CENTER FOR COMPUTER RESEARCH IN MUSIC AND ACOUSTICS
OCTOBER 1993

Department of Music
Report No. STAN-M-83

DMIX - A MULTI FACETED ENVIRONMENT
FOR COMPOSING AND PERFORMING COMPUTER MUSIC:
ITS DESIGN, PHILOSOPHY, AND IMPLEMENTATION

Daniel V. Oppenheim

CCRMA
DEPARTMENT OF MUSIC
Stanford University
Stanford, California 94305

© copyright 1992 by
Daniel V. Oppenheim
All Rights Reserved

DMIX—A Multi Faceted Environment for
Composing and Performing Computer Music:
its Design, Philosophy, and Implementation

Daniel V. Oppenheim

Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University
Stanford, CA 94305

Dan®@CCRMA.Stanford Edu

Musical creativity is a process about which little is known. Yet the most important function of a system
for aiding music composition is to support this process. Taking a fresh approach, that is meore
phenomenological and less formalistic, a new software design that exhibits several desired characteristics
missing in many existing systems was implemented in DMIX. This presentation explains the rational and
design of DMIX—an environment dedicated to composing and performing music,

“.. no one has yet figured out how to
harness this expressive power
effectively. We observe instead that
research is preoccupied with identifying
and refining the suitable computable
formalisms for music.” Loy, 1989.

Prelude: Music _and Creativity

Music is the most abstract of all art forms, and for me,
the most expressive. With over a thousand years of
musical tradition, Western composers have crafted
works of fascinating beauty, infinite expression,
immense magnitude, and astonishing sophistication
that can be found in counterpoint, harmony, motivic
development, orchestration and form. Technology
today opens new horizons for both musical expression
and materials. However, does technology also expand
the horizon of our creativity? Does it effect our
creativity? What is the relation between the media and
our creativity? In other words: are we making full use
of the potential that technology has to offer?

These are question that I have been asking myself for
the past decade. I believe that we are exploiting only a
small fraction of the potential that technology can
offer. My feeling is that the technical problems will
sort themselves out: what is slow today will be
realtime tomorrow. We are now in a position to tackle
much deeper problems of a conceptual nature,
problems that cannot easily be defined in mathematical
terms, but problems that directly effect our creative and
expressive abilities. Being a composer, my research is
focused on trying to understand these problems and find
practical ways in which to improve our ability to be

creative while using technology. Specifically, I am
working on software user interface, human computer
interaction and system design.

Any discussion of creativity, the creative process, the
effects of technology om our creativity, or how
technology can better adapt to support creativity, is
problematic at best. It is hard, if not impossible, to
define what creativity is—so how can we design
technology that will support it? And if we think of
music—what is music? what is a musical idea? is a
musical idea independent of its context? Non of the
above can be formalized into a neat set of parameters
that can then be fed into a computer and produce
acceptable results. On the other hand, we intuitively
{(naturally) understand a lot of the above. They become
unclear and vague only when we try to explain them
verbally or in formal terms that contradict their very
nature.

Software design

Software design typically consists of two stages; first,
the task domain is modeled and formally represented in
the computer in the form of data structures and the
functions thai manipulate these structures. This is
called the internal representatiom. Then, the task
itself is modeled in order to determine the software
design. Now the application can be built on top of
the internal representation. Let us look at a concrete
example from the sciences. In designing software to
control a space shuttle, the internal representation
would include things such as gravitational forces,
mass, trajectories, engine characteristics and so on.
Then, the software design would allow the plotting of
a flight course, generating engine control signals,
flight navigation, life support, and alike. In the case of

DMIX

the space shuttle things are so well defined that flight
control is by and large automatic.

With music things are not that clear. Since there is no
formal understanding of what music is, it is not
possible to come up with an internal representation
that will be general enough for all composers in all
domains of computer music. Since we do not fully
understand the creative process (or even what a
composer does while he composes) it is not possible
to come up with a software design that would readily
support this process. Furthermore, not only do
individual composers work differently, but they often
change their techniques from piece to piece, or even
while working on a single piece. A 'good' system for
composition must be extremely flexible and allow
users not only to define and/or modify its internal
representation, but also to reconfigure its design so
that it best meets their individuoal needs.

Let us make a comparison by examining more closely
what happens in the well defined system of a space
shuttle. Problems arise when malfunctions that were
not considered during the design stage occur, as these
cannot be handled by the system. In such situations, or
breakdowns as termed by the philosopher Heideger, the
astronaut must be CREATIVE and find new solutions.
His survival may well depend on the system being
sufficiently flexible to perform these new tasks for
which it was not designed. Here, as in music systems,
the key to success is in supporting CREATIVITY.
The space shuttle may not support an astronauts
arbitrary (creative) actions, as those are not part of the
software model. But in music we musi begin by
supporting the individual's actions—a system that will
not allow a composer to be creative is unacceptable. It
seems that a system design supporting Creative
Musical Activities (i.e. CREATIVITY) begins in the
gray area in which other applications end: at the stage
of the breakdown.

Existing Music Systems

Gareth Loy in his excellent article “Composing with
Computers” (1989) distinguishes between four types of
systems:

¢ for music data input (such as Music N
[Mathews 69] and SCORE [Smith 74])

* for editing music via textual, graphic or sonic
representations

» for specifying compositional algorithms
(such as PLA [Schottstaedt 84])

» for automated composition via program input
(such as Compose [Ames 90])

For the sake of completeness I would like to add:

» for performing music (such as MAX [Puckette
83])

Many wonderful compositions have been created using
these systems. However, I believe that today we are in
a position to point out some aspects that constrain the
creative process. These points are brought up because
they play an important role in the design and
implementation of DMIX, as will be discussed later.

1. A single user interface metaphor. For
example, in data-input systems {Music-N) music
can only be created by writing notelists in a text
editor; in PLA and Common Music music can
only be expressed by writing short computer
programs (algorithms); in commercial sequencers
music can be input in realtime or via graphic
manipulation but cannot be manipulated on a high
level using conventional programing techniques;
MAX enables realtime interaction with a
performer but does not readily lend itself to
carefully working out and refining precomposed
sections. Clearly, one metaphor is not better than
another-—they are all useful under certain
conditions and should all be equally available to
the composer.

2. A limited view of the creative process is

implied by many of these systems. For example,
in PLA and Common Music composition is
viewed as an off-line (non realtime) process in
which the composer gradually builds a score by
writing small programs (the PLA voice); editors
and many sequencers model composition as the
mixing of musical materials to form larger
sections of music; in MAX music is created by
defining algorithms (patches) that respond to the
performer's gestures in realtime.

Clearly, all these approaches are valid but they are
only a part of what composing is really about:
Can we segregate composition and performance?
Does the composer of computer music not also
perform his music; and, therefore should a system
not include tools for performance as an integral
part of its compositional tools? Is creativity
always an off line process or is it always a real-
time process? Whatever this process is, it is clear
that these two extremes are but parts of it, and that
a system should support both equally well.

3. The limitations of the score model.
Almost all existing systems use the score, or
eventlist, as a model and end goal of composition;
most compositional tools either create or
manipulate scores. In Classical music the end
product of composition was indeed a score.
However, the Classical score is NOT a

D. Oppenheim

DMIX

representation of the music, though the score does
represent compositional ideas, structure, and so
on. The score is merely a form of tablature that
enables the performer to play the piece. The
MUSICAL OUTCOME is the COMBINATION
of the composer’s compositional ideas and the
performers musical nuances, articulations, and
gestures.

In computer music, especially in works that do
not involve a live performer, the composer must
also ‘perform’ his work. There must be tools that
will enable the composer not only to define the
score—the compositional ideas and structures—-
but also to perform it and give life to his abstract
musical ideas while adding the infinite details that
a performer normally would. This is extremely
problematic. Whereas there are many well defined
formalisms for composing and manipulating
music on the level of a score, there are non for
dealing with performance practice.

As Loy points out: "research is preoccupied with
identifying and refining the suitable computable
formalisms for music.” By focusing on a single
formalism these systems become closed systems. Like
the space shuttle, such systems work well as long as
they are used in accordance with the model they are
formalized on. But humans in general, and composers
in particular, often have a crave for exploring the
unknown...

Other problems: Perception,
and Meaning

Concepts

There are several other fundamental problems that are
characteristic of the medium of computer music and
have a profound effect on the creative process. These
have been well documented but do deserve a brief
mention {Schaeffer 67, Oppenheim 86, 91b). The first
is the lack of a simple correlation between the way in
which we perceive sound and the physical parameters
that must be specified to synthesize it. This
phenomena is really a part of a much deeper
dichotomy: the NATURAL way we think about music
and form our musical CONCEPTS as opposed to the
FORMAL way in which we must manipulate the
computer in order to realize our creative ideas. There is
no simple way of doing this (Artificial Intelligence has
not yet succeeded in solving this problem).

A second domain falls in the realm of MEANING.
First, a musical idea is irrelevant unless it can be
produced by a system and made concrete. Often, for
reasons explained above, the idea will get distorted by
the system during the process of materializing it.
Therefore, the composition, the creative process, is not
only dependent on the specific system that is being

used but is also significantly affected by it. Second,
the meaning of a musical idea is highly dependent on
the context in which it is embedded. In fact, the same
idea, or same musical material can have DIFFERENT
meanings as it appears in different sections of the
work. One cannot work on a section of a composition
in isolation from the whole.

All this brings out the importance of experimentation,
feed back, interaction, and context orientation as vital
characteristics of a system for composition. The way
in which these are implemented will have a significant
effect on the creative process.

Fuga: The DMIX Project

Exposition: The user interface, Goals,
and Design issues

DMIX is an environment dedicated to composing and
performing music. I have been designing and
implementing DMIX over the past several years at the
Center for Computer Research in Music and Acoustics
(CCRMA) in Stanford University. DMIX is an object
oriented system implemented in Smalltlak-
80/Objectworks (see Pope 89) that currently runs on a
Macintosh II computer, but will soon run also on
NeXT, IBM, Sun, Silicon Graphics, Atari, and other
platforms. It is an ongoing project and I expect
significant changes and Improvements to take place as
my understanding of the problems and experience
increase.

My main motivation was to design an easy-to-use and
yet flexible and general environment that has & uniform
user-interface, provides multiple representation, is
easily extendible, and is independent of any synthesis
hardware or host computer {(see Oppenheim 89, 90,
91a). An important part of the Design philosophy was
to view all activities associated with computer music
as part of a whole. In particular I am trying to blend
the activities of composing and performing, the
concept of real-time alongside off line, the notion of
algorithmic juxtaposed with improvised, alphanumeric
programming as an extension of graphic manipulation,
and so on.

A major goal in designing the user interface was tg
cnable composers to work with minimum interruption
of the creative process: once a musical idea has formed
it should be easy to find a way to implement it; during
implementation the composer should not have to spend
time writing code or consulting operating manuals,
Thus, the focus is on the ability to be CREATIVE—
on providing the means to easily express musical
ideas, to experiment with them, and to gradually
organize them into a musical composition.

D. Oppenheim

DMIX

DMIX is unique in several respects. To my knowledge
it is the first environment that directly addresses issues
of creativity and enables the composer to interact with
his musical ideas while communicating with the full
context of his music. This is achieved by
simultaneously having different ways of visualizing
and manipulating the music on every level: from the
lowest level of the sonic event to the highest level of
the composition’s hierarchy. It is also a very extensive
system that offers a rich variety of tools for creating,
editing, modifying and performing music. With a large
palette of tools (that are often redundant and overlap in
functionality) composers have a better chance at
finding a tool that best suites their individnal way of
thinking. However, what makes DMIX unique is not
any specific tool, but rather the way in which:

* tools can interact with each other (a property 1
term slapability)

* tools can be grouped and reconfigured to form new
ways of interacting with the sysiem

* tools can transform into music and vice versa

I find these properties of paramount importance in
bridging the gap between the composers
CONCEPTUAL way of thinking and his ability to
bring his concepts to life with the aid of a computer. If
musical material can be transformed into tools that can
then operate on other musical materials and vice versa,
then these tools are no longer abstract or formal
operators, but can rather be conceived in musical
terms. For example, the composer can think in terms
of: “lets have the rhythm from this section determine
the harmonic changes of that section ...”

The ability to modify, reconfigure and group existing
tools into new tools, is a high level approach to
meodularity. This enables composers to develop their
own tools and hence their own ways in which they can
think of and CONCEPTUALIZE their musical ideas.

Episode: Schematic System Overview

Following is a very brief description of the main
elements of the DMIX system. The tools can be
roughly divided into six groups, though many tools
overlap several categories:

. graphic based

. text based

. real time

. performance (for composition or performance)
. general tools (functions, patterns, ...)

. the music representation

Graphics

exlended notation
percepilon

o i
A Ml [P o e 10

welaelaspi €an norent 180
VAP pl1 P G4IEAT val mal1 mal2 metd o
e
MLt & {Faktarn vor #{cd F5d d) 2
MOGE + (BAIPALIEID Gh1 M(bid 48 dt

Slrugture, helrarchy, Gantext

Muslc Representation

salf pltchi pll nxt.

Qulll Algarithmic Dascriplion Languaga

Event helrarchy
Performers

Realtime Davices...

Performance -
camposition

LENNY:
adding expressive
nuances to scores

cho (Max-like patches) } Tools

Realtime editing

-E-n%ﬂ“
: I T Modifiers:
[pe e e e Function, Filters,

SHADOW; Score tracking Patterns...

Distributions..

Basic components of DMIX
Graphic based tools

Graphic editors provide an intuitive means to
manipulate music. Several mechanisms expand the
capabilities of graphic manipulation:

REAL-TIME-EDITORS enable editing music as it
is playing and provide visual feedback. Through this
mechanism the composer can intuitively perform the
changes that are ‘right’ in respect to the overall
musical context.

[Editing Dlx: Damo]
:i% | + View] - View I + Signal | Scora m”‘;;l
diz

#veloclty: BachPraiudet (Edlt 1 | _[#8] {0127}

042

i
Scaler Editor|
@ |1] Help [{1efi 13}
Cs1 | BachPreludet Edis 1 |#velalty | = | 1 | dissin

The velocity was input in realtime

SELECTIONS group events into higher-level units
that can be manipulated as a whole.

D. Oppenheim

DMIX

Editing Dmix: Damol

| +vlew | -view | +slgnal } Score A
dls SimrT] 07 | L= | 5% | ZF [fizm] funm] ¥11341 s -87
012 [0.42 - 19.12] 1112

I Al L 2

3
2 SEARAR i amsties U

Editing Dmix; Demnl
Fl [+view | - View | + Signal | Score RED Mg
I S m [T 37 | == | == | % | Z [filthM [funM] & | [88] (0:127)

042 [0.12 - 11.42] 1142
e il FA_rid & o a
RELIRLLEY 03 Socet

Dragging a Selection

CODE-DICTIONARIES apply blocks of user-
defined Smalltalk code directly to the graphics. This
mechanism infinitely extends the capabilities of
graphic editing and blends graphic manipulation with
programing. When using Code Dictionaries all aspects
of the graphics and windowing systems, as well as the
underlying music-object structure, are already handled
by the system—the user need specify only the changes
that he wants to take place.

Editing Omix: HappyEnd

PTleIGWS]p m Flenardl + Yiaw | - View |+ Signa' Seore |? m“i d
i I s[mETlio) BaohPreludel .Edit 1 I

rdeleta”
*setDur’ "A flrzt order Righ past filter,

:f“ﬂdﬂmi" l;i",' has the effect of expanding the plteh intervals,
number perLink add half the difference between this pitch and the previous.

set Absolute Time” " "
*randomize Pitch® example for high-order operations"

*axpand ¢ {5 order HPET
*set Velacity® evantindex > 1

:50:";1'““1"““!" ifTrve:[event piteh

set channe! f " "
rdateter2? {((event pitch) + thi:. plich
rerancpose’ {{(event plich) - "+ difference™
*panToPitch’ {{3elaction eventht: eventindex
zat Delta Times? - 1) piteh}) 2))
""""""""" asinteger)]

itFalse:["lezve pitch azis!*]]

[itima tevent teventindex tholdar isalectlon wiew |

IEditing Dmixt HappyEad *

playViews [p[LlRecord | + View| -

£ s[m EachPealuded Edi
an -3t 4ra
L LA | TR BT]

N L L L i L . l"-' -"-' ..l. S
__

T T T T T T
2.0 6.0 10,0

Using a CodeDictionary to apply a second order high-pass
filter to pitch

MODIFIERS facilitate for intuitive high-level
operations. Functions can be used to determine tempo
maps, set or scale parameters, determine temporal and
rhythmic characteristics, and the likes. Filters can
control pitch content, mode, or harmony, Interpolators
can nest other Modifiers to form more complex
Modifiers. The way in which a Modifier functions is
defined in a CodeDictionary—the user can easily
change a Modifier’s functionality and add new modes of
operations. Modifiers can be created from musical
material and vice versa.

In the following example the Bach Prelude in C major
is ‘Jazzed up’ using the rhythm from an improvised
melody. A Modifier is created from the melody and
then applied to the Prelude.

Editing Dmix: Demo

- Ylew |+ Signal

Fuwthro Edit 9
0.12 {0.0 - 34.49] 11.12
= o
W o by g EE TN G 0 g8 IRy g
4o ' B0 L Ho " ha U sg

FunctionYiew: Rythm .Edif 1
Times: [0.346 : 10.967]] Values: [0 : 127] {35)

=Rby thm |ﬁ | * | ﬂvinesl &'ni 170 l ? I {35}

Using Modifiers to map musical qualities from one event to
another

‘We can now see the larger picture; the functionality of

graphic editing is significantly enhanced by using
Selections, CodeDictionaries and Modifiers.

D. Oppenheim

DMIX

Editlng Dmixt Concerte

Selections - HighLevel edits

Tools Tor Modifying Selections

Funul‘wn\'ilwl Bach Fr(\udnl
~ [Z]® L[] &

c ctlonary]
randomPltch
raduceDelta .
satAbiotuteTime| wvent piteh:
setDelcaTimes event pitch - 12]
zatDuration

setVelocity T T T T T T

fitime 1event |

LAV L Y

EventHolder being edited (Model) EGit Views have
Selections, Modifiers,

and CodeDictionaries

associated with them
+0,126 MidiNote [pltohs o8 duri 1.0 val 64 #chani 1) to extend graphlc
+0,125 MidiNota [pitohs a6 duri 0,125 veli 64 #ohant 1] editing capabilities.

+0.125 MidiNote [pitcht g5 dur: 0125 vel: 64 #chan: 1]
+0.126 MIdiNote [pltch: o8 duri 0,125 vel 64 #ohan: 1]
+0,126 MidiNota [piteht €6 durt 0,125 velt 64 #ohant 1]

Enhancing the functionality of Graphic Editors

HIERARCHY VIEWS manipulate large sections
of a composition with all their sub parts.

Editing Dmlx: Dernnl

| +view | -view | +Slgnal | Score m“i‘
dix Slm][rT v | wem | hide | kb | & T r207¢0:4)

a.0 [0.0 - 15.41] 19.41

[openning [7] 1

Q'?

Dragging an inner section

PGG (Personalizable Graphic Generator—yet to be
implemented) provides an extended graphic
visualization of the music in a perceptually meaningful
way (Oppenheim 87). That is to say that the physical
parameters used for synthesis are mapped onto the
perceptual sound qualities that the composer is
concerned with (as opposed to a mere combination of
pitch, amplitude and/or spectral presentations). It is my

hope that this tool will help in visually grasping the
overall musical context, and will become a
compositional tool much like the conventional score
that aids composers in working out counterpoint,
thematic development, and large forms.

text based tools

QUILL is a high level algorithmic music description
language (Oppenheim 1990). It is modeled after PLA
and Common Music (Schottstaedt 1984; Taube 1990).
Yet it offers an interactive environment that integrates
well with other tools in DMIX.

Qulit Editor
[w1

woloa: nles Graphlcs

[cemgevent | do | 2

—[p1oda {g2bsdt 7}

. “e= chord as®
+2.4 MIdiHste {pitah: g2 duri 0,5 veli §4 #sham 1]
+0.0 MidiHote [pltch: b durs 0.5 vl 64 #oham 1]
+0.0 MIdiHo1a [plteh: oT durs 0.5 veh 54 #oham 1]
+0.0 MidiNote fpitch #0 dur: 0.6 veli 6% #oham 1]
L

"MinTmum Input raquired. Othir paramaters dafault*

*Dimix notellzt format,”
copled In from a
"notalist adicor™

oreateFunctiont (Furetion up) maxVal 427,

p: [bagMFunetlon: up] Azign Function to pltch from this polat.

P2 [20 repaan o] “Craate 20 notes, pltch will change”
dig+e~ “Sat all durztlons ta q + o @
4Ty g ~ "A shorter Oelta~Time -- oveslap notes*

31 [endFunctlon up) = Function's effeat on plkah ands here® _

e ©® 0O

volosLoopt niow Oraphios notes: 70 baginTime: appand
war pitchas tampoFun tranFun “the loop't logal variables*
Tnltir pitches « Pattern ont #{cS fsdbta b fafa), “the foop's inltializatlon block"
tempoFun + (Funotlon 1rap) minTime: 0
maxTime! numberOfotes “varlatla In loop”
min¥al 30 *min tempo”
maxvali 00, "max tampo® @
wanFun + (Fungtieh trapd windew: (0 @ 4% corners numbarOfioter @ -50).
l *I marks end of Inlt:=
100pn

salf tampot (tempofun valyepts natetumber). “set tampo®
salf tranzposer (tranfun valuentt notalumber), 3et trensposltion®
selt pltch: pltehes next "sat pltch*

3alf duratiom #q, |

(D) sote voion oy

“sat duration”
"this gats axecuted by Smalltalk’s compllar®

i - |
(0.0 ~ 15.73]) M 3196
EFH
L]
_zrdﬂm mm
oo}
i
150 250 ' 350

A QUILL file featuring several input formats

Other text based tools include notelist editors and
Smalltalk itself. Since DMIX is implemenied within
Smalltalk, every object can be inspected and directly
manipulated vsing the standard Smalltalk tools. The
entire source code is available so that the system can
easily be extended and modified.

MidiNoteI

aiiaivi— MidiNote [pizch: o5 duri 0.5 vel: 64
“fr #chan: 1)

The note's piteh

y uration

instance variables channel

{memory) velosity \

T,
sending a message

A MidiNote object viewed in a Smalltalk Inspector

D. Oppenheim

DMIX

Tools for Realtime

INPUT is a class that connects to external hardware
input devices, such as MIDI sliders and wheels. Inputs
are used to map user actions in realtime, as in realtime
editing. In a future implementation the user will be
able to freely connect Inputs with other objects in
DMIX.

ECHO is a collection of classes that represent
processes that interact in realtime with a performer (or
the composer). In many ways an Echo resembles a
patch in MAX, Interactive sessions using ECHO can
be captured in DMIX for further processing (with
QUILL, Graphic editors, etc.). Echo processes can be
spawned and controlled via SHADOW in the context of
a live performance.

EchoWithProcessEditor: e4|
' l n | Ragord
[}] []

generamNolesChangeOnPhch

Echo is a realtime process, much like a MAX patch

Performance Tools

SHADOW is a system for both composing and
performing interactive music. The composer creates a
score via various graphic and text editors. The score
links triggers—notes or performance gestures—to
specific actions. These actions can be the playing of
additional notes or sequences (i.e. an accompaniment)
or executing blocks of Smalltlak code. The latter can
be used to spawn and update Echo processes in order to
facilitate for what I term non-structured interactive
tracking. During the compoesition stage SHADOW can
emulate the performer and allow the composer to play
the score and test out interactive sections.

During a performance SHADOW follows the
performer, synchronizes with him, and executes the
predefined actions in the score while taking into
account the performer’s tempo. Tracking can be any
combination of linear or interactive. Linear tracking is
the more conventional approach where all the triggers
are predefined sequentially in the score. In interactive
tracking scenes are specified, each having several
triggers. Here the performer determines what triggers
he will play, how many times he will repeat each
trigger, and in what order. This can enable the
performer to expressively control new musical
parameters, such as timbre, texture, harmony, or even
what music will accompany him.

Data input
/ Parameter updte ! conlrol

fa
£

fa
Wi

SHADOW: Seore TracKer

Echo
Window size
Ternpo
Rehersal Marks

!

Score
Collection of events and
Performance Links

Fuzzy Composition Procssses
Real time Midl procassing

create
run

update
close

d__'_’_____p Dmix Objects

Performances i B T—ﬂ
ialiias ?ﬂh Smalltatk

user Primitives

Interactive Tracking

Linear Tracking

The Performance system comprising of SHADOW (the
tracker) and a number of Echos

LENNY is a tool still under development. Its
objective is to enable a composer to gradually refine
his music by adding the performance nuances normally
added by a live performer.

General Tools

MODIFIERS include Functions, Filters and
Interpolators and have already been described in relation
to graphic views. However, Modifiers can be used
anywhere within the DMIX environment, including in
QUILL where they can aid algorithmic composition,
Smalltalk inspectors, and more, A special feature in
DMIX is that Music-Events can be transformed into
MODIFIERS that can, in turn, be applied to other
music objects, and vice versa. This offers composers
alternative ways of thinking about transformations of
musical materials and may lead to new approaches in
dealing with musical concepts such as motivic
treatment and development.

Patterns are list processing elements modeled after
the Common Music Item_list (Taube 1990). They are
part of a large package of objects that can be used for
algorithmic composition, statistic distributions, and
the likes.

There are many additional tools within DMIX that
cannot be described within the limited scope of this

paper.

The Music Representation

D. Oppenheim

DMIX

1 consider the internal music representation, i.e. the
low level Smalltalk objects on which DMIX is built,
as a user-accessible tool. This a good design feature: a
visible and accessible internal representation allows
users to modify, extend, and adapt the entire system to
handle the NEW musical situation that they conceive.
Tools in DMIX are designed to keep on functioning
even when changes are made to the internal
representation (within reasonable linits).

Coda: The Big Picture and
Slapability

We can now examine several ways in which the
components in DMIX function together and form a
unified music system with a consistent user interface.

Multi presentations

DMIX readily supports multi presentations. The
following diagram illustrates viewing the Bach Prelude
via a graphic editor, notelist editor, and Smalltalk
inspector; other presentations are available. Changes
made in one view will reflect in all others.

Edhing Omixt Converto

Text Editor

TewiEditor sm EventHolder namudi BachPreludet]

Play Oclsina] DeitaTims [rev-compltd Play Eaht
EventHolder

Tnatanca namm BaohPraluded

<comment: !

aollaction sire: 83

+0.125 MidlHoxe [plich: &5 durt 1,0 vel 65 #chan 4]
40,125 MidINota [pltoh: &5 durt 0,426 vali 54 #chan: 1]
40,125 MidNoze [pltchr g5 duri 0,125 vel 53 #chan: 1]
+0,125 MidiHote [pltchr o8 duri 0,125 vl 63 #chan: 1]
40,125 MidiNate [pltchr &8 dur: 0,425 vak 53 #chan: 1]

Graphic editor

Isv.mHnld-r

— EventHolder
LI A——
["BachPretutet” (s8]
comment
evants

eachQuration

Smalltalk inspector
(write Smatitelk code)

EventHolder

Multi presentations of music objects
Using all the tools at once

The following diagram demonstrates the ease and
flexibility of bouncing music back and forth between
different tools. Here we are moving between the
extremes of realtime improvisation and off-line
algorithmic processing {alphanumeric). Material was
generated in realtime by improvising with an Echo.
The music was captured in DMIX and then edited
graphically. At the next stage a NoteList editor was

spawned to enable detailed editing that might be hard to
do via graphics. The text representing the music was
then copied into the QUILL editor, where the music
was processed further via high-level algorithmic
programming techniques. This sort of work-process
could go on indefinitely.

I-‘ Midi Instrument]
. : |

Graphic Editing

Editling Dmix: Demol

EchoEditor

Real Time modification
in Dmix

[Fexteaiver] d Text Editing
Save ay origingDeitaTime fav-Compid Play Edit [Po]/d2 |

EvantHolder
*0.238" +0.23¢ MldiNate [pitchr g# 4 durt 1.0 vel: 64 #chant 1]
“0,363" +0,125 MidiNote [piteh: 65 durt 1.0 vel: 64 #ghan: 1]
i £ #chan: 1)
64 #ohan: 1]
#ehant 1]
#chane 1]
. : 64 #rhan: 1]
+0,12% MidiNote Toiteht of durt 1.0 vel: 64 #ochani 11

1,113

[aiver]] paste into quin
H | o | Ek | 12mpEvent | do | ?
piede

Using several tools sequentially

Slapping one toal onto another

A much more intuitive, powerful, and flexible
mechanism for working with several tools or moving
between them is what I term Slapability. In the
previous example the composer had to record his action
using the Echo, and then spawn a graphic editor on the
completed recording (event). In order to open the
TextEditor the composer sent a message with that
request to the event (via a menu selection). Text could
be copied from the TextEditor into QUILL because
QUILL understand the format used by the TextEditor.

Slapping offers a much more straight forward way to
accomplish all this and much more. The idea is that by
dragging one view and dropping it on another some
action takes place. For example, slapping a graphic
view on an Echo will cause the graphic view to
become the input to that Echo (see next figure).

D. Oppenheim

DMIX

EchoEditor! unNamedl
2| | Record || de
0. 62 11870 | 8] =7rdo - Jau9)] 4
9
x LT L Ly -
Fadi ot i
D,
nuelavprati sil .
Tz 5tContPOrSf1cen] 51 [PrDoyeOrClaice

Edlting DmJx: HappyEndI

play¥iews, p@ﬂenordl + \Hewl- Vlew*r Signai Score I? m”ﬂ

bt J s]m Fiyrthm LEdit 1 [[131] (0:12y

[0.0 - 34,49] 34.49
Eorntg E
SWES o S e B, B e

T T T T i) T
5.0 16.0 256.0

Slapping a Graphic View onto an Echo

Dropping a graphic view, NoteList, or a music event,
on a QUILL window, will transform that music-event
into an alphanumeric algorithmic format that when
evaluated will create an identical music-event (see next
figure, simplified). However, by changing this
algorithm new kinds of musical transformations can
easily be made. Siapping a Modifier on a Graphic view
will modify the events on the display. Slapping a
music event on a Modifier changes that Modifier so
that its data is derived from that event. Almost all the
of the objects and views in Dmix can be slapped on
each other, providing a fast and intuitive way of
transforming musical material.

£diting Dmlx: HappyEnd]

playViews |p [4] Aecord | + view | - view [+ signal seare | P MMM
i g [l ThO] 3™ | el | o [A [ritnaJrunm] | 10,28 « g#2
0.15 (0.5 - 13.36] 13,38

(o g H)
L0 P
[EEE TR ST e wl nman's - Sotdaot CL

T T Y T T T
2.0 \ 5.0 10,0
Quill Editor: uncompited tex:\
n I 170 Ek\] tempEvent | do l ?
voiceloop: fromSelection notes: 13
vart pitches durations [e b
initu

pitehas « Pattern on: #("as” 'd6’ "f6” *b4” "d5”
'g5” *d6? 6" *g8? 16’ *F5? 2¢5’ TeS’),
duratiors « Pattern on: #(150 150 150 1200
160 180 160 150 130 160 150 1200 450 3.
!
loopn
self pitoh: pitches next.
self duratlon: durations next.

Slapping a Selection onto a QUILL Editor
Modular Tool Configuration (under
development)

In a future release T would like to extend the notion of
Slapability and combine it with modularity. The idea
is that music-events, tools, processes, blocks of
Smalltalk code, Modifiers, and any other object could

-9.

be Iinked together to form some higher order entity.
This is not unlike connecting boxes in the MAX
environment. However, here the contents of each box
could be a very high-level object or process. This could
help composers in finding ways to build new tools for
creating and manipulating their music. If the composer
is also the creator of his tools, there is a better
possibility that he will be able to conceive the music
he is creating in terms of the tools that can produce it
This might help to further bridge the gap between the
composer’s CONCEPTS and the FORMAL steps
needed to realize them with the aid of a computer.

[_csi [C:2 —JFactControl
enhototas

Qulll Editor|

valoelocp: dan notan 150 1
var: plt dur deltaT vel mot1 mot2 mot3 ¢
initz:]* Event

mott + {Pattern ont #(ck f15 d3 gr2
met2 ¢ (BzgPatiern an: #{c14 dd de

loepn
zalf pitehi pit nexts

N\
7

QUTPUT
{MIDI, DSP, Hard disk..) |«f—| Recorder

Slapability enables a new kind of modularity for creating
new user-defined tools

Postlude

DMIX is a first step in the design of environments that
better support creativity. Whereas DMTIX opens new
conceptual ways for thinking about music and about
the tools to create and manipulate it, there is still
much to be desired. It is interesting to observe that
whereas computers open a vast space for new creativity
and expression, the composer's ability to freely express
his ideas and work them out is still constrained. Until
better user interfaces are found, it will be the
conventional composer that enjoys the most creative
freedom as he sits by his desk with a pencil in his hand
and a score lying before him...

D. Oppenheim

DMIX

The design process is not unlike composing
experimental computer music: as experience in using
the system is gained, the insight insight needed to
refine the design and improve it will be obtained.

Availability

Musicians interested in using DMIX are encouraged to
contact the author.

-10-

References

Ames, C. 1990. “Introduction to COMPOSE: An
editor and interpreter for automated score
generation and score processing,” Interface: Journal
of New Music Research, 20:3-4, p. 181,

Loy, G. 1989. “Composing with Computers—a
Survey,” in Current Directions in Computer
Music Research, Mathews M. and Pierce J.,
editors, MIT Press, Cambridge Massachusetts.

Mathews, M. V. 1969. “The Technology of Computer
Music,” MIT Press, Cambridge, Massachusetts.

Oppenheim, D. V. 1986 “The Need for Essential
Improvements in the Machine-Composer interface
used for the Composition of Electroacoustic
Computer Music” Proceedings of the ICMC, the
Hague.

Oppenkeim, D. V. 1987.”The PGG Environment for
Music Composition - a Proposal,” Proceedings of
the ICMC, Urbana Illinois.

Oppenheim, D. V. 1989. “Dmix: An Environment for
Composition,” Proceedings of the ICMC,
Columbus, Illinois.

Oppenheim, D. V. 1990. “Quill: An Interpreter for
Creating Music-Objects Within the Dmix
Environment,” Proceedings of the ICMC,
Glasgow, Scotland.

Oppenheim, D. V. 1991a. “SHADOW: An Object
Oriented Performance System for the DMIX
Environment,” Proceedings of the ICMC,
Montreal, Canada.

Oppenheim, D. V, 1991b, “Towards a Better Software-
Design for Supporting Creative Musical Activity
(CMA),” Proceedings of the ICMC, Montreal,
Canada.

Pope, S. 1989. “Machine Tongues XI: Object-Oriented
Software Design” Computer Music Journal
13(2):9-22.

Puckette, M. 1988. “The Patcher,” Proceedings of the
ICMC, Cologne.

Schaeffer P. and Reibel G. (1967) “Solfége de I'objet
sonore” Paris: Edition du Senil.

Schottstacdt, B. 1984, “PLA - A Tutorial and
Reference Manual,” CCRMA report No. STAN-
M-24, Department of Music, Stanford University.

Smith, L. 1974. “SCORE - A Musician's Approach to
Computer Music,” JAES, Vol, 20, No. 1.

Taube, H. 1990. “COMMON MUSIC - A Music
Composition language in Common Lisp and
CLOS”. CCRMA report STAN-M-63, Stanford
University.

D. Oppenheim

