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Tactile Audio Feedback 

Chris Chafe 
Center for Computer Research in Music and Acoustics, 

Department of Music, Stanford University, Stanford, CA 94305 

Abst rac t 
Vibrotactile feedback is common in handheld mu­

sical instruments. Useful cues received by the player 
via this sense arc presented, and a design which in­
corporates vibrotactile feedback in new controllers 
for physical models is proposed. 

I. In t roduct ion 
Quite some time ago, in many forms, humans 

evolved a medium of expression through whacking, 
plucking, blowing and bowing various acoustic and 
mechanical oscillators. Adept control of the vibra­
tion of these systems is as necessary to music as it 
is to precise vocal communication. Like the voice. 
handheld instruments arc intimately connected with 
our seuse of touch. Primary feedback arrives by car. 
but the feel of crafting a sound from a brass, wind or 
stringed instrument is an important secondary sense 
and is learned early on in training. Resistances and 
"give" are felt kinesthctically and vibration arrives 
directly through the tactile seuse. Contact points in 
the cello, for example, are five: two legs, two hands 
and chest. These points register motion that adds 
to the player's sense of the inssrumeut's response to 
controlling gestures. 

Figure 1: Tone 1 amplitude plots are from an 880 
Hz. natural harmonic played on the celletto. Top: 
bridge transducer. Bottom: left-hand index finger 
acceleroinctcr. 

II. Background 
The psychophysics of the vibrotactile sense ha-s 

been described at length in the literature. Verrillo 
in |1) presented a review of the field framed by a 
discussion of issues relevant to musical performance. 
These general concepts are of importance in the fol­
lowing discussion: 

• The fingers arc among our most sensitive sites. 

• Frequency response ranges from near 0 to ap­
proximately 1000 Hz. 

• Frequency discrimination is very poor. 

• The subjective sensation changes across fre­
quency bauds. 

Amplitude sensitivity measured with sinusoidal 
stimuli varies with location. It is suggested that 
high sensitivity, such as has been measured at the 
fingers, is in relation to representation area in the 
somatosensory cortex [2]. Four independent physi­
ological channels are known and are separable with 
regard to amplitude and frequency sensitivity [3]. 
Differences may play a role in bracketing vibrations 
of an instrument into distinct cues, as will be shown 
to occur below. 

A mound-shaped curve describes overall cuta­
neous frequency sensitivity between 0.3 and 1000 
Hz. The region of best sensitivity extends from 
about 100 to 500 Hz. Frequency discrimination is 
poor compared with the ear: The finger is only able 
to detect differences on the order of 20 or 30%. The 
quality of the sensation changes from a localizable 
"buzz" below about 100 Hz. to a diffuse, smoother 
sensation for higher frequencies. From various ear­
lier studies, it can be concluded that only certain 
musical dimensions are representable, specifically 
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Figure 2: Tone 1. Low frequency components are 
shown in a spectogram of finger vibration at note 
onset. These components disappear as the stable 
oscillation sets up (seen after the cursor mark). 
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Figure 4: Tone 2. The spectogram shows the pro­
gression of finger vibration from note onset to stable 
Helmholtz motion. The pitch starts high (sporadic 
episode), dips below (unstable Helmholtz episode), 
and then arrives at the final fundamental pitch. 
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Figure 3: Tone 2. Amplitude plots are shown of 
first episode (see text) of a note onset at 110 Hz. 
Top: bridge transducer. Bottom: left-hand index 
finger accelerometer. 

timing, amplitude, and spectral weighting, but not 
precise pitch. 

III. A Cellist's Left Hand 
Recordings were made of cello tones to discover 

some functional vibrotactile cues. The fingertip was 
chosen for an initial site because of its good sensi­
tivity. Tones were played arco on the celletto. an 
electronic cello, and two channels were digitized si­
multaneously at a sampling rate of 44.1 kHz. Out­
put from the instrument was recorded with a !>i-
morph piezoceramic bridge transducer desigued bj-

Max Mathews. Finger motion was obtained from an 
accelerometer (PCD model 330a) affixed to the nail 
of the index finger which was stopping the string. 

The following analyses demonstrate two cues by 
which a cellist senses stability of oscillation. Tone 1 
is a high pitdied natural harmonic (played with the 
finger stopping the string lightly, not fully to the 
fingerboard) and sounding 880 Hz. (A5), played on 
the instrument's first string (A3). Tone 2 is fully 
stopped at 110 Hz. (A2) and played on the third 
string. Doth tones were played with intentionally 
long bow attacks to exaggerate the note onset tran­
sient. 

Tone 1 is pitched above the upper frequency limit 
for sensation. Continuous vibration is only felt for 
tones pitched below about a perfect fifth lower than 
this note. Despite this fact, transients are still felt at 
pitches that are too high. Note onsets, bow direc­
tion changes and abrupt stops are sensed as brief 
vibrations at the fingertip. Dual amplitude plots 
of Tone 1 in Figure 1 contrast the output signal 
and the signal that passes through the fingertip. 
From the noisy onset into strong stable oscillation 
the bridge waveform shows amplitude growth. How­
ever, the fingertip recording shows a low-pass filter 
response: diminishing amplitude as the oscillation 
locks in on a pitch that is too high. During the tran­
sient, low components that are in the region of sen­
sitivity are transmitted through the finger. These 
are seeu in the spectogram of Figure 2. At this 
pitch, the cellist has a cue that discriminates tran­
sient events from stable oscillation through presence 
vs. absence of vibration. 

Tone 2 is pitdied to lie with at least 7 of its 
harmonics in the region of sensitivity. Continuous 
vibration is felt through the entire course of this 
tone. The transient portion is still sensed as a dis­
crete event though the cueing signal is different. As 
pointed out above, vibration quality can change at 
around 100 Hz. as it does here, from a "luugh and 
aperiodic" transient to a "smooth and regular" sta­
ble oscillation. Furthermore, the note onset itself 
consists of two distinct episodes before leading to 
stable, periodic Helmholtz (stick/slip) motion. Ini­
tial sporadic releases are followed by an interval of 
very unstable Helmholtz motion with a flat pitch. 

The sporadic release episode shows a surpris­
ing difference between the two recorded channels: 
Where the bridge sees only isolated releases, the 
fingertip feels a plucked periodic vibration at 123 
Hz.(B2) one whole tone higher than the actual 
pitch. The phenoinonen results from the bow hair 
sticking to the string immediately after a quasi-



pizzicato, causing the string to be split into two 
portions. The felt pitch corresponds to the string 
length between fingertip and bow. Confirmation 
was made by studying the resulting pitch at dif­
ferent bow contact positions. Figure 3 shows the 
first episode. 

During the second episode, the tone exhibits flat­
tened, aperiodic Helmholtz motion. The finger­
tip waveform is more complex because of com­
peting, incommensurate oscillations. In Figure 4. 
Helmholtz motion (pitch A2) takes over from the 
earlier plucked string motion (pitch B2) and brings 
in lower components. 

Botli tones confirm that fingertip vibration (or 
lack of vibration) can be used to gauge the time 
and length of articulation. Depending on the note 
played (pitch, note fingering, etc.) finger mo­
tion was found to provide cues through ampli­
tude and spectral content. The player interprets 
cues in relation to the specific note. For exam­
ple, the same message concerning oscillation stabil­
ity will be received as presence/absence or smooth­
ness/roughness cues, depending on pitch height. 

IV. Physical Models 
With the advent of physical models for synthe­

sis, the world of electronic sound generation has 
a new class of "unpredictable" instruments. The 
same unpredictability is found to some degree in 
most traditional musical instruments and is easily 
summarized as the "freuch horn problem." Unmix 
overblown notes on the horn are an extreme exam­
ple of an oscillation going one way when the per­
former wishes to go another. The family of real 
time physical models developed at CCRMA exhibits 
this independence in all its members - it is an ar­
ticle of faith in the theory of oscillating nonlinear 
systems that this is "a feature, not a bug." Incor­
porating vibrotactile feedback addresses specifically 
the problem of performing on instruments that are 
not purely deterministic. 

Controllers that have been attached to CCRMA's 
physical models include MIDI modulation wheels. 
MIDI keyboard aftertouch, mouse-controlled com­
puter panels and homemade gear such as Cook's 
WhirlWind instrument [5]. The hand controlling a 
synthesis parameter locates a particular value cither 
be ear or combined with a coarse sense of position 
(which may depend also on the eye watching a cur­
sor). Position itself is relatively coarse compared to 
the model's sensitivity to some parameters. Worse 
yet, the models often do not respond identically to 
a precisely repeated parameter value, since system 
state interacts with rcponse in the physical mod­
eling world. The models exhibit multiple possible 
regimes of oscillation for a given set of parameter 
values. 

The electronic french horn problem is presently 
much worse than the natural one. The lip tension 
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Figure 5: Tactile Audio Feedback is used to con­
trol the lip tension parameter of the brass physical 
model HosePlayer. 

parameter of CCRMA's nearest model, HosePlayer, 
determines in part which overblown note will sound. 
Using the controllers listed above (with a hand con­
trolling lip tension) we have yet to hear anyone play 
Taps (a bugle call) without a mistake. The only pos­
sible feedback is crossmodal (ear/finger). Normally, 
when playing a brass instrument, lip tension control 
and the lip reed producing the sound would be inti­
mately associated. Effort injected into the oscillator 
would be metered directly by vibrotactile sensation 
at the point of excitation. Instead, an electronic 
controller is employed which is either "dead" in this 
sense or imparts vibration and resistance of its own 
kind, and which are not derived from the oscillating 
system. 

V. Tactile Audio Feedback 
Au iuital test has been performed to see if the sit­

uation improves with addition of vibrotactile feed­
back by creating a direct control loop at the finger 
tip. The setup is diagrammed in Figure 5. Depress­
ing a flexible metal bar corresponds to a change in 
lip tension. Audio output of the model is fed back 
to a voice coil actuator that vibrates the metal bar. 
With the finger depressing the bar and feeling the 
output of the oscillation, adept maneuvers of lip 
tension arc possible (Taps is much more playable). 
Turning off audio feedback to the actuator removes 
vibrotactile feedback and causes the situation to re­
vert back to imprecision. Most of the pitches are 
above frequency cutoff for the vibrotactile sense. 

Figure C shows a spectogram of a portion of a 
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Figure 6: A spectogram of a lip tension glissando 
shows subharmonic components when the pitch 
shifts to the next higher harmonic. 

harmonic glissando produced by changing lip ten­
sion, as synthesized with Cook's TBone program 
[4]. Brief bursts of energy support subharmouics 
that lie below cutoff at note transitions and harmon­
ics of subharmouics are visible. The finger on the 
controller experiences these moments as "buzzes" 
or "bumps" when the overblown harmonic changes 
but feels nothing of the sustained tones between. 
Feedback to the performer consists of the same cue 
as Tone 1 in the cello analysis above. 

V I I . Conc lus ion 
Two vibrotactile cues have been explored. Cer­

tainly the number of cues is larger when taking into 
account the full range of an instrument's sonic possi-
blities. Feedback concerning oscillation timing and 
quality has been found. The experiment incorporat­
ing vibrotactile feedback in the controller for a re­
altime physical model of a brass instrument can be 
extended simply in more sophisticated controllers: 
Feed the audio output of the synthesis back to the 
controlling device so that the musician feels the os­
cillation. The result will improve a player's percep­
tion of when the oscillator speaks and how it speaks. 
Controllers that communicate to the sense of touch 
can also incorporate kinesthetic forces [6] [7]. Good 
tools lend themselves to skillful operation - future 
work aims at affording better control to performers 
of synthetic electronic musical oscillators. 
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IGDIS (Instrument for Greek Diction and Singing): A Modern Greek 
Text to Speech/Singing Program for the SPASM/Singer Instrument 

Perry Cook (prc@ccrma.sunford.cdu) Stanford CCRMA 
Dimitns Kamarotos, Taxiarchis Diamantopoulos, Giorgos Philippis Athens CCMR 

Abstract 

A Greek language text reading program has been constructed which generates control files for the 
SPASM/Singer physical model of the human singing voice. A simple rule system for Modem Greek 
determines pronunciation. The Greek text is processed in stream fashion, yielding a text file which 
controls the Singer instrument. Note names, frequencies, or functions specifying pitch are imbedded 
directly into the text using o brackets. Note durations are extended with dashes. Tuning systems based 
on a large number of Greek microtonal modes have been specified. A number of commonly used Greek 
vocal ornaments have been specified as C functions, and can be passed to the Singer instrument using {} 
braces. The system allows for easy creation of new ornaments, figures, words, and tuning systems. 

1 Introduction 2 Text to Speech 

IGDIS "Instrument for Greek Diction and Singing" 
is based on the LECTOR Ecclesiastical Latin to Speech 
and Singing Project [Cook, 1991]. The goal of the 
Greek Singer project is to provide simple means for 
creating control files for a physical model of the human 
singing voice, with emphasis on the Greek language 
and Greek vocal music. 

Greek language has a historical development of 
3000 years, and is still an actively used and evolving 
language, therefore the task is much more complex than 
that for Ecclesiastical Latin. Greek has met various 
influences from other languages, but has kept some 
very specific characteristics. Among those 
characteristics are a large number of primal roots and 
complex patterns of pitch and amplitude that resemble 
the complexity of the singing voice. A good Greek 
language synthesizer should be very close to singing! 

The IGDIS project provides a user-friendly tool that 
can be used for research in Greek folk and Byzantine 
Ecclesiastical music as well as for an experimental 
approach of the prosodic and rhythmic characteristics 
of ancient Greek language and music. Some features 
very frequently encountered in all forms of Greek 
music are the mode-like "scales", with non symmetrical 
intervals that differ from "well tempered" western 
semitones and tones, the very frequent monodic 
environment, and the formalized ornamental richness. 
These "ornaments'' are not of a decorative nature as 
most commonly used in western music, but they 
construct complex melodic lines called "melisma" 
[Karas. 1988]. 

A big part of this musical context has been analyzed 
and categorized ,so that it is possible to produce special 
routines that simulate these characteristics of vocal 
behavior [Baud-Bovy, 1984]. 

The IGDIS project provides simple means of data 
input for the SPASM/Singer articulatory-controlled 
voice synthesis systems. The SPASM and Singer 
projects are described in [Cook, 1989, 1990, 1991]. 
The necessary modem Greek language rules for the 
purposes of Greek speech are included, as well as those 
for Greek singing. Moreover a set of Greek folk music 
Singer subroutines are also included to model most of 
the commonly encountered vocal ornaments. 

The program enables the user to enter the desired 
text for speech/singing in ASCII text The text is then 
processed in stream fashion, yielding a text file which 
controls the Singer instrument. Similar to common 
vocal notation practice, durations can be extended with 
dashes. All phonemes and dashes yield a default 
synthesis duration of 0.2*vtRef or 0.2*ctRef seconds. 
The default for vtRef and ctRef are 0.5 seconds, 
yielding a 100 millisecond phoneme frame. As an 
example, the following yields a soundfile 2.2 seconds 
long: 

3 Pitch Information 

Frequencies (440.0) or note names, both as in 
western (c4) and Byzantine music (boul) notation, are 
imbedded directly in the text using o brackets before 
the phoneme associated with the target pitch: 

<c4>fca~<faout> I »:44u.lb t i»<120.7*ria(l.S)>t ni • 

Enclosing a message in curly braces places it 
verbatim into the Singer instrument control stream. 
This could be used for changing the time references, or 
globally controlling the amplitude of consonants: 

{vtRef = 0.15; ctRef-&25; •Asap-0.75;) 
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The Greek input text is then processed by the Greek 
parser program. This program serves not only as a 
parser for the input text file, but also applies modern 
Greek pronunciation and phonetic rules, and finally 
converts the input code into the corresponding Singer 
control code. The major principles of modem Greek 
pronunciation have been applied. In a large number of 
cases the pronunciation of a single character depends 
on the characters immediately before or after the 
current one. Other cases include double consonants, 
diphthongs etc. The use of "transitional" diphones 
between two successive phonemes is one of the main 
characteristics of Greek speech. This means that the 
total number of the original phonemes as well as the 
transitional diphones is very large, so a practical Greek 
vocal synthesizer must make use of smoothing routines 
rather than trying to include all possible phoneme 
combinations. The Singer instrument automatically 
provides means for interpolating between target 
positions in phoneme space, where the control space is 
that of vocal tract shape (articulatory space). Smooth 
and continuous transitions in this space inherently 
provide more natural synthesis, because unlike 
transitions in many other speech representation spaces, 
motions in articulatory space are always smooth and 
continuous. 

This IGDIS input code: 

<c4>ka-<boul>—li<440.0>--me<lM.7»sin(1.5)> re-

yields this Singer code: 

•define Syn synthesize 
«define LG lastGlotO 
#define LP lastPltchO 
#define LV lastVibrAmtl) 
#define CR ctRer 
#define VR vtRef 
#deflne GA gAmp 
#deflne NA nAmp 

setPerfPitch(c4); 
Syn(0.05»CR,"kkk",LG,LP,0.00»GA,0.00*NA,LV,fd); 
Svn(0.05*CR,"kkk"4XJJLPfO.OO^;AlO.OO»NA^V/d); 
Syn(0.02»CR,"kk+,,4X;4-PfOJMr»GA^.10»NA4-V^d); 
Syn(0.08*CR,',kk+"4X;>LP4>.00»GA,0.00*NAa.V^d); 
Syn(u.lO»VR,"alpha",LG,LP,0.80*GA,0.00'NA,LV,fd); 
Syn(0.10«VR,Malpha",LG,LP^.80*GA,0.00«NA^,V/d); 
Syn(0.40«VR,"alphaM,LG,LP^).8H»GA4U)0'NAXVJd); 

KtPerfPStch(boul); 
Syn(0.10«VR,"«lph«,'iGJLPA«0*GAjO.OO*NAa.V/d); 
Syn(0.10*VR,,,«lpha,,JLG4J,A«0*GA>O.W)*NA^V/d); 
SyiK0.40*VR,"«lpha"JLG4J,A«0*GAA«»*NAA.V/d); 
Syn(0.05*CR,"l«nid*"4XS4-P^^O«GAAO<r*NA^V4d); 
Syn(0.0S»CR,,,Umda,\LG,LP,0^O»GA,0.0O,NA^V/d); 
Syn(0.10*VR,"lott"4X;4J,jO-«ft*GAAOO»NA4-V4a); 
Syn(0.10*VR,"loto"4X;4J,A«on;A4».«r*NA^V/d); 

•etPerfPitch(440.0); 
Syii(0.10*VR,,,JoU,MXaJA80*GA^.00*NA4-V^d); 
Syn(0.10*VRf"»oto"4>G4J,A80*GAA00»NA4-V/d); 
Syn(0J0*VR,"loUi"JLG>LP4>-80HJAj0.00*NA4-V/d); 

Syn(0.05»CR,"nii",I.G,LP,0.80»GA,0.00»NA,LVtfd); 
Syn(0.15*CR,"ml"4X;^PA80*GAAOO*NA4-VJd); 
Syn(0.10»VR,,,epsllon,'^G4.P,0^0*GA,0.00*NA,LV4d) 
Syn(0.10*VR,"epsilon"^G4.P,0^0«GA,0.00»NAiV^d); 

MtPerrPitch(120.7*sin(l-5)); 
Syn(0.10»VR,"epsilon",LG,LH,0.80»GA,0.00»NA,LV,fd) 
Syn(0.10*VR,"cps»on"tLG4'P.0-80*GA,0.00*NA,LV,fd) 
Syn(0.80*VR,"epsilon,,,LG,l.P,0J«)»GA)0.00*NA,LV,fd); 

rollr<0.15*CRJLG,LP,0.54.\7d); 
Syn(0.10»VR,"alpha",LG4-P,0.8O»GA,0.OO«NA,LVJd); 
Syn(0.10»VR,,,alpha",LG,LP,0.80»GA,0.00«NA^V^d); 
Syn(0.60»VR,"alpha",LG,LP,0.80»GA,0.00»NA,LV,fd); 

As can be seen, the Singer control file is a time-
ordered list of vocal tract shapes, glottal input files, 
pitches, amplitudes etc. The vocal tract shapes and 
glottal input files reside in a library and have been 
generated by the SPASM synthesis program. The vocal 
tract shape files resemble as much as possible the Greek 
phonetic alphabet, and the glottal input files reflect 
different voice qualities and ranges. The Singer voice 
synthesizer drives smoothly from one shape and set of 
parameters to the next according to the control script, 
synthesizing the spoken/sung text. 

4 Synthesis of Greek Singing 

As for the Greek singing pan of the IGDIS project, 
the main emphasis has been given to the scales, the 
various ornaments, and the prosodic features that are 
used both by Greek folk and Byzantine Ecclesiastical 
music [Karas, 1982]. Well tempered scales are also 
included. The scale in use must be declared in the 
beginning of the input text as an ^include definition. 
Ornament routines have been added to the program and 
can be entered in the stream of the text, linearly as they 
are to be performed in time. These Singer ornament 
subroutines include both western-like ornaments that 
are similar to those used in Greek tradition, as well as 
ornaments which are unique to music of Greece and the 
surrounding areas. 

The routine "melisma"- a Greek word for musical 
ornament, actually performs parallel control over a 
pitch and an amplitude envelope throughout the same 
time period. Because most of the Greek folk music 
ornaments deal a lot with parallel, but at the same time 
independent, linear control over pitch and amplitude, 
this routine can be used as a model and many other 
useful functions can be derived from it. 

Here is a typical example of an input text making 
use of the routines "streptonl" (strepton) and "petastil" 
(pt), tuned in "first mode" (firstMode): 

tindude "tuning/TirstMode-h" 

// The "streptonl" array is used to hold continuous 
// diss breakpoints, in the form of: 
// (timeN^entsN) <— Nth point 
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{ double strArray[4][2]; 
double basis = a3; 

»lRef=0.6; ctRef=0.6; 

strArray[0][0] = 0.11; 
strArray[0][l] • -120.0; 
itrArr»y[l][0] = 0.12; 
strArray[l][l}= 120.0; 
strArray[2][0] = 0.12; 
•trArray[2][l] = 200.0; 
strArray[3][0}=0.12; 
•trArray[3][l}=-200.0; 

att_nie_jMtti("A]Mn/diiniuisAJbrai7SPASM/SPASM/"); 
«etGlot("Greekdefault"); 
•etPerfVlbrAnU(O.OOl); 
s«lPerfRndAmt(0.005); 

) 

<c4>ka-{strepton(4^trArray,rd);}-<boul>— li<440.0>-
{pt(fd);)me<120.7*sin(1.5)>—ra— 

where "tuning/firstMode.h" is: 

•include <mathJi> 

«define rvOa basis'pow (2.0,-20.0/72.0) 
•define nhO basis*pow(2.0,-12.0/7X0) 
«deflne pal basls»pow(2-0/).on2X) 
•define boula b«is»pow(2.0,10.(V72.0) 
•define bould basis*pow(2.0,9.0/72.0) 
•define gal basls*pow(2.0,18.0/72.0) 
•define dil basis*pow(2.0,30.0/72.0) 
•define kel basis*pow(2.0,42.0/72.0) 
•define zv If basis*pow(2.0,48.0A72.0) 
•define svla basis*pow(2.0,52.0/72.0) 
•define ivld basls*pow(2.0,51.0/72.0) 
•define nhl basis*pow(2.0,60.0/72.0) 
•define p«2 pal*2.0 
•define bou2a boula«2.0 
•define bou2d bould'2.0 
•define ga2 ga 1*2.0 
•define di2dl 1*2.0 
•define ke2 kel*Z0 
•define i>2fivlf*2.0 
•define iv2a xvla*2-0 
•define rv2d ivld*2-0 
•define nh3 nh2*2.0 

As can be seen in the above header file, mere is 
often more than one definition for certain steps of the 
mode. This happens because of the characteristic of 
some steps to use a different pitch depending whether 
they are in ascending or descending movement, or 
represent stable or unstable tones in the particular 
melodic context [Merlier, 1935]. 
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5 Conclusions and Future Directions 

The IGDIS tools allow voice to be synthesized from 
input text The Singer C code can be edited and fine 
tuned, and improvements fed back into the Singer 
subroutines. Work remaining to be done includes: 

n Further development of the Greek phoneme library. 

a Formalization of speech phenomena characterizing 
the transitional phonemes in modem Greek 
language. 

H Expansion of the rules of parsing including more 
cases of modem Greek pronunciation. 

n Construction of more complex Singer subroutines. 

n Friendlier user interface for data entry. 
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Abstract 

Pitch and frequency detection schemes which do not take into account the unique spectral and acoustical 
properties of a particular instrument family usually generate errors of three types: 1) octave and harmonic 
detection errors, 2) half step errors which jitter rapidly about the true estimate, and 3) latency of 
detection. A pitch detection and live MIDI control system has been constructed for the trumpet, which 
significantly reduces detection errors and latency. By limiting the search range to the natural playing 
range of the trumpet, sampling rate and computation can be optimized, reducing latency in the pitch 
estimates. By measuring and utilizing valve position in the pitch detection algorithm, the half-step jitter 
problem is completely eliminated, and latency can be further reduced. Schemes for reducing harmonic 
detection errors will be presented. The trumpet system is quantitatively compared to two popularly 
available pitch-tc-MIDI systems. Performance features are integrated in the trumpet MIDI control 
system, such as MIDI file and sound file playback controlled by triggers mounted on the instrument itself. 

1 Introduction: Pitch/Period Detection 

Pitch detection is of interest whenever a single quasi-
periodic sound source is to be studied or modeled, 
specifically in speech and music [Hess, 1983]. Pitch 
detection algorithms can be divided into methods which 
operate in the time-domain, frequency-domain, or both. 
One group of pitch detection methods relies on the 
detection of some set of features in the time-domain. 
Other time-domain methods use autocorrelation 
functions or difference norms to delect similarity 
between the waveform and a time lagged version of 
itself. Such methods are essentially period detectors, 
and not truly pitch (a perceptual measure) detectors. 
However, many signals such as those encountered in 
music are highly periodic, and thus systems which 
detect frequency or periodicity are often called pitch 
detectors. Another family of methods operates in the 
frequency-domain, locating sinusoidal peaks in the 
frequency transform of the input signal. Other methods 
use combinations of time and frequency-domain 
techniques to detect pitch. 

Frequency-domain methods call for the signal to be 
frequency-transformed, then the frequency-domain 
representation is inspected for the first harmonic, the 
greatest common divisor of all harmonics, or other such 
indications of the period. Windowing of the signal is 
recommended to smooth the effects at frame edges, and 
a minimum number of periods of the signal must be 
analyzed to enable accurate location of harmonic peaks. 
Various linear pre-processing steps can be be used to 
make the process of locating frequency-domain features 
easier, such as performing linear prediction on the 
signal and using the residual signal for pitch detection. 
Performing non-linear operations such as peak limiting 
also simplifies the location of harmonics. 

In a time-domain feature detection method the 
signal is usually pre-processed to accentuate some 
time-domain feature, then the time between 
occurrences of that feature is calculated as the period of 
the signal. 

A typical time-domain feature detector might low-
pass filter the signal, then detect peaks or zero 
crossings. Since the time between occurrences of a 
particular feature is used as the period estimate, feature 
detection schemes usually do not use all of the data 
available. Selection of a different feature yields a 
different set of pitch estimates [Deem ei. aL, 1989]. 
Since estimates of the period are often defined at the 
instant when features are detected, the frequency 
samples yielded are non-uniform in time. To avoid the 
problem of non-uniform time sampling, a window of 
fixed size is moved through the signal, and a number of 
detected periods within each window are averaged to 
obtain the period estimate. For reliable and smooth 
estimation, the window must be at least a tew periods 
long. Often the signal must be interpolated between 
samples in order to locate the feature occurrence time as 
accurately as needed. 

2 A New Period Estimation Algorithm 

A method of pitch detection which uses the phase delay 
of a periodic predictor to form the pitch estimate will be 
briefly presented in this section. For more detail on the 
algorithm, implementation, and applications, see [Cook, 
1991]. This pitch detector accurately tracks a quasi-
periodic signal, and will be called the Periodic Predictor 
Pitch Tracker (PPPT). The PPPT provides a method of 
automatically and adoptively determining the optimum 
continuous-time period, and also provides an estimate 
of the reliability of the period estimate. The PPPT 
system as initially described is not a complete pitch 
detector, in that it relies on some other scheme for an 
initial estimate of the period. Once the detector locks 
onto the correct period, the method provides accurate 
estimates of the instantaneous period using all samples 
of the input signal, provides an estimate of the 
periodicity of the signal, and provides controls which 
affect the dynamics and accuracy of the pitch detector. 
Given a quasi-periodic signal x(n), and an integer 
estimate P of the initial period, periodic prediction is 
implemented by: M 

**<k) . Z •ttt-PtOcfl) II] 

where M is some appropriately chosen small number 
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and c(i) are the predictor coefficients. Backward 
prediction is implemented by replacing P with -P in 
Equation 1. Figure 1 shows a block diagram of an FIR 
periodic predictor. 

m IM*I t»i«rt 

¥ 
Figure 1: Linear FIR period predictor 

The phase (relative to the Pth delayed sample) of 
the FIR filter implemented by the predictor coefficients 
is computed by: 

M 
X (c(l)-c(-l))*iin(<oD 

0 - tan"1 ^ — — m 
c<0)+L (c(l) + c(-t))«ca§(ti»l) 

|S| | 

The frequency wis the frequency at which the phase 
delay of the filter is calculated. The relation between 
the pitch estimate and to is: 

U - 2 K / T 0 - 2ft/T, (3) 

where T s is the sampling period in seconds and TQ is 
the period estimate. 

For further computational savings, sine, cosine, and 
tan"' values can be calculated by interpolated table 
lookup. The phase delay of the filter is computed by: 

Fkate Delay-e/co |4| 

By adding the computed time delay to the time 
delay of the P length delay line, the net time delay of 
the predictor is computed. This total delay is then used 
to compute a period and frequency estimate: 

r>rM - T0-niafe Delay+ (F/Sampling Rate) IS] 

Frequency = F0 * 1 / T0 (6) 

2.1 FIR Periodic Prediction Algorithms 

There are many known methods of implementing the 
adaptive FIR predictor used in the PPFT, among them 
the Covariance Least Squares (CLS), Recursive Least 
Squares Adaptive (RLS), and Least Mean Squares 
Adaptive (LMS) algorithms. All of these methods 
minimize the Mean Square Error (MSE): 

M 

MSE-l/N £ t? m 
l - M 

where the instantaneous error e k is defined as the 
difference between the signal sample and the predicted 
sample at time k: 

Ek«x(k)-Jt*00 18] 

The Least Mean Squares (LMS) adaptive [Widrow 
and Steams, 1985] algorithm is a gradient steepest 
descent algorithm using the instantaneous error to 

estimate the gradient of the error surface. It is preferred 
by the authors because of its performance and 
efficiency of implementation. Each predictor 
coefficient is adjusted at each time sample by an 
amount proportional to the instantaneous error and the 
signal value which is associated with the coefficient 
being adjusted. The LMS update equation is: 

where C^ is the vector of predictor coefficients, and X^ 
is the corresponding delayed input sample vector. The 
adaptation constant 2 \i comes from the Newton's 
method derivation (the 2 comes from taking the multi­
dimensional derivative of the error function), and 
controls the dynamics (and stability) of adaptation. 
Stability is ensured if: 

u<(2M + i )?r ' HO] 

where x2 is the signal power. The adaptation parameter 
M can be adapted dynamically, yielding the Normalized 
LMS algorithm: 

ck+l-ck+aXkek /<2<M*1>»2> W) 

where the signal power is computed over at least the 
last 2M+1 samples, a is any positive number < 1. 

22 Adapting the Delay Parameter P 

The integer period estimate P is variable, and there are 
new issues of filter dynamics in the LMS and RLS 
systems caused by on-line adaptation of the delay-line 
length. Ideally, the filter should experience no 
transients because of the adaptive modification of P. 
Various methods have been developed for adapting P, 
and are described in detail in [Cook, 1991]. 

2 3 TheAMDF 

The PPPT can be viewed as a refinement of the 
Average Magnitude Difference Function (AMDF) 
detectors. Methods of this type have also been called 
comb-filter methods. The AMDF measures the 
difference between the waveform and a lagged version 
of itself. The generalized AMDF is: 

AMDF(P) - L, l«m-m(UF)P IU] 

The quantity m is set to 1 for average magnitude 
difference, and other values for other related methods. 
The zero lag P=0 position of the AMDF is identically 
zero, and the next significant null is. a likely estimate of 
the period. Other nulls will occur at integer multiples 
of the period. If the error signal from the optimally 
adjusted PPPT were rectified and integrated, the output 
would be close to that of the optimum lag bin of the 
AMDF. The difference is that the PPPT can adjust to 
fractional sample periods, can even adjust to signals 
which are not purely harmonic (periodic), and does not 
require the block processing that the AMDF imposes. 

3 A System for Brass Instrument MIDI Control 

A MIDI (Musical Instrument Digital Interface) 
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performance control system has been constructed which 
integrates a valve-guided AMDF fundamental pitch 
estimator for coarse estimates, one PPPT adaptive 
period predictor for fine estimates, and other controls 
for musical performance. Figure 2 shows the system 
control screen, which runs on a NeXT computer. 

m 
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Figure 2: NeXT control window for Trumpet MIDI 
controller program 

The trumpet audio is sensed using a mouthpiece-
mounted microphone, routed to the CODEC port on the 
NeXT, and sampled at 8012 Hz. The valve states are 
sensed using two optical switches per valve, resulting in 
four position accuracy for each valve. Two additional 
switches mounted on the trumpet can be actuated by the 
player's finger and thumb, providing programmable 
control of performance functions such as MIDI and 
sound file playback, and synthesizer controls such as 
program change and sustain. The eight valve and 
control switches are encoded into a single serial byte 
and routed to the NeXT machine via one of the serial 
ports running at 19,200 baud. There is one internal 
synthesizer voice provided (an FM trumpet) synthesized 
on the NeXT DSP 56001 digital signal processing chip, 
primarily for tuning the control instrument and pitch 
detectors. A standard MIDI interface connects to the 
other NeXT serial port, and can be used to connect the 
system to any MIDI compatible synthesizer. 

Modes are provided to incorporate valve 
information into the AMDF fundamental pitch estimate, 
by limiting the AMDF calculations to 'legal' harmonics 
based on the current valve state. A single PPPT 
adaptive periodic predictor is set to the iutegei period 
yielded by the AMDF detector, and the coefficients of 
the PPPT are used to calculate fine estimates of 
fundamental pitch. Pitch bend can be used to 
continuously update the MIDI synthesizer based on the 
fine pitch estimate of the PPPT. 

The system was tested and compared to two popular 
'pitch to MIDI' devices available in the music market. 
The two pitch to MIDI detectors will be called 
OTHER-A (circa 1989, list price about $900) and 
OTHER-B (circa 1991, list price about $300). Our 

device will be called OURS (list price about $7000, 
because of custom-machined hardware for the trumpet, 
and the host NeXT machine). The three systems were 
tested for latency, defined as the total time delay from 
first trumpet sound to first synthesizer sound. All three 
devices were presented with the same audio and 
controlled the same synthesizer voice. The test passage 
consisted of a chromatic scale up and down, separately 
articulated (tongued). The systems were also tested for 
accuracy, defined by the number of erroneous MIDI 
messages sent during the articulated chromatic test 
passage, and another chromatic passage which was 
performed slurred (notes connected with no space 
between and no rearticulation). Two of each passage 
were presented, and the best performance of each 
system was used to calculate accuracy and average 
latency. Figures 3 and 4 show the results of the three 
detectors on the two chromatic test passages. The 
graphs of the three device outputs are offset vertically 
by 10 for plotting clarity. Errors are circled. 

Tonguad 

Figure 3: Detection results for tongued chromatic scale. 

Figure 4: Detection results for slurred chromatic scale. 

OTHER-A exhibited an average latency of 114.3 
ms. with a standard deviation of 66 ms., zero errors in 
the articulated chromatic passage, and five errors in the 
non-articulated chromatic passage. OTHER-B 
exhibited an average latency of 60.4 ms. with a standard 
deviation of 21.7 ms., seven errors in the articulated 
chromatic passage, and six errors in the non-articulated 
chromatic passage. OURS exhibited an average latency 
of 30.1 ms. with a standard deviation of 8.1 ms., three 
errors in the articulated chromatic passage, and five 
errors in the non-articulated chromatic passage. These 
results point out a general tradeoff between accuracy 
and latency, where 'waiting around' pays off in 
increased confidence in the estimate. The OTHER-A 
device exhibited the highest accuracy, but at the price of 
objectionably high latency. Most of the errors in OURS 
were caused by the valves moving slightly before the* 
pitch changes, or intermediate valve positions between 
two stable positions (in moving from all valves up to all 
valves down for example, two valves may arrive earlier 
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than the third), thus causing a spurious message to be 
sent. It is conjectured that performance can be 
improved by delaying the valve information slightly 
and making more use of fractional valve positions to 
determine valve trajectories. 

One further test was performed which integrates 
both aspects of latency and accuracy, based on the 
system's ability to accurately track a valve trill which 
increases in speed. As the trill speed increases, at some 
point each device should fail based on its inability to 
reliably detect pitch and send an output message. Of 
course, with valves active, the theoretical limit for a 
system using valve information to track a valve trill is 
1/2 the valve sampling rate (1000 Hz in the OURS 
case). Figure 5 shows the results of a half step trill (all 
valves up alternating with valve two down). The 
OTHER-A device fails at a trill rate of about 7 Hz. 
(consistent with the 114.4 ms. average latency). The 
OTHER-B device began to produce errors at around 6 
Hz., but did not fail to track changes in pitch at the 
maximum trill rate of 8 Hz. The OURS system 
produced no errors and tracked the trill up to the 
maximum rate of 8 Hz. 
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Figure 5: Detection results for accelerating valve trill. 

4 Composing Musk for Trumpet Performers 
Using Pitch Detectors 

As a single voice, sustaining instrument with a full 
potential for a fast, somewhat percussive attack, the 
trumpet requires a reasonably fast and accurate pitch 
detector in computer music systems. The trumpet often 
plays long notes because of its rich melodic potential, 
and the amplitude contour may vary considerably. Both 
the steady state amplitude variation and small variations 
in pitch, including a periodic vibrato, make it essential 
for the system to constantly "follow" the sound Players 
can feel the response of the computer music system and 
find it difficult to play naturally if the pitch 
detection/MIDI delay is greater than .035 seconds. For 
the performer, the most annoying problems are (1) 
missed pitch, especially in fast passages, (2) MIDI 
NOTE ON delays of more than .035 seconds, (3) false 
MIDI NOTE ON messages caused by valve noise or 
small breath impulses, and (4) a lack of pitch bend 
(small pitch variations) and aftertouch (amplitude 
variations) causing the synthesis to 'untrack' from the 
brass sound source on long notes. 

From the standpoint of composition, the matter of 
pitch detection accuracy is quite simple. If the 

computer music system is not very accurate (i.e., near 
100%), then the composer must find a way to alleviate 
the problem for the performer. In conventional music, 
especially most music found in the western music 
repertoire, pitch accuracy is perhaps of the highest order 
of importance, and performers can sometimes quickly 
correct mistakes. Fast scale passages are particularly 
well known and easily followed by listeners, because of 
their common usage and high degree of predictability. 
Composers can compensate for slow pitch detection in 
computer music systems by not allowing the listener to 
know what the 'right' pitch is, or have a low 
expectation for pitches. In situations where the pitch is 
missed by the player, some tolerance is demanded by 
the composition. Improvisation is ideal, allowing the 
player some freedom in the choice and rhythmic 
placement of notes. It is best to avoid conventional 
arpeggios or scales, and an obvious melodic doubling of 
parts played by the music system. 

To some extent, the performer using these systems 
may enter the domain of accompaniment, where a rich 
texture or mass of sound results. Most players want to 
expand the limits of their own playing techniques, not 
to reduce the role of their playing, or to have a machine 
do most of the work for them. For this reason, there has 
been an odd circumstance where composers and 
performers sometimes have very different goals; the 
player reaching for a fantastic new technique and the 
composer attempting to find a new sound and musical 
expression, leaving the player with new, but 
unrewarding tasks. 

The concept of our design is to leave the natural 
trumpet alone and offer the player an extension to his or 
her instrument, reaching beyond to the world of 
synthesizers and processors with hand and embouchure 
control that is already learned. It is unrealistic to think 
that this extension will be without some cost or 
disadvantages, or that it will not require the player to 
learn some new techniques. Wind players are very 
sensitive to tiny changes in mouthpiece size, for 
example, so it is reasonable to expect that such a 
formidable expansion in the domain of sound will 
require adjustments and some time for exploitation. 
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Abstract 

Techniques are described for redudng complexity in stringed instrument simulation for pur­
poses of digital synthesis. These include commuting losses and dispersion to consolidate 
them into a single filter, replacing body resonators by look-up tables, simplified bow-string 
interaction, and single-filter, multiply-free coupled strings implementation. 

1 Digital Waveguide Theory 

This section summarizes the digital waveguide 
model for vibrating strings. Further details can 
be found in [Smith, 1992]. 

T«*> 
><U) 
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Figure 1: The ideal vibrating string. 

The wave equation for the ideal (lossless, lin­
ear, flexible) vibrating string, depicted in Fig. 1, 
is given by 

Ky" = ey 

where 

K = string tension y = y(t,x) 

€ = linear mass density y - -§;v(t,z) 

y m string displacement y1 = -§;v(t,z) 

The same wave equation applies to any displace­
ment along one-dimension in any perfectly elastic 
medium. We refer to the general class of such me­
dia as one-dimensional waveguide*. Extension to 
two and more dimensions is described elsewhere 
in this proceedings [Van Duyne and Smith, 1993]. 

It can be readily checked that the wave equa­
tion is solved by any string shape which travels to 
the left or right with speed c = y/K/t. (But note 
that the derivation of the wave equation assumes 
the string slope is much less than 1 at all times 
and positions.) If we denote right-going traveling 
waves by yr(x - ex) and left-going traveling waves 
by vi(x + ct), where yr and yi are arbitrary twice-
differentiable functions, then the general class of 

solutions to the lossless, one-dimensional, second-
order wave equation can be expressed as 

V(x, t) = yr(* - <*) + y,(x + d) 

Sampling the traveling-waves gives 

V(*n,xm) = yr(tn - xm/c) + y,(tn + xm /c) 
m yr(nT - mX/c) + y,(nT + mX/c) 
m Vr [(n - m)Tl + yi [(n + m)T\ 

Since T multiplies all arguments, we suppress it 
by defining 

»+(n) = yr(nT) i T ( n ) i y , ( n T ) 

The "+" superscript denotes a traveling-wave 
component propagating to the right, and "—" de­
notes propagation to the left. Finally, the left-
and right-going traveling waves must be summed 
to produce a physical output according to the for­
mula 

V(*m*m) = V+{n - m) + y~(n + m) 

The appendix shows a linear wave equation 
with constant coefficients, of any order, admits 
a decay lug, dispersive, traveling-wave solution. 
Even-order time derivatives give rise to disper­
sion and odd-order time derivatives correspond to 
losses; higher order spatial derivatives give rise to 
multiple solutions of the same kind. The corre­
sponding digital simulation of an arbitrarily long 
(uudriven and unobserved) section of medium can 
be Bimplified via commutativity to at most two 
pure delays and at most two linear, time-invariant 
filters. In dimensions higher than one, these re­
marks apply to any given direction of traveling-
wave propagation. 

Since every linear, time-invariant filter can be 
expressed as a zero-phase filter in cascade with an 

I 



allpass filter, we may factor the filter into its lossy 
part and its dispersive part. The zero-phase fac­
tor implements frequency-dependent gain (damp­
ing in a digital waveguide), and the allpass part 
gives frequency-dependent delay, (dispersion in a 
digital waveguide). A digital simulation diagram 
appears in Fig. 2. 

+y—j*TMr) 

Figure 2: Discrete simulation of the ideal, linear, 
lossy, dispersive, digital waveguide. Between each de­
lay element is an arbitrary linear filter HT(X) whose 
amplitude response implements frequency-dependent 
attenuation and whose phase response implements 
frequency-dependent dispersion in one sampling pe­
riod. 

The simulation of the traveling-waves is ex­
act, in principle, at the sampling positions and 
instants, even though losses and dispersion are 
admitted in the wave equation. Note also that 
the losses which are distributed in the continu­
ous solution have been consolidated, or Jumped, 
at discrete intervals of cT meters in the simula­
tion. The filter HT{Z) summarizes the distributed 
filtering incurred in one sampling interval. The 
lumping of distributed filtering does not introduce 
an approximation error at the sampling points. 
Furthermore, bandlimited interpolation can yield 
arbitrarily accurate reconstruction between sam­
ples [Smith and Gossett, 1984]. The main restric­
tion is that all initial conditions and excitations 
be bandlimited to half the sampling rate. 

It is usually possible to realize vast computa­
tional savings in waveguide simulation by commut­
ing losses out of unobserved and undriven sections 
of the medium and consolidating them at a mini­
mum number of points. Because the digital simu­
lation is linear and time invariant (given constant 
medium parameters), and because linear, time-
invariant elements commute, the diagram in Fig. 
3 is exactly equivalent (to within numerical pre­
cision) to the previous diagram in Fig. 2. Each 
per-sample filter HT{Z) is commuted with delay 
elements and combined with other filters until an 
input or output is encountered which inhibits fur­
ther migration. Filters can also be pushed through 
nodes in the diagram to achieve further simplifi­
cations in some cases. 

t(-TMT) 

flf(l) «T«) 

Figure 3: General linear digital waveguide with com­
muted loss/dispersion filters. 

2 The Terminated String 
Using the above simplification principles, it is pos­
sible to commute the elements of a rigidly termi­
nated, dispersive, lossy string into the form shown 
in Fig. 4, provided that the string is to be ex­
cited by initial conditions and the output signal 
is taken to be a traveling-wave component. In 
this case, the losses and dispersion are lumped at 
a single point in the round-trip travel along the 
string. When the loop filter is a two-point average 
(1 + x~l)/2, and when the initial conditions used 
to "pluck" the string are taken to be random num­
bers, the well known Karplus-Strong algorithm for 
string and drum sounds is obtained [Karplus and 
Strong, 1983; Jaffe and Smith, 1983]. 
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Figure 4: The rigidly terminated, linear string. 

In a general physical model, the loop filter is 
determined by the cascade of (1) the filtering expe­
rienced by a traveling wave in traversing the string 
twice, and (2) the reflection transfer functions of 
the two terminations. 

If the wave impedance of the string is R = 
y/lCe, and the bridge driving-point impedance is 
Ri(z), then the reflection transfer function at the 
bridge is given by 

ftf»-
F~(z) i%(z)-R 
F+(z) = Rt(z) + R 

for force waves, and — S»(z) for velocity waves. Be­
cause the bridge is passive, l%(z) is positive real, 
[Van Valkenburg, 1960], Le., 

(1) Rt{z) is real when z is real. 
(2)|z|>l-*.re{R*(z)}£0. 

This implies 5#(z) is a Scaur function, Le., 
S,(z) < 1 for \z\ > 1. Reflection filters associated 
with passive, finite-order impedances always have 
an equal number of poles and zeros, as can be seen 



from the above expression. If the bridge termina­
tion is lossless, its impedance Rh{z) >* purely reac­
tive and the reflection filter S*(z) becomes allpass. 
Typically, the reflection filter has gain less than 
but close to 1 at all frequencies, and the gain is 
smallest at frequencies where there is strong cou­
pling with a bridge or body resonance. 

components, and from the fact that two string 
end-points are being driven.) Equal injection in 
the left- and right-going directions corresponds to 
a excitation force which is stationary with respect 
to the string. 

m 

3 Simplified Body Filters Figurc 8. PoMible ^ p ^ ^ a ̂ ^ mout0(. 
In a complete stringed musical instrument, such 
as a guitar, the string couples via the bridge into 
a resonating "body* which is needed for coupling 
to the surrounding air, and which imposes a fre­
quency response of its own on the radiated sound. 
In addition, spectral characteristics of the string 
excitation affect the radiated sound. Thus, we 
have the components shown in Fig. 5. 

Trtw--

Figure 5: Schematic diagram of a stringed musical 
instrument. 

Because the string and body are approximately 
linear and time-invariant, we may commute the 
string and resonator, as shown in Fig. 6. 

^ 

Figure 6: Equivalent diagram in the linear, time-
invariant case. 

The excitation can now be convolved with the 
resonator impulse response to provide a single, ag­
gregate, excitation table, as depicted in Fig. 7. 

Titonsr- Aggrsoale 
•(n) 

Bring 
x<n) 

Figure 7: Use of an aggregate excitation given by the 
convolution of original excitation with the resonator 
impulse response. 

In the simplest case, the string is "plucked" 
using the (half-windowed) impulse response of the 
body. 

An example of an excitation is the force ap­
plied by a pick or a finger at some point, or set of 
points, along the string. The input force per sam­
ple at each point divided by 4K gives the velocity 
to inject additively at that point in both traveling-
wave directions. (The factor of 4 comes from split­
ting the injected velocity into two traveling-wave 

In a practical instrument, the "resonator" is 
determined by the choice of output signal in the 
physical scenario, and it generally includes filter­
ing downstream of the body itself, as shown in 
Fig. 8. A typical example for the guitar or violin 
would be to choose the output signal at a point a 
few feet away from the top plate of the body. In 
practice, such a signal can be measured using a 
microphone held at the desired output point and 
recording the response at that point to the striking 
of the bridge with a force hammer. It is useful to 
record simultaneously the output of an accclerom-
eter mounted on the bridge in order to also ob­
tain experimentally the driving-point impedance 
at the bridge. In general, it is desirable to choose 
the output close to the instrument so as to keep 
the resonator response as short as possible. The 
resonator components need to be linear and time 
invariant, so they will be commutative with the 
string and combinable with the string excitation 
signal via convolution. 

The string should also be linear and time in­
variant in order to be able to commute it with 
the generalized resonator. However, the string is 
actually the least linear element of most stringed 
musical instruments, with the main effect of non-
linearity being a slight increase of the fundamen­
tal vibration frequency with amplitude. A sec­
ondary effect is to introduce coupling between the 
two polarizations of vibration along the length of 
the string. In practice, however, the string can 
be considered sufficiently close to linear to permit 
commuting with the body. The string is also time 
varying in the presence of vibrato, but this too 
can be neglected in practice. While commuting a 
live string and resonator may not identical math­
ematically, the sound is substantially the same. 

There are various options when combining the 
excitation and resonator into an aggregate excita­
tion, as shown in Fig. 7. For example, a wave-
table can be prepared which contains the convo­
lution of a particular point excitation with a par­
ticular choice of resonator. Perhaps the simplest 
choice of excitation is impulse signal. Physically, 
this would be natural when the wave variables in 
the string are taken to be acceleration waves for 
a plucked string; in this case, an ideal pluck gives 
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riae to an impulse of acceleration input to the left 
and right in the string at the pluck point. If loss 
of perceived pick position is unimportant, the im­
pulse injection need only be in a single direction. 
(The comb filtering which gives rise to the pick-
position illusion can be restored by injecting a sec­
ond, negated impulse at a delay equal to the travel 
time to and from the bridge.) In this simple case 
of a single impulse to pluck the string, the ag­
gregate excitation is simply the impulse response 
of the resonator. Many excitation and resonator 
variations can be simulated using a collection of 
aggregate excitation tables. It is useful to pro­
vide for interpolation of excitation tables so as to 
provide intermediate points along a parameter di­
mension. In fact, all the issues normally associ­
ated with sampling synthesis arise in the context 
of the string excitation table. A disadvantage of 
combining excitation and resonator is the loss of 
multiple output signals from the body simulation, 
but the timbral effects arising from the mixing to­
gether of multiple body outputs can be obtained 
via a mixing of corresponding excitation tables. 

If the aggregate excitation is too long, it may 
be shortened by a variety of techniques. It is good 
to first convert the final excitation a(n) in Fig. 7 
to minimum phase so as to provide the maximum 
shortening consistent with the original magnitude 
spectrum. Secondly, a(n) can be "half-windowed" 
using the right wing any window function typically 
used in spectrum analysis. An interesting choice 
is the exponential window, since it has the inter­
pretation of increasing the resonator damping in a 
uniform manner, i.e., all the poles and zeros of the 
resonator are contracted radially in the x plane by 
the same factor. 

4 Simplified Bowed Strings 
The method of the previous section can be ex­
tended to bowed strings in an efficient way. 
The "leaning sawtooth" waveforms observed by 
Helmholtz for steady state bowed strings can be 
obtained by periodically "plucking" the string in 
only one direction along the string. In principle* a 
traveling impulsive excitation is introduced into 
the string in the right-going direction each pe­
riod for a "down bow" and in tbe left-going di­
rection for an "up bow." This simplified bowing 
simulation works beat for smooth bowing styles in 
which the notes have slow attacks. More varied 
types of attack can be achieved using tbe more 
physically accurate Mclntyre-Woodhouae theory 
[Smith, 1987]. 

Commuting the atring and resonator means 
that the string ia now plucked by a periodically re­
peated resonator impulse response. A nice simpli­
fied vibrato implementation is available by varying 

the impulse-response retriggering period, i.e., the 
vibrato b implemented in the excitation oscillator 
and not in the delay loop. The string loop delay 
need not be modulated at all. While this departs 
from being a physical model, the vibrato quality 
is satisfying and qualitatively similar to that ob­
tained by a rigorous physical model. Figure 9 il­
lustrates the overall block diagram of the simpli­
fied bowed string and its commuted and response-
excited versions. 
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Figure 9: a) The simplified bowed string, including 
amplitude, pitch, and vibrato controls. The frequency 
control is also used by the string, b) Equivalent dia­
gram with resonator and string commuted, c) Equiva­
lent diagram in which the resonator impulse response 
is played into the string each pitch period. 

In current technology, it is reasonable to store 
one recording of the resonator impulse response 
in digital memory as one of many possible jtrtn^ 
excitation table*. The excitation can contribute 
to many aspects of the tone to be synthesized, 
such as whether it ia a violin or a cello, the 
force of the bow, and where the bow ia playing 
on the atring. Also, graphical equalization and 
other time-invariant filtering can be provided in 
the form of alternate excitation-table choices. 

During the synthesis of a single bowed-string 
tone, the excitation signal is played into the string 
quasi-periodicauy. Since the excitation signal ia 
typically longer than one period of the tone, it 
ia necessary to either (1) interrupt the excitation 
playback to replay it from the beginning, or (2) 
start a new playback which overlaps with the play­
back in progress. Variant (2) requires a sepa­
rate incrementing pointer and addition for each 
instance of the excitation playback; thus it is more 
expensive, but it ia preferred from a quality stand­
point. 

Of course, ordinary wave table aynthesis or any 
other type of synthesis can also be used aa an exci­
tation signal in which case the atring loop behaves 
aa a pitch-synchronous comb filter following the 
wavetable oscillator. Interesting effects can be ob­
tained by slightly detuning the wavetable oscilla­
tor and delay loop; tuning the wavetable oscillator 
to a harmonic of the delay loop can also produce 
an ethereal effect. 

The externally excited, filtered delay loop can 
be used also to simulate wind and other musical 



instruments. In fact, any quasi-periodic tone can 
be approximated using an appropriate excitation 
signal (which may be varied over time) together 
with some loop filter (which also may be varied 
over time). The fact that the delay line is ap­
proximately one period in length restricts appli­
cation of this type of structure to quasi-periodic 
tones. However, aperiodic tones which can be well 
approximated by a superposition of a few quasi-
periodic tones can be synthesized using multiple 
delay loops added together in parallel and excited 
by common or separate excitations. Thus, piano, 
marimba, and glockenspiel can be approximated, 
for example. For wind instruments, a filtered, en­
veloped noise excitation is needed. In summary, 
the externally excited, filtered delay loop can be 
viewed as an efficient compression technique for 
arbitrary quasi-periodic signals with musically de­
sirable parameters. 

pear between the string output and the summer 
which adds in the scaled attack signal in Fig. 10. 
For example, it was found that the low E of an 
electric guitar (Gibson Les Paul) can be synthe­
sized quite well using a filtered delay loop running 
at a sampling rate of 3 kHz. (The pickups do not 
pick up much energy above 1.5 kHz.) Similar sav­
ings can be obtained for any instrument having a 
high-frequency content which decays much more 
quickly than its low-frequency content. 
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Figure 10: Generalised filtered delay loop synthesis. 

Figure 10 illustrates a more general version of 
the table-excited, filtered delay loop synthesis sys­
tem. The generalizations help to obtain a wider 
class of timbres. The multiple excitations summed 
together through time-varying gains provide for 
timbral evolution of the tone. For example, a vio­
lin can transform smoothly into a cello, or the bow 
can move smoothly toward the bridge by interpo­
lating among two or more tables. Alternatively, 
the tables may contain "principal components" 
which can be scaled and added together to approx­
imate a wider variety of excitation timbres. An 
excellent review of multiple wavetable synthesis 
appears in [Horner et al., 1993]. The nonlinearity 
is useful for obtaining distortion guitar sounds and 
other interesting evolving timbres. 

Finally, the "attack signal" path around the 
string has been found to be useful for reducing 
the cost of implementation: the highest frequency 
components of a struck string, say, tend to em­
anate immediately from the string to the resonator 
with very little reflection back into the string (or 
pipe, in the case of wind instrument simulation). 
Injecting them into the delay loop increases the 
burden on the loop filter to quickly filter them out. 
Bypassing the delay loop altogether alleviates re­
quirements on the loop filter and even allows the 
filtered delay loop to operate at a lower sampling 
rate; in this case, a signal interpolator would ap-

Figure 11: Example of a filtered noise excitation im­
plementation. 

For good generality, at least one of the excita­
tion signals should be a filtered noise signal. An 
example implementation is shown in Fig. 11. In 
this example, there is a free running bandlimited 
noise generator which is filtered by a finite impulse 
response (FIR) digital filter. The filter coefficients 
are computed in real time as a linear combina­
tion of a set of fixed FIR coefficient sets stored in 
ROM. A recursive filter may also be used, in which 
case ladder/lattice forms can be used so that the 
coefficients can be interpolated without stability 
problems. In a simple implementation, only two 
gains might be used, allowing simple interpolation 
from one filter to the next, and providing an over­
all amplitude control for the noise component of 
the excitation signal 

5 Coupled Strings 
In stringed musical instruments, coupling phe­
nomena cannot be ignored. Coupling effects 
include amplitude modulation of partial ampli­
tude envelopes due to "beating" between two or 
more coupled modes, two-stage decay (a fast de­
cay followed by a slower decay), or "aftersound" 
[Weinretch, 1979]. Physically, significant coupled-
string phenomena result from inter-string cou­
pling, coupling between the horizontal and ver­
tical polarizations of vibration on one string, and 
between the string and body resonances. 

The simplest simulation of coupled strings is 
obtained by simply summing two or more slightly 
detuned strings. More realistic string coupling in­
volves actual signal flow from each coupled string 
to all others. 

s 



Figure 12: Two string* terminated at a common 
bridge impedance. 

A diagram for the two-string case is shown 
in Fig. 12. This situation is a special case of 
the loaded waveguide junction [Smith, 1987], with 
the number of waveguides being N = 2, and 
the junction load being the transverse driving-
point impedance Rh(») where the string drives the 
bridge. For a direct derivation, we need only ob­
serve that (1) the string velocities of each string 
endpoint must each be equal to the velocity of 
the bridge, or vi = t>i = «», and (2) the sum of 
forces of both strings equals the force applied to 
the bridge: /» • / | + / j . The bridge impedance 
relates the force and velocity of the bridge via 
F»(s) = iZ»(s)V»(a). Expanding into traveling 
wave components in the Laplace domain, we have 

*»(.)H(s) = F»(«) * F,(s) + F,(.) 
= (F+(.) -I- F f (.)] + [FfU) + F f (.)] 
= * , { * ? > ) - [ V » ( a ) - V * ( s ) ] } 
+ * , { * ? ( • ) - [ * » ( « ) - V ? ( . ) ] } 

V»(a) = H t(.)|H, V?(•) + R*V?{,)) 

where JU is the wave impedance of string t, and 

H'(-) 4 TO® + * . + * 
Thus, in the time domain, the incoming ve­
locity waves are scaled by their respective 
wave impedances, summed together, and fil­
tered according to the transfer function #*(•) = 
2/[/U(«) + R\ + A2] to obtain the velocity of the 
bridge vi(t). 

Given the filter output u»(t), the outgoing trav­
eling velocity waves are given by 

« r w • « » ( 0 - < ( 0 

«J(.) = vk(t)-4(t) 
Thus, the incoming waves are subtracted from the 
bridge velocity to get the outgoing waves. 

Since Vf (.) - fl»(«)JW(#) si tf»(.)Fft.) 
when V^(«) = 0, and vice versa exchanging 
strings 1 and 2, ff» may be interpreted as the 
transmission admittance filter associated with the 
bridge coupling. It can also be interpreted as the 
bridge admittance transfer function from every 
string, since its output is the bridge velocity re­
sulting from the sum of incident traveling force 

A general coupling matrix contains a filter 
transfer function in each entry of the matrix. For 
N strings, each conveying a single type of wave 
(e.g., horizontally polarized), the general linear 
coupling matrix would have N7 transfer-function 
entries. In the present formulation, only one 
transmission filter is needed, and it is shared by 
all the strings meeting at the bridge. 

The above sequence of operations is for­
mally similar to the one multiply scattering 
junction frequently used in digital lattice filters 
[Markle and Gray, 1976]. In this context, it would 
be better termed the "one-filter scattering termi­
nation." 

When the two strings are identical (as would 
be appropriate in a model for coupled piano 
strings), the computation of bridge velocity sim­
plifies to 

V>{.) = H>(.)\V+{.) + V?(,)] 

where ff.(s) = 2/(2 + £»( ' ) /*] « the velocity 
transmission filter. In this case, the incoming ve­
locities are simply summed and fed to the trans­
mission filter which produces the bridge velocity 
at its output. A commuted simulation diagram 
appears in Fig. 13. 

»fr> t 4w ° ^ 

Figure 13: General linear coupling of two equal-
impedance strings using a common bridge filter. 

Since Ih{z) is positive real, it is readily verified 

\2Hk{e
i*r)-l\<l 

which restricts the set of coupling filters to those 
having frequency response values in the circle of 
radius 1/2 centered at z = 1/2 in the complex 
plane. If the two coupled strings are taken to 
be lossless (e.g., two pure delay loops), then this 
constraint becomes the stability condition for the 
overall system. If the amplitude and phase re­
sponse of the filter are denoted G{u>) and 0(u>), 
respectively, the passivity constraint may be writ­
ten in the form 

cos[0(w)] > G(w) 

Thus, the gain may approach unity only at fre­
quencies where the phase approaches zero. In no 
case may the absolute value of the phase exceed 
90 degrees, nor may the gain exceed 1 at any fre­
quency. If the phase does approach plus or minus 
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90 degrees, the gain must approach zero also. The 
real part of the frequency response is always pos­
itive, and it may approach zero only if the imagi­
nary part (hence gain) also approaches zero. 

If the transmission filter Ht, is taken to be a 
real, frequency-independent gain G, correspond­
ing to a "resistive bridge termination," the pas­
sivity constraint becomes simply 

0 £ G < 1 

Such a set of resistive bridge couplings may be 
realized without multiplies by using gain values of 
the form 

G = 2 - * , K = 0 ,1 ,2, . . . 

The case G — 1 corresponds to a zero bridge 
impedance which means the two strings simply 
fuse into one long ideal string. The case G — 0 
corresponds to an infinitely rigid bridge, in which 
case the two strings are isolated from one another. 
Since realistic bridges are close to rigid, we desire 
many settings in the vicinity of G = 0, and the 
"right-shift" G m 2~K has this property. 

Another passive, multiply-free, transmission 
filter is any filter having a transfer function of the 
form 

#»(*)«= 2"*(1 + z-»), K = 1,2, . . . 

Thus, the right-shifter is augmented by a unit-
sample delay and a summer. In this case, the 
bridge appears more rigid at high frequencies, be­
having like a mass. Spring-like bridges can be im­
plemented using a transmission filter of the form 
Hh(z) = 2 ~ * ' ( 1 - * - » ) , K m 1 ,2 , . . . . These 
are one-zero filters. Corresponding multiply-free 
one-pole versions are //»(*) = 2~*7(1 — z - 1 ) for 
a mass-like bridge and #»(*) • 2~* / ( l + * _ l ) for 
a spring-like bridge. 

Any passive transmission filter can be cascaded 
with any resistive loss. Also, one mass-like and 
one spring-like transmission filter as defined above 
can be cascaded. However, instability can result 
if two mass or two spring filters are used in cas­
cade. For higher orders, it is necessary to go 
to second-order sections whose poles and zeros 
interlace near the unit circle so as to obey the 
phase constraint. (Note that even the simple filter 
z - 1 , corresponding to a unit sample delay, reaches 
phase * at half the sampling rate and is there­
fore not a passive transmission filter.) Physically, 
pole-zero interlacing corresponds to the fact that 
a bridge impedance "looks like a spring" at fre­
quencies from 0 to the first resonance frequency, 
then it looks like a mass up to the next resonance, 
then like a spring again, and so on, up to half 
the sampling rate. These are the classical "stiff­
ness controlled" and "mass controlled" frequency 

regions of a lightly damped impedance. Right on 
a resonance frequency, the phase goes to 0 and 
the impedance "looks like a dashpot" in that the 
impedance is real. 

Note that a yielding bridge introduces losses 
into all attached strings. Therefore, in a max­
imally simplified implementation, all string loop 
filters may be eliminated, resulting in only one 
filter—the transmission filter—serving to provide 
all losses in a coupled-string simulation. If that 
transmission filter is multiply free, then so is the 
entire multi-string simulation. 

6 Summary 
Techniques applicable to efficient synthesis of 
stringed musical instruments were presented, 
along with some further extensions. Specific tech­
niques included lumping of distributed losses and 
dispersion, convolving body resonators and string 
excitation signals into aggregate excitation look­
up tables, bowed strings as periodically plucked 
strings, single-filter coupled strings implementa­
tion, and ways to eliminate multiplications. Since 
multiplies are intrinsically more expensive than 
additions in linear number systems (e.g., a 16 by 
16 multiply requires 16 extended-precision addi­
tions), the number of voices possible in a VLSI 
implementation normally goes up as the number 
of multiplications goes down. 

7 Appendix 
To introduce losses into the wave equation, odd-
order time derivatives such as y, &y/dt?, and 
d^u/dt6 are introduced. To introduce dispersion, 
e.g., for stiff strings and bars, a fourth-order term 
proportional to y"" is added in. A general, linear, 
time-invariant, differential equation which covers 
all of these cases is 

E
B „. fl*y(*»*) _ v* „ &v(t,*) 

1=0 w 
On setting y(i,x) = e*+"", (or taking the 2D 
Laplace transform with zero initial conditions), we 
obtain the algebraic equation, 

1=0 

Solving for v in terms of s is straightforward in the 
case of simple losses and stiff strings, and doing so 
yields the filtering needed to simulate simple losses 
and dispersion [Smith, 1992]. More general cases 
are not solvable in closed form, but are solvable 
numerically. For example, note that starting at 



8 — 0, we normally also have v = 0 (correspond­
ing to the absence of static deformation in the 
medium). Stepping s forward by a small differen­
tial j AOJ, the left-hand side can be approximated 
by QO + QiAW. Requiring the generalized wave 
velocity s/v(s) to be continuous, a physically rea­
sonable assumption, the right-hand side can be ap­
proximated by 0o + fl\ &v, and the solution is easy. 
As s steps forward, higher order terms become im­
portant one by one on both sides of the equation. 
Each new term in v spawns a new solution for v in 
terms of s, since the order of the polynomial in v 
is incremented. It appears possible that homotopy 
continuation methods [Morgan, 1987] can be used 
to keep track of the branching solutions of v as 
a function of s. For each solution v(s), let vr(u) 
denote the real part of v( ju>) and let v<(u>) denote 
the imaginary part. Then the eigensolution fam­
ily can be seen in the form exp{ jwt ± v(ju)x} = 
exp{±tv(w)x} • exp{jiw (t ± Vi(u)x/u)). Defin­
ing c(w) = u/vi(u>), and sampling according to 
x -* xm = mX and t -* tn = nT(u), with 
X — c(w)T(w) as before, (the spatial sampling 
period is taken to be frequency invariant, while 
the temporal sampling interval is modulated ver­
sus frequency using allpass filters), the left- and 
right-going sampled eigensolutions become 

«= Gm (w) • e*"(*±',,>T<*'> 

where G(u) = e±"-Cw)x. Thus, a completely 
general map of v versus s, corresponding to a 
partial differential equation of any order, can be 
translated, in principle, into an accurate, local, 
linear, time-invariant, discrete-time simulation. 
The boundary conditions and intitial state deter­
mine the initial mixture of the various solution 
branches. 
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Abstract 

An extremely efficient method for modeling wave 
propagation in a membrane is provided by the multi­
dimensional extension of the digital waveguide. The 
2-D digital waveguide mesh is constructed out of bi­
directional delay units and scattering junctions. We 
show that it coincides with the standard finite 
difference approximation scheme for the 2-D wave 
equation, and we derive the dispersion error. 
Applications may be found in physical models of 
drums, soundboards, cymbals, gongs, small-box 
reverberators, and other acoustic constructs where a 
one-dimensional model is less desirable. 

1 Background Theory 

There are many musical applications of the one-
dimensional digital waveguide ranging from the 
generation of wind and string instrument tones, to 
flanging effects [Van Duyne and Smith, 1992], to 
reverberation [Smith, 1987]. We review the 
theoretical derivation of one-dimensional traveling 
waves as a basis for development of the two-
dimensional digital waveguide mesh. 

1.1 The 1-D Wave Equation 

The one-dimensional wave equation for displacement 
of an ideal vibrating string may be written as follows, 

where t is time, x is longitudinal position along the 
string, u(x,t) is transverse displacement of the string 
as a function of time and position, utt is the second 
partial time derivative of u corresponding to the 
transverse acceleration of a point on the string, and 
UJU is the second partial space derivative of u 
corresponding the "curvature" of the string at a point. 
The equation says that the force which accelerates a 
point on the string back toward its rest position is 
proportional to how tightly the string is curved at that 
point [Morse and Ingard, 1968]. 

It is easy to verify by substitution that this equation is 
solved by the sum of two arbitrary traveling waves, 

«(W) = g+(x -&) + g~(x + a), 
where g*(x - a) represents an arbitrary fixed wave 
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shape traveling to the right, and g~(x + ct) represents 
an arbitrary fixed wave shape traveling to the left 
To see that these waves travel at speed c, note that, as 
/ is increased by 1 in the expression, g+(x - ct), x 
must be increased by c for the function argument to 
remain unchanged. The wave speed is given by c = 
(T/e)0-5, where T is the constant tension on the string 
and e is the mass per unit length. Intuitively, we may 
check that increased tension should speed up wave 
travel and increased mass should slow it down. 

1.2 The Digital Waveguide 

The traveling wave solution to the one-dimensional 
wave equation may be implemented digitally with a 
pair of bi-directional delay lines as shown in Figure 
1. The upper rail contains a signal traveling to the 
right and the lower rail contains a signal traveling to 
the left This structure is known as the digital 
waveguide. Two arbitrary traveling waves propagate 
independently in their respective left and right 
directions, while the physical wave amplitude at any 
point may be obtained by summing the left- and 
right-going waves. 

N sample delay 

N sample delay 

Figure 1. The Digital Waveguide 

13 Force, Velocity, and Impedance 

We need not choose displacement as our wave 
variable. By taking the time derivative of 
displacement waves, we may obtain velocity waves. 
In this case, the physical transverse velocity at a point 
on the string is the sum of its two traveling 
components, v = v+ + v~. The transverse force 
component on a string is proportional to the slope of 
the string at a given point for small displacements. 
Therefore, force waves may be obtained by properly 
scaling the position derivative of the displacement 
waves to obtain, / =/* + f. See [Smith, 1992] and 
[Smith, 1993] for a full derivation of all these wave 
relationships and their digital implementation. 

mailto:savd@ccrma.stanford.edu
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Force and velocity are a convenient choice of wave 
variables as there is a well understood impedance 
relation between force and velocity in mechanical 
systems which is analogous to the impedance relation 
between voltage and current in electrical systems. 
There is also a wave impedance relation between 
force and velocity waves on strings which is 
analogous to the wave impedance relation between 
voltage and current waves on electrical transmission 
lines. The acoustical system of the vibrating air 
column is also mathematically equivalent to both the 
vibrating string and the electrical transmission line. 

The wave impedance relationship between the 
traveling components of force and velocity for the 
string can be written, 

where R - (Te)0-5. Intuitively, when a force is 
applied transversely to a string, the resultant 
transverse velocity should be slower for greater string 
mass and also slower for greater string tension. 

1.4 The Lossless Scattering Junction 

It is useful to be able to interconnect waveguides of 
possibly varying wave impedance at junctions which 
may be lossless, or which may be loaded with 
impedances of their own, or be driven by external 
forces. For example, driving a violin string with a 
pulsed noise signal representing the bow requires a 
scattering junction on the string where the bow 
divides it [Chafe, 1990]. Tone holes in wind 
instrument models may take advantage of scattering 
junctions. Strings may be coupled together at a 
bridge via scattering junctions [Smith, 1993]. 
Scattering junctions may be used to build up acoustic 
tubes of varying diameter by joining segments of 
cylindrical tubes [Cook, 1990]. Julius Smith [1987] 
has developed a reverberation algorithm which 
depends on interconnecting any number of varying 
length and varying impedance waveguides into an 
arbitrarily elaborate network. The membrane model 
presented in this paper may be viewed as a canonical 
form of this reverberation structure. 

When several strings, say N of them, intersect at a 
single point, or junction, without loss of energy, we 
have a "series" junction and require two conditions: 
(1) that the velocities of all the strings at the junction 
be equal since they are all moving together at that 
point, 

v , = v 2 = ... =v N , 

and (2) that the forces exerted by all the strings must 

balance each other at that point, i.e., they must sum to 
zero, 

fl+h+ ••• + /N=° -

Note that the acoustic tube junction is "parallel" and 
has the dual constraints, i.e., that the pressures must 
all be equal and the flows must sum to zero. Figure 2 
shows a schematic representation of waveguides 
intersecting in a lossless scattering junction. The line 
segments with opposing arrows on them represent the 
bi-directional delay lines of the digital waveguide 
shown in Figure 1, with their associated wave 
impedance, Rr The circumscribed S represents the 
junction. 

Figure 2. Scattering Junction for N=5 case. 

Combining the two series junction constraints with 
the wave variable definitions, v-, = v+j + v-~ and JJ = 
/*l +/"j, and with the wave impedance relations,/*'! = 
KjV+i and f~x - -^jV-j, we can derive the lossless 
scattering equations for the interconnection of several 
strings, 

vJ = (2X/f iV +
i ) /E*i 

i i 
v- jsyj-v+i , 

where vj represents the junction velocity, the v+j are 
the incoming waves at the junction, and the v~j are 
the outgoing waves. These equations say that, as a 
wave is coming into a junction along a string, some 
portion of the wave reflects off the junction and 
travels back where it came from, while the rest of it 
travels into the junction and is divided among the 
outgoing waves along the other strings. The relative 
proportions of this scattering effect is dependent only 
on the relative impedances of the strings and not on 
their length. 

2 The Two-Dimensional Case 

2.1 The 2-D Wave Equation 

The two-dimensional wave equation for displacement 
of an ideal membrane may be written as follows, 

«f/('.*.y) • c2 [iijaf.U.y) + Uy^tjcy)], 
where t is time, x and y are spatial coordinates on the 
membrane, u(rjcy) is transverse displacement of the 



membrane as a function of time and spatial position 
[Morse and Ingard, 1968]. 

In the one-dimensional string case, we could solve 
and implement the wave equation as two bi­
directional traveling waves. In the 2-D membrane 
case, the traveling wave solution involves the integral 
sum of an infinite number of arbitrary plane waves 
traveling in all directions, 

u(tjc,y) = J ga{x cosa + y sina - ci) da 

Since assigning one waveguide to each of the infinite 
plane waves is not feasible, we need an alternative 
approach. 

2.2 The 2-D Digital Waveguide Mesh 

Proposed in this paper is a formulation of the 2-
dimensional wave equation in terms of a network of 
bi-directional delay elements and 4-port scattering 
junctions. This structure can be viewed as a layer of 
parallel vertical waveguides superimposed on a layer 
of parallel horizontal waveguides intersecting each 
other at 4-port scattering junctions between each bi­
directional delay unit. Figure 3 shows such a mesh. 
In the canonical case, the scattering junctions are 
taken to be equal impedance lossless junctions and 
the interconnecting waveguides are of unit length. 
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Figure 3. The 2-D Digital Waveguide Mesh 

If we view the mesh as a lattice of interconnected 
vibrating strings, the displacement velocities at the 
four ports of each junction must be equal, and the 
forces at each junction must sum to zero; in this case, 
we have series scattering junctions with force or 

velocity waves traveling in the two-port, bi­
directional, delay units. On the other hand, if we 
view the mesh as a lattice of interconnected acoustic 
tubes, the pressures at each junction must be equal, 
and the flows into each junction must sum to zero; in 
this case, we have parallel scattering junctions with 
pressure or volume velocity waves traveling through 
the delay units. 

3 Empirical Analysis 

It is evident that, given an initial excitation at some 
point on the digital waveguide mesh, that energy 
from that excitation will tend to spread out from the 
excitation point more and more as the traveling 
waves scatter through the junctions. It is not, 
however, easy to see that the wave propagation on 
the mesh converges to that on the ideal membrane. 

Figure 4. Wave Propagation on the Mesh 

3.1 Animation of the Mesh 

A visual verification of the waveguide mesh 
algorithm can be seen in Figure 4, which shows three 
separate time frames of an animation computed 
directly from the algorithm. The top frame shows the 
initial deflection loaded into the mesh. Each 
intersecting grid point represents a scattering 
junction. The next two frames show the circular 
propagation outward of the initial excitation in a way 
consistent wave propagation on the ideal membrane. 



3.2 Sounds from the Mesh 

As another check of the mesh algorithm, we can 
compare the expected modal frequencies on an ideal 
membrane with those generated from the mesh 
model. The allowed frequencies in a theoretical ideal 
square membrane with clamped edges are 
proportional to (m2 + n2)0-5, for m = 1,2 and n = 
1,2,...[Morse and Ingard, 1968]. These modes may 
be labeled (m,n) for any given m and n. In Table 1 is 
computed a list of the normalized frequencies of the 
first few of these modes given as multiples of the 
lowest allowed frequency. 

Table 1. Modes on Ideal Square Membrane 
<U>-
(U)-
(2.2)-
(13)-
(23)-
(1.4)-
(33)-
(2.4)-
(3.4)-

1.00 
1.58 

• 2.00 
•2.24 
•2.55 
2.92 

•3.00 
• 3.16 
3.54 

(1.5) 
(2.5)-
(4.4) • 
(33) 
(1.6) 
(2.6) 
(4.5) 
(3.6) 
(5.5) 

3.60 
• 3.80 
.4.00 
• 4.12 
>4.30 
• 4.47 
-4.50 
.4.74 
.5.00 

Figure 5 is a spectral analysis of a sound generated 
by a square 10 junction by 10 junction digital 
waveguide mesh reflectively terminated at the 
boundaries. A careful inspection of the plot will 
reveal that the theoretical modal frequencies listed in 
Table 1 are all present and accounted for in the sound 
generated by the model. This would indicate that the 
mesh is doing the right thing. 

Figure 5. Measured Modes on the Square Mesh 

I 2 3 4 5 6 7 1 9 10 

Frequencies up to half the sampling rate are shown in 
Figure 5. However, notice that the spectrum mirrors 
around one quarter of the sampling rate. This 
symmetry, which also occurs in the one dimensional 
waveguide case, is a result of the fact that, when the 
waveguide or waveguide mesh is reflectively 
terminated, all the unit delays on the upper rails can 
be commuted down to the lower rails making the 
system a function of r 2 , in effect, over-sampling the 
system by a factor of two. 

4 Mathematical Analysis 

Given the the function fix), one may approximate its 
first derivative by the difference, 

J U + A X ) - / * ) 

By applying this expression to itself we may arrive at 
the standard difference scheme approximation for the 
second derivative, 

JU + Ax)-2/jr)+/(jt-Ax) 
f"(x) 

At2 

/'CO 
Ax 

Computable and numerically stable difference 
schemes can be found for many partial differential 
equations by substituting approximations of this kind 
into the equation. The digital waveguide mesh 
algorithm, in fact, may be interpreted as a difference 
scheme for computation of the two-dimensional wave 
equation. 

4.1 The Mesh as a Difference Scheme 

In the digital waveguide mesh, we require that the 
impedances in all directions be equal, as we would 
desire for the isotropic membrane case. Setting the 
wave impedances of the four unit waveguides 
attached to each junction point in the mesh equal, i.e., 
/?j = R2 - R3 = R4, the scattering equations then 
reduce to, 

M/.m*"' - , 
2 

where the l,m indices represent the spatial position of 
the junction in the mesh and the n index represents 
the current time sample. vjtm(n) represents the 
velocity of the junction at position l.m at time n; 
r+u^n) and v~Vm(n) represent the four input and 
output waves to that junction, respectively. As an 
implementation note, observe that this junction 
computation may be performed with 7 adds (or 
subtracts), 1 shift (to divide by 2), and no multiplies. 

In addition to these scattering equations, we may also 
note that the sum of the inputs to a junction equals 
the sum of the outputs, 

i i 
and that, since the junctions are interconnected by 
unit delay elements, the input at one port of one 
junction is equal to the output at the opposing port of 
the adjacent junction at the previous time sample. 

With a little perseverance, one may manipulate all 
these relations algebraically into the following 
difference equation, 

0-5lvj,.„»i("-l) - 2vj/.«<"-i> +vJl l f l.,(n-l)] 

+ o.5[v, Wt-jn-i) - 2 W - D + "W"-1)!. 



A comparison of this difference scheme with the 
two-dimensional wave equation, 

utt(t,x,y) = c2(uxx(t,x,y) + Uyy(t,x,y)), 
reveals that it is the standard second-order difference 
scheme for the hyperbolic partial differential wave 
equation for the idea) membrane, with wave 
propagation speed c = 2"0-5 = 0.7, and the time and 
spatial sampling intervals (X=Ax, Y=Ay, T=A/) taken 
to be equal to each other. The mesh implements a 
wave propagation speed of one-half unit diagonal 
distance per time sample. Intuitively, when we 
superimposed the perpendicular layer of parallel 
waveguide strings to form the mesh, we doubled the 
mass density per unit area, thereby reducing the wave 
speed by one over the square root of two. 

Defining, X = TX'1 = 1, we observe that the Courant-
Friedrichs-Lewy stability condition, IcXI < 2~°-5, is 
satisfied by this difference scheme [Strikwerda, 
1989]. This condition says that for a difference 
scheme to track the solution of a hyperbolic equation 
with two space dimensions, the cone of dependence 
for each point of the continuous solution must lie 
within the pyramid of dependence for each point of 
the difference scheme solution. Since the condition 
is satisfied in the equality, the lowest possible 
dissipation and dispersion error for this particular 
scheme is obtained. 

The numerical approximation schemes for initial 
value problems involving second-order hyperbolic 
partial difference equations usually require a multi-
step time scheme which retains values for at least two 
previous time frames. This is to cope with the 
second partial time derivative in the equation. The 
waveguide mesh reduces this structure to a one-step 
time scheme where each new time frame may be 
computed wholly from the previous time frame. This 
is made possible by the use of traveling wave 
components in place of physical wave variables. 

4.2 Von Neumann Error Analysis 

Von Neumann analysis of finite difference scheme 
approximations of partial differential equations uses 
Fourier transform theory to compare the evolution 
over time of the spatial spectrum in the continuous 
time solution to that in the discrete time 
approximation [Strikwerda, 1989]. Recall that to 
solve an ordinary linear differential equation, we may 
reduce the problem to a polynomial in s by taking the 
Laplace transform and replacing orders of derivatives 
with powers of s. Similarly, we can take a spatial 
transform of a partial differential equation with 

independent time and space variables to obtain an 
ordinary differential equation describing the 
evolution of spatial spectra over time. From here, 
we can check how the spatial spectrum evolves after 
a time delay of T seconds. The ratio of the spatial 
spectrum at time / + T to the spatial spectrum at time 
t is known as the spectral amplification factor. 

Recall that in the discrete case, to solve a time-
indexed difference equation, we may reduce the 
problem to a polynomial in z"1 by taking the Z -
transform and replacing samples of time delay in the 
index with powers of z"'. If we have a time- and 
space-indexed difference scheme approximation to 
compare with our partial differential equation, we 
may perform a similar spectral evolution analysis on 
the difference equation using discrete Fourier 
transforms to obtain a discrete spectral amplification 
factor. 

In the case of the ideal membrane equation, we 
already know the solution is an integral sum of plane 
waves all moving at constant speed c. The speed of 
wave travel is independent of spatial frequency, i.e., 
smooth low spatial frequency waves travel at the 
same speed as jagged or ripply-looking high spatial 
frequency waves. This means that there is no 
frequency dispersion in the ideal membrane. After T 
seconds, the position of a plane wave of spatial 
frequency f,, traveling in direction a, would have 
moved forward a distance of cT, corresponding to a 
spatial phase shift of -djT. The spectral 
amplification factor would then be e~^T. 

In the difference scheme derived in Section 4.1, 
computation of a discrete spectral amplification 
factor is a little messier. Unfortunately, the speed of 
plane wave travel on the digital waveguide mesh is 
dependent on both the direction of travel, a, and on 
the spatial frequency of the wave, £. The discrete 
spectral amplification factor may be written in the 
form e"lc'(a^T, where ?(.&&) represents the 
direction and frequency dependent speed of plane 
wave travel on the waveguide mesh. 

When making two-dimensional spatial transforms, 
we take x *-* ^, and y *-* t^. The coordinate 
frequencies, £, and t^, are hard to understand 
conceptually, but viewing the transform in polar 
coordinates, we see that the point (£j.^|) in the two-
dimensional frequency space is referring to a plane 
wave of spatial frequency t, = ( t 2 + Jjj2)0"3, oriented 
in the radial direction, a = tan'1 \fiv 

Using the procedure outlined above, a closed-form 



expression for the normalized speed of plane wave 
travel in the waveguide mesh may be found, 

•Gj .^ ) / c = 2°-5 £T)-' tan"1 (4 - b2)0-5 b'\ 

where b = cos £,T + cos £,T. 
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Figure 6. Wave Travel Speed vs. Frequency 

Figure 6 shows a plot of the normalized wave travel 
speed on the mesh versus spatial frequency. The 
center region of the plot corresponds to low spatial 
frequencies; the outer regions of the plot correspond 
to higher spatial frequencies. The angular position 
on the plot, as seen from the frequency plane origin, 
corresponds exactly to the direction of plane wave 
travel on the mesh. Notice that near the center of the 
plot, corresponding to smooth, low frequency plane 
waves.-the dl c ratio is fairly close to 1. Also, <fl c-
1 exactly along the diagonals, corresponding to no 
dispersion at any spatial frequencies when traveling 
in a direction diagonal to the mesh coordinate 
system. In waves traveling along the coordinate axes 
of the mesh, we see a fall off in travel speed in the 
higher spatial frequencies. 

Figure 7. Wavefront Dispersion on Mesh 

Figure 7 shows three time frames of the mesh 
initialized with a deflection containing high spatial 
frequencies. Notice how the wavefront smooths out 
along the mesh coordinate directions, corresponding 
to high frequency dispersion, while it remains sharp 
along the diagonal directions, corresponding to no 
dispersion. In a bounded mesh, speed distortion 
results in a mistiming of resonant modes. This 
distortion can be reduced by allpass filtering and/or 
warping of the membrane boundary in a 
compensating manner. Oversampling the mesh and 
low-passing can eliminate the effect to arbitrary 
accuracy. We note that the high frequency modes of 
a membrane become so dense that, in audio contexts, 
this error may not be important. 

• 

5 Implementation Features 

The digital waveguide mesh may be computed in 
parallel, and without multiplies. In addition 
numerical round off loss may be redistributed back 
into the mesh to create a zero-loss system. 

5.1 Two Pass Parallel Computation 

The network elements in the 2-D digital waveguide 
mesh are of two types: 4-port scattering junctions and 
2-port bi-directional unit delays. If the unit delays 
are double buffered, so that each delay has its own 
input and output buffers, the computation of all the 
elements in the mesh can be segregated and 
computed in any arbitrary order or in parallel, 
according to the following two pass computation 
scheme: (1) The scattering junction outputs are 
computed from their known inputs and placed at the 
junction outputs. This constitutes the scattering pass. 
(2) The outputs from each scattering junction are 
placed at the inputs of the adjacent scattering 
junctions, thereby implementing the bi-directional 
delay units. This constitutes the delay pass. 

Due to the possibility of arbitrary ordering of the 
scattering computations, implementation on a parallel 
computing architecture with local four-sided 
connectivity between processors is ideal for the mesh 
algorithm. In this implementation, the junction 
equations are computed in the processors; and then 
the data transfer cycle is used to transfer data from 
the outputs of each processor to the appropriate 
inputs of the adjacent processors. 

Since the equal impedance 4-port lossless scattering 
junction is multiply-free, as pointed out in Section 



4.2, a VLSI implementation may be constructed with 
a handful of gates with no need for hardware 
multipliers. Since the junctions may be computed in 
parallel, the whole mesh may be computed in the 
time it takes to do 7 adds (i.e., 3 adds and 4 subtracts) 
and one shift. In fact, the four subtracts may be 
performed in parallel. 

5.2 Energy Preserving Junctions 

When performing the multiply-free junction 
computation, one divide by two is required. If a 
simple sign-preserving right shift and truncation is 
used for this operation, the junction value is rounded 
toward zero in the case of positive numbers and 
rounded away from zero in the case of negative 
numbers. This is a round down in both cases, which 
could introduce a negative offset into the values of 
the mesh which may eventually lead to numerical 
instability or reduced dynamic range, if there is no 
loss in the system somewhere else. 

The usual solution to such a problem would be to 
make a conservative rounding toward zero in both the 
positive and negative cases. This way no energy and 
no DC drift will be introduced into the system. This 
method is known to work quite well in one-
dimensional feedback loops. Unfortunately, in the 
two-dimensional mesh case, there are so many 
junctions that the cumulative losses in all the 
junctions add up to a noticeable amount. 

An energy preserving method of junction 
computation may be constructed as follows. When 
shifting a binary number to the right, there are 
exactly two cases: (1) the low-order bit which is 
shifted off the end of the word is zero, and the 
computation is exact, or (2) the low-order bit is one, 
and the error is exactly 0.5. When the junction inputs 
are subtracted off vj in computing the scattering 
junction outputs, this error is magnified by 4 and the 
0.S error propagates into the four output signals 
equally. Note that the error is in the same direction 
in all four cases so the total error is 4 • 0.5 = 2 full 
bits. To preserve energy in the mesh, round two 
output signals down (i.e., just truncate) and round the 
other two output signals up (i.e., add the low-order 
bit back in after truncating). This re-distribution of 
the error produces a numerically exact lossless 
scattering junction. In effect, the slight numerical 
error has been converted into a slight scattering 
dispersion error. Whereas the numerical error was 
problematic, the dispersion adjustment is vanishingly 
small. 

6 .Modeling with the Mesh 

To build a model of a drum membrane, we need to 
clamp down the boundary of the mesh, corresponding 
to terminating the mesh reflectively, inverting the 
traveling waves at the edges. Since the 2-D digital 
waveguide mesh is just a big linear system, filters 
representing loss in the system are easily 
interconnected, and may be consolidated as desired 
around the rim due to commutativity of linear 
systems. 

Modeling a stiff plate might be accomplished by 
letting the waves reflect off the boundary with out 
inversion (for an undamped plate). To help out with 
the greater spacing of higher modes in the plate 
caused by stiffness, some appropriate allpass filtering 
might be introduced. 

Figure 8 suggests the possibility of modeling a 
harpsichord by connecting an array of waveguide 
plucked string models to a waveguide mesh 
representing the sounding board via 5-port junctions. 
The soundboard mesh would have appropriate 
boundary filters with low pass characteristics to 
represent loss and allpass characteristics to represent 
stiffness effects in the board. In this model the mesh 
is used as a resonant coupling connection which both 
reverberates the string outputs and scatters energy 
into strings which have not been plucked, thereby 
inducing sympathetic vibrations. 
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Figure 8. The 8-String Harpsichord. 

6.1 Extensions of the Mesh 

The mesh algorithm assumes nothing about its 
boundary conditions. There is nothing to stop one 
from connecting one edge of the mesh to the opposite 
edge to produce a cylindrical topology, as shown in 
Figure 9. Furthermore, it is straight forward to 
extend the algorithm into three dimensions by 
layering several 2-D meshes above each other, 
replacing all the 4-port junctions with 6-ports and 



connecting up the layers. This topology is shown in 
Figure 10. 

Figure 9. The Cylindrical Mesh 

Figure 10. The 3-D Digital Waveguide Mesh 

Figure 11. The 3-D Drum Model. 

\ 

Figure 12. The 3-D, One-String Guitar. 

With constructs such as these, fully physical models 
of musical instruments can me made. For example, 
Figure 11 shows the 3-D drum model with a mesh 
modeling the drum head, connected to a stiff 

cylindrical mesh modeling the sides of the dlum and 
3-D mesh inside the drum modeling the air cushion. 
Figure 12 shows a guitar model with 2-D mesh 
material modeling the bridge and body shell and 3-D 
mesh material modeling the resonant body cavity. 

7 Summary 
Although finite element and difference scheme 
approximation methods are known which can help 
with the numerical solution of the 2-D wave 
equation, these methods have two drawbacks: (1) 
their heavy computational time is orders of 
magnitude beyond reach of real time, and (2) 
traditional problem formulations fit poorly into the 
physical model arena of linear systems, filters, and 
network interactions. On the other hand, the 2-D 
digital waveguide mesh formulation proposed in this 
paper, while corresponding exactly with the standard 
difference scheme approximation, may be 
implemented in a fully parallel, multiply-free 
formulation; the energy preserving, digitally exact 
round-off method eliminates numerical problems; the 
mesh extends simply to 3- or N-dimensions; and, 
finally, the algorithm is a linear network which 
connects up easily to other physical models. 
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