have been
conveyed. And whereas the word processor is a
technical instrument used for convenience, the
composer's ECM environment is the ONLY
means available for discovering new ideas,
experiencing them, experimenting with them and
gradually organizing them into a composition.

The design of a good interface for ECM is
therefore essential to enable Creative Musical
Activity (CMA). A 'bad’ interface will have a
direct effect on the composer's ability to express
his musical ideas, to fully grasp their meaning
within the overall musical context, and hence on
the QUALITY of his artistic expression! In this
respect, the main problem that the user-interface
must deal with could be stated as: "how do we
enable composers to express their abstract ideas
using a formal system that has little to do with
their musical, intuitive and informal way of
thinking?"

Composition and Performance

Creating music in the Classical period was a two
stage process: the composer would first create a
score, and then a performer would perform it.
Where is the 'music'—in the score or in the
performance? An acceptable answer might be—in
neither, and yet in the combination of both. The
traditional score determines melody, harmony,
structure and so on. But 'music’ is much more
than that. The performer adds the musical
nuances without which it would sound
mechanical and 'unmusical'.

This point seems to have been overlooked by
many designers of systems for composition.
Performance in the domain of computer-music
should not be limited to the notion of
improvisation, score tracking, or interactive
settings (even though these are extremely
important aspects). If the composer is creating a
computer piece, he not only creates what is
analogous to the classical score, but must also
add the equivalent of the performer's musical
nuances.

With this in mind it makes sense to consider that
tools normally used only by a performer are just
as useful to the composer. While creating it is
common for a composer to sketch out a musical
idea only to find out that it doesn't work—not
necessarily because his idea was 'wrong', but
because there were no tools that enabled him to

ICMC-91

Towards a Better Software-Design

shape the phrasing, dynamics, gestures, etc., and
add the musical-nuances that will transform his
idea into a musical entity.

Rationalism Versus Phenomenology

To further emphasize the problems stated in the
last two paragraphs let's examine the way
musical ideas are currently expressed in
computers. In many cases they are expressed in
the form of a notelist, or an algorithm that
produces a notelist. One must ask once again—
what is a musical idea? can it be formalized and
quantified into a list of parameters?

This is where observing a score of conventional
music can be misleading. It is tempting to
assume that as a score is equivalent to a notelist,
the latter is a valid means for musical expression
in ECM. One can easily locate within a score a
phrase or motive that encapsulates a musical
idea. However, the notation is NOT an accurate
representation of the music, but is more a form
of tablature that tells the performer how to play.
The music itself is far too complex to be
accurately represented in a score. Expressing
musical ideas in a score works well in
conventional music as the performer will add all
that is missing. But this method can be limiting
in ECM when using notelists. Whereas any
musical work can be analyzed and transformed
into a list of parameters, this process is not
reversible. To expect that the composer will
always be able to find the set of parameters
which would express his musical ideas is as
naive as believing that the knowledge of the
composition of every molecule that exists in a
human body permits the synthesis of life!

The misconception noted above stems from a
long tradition of rationalistic thinking that has
been embedded in our western tradition since the
days of the early Greek philosophers. We take it
for granted that 1 always equals 1 (1=1).
Computers are programmed with formal
languages; if computers would ever indicate that
a 1 does not equal another 1, they would
probably be declared unusable. With all this well
rooted in our background, describing musical
ideas as a list of parameters seems to make sense.
However, the way we perceive phenomena is
NOT rationalistic. A musical idea might be
perceived differently, and therefore have a different
meaning, as it appears in different sections of the
same composition. All this must be taken into

Daniel Oppenheim

account when designing a user interface, and
alternatives that are better suited to our natural
way of thinking must be provided (Winograd 86).

Other Domains of Activity in ECM

Composing ECM is a complex process. The
traditional approach to system design has been to
break down the overall task into well defined
activities, and handle each activity with a separate
application. Figure 1 outlines the main groups of
activities: composition, performance, synthesis,
editing and visualization (it may be worthwhile
adding psychoacoustics, analysis and archiving).
This segregation is artificial and is the cause of
severe limitations in existing systems.

Composition Performance

Notelists
Hierarchies
Algorithms
Transformations

Performer -» tape

Score tracking
Improvisation

Capture Gestures
Interactive Performance
Settings (MAX, DMIX)

"

<

Editing Visualization
(notation)
Sound-Files
Notelists for PERFORMER
Music structures | * » | (timing, tablature)
grephies \ for COMPOSER
(compositional tool)
Synthesis Analysis
Software / DSP
Signal Processing
Analysis synthesis
MIDI
Figure 1

The previous section already demonstrated that
there is much to be gained by encapsulating
composition and performance into a single
environment (see also Oppenheim 1991). The
same reasoning can be applied for the remaining
domains, as they are all closely interlinked. For
example, in Music-N and Midi systems,
synthesis is a separate activity that precedes
composition. This works well with music that is
essentially conventional, as that music
emphasizes pitch content rather than timbre. But
this makes it extremely difficult to work with a
single sound (note) that evolves and changes over
time, as might be suggested by some works of
musique concréte. Similarly, editing techniques

ICMC-91

Towards a Better Software-Design

used for mixing sound files may be just as
applicable to notelists that represent sections of a
composition. Signal processing techniques used
for processing sound may, under certain
conditions, generate interesting musical results if
applied to sections of a composition. The arrows
in figure 1 represent many possible, and indeed
desirable, relationships. The encapsulation of all
these components into a single environment with
a unified user-interface would not only simplify
the overall use of the system, but may also lead
to the discovery of new musical possibilities.

The design of a single system that will
encapsulate all this functionality is highly
complex. However, recent developments in
object-oriented technology do suggest that it is
feasible.

Opposites: Which is the More
Desirable?

There are many different approaches within
computer music, many of which are often
considered opposites. Consider the following:

off-line <-> real-time
low-level <-> high-level
algorithms <-> improvisation
note-lists <-> graphics
programmable <-> user-friendly

What is preferable: composing in real-time or
off-line? Are the results produced by algorithms
more musical than those made by improvisation?
There is, of course, no correct answer to such
questions. The choice between one or the other is
indicative of a personal aesthetic. Moreover, a
composer might use both for handling different
musical situations. It is therefore highly desirable
that a system provide the composer with all these
alternatives to choose from. Yet, it is amazing
how many existing systems enable only one of
the two!

Perception Versus Parameters

The lack of a clear correlation between the
physical parameters that are used by a computer
to synthesize music (frequency, amplitude, etc.)
and the perceptual parameters with which the
composer thinks (pitch, loudness, etc.) is well
known. Moreover, the same physical sound may
be perceived differently when heard in a different

Daniel Oppenheim

musical context. As a result, it is difficult to
predict the sound that will be perceived by a new
set of sound parameters. The user interface must
therefore support an interactive and experimental
working process (Oppenheim 1986a).

Modeling music with
computers: the User Interface

Representation and Presentation

Music can be manipulated by a computer only if
it is represented within it. This internal
REPRESENTATION is implemented in a formal
computer language. It is by now obvious that
this internal representation will be fundamentally
different from the way the user perceives the
same music. We shall refer to this difference as a
distortion.

The user manipulates the music via the user-
interface. This interface is a PRESENTATION of
the internal representation that may consist of
graphics, text, keyboards, etc. The actions carried
out by the composer when manipulating the
user-interface affect the internal representation
within the computer, and that in turn controls the
synthesis of music. The QUALITY of a user
interface can be evaluated by the amount of
distortion that occurs between the music the
composer intended to produce and the music that
was actually produced.

Internal REPRESENTATION

of the music
2
Figure 2
ICMC-91

Towards a Better Software-Design

The user-interface should be MEANINGFUL—it
should allow the composer to manipulate it
while thinking in his own, familiar, musical-
concepts. The user interface may hide the internal
representation from the user, under the
assumption that this formal representation will
not help the composer, or it may take an
opposite approach and highlight some of its
aspects and enable the user to control low-level
elements of them.

Evaluating the User-Interface
Design

In evaluating the design of a user-interface a very
general approach will be taken. We divide the
various mechanisms with which a user can
control a system into four categories:
Programming languages, high-level tools,
graphics, and gestural input.

High level programming languages, such as
C, Lisp or Smalltalk, are found in systems that
attempt to provide the user with 'unlimited'
control, but require a knowledgeable user to take
full advantage of their capabilities.

High-level tools perform a specific task and are
easier to use, but because they are high-level they
are less general and less flexible than
programming languages. For example, Common
Music provides the 'item-stream' mechanism for
handling lists of parameters (Taube 91). Some
tools cannot be modified, such as in commercial
MIDI sequencers, whilst other may be modified
by the user, as in PLA (Schottstaedt 84) and
Dmix (Oppenheim 89).

Graphics provide visual feed back and an
intuitive way to manipulate music, but are not as
general as programming languages.

Gestural input is a category that includes an
ability to interact with a performer and control
the system in real-time via some hardware
interface.

The user-interface will be evaluated according to
the following criteria:

1. What categories are available—the more the
better.

2. If more than one is available, can one
category interact with the other and extend it,

Daniel Oppenheim

or is each treated as a separate and
independent entity. Interaction between
modules can make a system much more
general and flexible.

3. Is the internal representation hidden from the
user, or is it accessible. Allowing the user to
examine and manipulate the internal
representation improves flexibility.

4. Can the user modify the internal
representation. This is an important point.
Since the internal representation will have a
considerable effect on the amount of overall
distortion produced by the interface, the
composer's ability to define a representation
that is close to the way he is thinking of the
music may help reduce this distortion.

Approaches to System Design

The design of four typical systems will be
discussed: a commercial Midi sequencer, PLA and
Common Music, MAX (Puckette 88), and Dmix
(Oppenheim 8§9).

Commercial MIDI Sequencers

The design of commercial sequencers is
extremely limiting. Music is handled primarily
through a graphic interface and notelist editor.
The user-interface presents a metaphor taken from
the analog recording studio of Midi events and
tracks. Tools allow operations such as cut, copy
and paste. The internal presentation is hidden
from the user, not accessible and cannot be
changed.

Gestural
Prog. Lang. Tools Graphics Input
User
Interface:
?? Graphics
Midi Event
Tracks
Trk Editor
/
l w
[Internal Representation]
is hidden,
not accessible
and cannot be changed.
(Midi events,
tracks???)
Figure 3
ICMC-91

Towards a Better Software-Design

High Level Languages: PLA and
Common Music

PLA and Common Music represent an approach
to design that, for many years, was the ultimate
in power, flexibility, modularity and
extensibility (Schottstaecdt 84, Taube 91). They
provide powerful tools that enable the composer
to work without having to become overly
involved with programming. The two way
relationship between the tools and the
programing language is one of the most powerful
features of their design (figure 4). This ensures
that existing tools can be modified to handle
special musical requirements, and that new tools
may be programmed by the user if needed. The
internal representation can be thought of as a
notelist in a text file; it is transparent, though
not readily accessible from within the
environment.

Gestural
Prog. Lang. Tools Graphics Input
High Level: PLA
Lisp Voice
Part
Sail
Procedures
L
S
-w
Internal Representation of Music
Is:
Note-List (Ascii File on Disk)
Transparent
Generalty NOT
accessible

Figure 4
MAX

MAX is designed for real-time performance and is
probably the finest example of a graphic
programming language. Its design is extremely
well thought out—notice connections between
all four categories (figure 5). As MAX is
programmed by manipulating graphic icons,
musicians can quickly and intuitively create
complex performance settings without having to
spend time learning programming. A performer's
MIDI input gets processed in patches
programmed by the user, and accordingly MAX
generates MIDI information in real-time. MAX
was designed only as a performance tool;
therefore, the music it produces cannot be
captured and used off-line within MAX as
compositional material.

Daniel Oppenheim

Prog. Lang.
Tools

Gestural

Graphics Input

= Patches
extension A ‘ﬁ

L

-

Midi
Input

Internal Representation

Implied (doesn't really exist)
Midi events generated in real-time

Is:

Imptied: Midi events
Generated in Real-Time.
NOT Lo,

Figure 5
DMIX

Dmix is an object-oriented system designed with
the intention of implementing many of the ideas
that have been brought up in this presentation
(Oppenheim 89). Figure 6 demonstrates clearly
the intricate interrelationships existing not only
between the four main components of the user-
interface, but also between the interface and the
underlying internal representation. Moreover,
these relationship are by and large a two way
path. For example, MAX-like objects not only
facilitate interaction with a live performer, but
also capture performance gestures that may be
worked into a composition. These gestures may
also be used to add performance nuances to
already composed sections (Oppenheim 91). The
functions of graphic editors can be modified and
extended by using high-level tools with which
the composer is already familiar; algorithmic
music-generating objects can interact with
graphic editors, or even with the real-time,
MAX-like, objects.

A basic design philosophy has been to make
available many different, even contrasting, tools
for manipulating music (assuming that each will
be useful under certain musical conditions) and to
enable the composer to switch between tools at
any time. This can become very confusing unless
all tools share a unified user-interface. This
simplicity was by and large made possible by
making the internal representation
MEANINGFUL to the user. The internal
representation is a collection of objects that

ICMC-91

Towards a Better Software-Design

model music by using the concepts with which a
composer is familiar, such as notes, phrases or
sound files. This representation is made
completely transparent to the user so that he may
easily modify or extend it, and model his own
way of musical thinking.

Moreover, not only can the underlying
representation be manipulated by the higher level
user-interface components, but the representation
can also be transformed into some of the tools
that are used for manipulating music. Whereas
this may sound confusing, in reality the two-way
interconnection between the internal
representation and the user interface is simple to

understand and easy to employ.
11 = 1 +4$] ¥ Gestural
Prog. Lang. Tools Graphics Input
Smalitalk Quitt Edit View Transform
algorithms RT editing (tike MAX)
Moditiers Hierarchy
Tt editors Modifiers
h‘ Selections record
C interface controliers
(drivers..)
Internal Representation Is:
Music Objects (~- alive --) m;nntnbl R
(define - note, soundFile, DSP, update or modified
controller, etc.) Readily Accessible
Disk Files Each part of the Interface
(Ascii NoteLists, can be used at any time
Midi Files, MusicKit...) 1o act upon any music
objects and modify them.
Figure 6

Conclusions

The problems which have to be solved in order
that computers may better support creative
musical activity (CMA) are conceptual problems:
design, rather than advances in technology.
Phenomenology, rather than rationalism, seems a
better approach for understanding these problems
(Winograd 86). While the dichotomy between the
formal mechanism that underlies the way
computers operate and the way composers
perceive musical phenomena will always prevail,
ways around it that minimize its adverse affect on
CMA can be found.

Daniel Oppenheim

Many excellent tools for creating music have
been developed during the past three decades of
computer music. It would be nice if a way were
found for composers to express and develop
musical ideas intuitively and without having to
deal with the computer—however, it seems
unlikely this will happen in the near future.
Rather than looking for new ways, we are
confident that existing techniques can be very
productive if embedded in a single environment
with a simple and unified user-interface.

No reference was made in this presentation to
such important concepts as modularity,
extensibility, multiple presentations, or user
friendliness. We view these issues to be of
secondary importance in comparison to the
conceptual issues we raised, and in the
implementation of a good design they will most
probably take care of themselves.

References

Mathews, M. 1989. private communications.

Oppenheim, D. 1986. "The Need for Essential
Improvements in the Machine-Composer
interface used for the Composition of
Electroacoustic Computer Music,"
Proceedings of the ICMC, the Hague.

Oppenheim, D. 1989. "Dmix: An Environment
for Composition," Proceedings of the
ICMC, Columbus, Ohio.

Oppenheim, D. 1991. "SHADOW: An Object-
Oriented System performance system
within DMIX," Proceedings of the ICMC,
Montreal, Canada.

Puckette, M. 1988. "The Patcher,” Proceedings
of the ICMC, Cologne.

Roads, C. and John. S., editors, 1985.
"Foundations of Computer Music," MIT
press, Massachusetts.

Schottstaedt, B. 1984. "PLA - A Tutorial and
Reference Manual,"” CCRMA report No.
STAN-M-24, Department of Music,
Stanford University.

Taube H. (1991) "Common Music: A Music
Composition Language in Common-Lisp
and Clos,” CMJ 15/2. MIT press,
Cambridge, Massachusetts.

Winograd, T. and Flores, F. 1986.
"Understanding Computers and
Cognition—A New Foundation for
Design," Norwood, NJ: Ablex.

ICMC-91

