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DIGITAL WAVEGUIDE MODELING AND SIMULATION OF REED WOODWIND
INSTRUMENTS

Suzanne Eve Hirschman, Stanford University, 1991

This paper discusses the mathematical modeling and digital simulation of reed woodwind
instruments. The acoustical principles governing the general behavior of a reed woodwind
are set forth in detail to provide a qualitative basis for a computational version of the
acoustics. A more rigorous theoretical treatment of wave propagation modeling through the
waveguide digital filter, based primarily on the work of Julius Smith, follows. In addition,
models representing reed, tonehole, and bell behavior, again based on Smith’s work, are
presented. Finally, an interactive computer program is described which was developed on
the NeXT computer, based on a SMALLTALK version by Perry Cook and the clarinet
modeling approach of Smith. The purpose of this simulation was: 1) as a tool to explore
the acoustical behavior of a reed instrument, and 2) to evaluate the acoustical significance of
various refinements in the model with respect to musical requirements of a real-time digital
instrument. Refinements which were explored included: bell reflection filters with variable
order and cutoff frequencies; incorporation of reed dynamics; implementation of a register
hole using a 3-port scattering junction; and reed behavioral models of collistion elasticity

and hydrodynamic effects.
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Preface

As the field of digitally produced sound, and its associated computer technology develops, so
does the potential for creating realistic real-time computer simulations that model acoustic
instruments. Simulation has long been a tool for acoustical analysis; in the field of acoustic

modeling, it is rapidly becoming a viable and exciting resource for musical performance.

The primary source of musical sound in an acoustic instrument is the propagation of waves
through the instrument medium and the subsequent pressure radiation to the outside air.
A good model of the instrument must therefore duplicate the wave behavior, as well as the
nonlinear relationships between the medium and its excitation mechanism. Julius Smith has
demonstrated that the waveguide digital filter, an offshoot of the normalized ladder/lattice
filter, is an ideal structure for this task. The waveguide filter is essentially a two-way
delay line interspersed with partially reflective “scattering” junctions which operate on the
oncoming wavefronts. Such a filter implements the wave propagation equations exactly. Just
as a tonehole or bore diameter change will create an acoustic barrier within an instrument,
allowing only part of the wave to penetrate while reflecting the rest, so can the associated
changes in impedance be used to calculate the filter reflection coefficients which will result
in similar scattering of the propagated, simulated wavefronts. The waveguide section is
extremely modular, and can easily be connected to models of excitation and terminating

impedance.

This thesis discusses the implementation of Smith’s clarinet model in an interactive en-
vironment on the NeXT computer. The clarinet model in its basic form is particularly
elegant and efficient, as its cylindrical bore reduces much of the waveguide to a simple delay
line. Inelaborate as it is, it provides a powerful demonstration of the principles of wave

propagation, and of the essential coupling between reed and air column, as well as being a

vi







potentially rich source of musical sound.
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Chapter 1

Introduction

1.1 The Sound of the Reed Woodwind Instrument

“Oboists, clarinettists and bassoonists are entirely dependent upon a short-lived vegetable
matter of merciless capriciousness, with which, however, when it behaves, are wrought

perhaps the most tender and expressive sounds in all wind music.” Anthony Baines, 1957
(6]

The reed instrument has long provided man with some of the most delicate, and sometimes
some of the most rousing, sources of musical sound. The reed mechanism is at once amaz-
ingly elegant in concept while almost unfathomably complicated in operation. The reed
itself, at its best a flexible, responsive friend in the lips of the musician, can at its worst be
a mutable enemy, prone to harsh sounds and unpredictable behavior. It interacts with an
air column bounded by the realities of a physical bore, and a physical player - a lattice of

complex acoustical compromises capable of producing breathtaking tones.

The advent of the digital computer in recent years has greatly increased the use of digital
computing techniques for electronically emulating the sounds of acoustic instruments. Syn-
thesizers and digital sampling machines have become mainstays in many aspects of modern
music, and the term “MIDI” (Musical Instrument Digital Interface) has become, if not a

household term, an almost universally recognized acronym among musicians.




CHAPTER 1. INTRODUCTION 2

Current synthesis and simulation techniques have an important limitation however; al-
though they emulate the sound of the desired instrument, they are not controllable as a
real instrument would be. A sound sample is simply a snapshot, a slightly prolonged instant
in time. A frequency spectrum, easily replicated by any of various synthesis techniques, is
inherently a steady-state representation, free of any of the transients which make a musical
sound interesting or even recognizable. Various MIDI-controlled synthesis techniques are
available for altering the sound, introducing transients, varying timbre, etc. However, these
exist in the electronic world, and have electronic sounding effects. The gestures available

to the acoustic musician are, for the most part, out of reach.

A different approach to digital sound production is taken by those in the physical modeling
world. Here, rather than take the end product, the output of a black box which exists only
in the physical realm, the behavior of the instrument itself is recreated. Wave propagation,
tonehole and bell radiation, input modulation - these phenomena which create the sound in
an acoustical instrument are set down in mathematical models, implemented by computer
code, to create realistic effects in simulation. The musician is provided with the same rich
source of gestural control he had with the acoustical instrument. In addition, because the
computer model can transcend the physical limitations of its archetype, it provides yet more
possibilities, more latitude. Unlike with standard MIDI control techniques, however, these
new tones and gestures, though far afield from the traditional acoustic sound, are solidly
rooted in physics, and thus, physical reality; they represent a new genre of “electronic”

sound.

1.2 Modeling of Reed Instrument Behavior

The study of the physics of the reed instrument is not a recent discipline; it dates at least
back to the 19th century, when Weber performed studies of reed organ pipes, and later, when
Hermann Helmholtz published his treatise: On the Sensations of Tone [25]. Other early
contributors to the field included Rayleigh [56], Miller [44], Bouasse [11], and Morse [46].
Worman provides a very good summary of the early history of reed woodwind analysis in
[76]. The “modern” history begins perhaps with the landmark paper of Jim Backus, “Small-
Vibration Theory of the Clarinet” [5], published in 1963. This study of linearized clarinet

behavior, which combined theory with experiment, spawned a new wave of research in the
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field, including the comprehensive study by Nederveen in The Acoustics of Reed Woodwind
Instruments [51]. Other workers included Plitkin, Strong, Stewart, Wilson, and Beavers
[55], [70], [75].

The nonlinear relationship between the reed and the bore was explored in depth by Arthur
Benade and D. J. Gans, as well as their students, Walter Worman [76], Stephen Thompson
[72], and Douglas Keefe [37). Arthur Benade in particular is considered by many to have
been a giant in his field. His textbook, Fundamentals of Musical Acoustics [9), is a classic
reference, read thoroughly by many of the acoustics buffs with which this author came
into contact in the course of the research. Benade and his students described the role
of cooperating resonances and regimes of oscillation, which proved useful models for the
friendly /hostile responses of musical instruments. Keefe in particular has gone on to publish
much work in the area of woodwind simulation, including extensive work in the area of
tonehole behavior([34], [35], [33].

From a simulation point of view, the next major step was the 1983 paper by McIntyre,
Woodhouse, and Shumacher, “On the Oscillations of Musical Instruments”, which presented
the concept of describing wave behavior in terms of the dissociated right and left-going
waves [43]. McIntyre still perceived this simulation purely as an analytical tool, with some
ackilowledgement of its “novel” potential for providing the basis of a real instrument. Smith
has merged this approach with the well-known normalized ladder/lattice filter structure
to yield the Digital Waveguide Filter approach to modeling instruments [64]. In [63], he
introduced a simulation algorithm for a clarinet, which included a precomputed reed lookup
table for an efficient mouthpiece reflection model and a highpass/lowpass filter combination
for the terminating impedance at the bell. On this model, Perry Cook based his Smalltalk
reed simulation, which implemented a conical waveguide, as documented in [18]. It is on

Smith’s work and Cook’s code that the much of the analysis and simulation herein is based.

On the experimental side, surprisingly little progress has been made. In particular, little
work has been done to characterize the behavior of the reed itself. The author had originally
set out to simulate a double reed, but found that there was almost no experimental or
theoretical basis for doing so. The few works which do treat the double reed, for example,
[57], invariably base their work on modern instruments, comparing the cylindrical single
reed clarinet with the conical double reed oboe or bassoon. It is almost impossible to

isolate double reed phenomena from the conical bore effects in those results. In addition,
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the description of both reed dynamics and hydrodynamics within the reed channel have
to date been based primarily on supposition and extremely simple models, rather than
experimentation and rigorous theoretical analysis. This trend is currently being reversed
by the fluid dynamicist Mico Hirschberg and his fellows in the Netherlands [27], [26].

1.3 Purpose and Scope of Thesis Research

The objectives of the research herein were threefold:

1. To implement Smith’s clarinet model in an interactive, evolutionary simulation
workbench on the NeXT computer for the exploration of acoustical concepts, models,

and parametric sensitivities;

2. To explore the acoustic behavior of a generic reed instrument on the basis of this

tool;

3. To isolate those refinements to the model which proved to have musical signifi-

cance, for eventual incorporation into a real-time instrument.

Refinements to the basic model included:

o Insertion of a scattering junction that divided the bore into two arbitrarily sized
sections. This junction could take the form of a three-port junction, represent-
ing a dissipative register hole, or a lossless two-port junction, representing a bore

perturbation used to study behavior of misaligned bore resonances.

e Modeling the reed as a simple second order oscillator, and thus introducing reed
dynamics into the system. The dynamics of the reed have been modelled similarly
in much work to date, from Backus in [5] to Keefe in [34]. In this case, the model
was designed to provide a reflection coeflicient in a manner compatible with that of
the static reed table. The parameters governing the equations were, rather than the
more fundamental properties of mass, spring constant, and damping, the resultant,

and more musically meaningful, properties of resonant frequency and damping ratio.

e Modeling hydrodynamics within the reed in terms of a variable “Bernoulli Force”,
an effect which has been cited frequently in the past, but which is currently under
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much debate.

e Modeling of variable elasticity in the collision against the lay when the reed beats.

Other minor modifications included: a selectable bell reflection filter, based on Smith’s
lowpass/highpass representation of the terminating impedance, to allow studies of the effects
of cutoff frequency; variable attack envelope, based on Cook’s Smalltalk attack objects, to
allow studies of the influence of attack on the steady state; and an impulse response, using

Cook’s SpectrumView object, which calculated the bore resonances.

The discussion proceeds as follows: Chapter 2 provides a somewhat qualitative background
of the acoustical principles governing the operation of a reed instrument, with emphasis
on the relationship between reed and bore. It is intended to serve as both a literature
survey and a tutorial for the modeling and understanding of reed behavior. A good part of
chapter 2 is based on Arthur Benade’s book, [9]; however, it also folds in the work of many
others, both in the research and the musical fields, and attempts to provide a comprehensive

summary of the subject.

Chapter 3 presents a more mathematical background. The first half of this chapter is
primarily a tutorial on the modeling of wave propagation through an acoustic tube, and
summarizes the work of McIntyre,Woodhouse, and Shumacher, and of Julius Smith, with
respect to this research. The second half treats Smith’s implementation of a clarinet model,
and provides detailed mathematical models for the various elements discussed qualitatively

in Chapter 2. These include also the refinements discussed above.

Chapter 4 describes the reed workbench simulation itself. It details the function and imple-
mentation of each panel element of the tool. The results of various experiments performed

with the tool are enumerated in Chapter 5, with conclusions drawn in Chapter 6.







Chapter 2

Background: Reed Woodwind

Acoustics

2.1 General Description of Reed Woodwinds

2.1.1 Origins of the Reed Woodwind Instruments

The reed instrument has a long and illustrious history which began when man first found
he could coax a blade of grass to sing. Little is left to us from prehistoric times to trace the
roots of the reed pipe[2]. Unlike the bone flutes, which tell the early story of a more durable
class of instrument, the reed pipes were by necessity constructed of biodegradable material;
the reeds were cut directly from the pipe, and so the substance of the pipe had to satisfy
the flexibility requirements of the reed . Even if the pipes had through some miracle of
ossification survived, Baines speculates that they still might not be plentiful in many parts
of the world, noting that ”primitive” tribes today, while employing a prodigious quantity

and variety of flutes, have developed very little in the way of reed pipes.

Earlier reed instruments were of both the single and double reed variety, meaning that the
mouthpiece assembly, or “generator”, was constructed of either of a single reed bound to or
cut from a rigid surface, or two reeds which could flap against one another. The single reed
instrument was not as prevalent, however, and virtually disappeared during the Renaissance

period. The most common ancient single reed was used in the drone of the bagpipe, although
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a select number of European folk instruments also qualify. Today, many South American
folk instruments still use this reed setup. The gourd double pipe, or tiktiri, of India, is
perhaps the most exotic form of single reed; it is the legendary instrument of the snake
charmer [22]. The double reed found its way into a much greater variety of instruments,
and out of the realm of folk music into the music of the courts and towns. Many rural
cultures had and have their own version of the folk shawm; Robert Dawson, a musician
travelling in Nepal, reports that many villages had not only their shawms, but their own

unique tune which was considered the only proper sequence of notes on the instrument.

A number of double reeds are recorded illustratively in medieval manuscripts, mostly a
variety of the conical shawm, notable for its clear tone and exceptionally loud volume. The
shawm was, and is, in the hands of most modern players, an instrument whose audiences
are happiest outdoors. The shawm, illustrated in figure 2.1, was played with an open
reed, meaning that the reed assembly was placed directly in the mouth. There is some
disagreement about how much embouchure control the player exerted. Some studies of
the instruments claimed that the lips were flush against the pirouette, the structure from
which the reed protruded, too far down to exert much control over the reed, and that the
oral cavity played the role of a windcap. Some embouchure control is necessary, as this
instrument has no thumbholes, and relies on variations in embouchure for register changes.
Use of the pirouette today depends on the design of the reed. D. H. Smith points out that
reeds with fan-shaped blades are so sensitive to embouchure changes that use of the piroutte
is required for stability [61]. However, modern players frequently play a bit further up the
reed, i.e., further toward the end of the reed, but with a looser, more open embouchure
than would be used for a modern orchestral double reed instrument such as the oboe. The
shawm is, incidentally, the direct ancestor of the oboe, which developed as a quieter conical

alternative.

Another type of early double reed instrument employed a wooden windcap which enclosed
the reed assembly. The player blew into the windcap, which directed the air in the proper
manner against the reed. There are no modern western versions of the direct blown “capped
reed”, unless one wants to count the party horns reserved for New Year’s Eve or the practice
bagpipe chanter described below, although many reproductions exist for the performance
of early music. The most notorious is the crumhorn, illustrated in figure 2.2, a cylindrical

instrument shaped like an umbrella handle with tone holes. The crumhorn is actually a
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Figure 2.1: Modern Reproduction of an Early Renaissance Soprano Shawm, built by Robert
Cronin, 1990 (illustration by author).

member of a large family of capped reeds, often referred to collectively and affectionately as
buzzies, which contains many straight, cylindrical bore instruments such as Cornemusen
(a term sometimes applied in general to the family), Schreierpfeif fen, and a modern
generic reproduction known as the Glastonbury Pipe, to be discussed in more detail further
on. Earlier versions of the capped reed are referred to somewhat generically as dougaines,
a term also applied to the soft shawms , or open reed instruments which were not shawms.
A brief controversy flared in 1986 when the ship The Marye Rose was excavated and an
original double reed instrument found. The instrument was reported at first to be a shawm,
but, according to Herbert Myers, curator of Stanford University’s collection of instruments
[48], was not a shawm at all, having both a cylindrical bore and a register hole (a vent hole,
to be discussed in depth, which allows notes in the upper octave to played).

One category of capped reed which has progressed into modern times is the bagpipe, in
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Figure 2.2: Modern Reproduction of an Alto Crumhorn, Design Early Music Shoppe of
London, built by the author and Tom Neuman, 1984 (illustration by author).

which the reed pipe, or chanter, as well as any number of drones, are driven by a bellows,
which in turn is supplied with air by the player or the ambient, and regulated by the elbow
or arm. The chanter has tone holes which allow the changing of pitches, while the drones
are fixed length pipes capable of playing only one note. Players often work on a practice
chanter, which is similar to the actual bagpipe chanter but blown directly like the capped
reeds described above. Although this chanter is primarily for less painful practicing, it is an
instrument in itself and is sometimes played as such. However, the drones give the bagpipe
its characteristic sound, and indeed, drones on variable pitched instruments are frequently
used to impart a medieval or pastoral quality to music. Modern Highland bagpipes, like
shawms, are very loud outdoor instruments; other pipes, for example the Irish Uillean pipes,

are relatively mellow.

As noted above, the shawm was the direct ancestor of the modern oboe and bassoon. It
was modified with a new shape, a softer voice, and eventually, a complicated array of keys
on which the more troublesome chromatics could more easily be achieved. The cylindrical
bore cornemeuses went by the wayside for the most part, but in eighteenth century, the

clarinet came into use. This too was a cylindrical instrument, but with a somewhat novel
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mouthpiece. Instead of two reeds beating one against the other, this instrument had but
a single reed, vibrating above a lay which essentially extended the bore beneath the reed.
As was mentioned earlier, primitive single reed instruments were not unknown, but saw
little refinement. There is scant evidence of this type of instrument being used in a town
setting much before the eighteenth century. Johann Christian Denner is given credit for
both inventing the clarinet,and possibly improving on another orchestral early single reed,
known as the chalumeau, which means ”pipe” in the sense of the bagpipe chanter or the
rustic reed pipes [6]. It is a common misconception that the ill-fated chalumeau was the
ancestor of the clarinet; the two in fact coexisted, and little is known about the chalumeau
before the time of the clarinet [12]. Although Denner may have based the single reed
mouthpiece on earlier designs, his great discovery was the vent hole, or register hole, which
allowed the instrument to play a twelfth higher. The acoustical implications of the vent
hole will be discussed later; it is worth noting that the low register of the modern clarinet
is still called the chalumeau register, while the upper register is the clarion, or clarinet.
In time, of course, the instrument evolved to include the keys, bell, and form of the modern

clarinet.

The next step in single reed development came with the invention of the sazophone, by
Adolphe Sax in 1841. This new instrument had the single reed of the clarinet but the conical
bore walled by the thin metal of the ophicleide, an earlier lip reed instrument [12]. As will
be discussed, the tonal characteristics of a conical bore are vastly different from those of a
cylindrical bore. The saxophone was not the only conical bore single reed; wooden conical
bore cousins included the octavin (1894) and the Hungarian Taragato, which, although
not well known outside of Hungary, has been modernized. This latter instrument was a
favorite of Benade’s [9] for demonstrating acoustic principles. Described by Baines as a sort
of wooden soprano saxophone [6], but with a much darker tone, it is still used today by
folk bands. The range of the saxophone was originally quite limited, until it was found that
the limiting factor was the softness of the reed [71]. When mouthpiece facings designed to
allow stiffer reeds were developed, the dynamic capability of the instrument was extended

by an octave.

Of course, the single reeds never supplanted the double reeds, just as the conical bore
never supplanted the cylindrical. Each development added a new voice to the tonal palette

available to the composer, be the work for consort or orchestra. In the 1940’s, an attempt
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was made to adapt the single reed to the conventionally double reed bassoon and oboe.
A single reed is much easier to maintain than a double reed. Although these specialized
mouthpieces had some popularity, they did not come into use and are considered oddities

today. An example of one of these, for the oboe, will be presented later in this paper.

2.1.2 Definition of the Reed Woodwind

The previous section described some of the historical aspects of reed woodwind development;
this section discusses more specifically what constitutes a reed instrument, particularly for

the purposes of this paper.

The reed, in the acoustical sense, is not necessarily a reed at all, but a valve which responds
to fluctuations in pressure by opening and closing, and in so doing, modulating a steadily
flowing input stream into a periodic form that intensifies the effects of the fluctuations.
It is the coupling between valve and the air column contained within the instrument bore
that results in the sustained oscillation necessary for the production of a musical tone. It
is the nature of the coupling which characterizes to some extent the timbre of a certain

instrument.

When one thinks of reed instruments, one generally conjures up images of the cane reed
instruments, such as those discussed in the previous section. However, the valving mech-
anism need not take the form of a cane reed (or even a plastic reed, which substitutes, if
imperfectly, for true cane in some instances). The brass instruments, which are played by
“buzzing” the lips inside a (usually) metal mouthpiece, are considered lip reed instruments.
They bear many acoustic similarities to the cane reed instruments; in [34], Keefe treats
them mathematically as similarly as possible. The major acoustical difference is that lip
reeds are outwardly beating, while cane reeds are inwardly beating. This has important
implications with regards to phase relationships. In addition, the lip operates at its reso-
nant frequency, which is a function of the lip tension controlled by the player; we will see
that the cane reeds operate, when they are behaving, well below their natural resonance.
Of course, the sounds of the brasses are quite distinct from those of the cane reeds, as are
their physical forms. In the brass instruments, the metal tubing which contains the bore
is long and continuous, with extensions and consequent pitch changes possible through use
of valves which redirect the airflow through additional piping. Woodwinds, on the other




CHAPTER 2. BACKGROUND: REED WOODWIND ACOUSTICS 12

hand, generally have tone holes which effectively shorten, rather than lengthen, the bore;
these cause additional damping even when closed, and allow sound transmission through
other sources than the bell when open. (An interesting hybrid is the cornetto, popular in
the Renaissance period. This is a relatively small lip reed instrument of wood bound in
leather and perforated with tone holes, played through a tiny acorn shaped mouthpiece
that is blown like a horn, often on the side of the mouth where the lips are thinner. This
instrument is considered one of the hardest to play, but also one of the most beautiful and
vocal in sound when played well. Its bass version, the appropriately named serpent, is

known more for its tortuous shape than its tone.)

The cane reed instruments use a mechanical flap as the coupling device. In the woodwinds,
this flap is generally of cane or possibly of plastic. Another instrument which uses a me-
chanical reed is the organ, which contains many fixed length tongued pipes which operate in
much the same way as single reed woodwinds, but without the tonehole lattice. The organ
is in fact a much more convenient medium for experimenting with the physics of reeds, in
that the geometries are well defined, the structure simple, and the airflow easy to regulate.
It is on the organ that Hirschberg [27], [26] is currently studying the hydrodynamics of reed
action, and controverting many assumptions common in that field. Even the voice can be
considered a reed instrument of this type; the glottal folds act as flaps interacting, albeit
weakly, with the bore formed by the vocal tract.

Finally, the air reed instruments, such as the recorder and the flute, employ as the coupling
device the vortices generated at the sharp edge of the mouthpiece. The action of the
pressure fluctuations within the bore vortices periodically direct the vortex shedding to
alternate sides of the air stream, modulating the flow into the bore [9]. The most important
distinction between this type of generator and both the cane and lip reeds is that the air-
reeds are "flow-controlled” rather than ” pressure-controlled” valves, and therefore constitute
in valving behavior the dual of the pressure-controlled cane-reed instruments to be discussed
here [9].

In summary, most instruments which are driven by air flow can be considered acoustically
to be reed instruments. They all generate sound through the use of a nonlinear coupling
between resonator and flow source. This paper, however, concerns itself only with the cane
reed woodwinds, i.e., those instruments blown manually which contain single or double cane

reeds. Throughout, the term reed instruments will be synonymous with cane reed woodwinds
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except where explicitly stated.

2.1.3 Functional Description of a Reed Instrument

The following sections detail the characteristics of the reed instruments. Having defined a
reed for the purposes of this paper, a functional description of the instrument which exploits
it can be developed. At present, this description will be brief; further sections will give a

much more detailed treatment.

Essentially, the reed instrument consists of two parts: the reed, or generator, and the air
column/bore, or resonator. Note that it is the air column within the instrument bore
which resonates, and not the instrument itself. For this reason, the material from which
the instrument is made is not as important acoustically as, say, that in a violin. Although
some, including [12], claim that the material is completely immaterial, the softness, porosity,
and roughness of the bore surface do influence the boundary layer effects, which are very
important in determining internal damping and musical response {49]. However, Benade
found that the effects were less than the two percent he cited as being noticeable to a
musician. He did note that hardness of the material affects the sharpness of the corners
at junctions and toneholes, unless those edges are purposely rounded out; this increases
turbulence which can have a very detrimental effect on tone [9]. The question of material
importance is a highly controversial and even emotional one. An instrument builder will
claim that the material is essential to defining the tone of the instrument, and it is difficult,
and in this author’s opinion somewhat reckless, to discount the years of empirical knowledge
imbedded in the evolution of a craft. This is particularly true in the area of high quality
recorder building, where the choice of wood for the flute, for example, boxwood, maple,
grenadilla, or ironwood, defines from the start the sort of tone which the craftsman is after.
(Early instruments will often be referred to in this paper because they are being actively
developed today, and provide many more examples of acoustic phenomena. In addition,
the builders today are by necessity experimental acoustic practitioners, because the designs
from which they start do not have the time-honored polish of modern-day instruments.)
Since the instruments built of more expensive woods are generally much better crafted than
those of cheaper materials, conclusions are hard to draw from any sampling of instruments,

unless they are built specifically for experimentation under controlled conditions.
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Figure 2.3: Functional Diagram of a Reed Instrument
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The reed valve opens and closes to modulate a steady input stream into a pulse train, i.e.,
a series of compressions and rarefactions which propagate through the air column and, in
conjunction with the reflected pulses, form a harmonic progression of standing waves. Once
released into the bore, the pulses act according to bore georr/letry, reflecting and transmitting
at any juncture. At the effective end of the bore, part of the pulse energy will reflect back
towards the mouthpiece, reinforcing the oscillation, and part will escape into the outside
air, transmitting the perceivable tone. Since the period, and therefore the frequency, of the
tone is determined primarily by how long it takes to travel from one end of the bore to the
other at the speed of sound, the pitch can be changed by altering the effective length of the
bore. The player accomplishes this by modifying the configuration of the tonehole lattice,
i.e., by opening and closing various holes which have been drilled into the side of the bore.
It should be noted that a tube shortened by opening toneholes will not produce the same
sound as an unperforated tube of the same acoustic length; the tonehole lattice plays an
important role in the quality of timbre. Keefe has explored the tonehole in detail [35] [33].
Toneholes are discussed in more detail in Section 2.6. Except for a special case, the register

hole, however, toneholes will not be modelled in the simulation that follows.

2.2 Characteristic Reed Tone

The purpose of this research was to develop a digital simulation of a reed instrument.
The chief determinant of the success of this task being aural, it is necessary to determine
what constitutes a characteristic reed tone. This is difficult to do precisely, for when we
are dealing with sound perception, we enter the very imprecise arena of psychoacoustics.

However, although different reeds may sound distinct from one another, they still sound like
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reeds, and not like any other type of instrument. Single reeds sound like single reeds, double
reeds sound like double reeds, and all sound quite distinct from, for example, the airjet
instruments (although the adjective reedy is a common descriptor in the almost oenological
vocabulary of recorder — an early fipple flute which was extremely important through the
baroque period, but which was supplanted in later music by the more dynamically flexible

transverse flute — tone description, which also contains such expressive terms as open and
nutlike).

Before focusing on reed tone, it is worthwhile to discuss what constitutes any musical tone.
All dynamic systems have a set of resonances which can be excited, i.e., frequencies at
which the system oscillates easily. The technique of decoupling the response of a system
into its normal modes is commonly used in structural analysis and control system design.
But while a vibration may cause sound, it may not necessarily sound music. Any sound
can be decoupled into its constituent resonant components, or partials. For the sound to
be musical, these components must be “harmonically related”, that is, arranged in integer
multiples of the fundamental, or lowest frequency component. For example, a note perceived
as A-440 may also contain in its spectrum some A-880 (the octave, 2 x f(A)), E-1320 (the
twelfth, or the fifth above the octave, 3 x f(A)), A-1660, etc. The steady state timbre of
the note, i.e., its tonal quality once the attack transient has died out, is a function of the
relative amplitudes of these components. In some cases, the harmonics, are much stronger
than the actual fundamental to which the pitch is referred. On a bassoon, for example, the
fundamental is virtually absent, but psychoacoustic intervention causes the fundamental
pitch to be perceived nonetheless. The role of psychoacoustics in tone and pitch perception

is an interesting area, but not one to be covered here.

It must be noted that the steady-state timbre of a note is only one part of the distinguishing
characteristic of the tone. It has been shown time and again that the transients at the
beginnings and ends of notes, the attack and decay, are at least as important as the steady

state in establishing tone color, that is, the percived tonal character [52].

This section will present some typical reed instrument sound samples, as both a starting
point, and to some extent, and endpoint, to the discussions contained within this thesis.
The sounds to be discussed came from two sources: the McGill University anthology of
sounds [54], and samples taken by this author in admittedly less than ideal laboratory

conditions. They are intended as qualitative, rather than quantitative, depictions of the
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differences among various instruments.

2.2.1 Single Reed Instruments

Any reed instrument can be classified first by two major characteristics — its reed type
and its bore shape. In trying to develop a good model and simulation, it is important to

distinguish between the effects of each of these.

The first set of instruments to be discussed are those using a single reed mouthpiece, such
as the clarinet mouthpiece, illustrated in Figure 2.4. The salient features of a single reed
mouthpiece are a single reed, bound by a ligature over a fairly voluminous mouthpiece
channel. The flattened surface which supports the reed is known as the lay, and accounts
for little of the surface area beneath the operating portion of the reed. The very edge of the
lay near the tip of the reed slopes downward slightly, so that when the reed begins to beat,

that is, to touch down on the lay, it must deform at the tip in order to completely close.

Figure 2.5 shows waveforms from an experimental clarinet stub with no toneholes built by
Perry Cook, and from the note G#3 on a Bb clarinet from the McGill anthology [54]. The
experimental stub had a microphone inserted inside the bore, so that the internal pressure
wave at the microphone, rather than the radiated pressure at the bell, was measured;the
results for both soft and hard reed are included. All of these waveforms exhibit a symmetric,
essentially triangular shape. Figure 2.6 shows the onset of attack on the Bb clarinet. The
triangular form starts fairly early on, although the other high frequency effects do not start
until the sound approaches steady state. This is consistent with the ”blossoming of the
spectrum” which occurs at higher amplitudes that will be discussed later in this chapter.
Finally, Figure 2.7 shows the corresponding frequency spectrum of the McGill clarinet
playing the G#3, and also the G#4 one octave above. Notice that, for the lower note,
the first five odd harmonics are very strong, descending about 15 dB from first to fifth.
The intervening even harmonics are much weaker, particularly the first even harmonic
(the second harmonic), which is down 35 dB. The second and third even harmonics grow
somewhat log-linearly from there to a maximum of -6 dB. After the fifth odd harmonic,
the distinction in magnitude between even and odd harmonic disappears. It will be shown
that a characteristic of a cylindrical bore is the predominance of odd harmonics. Also note

a formant-like like peak cresting at about 3500 Hz. From there, the peak sizes decrease
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Figure 2.4: Reed and Mouthpiece of a Clarinet (Instrument courtesy Sue
McEwen)(illustration by author)

steadily, until they disappear below the -60 dB mark at about 6000 Hz. For the higher
note, the peaks are, of course, spread further apart, since the fundamental frequency is
twice as high. Now only the first even harmonic is noticably attenuated with respect to the
odds, and the formant at 3000 Hz is less defined. An abrupt cutoff still occurs at about
6000 Hz.

The clarinet is an example of a cylindrically bored instrument. The same sort of mouthpiece
is found on the saxophone, which is a conically bored instrument. Figure 2.8 depicts the
waveforms of both a Bb clarinet and an alto saxophone playing G#4, an octave higher than
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Figure 2.5: Waveforms of the Cook experimental clarinet with soft and hard reed, and the
McGill Bb clarinet playing G#3

Figure 2.6: Omnset of attack: McGill Bb clarinet playing G#3

the tones discussed above. The saxophone has less symmetry in its waveform. It shows
a single thick peak corresponding to positive pressure, and a pair of much narrower peaks
on the negative side. The spectrum of this tone is shown in Figure 2.9. The most obvious
difference between this spectrum and the corresponding clarinet spectrum in Figure 2.7 is
the prevalence of the second harmonic, only 5 db down from the first harmonic (this is
difficult to discern from the spectrum shown because the peaks are relative to a reference
maximum of about 11 dB, and are displayed to only 0 dB. However, the tool which provided
the spectrum from which these screen dumps are based, Perry Cook’s Spectro program, does
also interactively provide the magnitude of the peaks by virtue of a single cursor readout.
The cursor readout is the basis for the peak heights cited). The third and fourth peaks are
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Figure 2.7: Steady-state output spectrum for a clarinet: McGill Bb clarinet playing G#3
(top) and G#4 (bottom)

down about 15 dB, but the fifth peak jumps back 17 dB, from which there is an almost
linear decline to the 12th peak at about -35 dB, at which point the spectrum levels off for
the most part until about 9000 Hz. The clarinet has some low-level spectral activity out to

that point, but not nearly as much as with the saxophone.

Figure 2.8: Clarinet and Saxophone Waveforms for G#3. Sound Source: McGill Collection
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Figure 2.9: Steady-state output spectrum for an alto saxophone. Sound Source: McGill
Collection

2.2.2 Double Reed Instruments

This subsection discusses those instruments with a double reed, such as the shawm reed
illustrated in Figure 2.10. The double reed is characterized by a pair of reeds, originating
from a single strip of reed scored and doubled over, which beat against one another. The
volume contained between the reeds is known as the reed channel, and is much narrower
than that in the single reed mouthpiece. The reed channel terminates in a tube of small
diameter which fits over the staple that leads into the bore. The specific geometry at the tip
of the reed during closure is heavily dependent on the scrape, or distribution of thickness
along the reed. A reed with a stiff spine will tend to close at the thinner edges first, and
requires additional deformation for complete closure, somewhat like that required for a
single reed to close over the lay. A reed with an even scrape will tend to close all at once,

and is used for a brighter sound [61].

As the previous section noted, there are few cylindrically bored double reed instruments
today, save for some folk instruments. Reproductions of historical instruments, however,
supply many examples of these. Figure 2.2 illustrated a typical instrument, which had a
windcap protecting the reed assembly. This instrument, like its fellows, has a very "buzzy”
sound, and crumhorn consorts are frequently likened to kazoo bands. Figure 5.11 illustrates
the waveforms for three crumhorn sounds, all from the McGill collection. The first is an alto
crumhorn C4, which requires the toneholes in the upper half of the bore to be covered. The
second is a soprano crumhorn C4, which requires all toneholes to be covered. The third is a
soprano G4, which uses the same fingering pattern as the C4 on the alto instrument. These

three are shown together to help isolate the effects of tonehole lattice and instrument size.
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Figure 2.10: Reed for a Soprano Shawm, built by Robert Cronin, 1990

One common feature among all is a pronounced asymmetry, and a great number of narrow
spikes. Each waveform does exhibit one narrow long spike on the negative side, probably
indicating a brief closing of the reed. There is also spiking on the positive side, but here,
the higher spikes are all roughly the same height. Figure 2.12 shows the spectra for these
waveforms. As with the clarinet, the first few even harmonics are suppressed with respect
the flanking odd harmonics, although the second harmonic is more prevalent than it had
been for the clarinet. In addition, the first few odd harmonics, while larger than the others,
are not nearly as dominant as they were before. The general shape of the spectrum is much
flatter than it had been for the clarinet, with activity well out to 11000 Hz. There are no
well-defined formant-like shapes. Finally, in the spectrum of the higher note on the soprano
crumhorn, we see some evidence of some slight multiphonic behavior in the presence of

closely spaced pairs of peaks as early as 1800 Hz.

One of the characteristics of the crumhorns described above was the capped reed, which
protected the reed from the embouchure damping that normally occurs. The next two
examples are of a soprano dougaine, a similar instrument which can be played both capped
and uncapped (although in the uncapped state, it plays a semitone flat until thoroughly
warmed up). This instrument, which was built by Philip and Gayle Neumann in 1989, is
illustrated in Figure 2.13. It has an extremely small diameter bore, and a slight flaring
bell at the end, which was an optional feature for increasing the volume. The lower section
of the bore, which is unperforated save for two vent holes, is equal in length to the upper
section, which contains all of the toneholes. Musically, this instrument is quite similar to
the crumhorn, although its design dates back to the Medieval era some centuries earlier.
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Figure 2.11: Alto Crumhorn C4, Soprano Crumhorn C4, Soprano Crumhorn G4. Alto C4
and Soprano G4 require the same fingering pattern. Sound Source: McGill Collection

It has a slightly more muffled tone than the particular soprano crumhorn it sometimes
supplants (both are used by the same ensemble), and blends better with voices, especially
when played with the open reed. However, it still has the same buzzy quality characteristic
of the cylindrical capped reeds, whether played open or capped.

The waveforms of a low note played on the capped and open instrument are shown in
Figure 2.14. The fundamental period in both of these waveforms is somewhat more defined
than it had been, with a triangular shape reminiscent of that of the clarinet. The open
reed is a bit smoother, as one would expect from the damping provided by the lips, but
the essential form remains the same. One interesting feature here is a pair of double peaks
on the positive pressure side. For the capped instrument, one of these peaks is noticably
higher than its companion, while for the open instrument, both peaks are the same size.
This could possibly be due to the mechanical stop provided by the lip, which in the open
case could be limiting the size of the first peak. Both instruments also show a double peak
on the negative side. This time, the capped instrument allows both peaks to approach the
same magnitude, while in the open instrument, the first peak is much smaller than the
second. The tip of the downward triangle is also more defined on the open instrument, as

are many of the sharper peaks.
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Figure 2.12: Steady-state output spectrum for Alto Crumhorn C4, Soprano Crumhorn C4,
and Soprano Crumhorn G4. Sound Source: McGill Collection

The spectra of the two waveforms are shown in Figure 2.15. Here, the main distinction
between the two is the shape of the midharmonics, in the second quarter of the graph.
Here, the open reed spectrum is extremely flat, while the more resonant capped reed is
much less even, with several formant-like peaks. After 8250 Hz, the spectrum of the open
reed degrades noticeably, although it still has pronounced high harmonic activity up to that
point. The presence of formant peaks in the spectrum, as opposed to a flat, or downward
sloping shape, seems to accompany a resonant sound, at least for these simple examples

where similar instruments could be compared.

The next example is of the shawm depicted earlier in Figure 2.1, used with the reed depicted
in Figure 2.10. Unlike the cylindrical double reeds discussed above, the conical shawm is
characterized by a clear, resonant, almost brassy tone. Figure 2.16 shows the associated

waveform for a low note on the shawm, and also, for the shawm reed, blown without the
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Figure 2.13: Cantus Doucaine with optional windcap, built by Phil and Gayle Neumann,
1989 (illustration by author)

shawm attached. The reed, blown in this fashion, is not playing at its resonance, since it is
still attached to the tiny tube at bottom which will serve as a very small bore, but rather,
at the "reed-plus-staple” frequency defined by Benade in [9], which is an important factor
in the final tone of the whole assemblage. On its own, the reed produces neither a pleasant
sounding tone or a pleasant looking waveform, full as it is of sharp spikes. The waveform of
the shawm itself is asymmetric; one period looks somewhat like half of a hill, beginning with
two small peaks, building up to a maximum three peaks later, and then dropping abruptly
back down for the next period. The waveform shown is biased slightly toward the negative
side. However, besides that, the waveform is roughly symmetric about its horizontal center.
This is somewhat surprising, in that double reeds are generally believed to beat; this would

normally cause some vertical asymmetry.

The spectrum of the shawm, illustrated in Figure 2.17, illustrates some classic conical
behavior - the increasing dominance of succeeding harmonics for lower frequencies. In this
figure, the first harmonic is a good 20 dB lower than the second harmonic. The highest
harmonic, the fourth, is yet about 5 dB higher than that. The fifth harmonic drops to the
level of the first, but a formant structure brings the next three levels successively higher

before a long, slightly uneven dropoff occurs. The shawm reed itself produces a relatively
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Figure 2.14: Low note on a Neumann cantus dougaine, capped (top) and open (bottom)

flat, wide spectrum from about 1100 to 6000 hz. At that point, the peaks begin losing
height, but a second series of multiphonic peaks begins to crop up. The apparent cutoff
frequency of the shawm is lower than for the “buzzy” instruments; it is generally accepted
that the buzz is due to the strength of the higher harmonics.

Finally, we turn to the modern orchestral double reeds - the oboe, the English Horn, and the
bassoon. Figure 2.18 shows the waveforms for three octaves of G#, one from each of these
instruments. One similarity among all is the high number of zero crossings, fairly evenly
spaced, within each period. All have a dominant positive/negative spike pair, followed by
some lower amplitude spike pairs. The relative ratios among these differ for each instrument.
For the bassoon, the spikes slope steadily downward from the dominant. For the oboe, they
drop off abruptly after the dominant and slope up steadily to the next dominant. On the
English horn, the inner spikes form a peak cresting at the middle spike, which is not that
much smaller than the dominant spike. Again, there is quite a bit of symmetry about the

horizontal. Also, the minor spike widths are roughly uniform.

The corresponding spectra show some similarities as well, as Figure 2.19 illustrates. As
with the shawm, the fundamental harmonic is relatively low, with succeeding harmonics
increasing steadily up to the fourth or sixth. Soon afterward, there is a sharp drop, followed
by a second peak soon after. The bassoon spectrum drops off steadily after the second peak.
The English horn displays a third formant structure in the second quadrant. Conversely,
even the second formant structure is not well defined in the oboe, whose harmonics attenuate

somewhat unevenly after the first peak at the fourth harmonic. All instruments have little
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Figure 2.15: Steady-state output spectra for Neumann cantus dougaine, capped (top) and
uncapped (bottom)

activity beyond 5500 Hz.
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Figure 2.16: Waveforms for a tone on an isolated shawm reed (top) and a low A with the
reed attached to a Cronin Soprano Shawm (bottom)
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Figure 2.17: Steady-state output spectrum for a tone on an isolated shawm reed (top) and
a low A with the reed attached to a Cronin Soprano Shawm (bottom)
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Figure 2.18: G# on three orchestral double reeds - the bassoon, English horn, and oboe.
Sound Source: McGill Collection
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Figure 2.19: Steady-state output spectrum for G# on three orchestral double reeds - the
bassoon, English horn, and oboe. Sound Source: McGill Collection

2.2.3 Other Reeds

This section discusses some reed types which do not fall in the above categories. The first
is a party horn, of the type used on New Year’s eve. The party horn is of interest because
of its similarity in sound to the crumhorn, a point often noted in less than benevolent
observations on the latter instrument. The party horn tested is illustrated in Figure 2.20.
It consists of a plastic capped single reed, which flaps against a lay somewhat similar to
that of a clarinet, but within the cap, and with no downward slope at the tip. The cap is
attached to a paper cone, which, as it turns out, actually has little influence on the sound.
Figure 2.21 illustrates the waveforms for an intact horn, a similar horn with a hole punched
in the side of the paper cone, and the mouthpiece of the second cone with no cone at all. The
three waveforms are strikingly similar. Unlike the shawm reed waveform discussed earlier,

which had a much higher frequency than the assembled shawm, all of these waveforms
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have roughly the same period and same shape. The shape itself is dominated by a strong
negative spike which slopes up to an eventual positive spike of smaller magnitude. The
positive spike on the mouthpiece waveform is somewhat truncated. All waveforms are fairly
rough looking, indicating a large amount of high frequency influence. This is demonstrated
further by the spectra, illustrated in Figure 2.22. The dominant feature on all of these is
the strength of the high frequency harmonics, as well as an extremely uneven progression

of harmonics.

Figure 2.20: Party Horn. Courtesy Jim Kafka (illustration by author)

The next example is of a single reed designed for use with an oboe, illustrated in Figure
2.23. These reeds were originally designed on the assumption that double reed players
might prefer the easy maintenance of a single reed. The marketing experiment failed, and
the devices have been relégat.ed to the ranks of musical oddities. They do, however, provide
the acoustics researcher with an interesting source of comparison. The device shown is
really a transitional mouthpiece. It does use a single reed, bound by ligature above a lay.
However, the channel beneath the reed, unlike that in a clarinet mouthpiece, is extremely
shallow, and connects to a tube that by necessity must be the size of the original staple.
The dynamics of the reed may be closer to a single reed, but the hydrodynamics of the
airflow through the reed channel is probably much closer to that of a double reed. A final
difference between this device and the conventional lay is that the sloping surface at the tip
is much less pronounced. This can be expected to produce more high harmonics at loud

playing levels, in that the reed no longer has to wrap around the lay to close.
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Figure 2.21: Sound of a Party Horn: Intact, Hole punched in side, Mouthpiece only. Intact
party horn courtesy Jim Kafka

The single reed sounded somewhat similar to the original double reed in the oboe. It
certainly sounded quite oboe-like, although not nearly as refined as the oboe reed, at least
at first play. David Hogan Smith, a professional early reed player, kindly assisted in this
experiment, and worked the the single reed into a playable form. His major criticism was
that the single reed provided almost no latitude in its playing parameters; unlike the double
reed, which provides so many variables that the beginner is oftimes confounded, the single
reed was difficult to modify through embouchure.

Figure 2.24 illustrates two sample waveforms for a double reed and the single reed on the
same oboe body. There are many similarities. The negative peaks on the single reed are
fatter than their double reed counterparts, perhaps indicating a different beating charac-
teristic. Response on the positive side is much more similar. Figure 2.25 shows the spectra.
On both, the first three harmonics slope upward to a peak held by the third and fourth
harmonics. On the double reed, the next few harmonics drop off, whereas on the single reed,
the same approximate level is maintained through the seventh harmonic. The next few sin-
gle reed harmonics drop off considerably from this point, while on the double reed, the level
has already built back up. It can probably be concluded that the similarity in the first few
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Figure 2.22: Output Spectrum of a Party Horn: Intact, Hole punched in side, Mouthpiece
only. Intact party horn courtesy Jim Kafka

harmonics is responsible for the similarity in tone, especially as the pattern matches those
in the other conical bore instruments studied here. The subsequent divergence in spectrum
in the second quarter can of course be considered the source of the divergence of tone, but

a more useful conclusion would require more careful experimentation.

As a final example, the waveform and spectrum of a recorder will be shown. One would
expect this waveform to be vastly different from those shown above, but since the topic of
discussion is the specific quality of reeds, it is worthwhile to present one other instrument
in contrast. The instrument used for this example is a modern replica of an 18th century
Denner recorder, built by Von Heune Workshops in Massachusetts, 1990. The waveform
shown is of a low note on the instrument. One of the main distinguishing features among
instruments is their tone quality in the lower register, where harmonics below cutoff can

come into play and make the timbre more interesting. This also results in a much more
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Figure 2.23: Single Reed Mouthpiece for an Oboe. Mouthpiece courtesy Forrest’s Music
Shop, Berkeley, CA. Illustration by author
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Figure 2.24: Oboe low G, with double reed (top) and single reed (bottom). Chauvet oboe
courtesy Lynn Rodoni, Single reed courtesy Forrest’s Music Shop, Berkeley

spiky waveform than one would expect from a recorder. Higher notes have the smooth
almost sinusoidal shape more common to the instrument. The fundamental is still strong,
although the third harmonic is also a major contributor. harmonics drop significantly from
there, but there is an additional formant peak in the second quarter. This spectrum is
particularly interesting because of its lack of even harmonics. This imparts the instrument
with a hollow tone (the term “nutlike” has been applied specifically to this model), listed in
[1] as being one of the desirable properties of baroque recorder tone. It will be shown later
that the lack of even harmonics, as in the clarinet, is characteristic of a cylindrical bore. In
the case of the recorder, it is obtained, according to [1], by the voicing, or sharpness of the
labium, and by the focus of the airjet.
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Figure 2.25: Steady State Spectrum for Oboe low G, with double reed (top) and single reed
(bottom). Chauvet oboe courtesy Lynn Rodoni, Single reed courtesy Forrest’s Music Shop,
Berkeley

2.2.4 Reed Tone Conclusions

The discussion above does not pretend to be a definitive or rigorous treatment of reed
instrument tone. It is primarily an anecdotal overview of the characteristics of reeds in terms
of their pressure waveforms and steady-state spectra. However, some general conclusions
can be drawn. First, a ”single reed” or ”double reed” sound is more related to the bore and
reed housing than to the reed itself. The party horn, with its capped single reed, was more
similar to the capped double reed than to any other instruments. The oboe with the single
reed still sounded oboe-like, although certaintly not as pleasant as it did with the double
reed. Certainly the reed plays an important role in determining the polished timbre, but is

not as important to the fundamental tone as the bore or reed housing.

All instruments had a healthy set of harmonics. The chief distinction between the cylindrical
and conical bore instruments was the size of the second harmonic. In cylindrical instruments,
the second harmonic was well suppressed. Succeeding even harmonics grew to a level equal
to the odd harmonics, however. On the conical bore instruments, the tone was clear and
resonant. Their spectra displayed an upward slope on the early harmonics, so that the
highest harmonic was often not achieved until the second half of the first decade. Dropoff
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Figure 2.26: Waveform and spectrum of the low G on a Von Heune Workshop Denner Alto
recorder, tuned to A415

was somewhat rapid from there.

The cylindrical double reeds were quite different in tone from the clarinet. This can be
attributed to the high cutoff frequency of these instruments, which have almost no bell to
speak of (an issue to be discussed in a later section). Consequently, the higher harmonics
were much more active in the tone, resulting in the buzz for which the crumhorns are famous.
The party horn had a similar buzz, and a similar preponderance of high harmonics. It is
interesting to note that the sound was not particularly bright, a quality which is often

ascribed to timbres with strong higher harmonics.

Finally, the presence of formant-like structures, or hill shaped sets of peaks cropping up
after an initial downslope, seemed to correspond with a resonance or refinement of tone.
This point will be brought up again in the section on the bell, when the inclusion of an
optional bell on an instrument causes an increase in volume and musical resonance, and a

corresponding set of formants in the spectrum.




CHAPTER 2. BACKGROUND: REED WOODWIND ACOUSTICS 37

2.3 The Bore / Air Column

As section 2.1 indicated, any reed instrument can be separated into two fundamental com-
ponents — the generator, provided by the reed, and the resonator, provided by the air
column enclosed within the bore. This section examines the air column and how pressure
waves propagate through it. Further sections will detail the reed, the coupling between the

reed and the air column, and finally, other factors which influence the sound.

2.3.1 Sound Wave propagation

The key to creating musical sound is to produce sustained oscillations in a medium that can
somehow transmit that oscillation in the form of pressure pulses to the ambient air. The
human (or animal) ear will sense these pressure fluctuations and perceive them as sound.
In a stringed instrument, such as a harp or a violin, the vibration of the strings is coupled
to the resonating instrument body, which has enough surface area to produce the necessary
disturbance to the surrounding air. In a wind instrument, the player provides the raw air
pressure that will become sound, with the interactions within the instrument modulating
it into the necessary periodic form. This section explores the effects of injecting pressure

pulses into an air column.

Waves can be classified by their direction of displacement with respect to their direction of
travel. The transverse wave is perpendicular to its direction of travel; for example, waves in
the ocean cause a displacement upward that appears to travel horizontally. The torsional
wave travels down the axis about which it rotates; a quick twist at the end of a long rod
would excite a torsional wave. These are the types of waves propagated in a stringed
instrument. On a violin, the action of bowing both twists and displaces the string, and
propagates in consequence both torsional and transverse waves. Finally, the longitudinal
wave will show displacement along the direction of travel; that ultimate dry wave tank, the
Slinky, will propagate longitudinal waves in the form of a spring compression or expansion
if it rests lengthwise on a surface and the end is pushed abruptly inward or outward. Sound
pressure takes the form of longitudinal waves, with the air acting like a compressible spring.
The waves propagated within the bore of a wind instrument are also longitudinal; the action
of the reed, to be described later, causes compression and rarefaction pulses to be introduced

to the air column, through which they travel at the speed of sound.
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Transverse Waves

e

Figure 2.27: Displacement wave traveling along a string with fixed end

Although sound waves, and air column waves, are longitudinal, the principles of their prop-
agation apply to all three wave types. It is more convenient to introduce these principles
using transverse waves because they are easier to illustrate, and for most people, more in-
tuitive. Figure 2.27 depicts a pulse introduced at one end of a string. This pulse will travel
until it reaches the other end. If that end is fixed, the pulse will reflect and begin traveling
back toward its start point. However, it does not return in the same form; it inverts upon
reflection, and so travels back as an inverted mirror of its former self. This can be explained
by treating the original pulse and its reflection as two different waves. Any number of waves
can travel along the same string; the displacement of the string at a given point is equal to
the sum of the displacements of each of the waves at that point. Figure 2.28 shows what

happens when this is applied to a pulse in the process of reflection.

e As pulse A approaches the endpoint, it is the only wave in the summation, and the

displacement is positive.

e As pulse A travels “off the end” of the string, its reflection, pulse B, starts the
journey back.

o The displacement at any point is the sum of the displacements of pulse A and pulse
B. However, since the endpoint is fixed, the displacement at the endpoint must be
0.

e  Therefore, assuming instantaneous reflection, the displacements of A and B must

sum to 0, which can only occur if B is the negative of A. Thus, the pulse inverts.
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Figure 2.28: Reflection and inversion of a pulse on a string at a fixed end

e  When it reaches its original startpoint, assuming that that too is now fixed, the

pulse will invert again so that it reverts to its original shape.

Thus, the total period is equal to the time it takes for the pulse to travel twice the length
of string. Using ¢ as the speed of sound, this gives a period of 2I/c sec [2].

The previous analysis applied for a string with fixed end. For a free end (assuming a
gravity-free environment in which the string can be suspended), the boundary conditions
are reversed. Figure2.29 illustrates this case. Now the displacement need no longer be 0 at
the endpoint, but rather, will be at its maximum value. Using again the summation of left
and right going waves, we get a surprising result; the total deflection at the instant the peak
reflects is twice the height of the original deflection. This may seem at first to violate some
conservation laws, but in fact, does not. Every displacement wave has its complement,
a force wave. Since a free end can transmit no force, the force must be zero where the

displacement is at maximum. Thus, at the free end, the force wave must invert in the same
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way as the displacement wave did at the fixed end. The total instantaneous energy at a
point is the product of force and change in displacement, F§d. Decomposing the energy
into its left and right going components, we can see that the total energy is Féd + (—F)éd.

As before, the sum is zero, even when the wave is at twice its normal height.

A=

—

Figure 2.29: Reflection of a pulse on a string at a free end

The preceding paragraph illustrated the propagation of an impulse. The next step is the
formation of a standing wave, which is the phenomenon that allows the entire string to
serve as an oscillator. Figure 2.30 shows an example of a standing wave. Unlike the pulse
traveling back and forth, a standing wave appears to be horizontally stationary; the string
appears to move up an down at a fixed rate between points at which it does not move at
all. What is actually transpiring is that the traveling wave and its reflection always sum in
such a way that the observed motion occurs. At the points of no displacement, the nodes,
the waves completely cancel one another. At the maximum displacement, the antinodes or
loops, the waves maximally reinforce one another. All points on the string oscillate at the
same frequency, even though the amplitude of their swath is a function of their location
along the string. The precise mathematical requirements for a standing wave to occur can
be found in most physics and acoustics texts, for example, in [46]. The result is a set of
vibratory modes, with frequency nc/2l where n is the mode number, which are possible on

a string.

Intuitively, we can see that the modes are possible only when the boundary conditions can
be satisfied. Figure 2.31 illustrates the first few. The first mode, or the fundamental, has
only two nodes, at the ends of the string. For this mode, n is equal to 1, so its frequency
is equal to ¢/2l as above. The second mode has a third node in the center, so that the

string now shows two opposing peaks. The frequency of this mode is 2¢/2l, or twice the
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antinodes

Figure 2.30: Standing wave on a string

frequency of the first mode. Musically, this mode is an octave above the first. The third
mode has two nodes along the string, and three loops. It has a frequency of three times the
fundamental, and so represents an interval of a twelfth, or an octave and a fifth. The fourth
mode has four times the fundamental frequency, or the equivalent of two octaves. The fifth
mode has five times, or the equivalent of two octaves and a major third. All these modes
can coexist simultaneously. The mathematical significance of all of this is that, not only
can a mode always be set up on a string which is some integer multiple of the fundamental
frequency, but that the complex motion of a string, or any musical oscillator, can always
be decomposed into component modes which have an integer relationship to one another.

This is the basis of Fourier series analysis, which treats motion in the frequency domain.

The musical significance of the modal possibilities is that the sound generated by the string
will contain components at many different, but related frequencies, even while its pitch is
perceived as being at the fundamental frequency. The importance of overtones in deter-
mining timbre was touched upon in preceding sections. It is interesting to note that all of
the harmonics representing intervals of octaves with the fundamental are even (although
not all even harmonics, for instance the sixth harmonic, are at octave intervals with the
fundamental). The odd harmonics all represent non-octave intervals. For example, the
third harmonic is an octave and a fifth above the fundamental, while the fifth harmonic
is a two octaves and a third above. The even harmonics thus have, as a group, a much
different effect on timbre than do the odd, since a pitch an octave higher than a second

pitch is considered to some extent to be equivalent. It will be shown that under certain
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Figure 2.31: First four modes of a string

circumstances, the even harmonics will be suppressed, with important tonal consequences.

Section 2.2 noted that the timbre of an instrument was determined in part by the relative
amplitudes of the harmonics. The harmonics of our string can be set arbitrarily by changing
the point of attack. Pluck the string at a node, and the corresponding mode will never know.
Pluck instead at the antinode, and that mode will be maximally excited. For example, if
the pluck occurred directly at the center of the string, no even harmonics would be excited.
Plucking exactly 1/4 of the way from the end would give tremendous energy to the second
harmonic, but absolutely none to the fourth. The musical tone of the string would change
accordingly. One common special effect for bowed strings is to bow while lightly touching
the node of some desired harmonic. All modes are damped out except for those harmonics

with nodes at the touch point, and they will ring forth in sometimes haunting ways. Three
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caveats must be mentioned here. First, the harmonics of a plucked string are not in reality
exact integer multiples of one another; this is an idealized example. Second, a plucked
string is a much different case than a bowed string. The oscillation resulting from a pluck
is transient, and can bear the slightly stretched harmonics of the string. The oscillation
resulting from bowing the string is sustained, a result of the nonlinear coupling between
bow and string, and must have exact integer multiples. Coupling limits to some extent the
freedom in mode selection that was available in the transient case. Finally, even though the
timbre can be changed by changing the pluckpoint, those changes are somewhat subtle. The
sound of the pluck and the nature of the decay are much more important in determining
the characteristic of the sound than the location of the plectrum, at least in experiments

performed by this author on a wire strung psaltery.

Longitudinal Waves

A compression, or longitudinal wave, travels in much the same way as the above transverse
wave [2]. Figure 2.32 illustrates a compression wave in a tube. In this case, the medium is
the moving column of air injected by the player. Whereas the speed of sound in the tube
can be considered roughly constant under a given set of playing conditions, it does vary
with temperature and moisture. Sound travels more quickly in warm, damp air than in
cool, dry air. This gives rise to the necessity for “warming up” a wind instrument; when

cool, it should play flat, and must be warmed to its proper pitch.

If we replace the string with an acoustic tube , or, in the simplest case, a cylindrical bore,
the pressure wave will travel to the end, reflect, and, if the end is open, invert. The inversion
is necessary by virtue of the same sort of boundary condition as that described above. At
the open end of the tube, which must be a pressure node, the pressure, here the analogue
of string displacement, must be equal to the ambient pressure. In other words, there can
be neither compression nor rarefaction at that point. Since the pressure is the sum of the
pressures of the inbound and outbound waves, the reflected wave will cancel the original

wave at the endpoint.

The conversion of a compression into a rarefaction is somewhat harder to intuit than the
change in sign of the transverse wave. A partial explanation is that, when the compression

reaches the end of the tube, the momentum of the air will carry it, and the corresponding
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Figure 2.32: Compression wave in an acoustic tube

pressure node, past the physical end of the tube before the reflection occurs. (This is
incidentally, also the reason that the acoustic length of a tube is slightly longer than the
physical length, and that this acoustic length varies according to wave frequency. It is an
important factor in tonehole design.) Once the high pressure air escapes from the confines
of the bore, the thermodynamic equation of state, Pressure x Volume = Constant
(at constant temperature) [73], requires that it expand into the environment, which is at
a lower pressure than the internal bore pressure (if it were not, there would be no bias,
i.e., nonsinusoidal, airflow). The inertia of the air will cause some dynamic overshoot in
the expansion process, so that more air escapes than is necessary to equalize the pressure.
But this means that upon reflection, the pressure of the pulse itself is reduced to a level
lower than the ambient; it has become a rarefaction, or partial vacuum. Conversely, when
this rarefaction reaches the opposing open end, the ambient air, now at a higher pressure
than the rarefied pulse, will rush in. Once again, the inertia of the air will result in an
overshoot, so that the result is a compression. (The air which escapes in this manner does
not represent the sound energy transmitted. It is the transmitted pressure pulse which

propagates through the ambient air, and not this dissipating air.)

Of course, if the end of the tube were a perfect pressure node, it would also emit no sound,
since all of the energy would be reflected. As it turns out, physical reality in this case favors
the musician. Nothing is perfect, particularly among acoustic instruments; some sound does
radiate from the instrument, rather than reflecting internally. This is the function of the

bells and toneholes, to be discussed in section 2.6.

A tube with two open ends is analogous to the fixed end string; a pressure wave will reflect
back and forth in the same way. It inverts at the far end, and returns as a rarefaction. Upon
reaching the start point, it reverts to a compression and the cycle starts anew. Again, the

period is equal to 2l/c. Just as with the transverse wave, the pressure at any point is the
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sum of the pressures of the left and right going waves, and a standing wave can be set up

in the same manner as that described above.

Now imagine that one end of the tube is stopped, so that air can neither escape nor enter.
When the compression reaches the end of the tube and reflects, inversion is not physically
possible, and so, it will remain a compression. This can be verified by examining the new
boundary condition, which is similar to having a string with a free end. In this case, only
a pressure antinode can be supported. This may be better understood by examining the
dual of acoustic pressure, the velocity, or flow, wave. Because of the duality, flow nodes
occur at the pressure antinodes. If the end of the tube is closed, the flow at that end must
be 0; a closed end must be a flow node. Since a flow node implies a pressure antinode, the
boundary condition for pressure is explained. Now, cancel, the ingoing and outgoing waves

must reinforce each other, and no inversion occurs.

The lack of inversion at a closed end has important implications. First, the period of

oscillation is now four times the length of the tube:
e A pulse, beginning as a compression, will reflect off the far, open end as a rarefaction.

e Returning to the closed end, it will reflect once more without inversion. It is still a

rarefaction at this point, and the cycle is not yet complete.

e Now it travels back to the open end, inverts into a compression, and finally returns

to the closed end, reflects as a compression, and starts a new cycle.

The standing wave set up by this type of oscillation will be an octave lower than one set
up in an open pipe of the same length. In addition, the only waves which can be supported
will be those with a node at one end and an antinode at the other. Figure 2.33 illustrates
this, using transverse waves to represent the longitudinal waves described. Because the tube
length encompasses only one fourth the wave, the waves shown in Figure 2.31 are cut in half.
We see that the only waves which satisfy the boundary conditions are the odd harmonics,
because these waves have an antinode at their midpoints. The even harmonics have nodes
at their midpoints, and therefore, nodes at both ends when bisected; our cylindrical bore
will not support even harmonics. This is very important, because Helmholtz found that
a reed instrument acted like a tube stopped at one end [25), implying that a cylindrical

reed instrument, for example, a clarinet, has ideally no even harmonics (although in reality,
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because of other factors, the instrument does produce weak even harmonics).

Closed end

Figure 2.33: Compression modes in a pipe stopped at one end and open at the other

The discussion above essentially ignores the steady component of airflow which results from
the difference between mouth and ambient pressures. Recall that the propagating medium
is a moving column of air, which implies asymmetry in the wave propagation, since the
waves traveling away from the player will be augmented by the input flow. It is useful to
think of the wave propagation as symmetric, purely oscillatory flow superposed upon the
steady flow bias. The wave behavior can then be analyzed independently of the bias, and

therefore understood in a less complicated context.

2.3.2 Acoustical Bore Shapes
Cylindrical Bores

The previous section examined the acoustical properties of a cylindrical tube. Presented
as the analogue of the stretched string, it is clear that this tube has potential as a musical

instrument. In fact, an arbitrarily shaped bore will propagate pressure waves, but only
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certain bore shapes will support the harmonically related standing waves. It happens that
the cylindrical bore is one of these, which is convenient because it is also the easiest to

analyze and to simulate. To summarize, the properties of a cylindrical bore are:
e Fundamental frequency of ¢/2! if open at both ends, c/4! if stopped at one end

e Supports all harmonics if open at both ends, only odd harmonics if stopped at one
end

e Harmonic frequency for a stopped bore is equal to nc/4l, where n is always odd and
is equal to the mode number. For an open bore, harmonic frequency is equal to

nc/2l, where n can be any integer.

A later section will address the issue of the effects at the end of the tube, which in fact
will act as lowpass filter, and impart a cutoff frequency to the bore beyond which harmonic

modes are greatly attenuated.

Although the cylindrical bore is easy to understand, analyze, and build, it is not used
for many modern instruments. The clarinet, with its characteristic hollow sound, is the
only popular cylindrical bore reed instrument. Many earlier reed instruments, such as
those in the capped reed cornemeuse family, were cylindrical. However, the suppression of
even harmonics puts a major limitation on the tonal coloring. An even more important
implication of the even harmonic suppression is how it affects the upper register of the

instrument.

The register of an instrument indicates which harmonic mode the player has excited. Exci-
tation of the fundamental mode implies a note in the lower register, with the other harmonic
modes present as overtones. However, by any number of techniques, to be discussed below,
such as embouchure adjustment, overblowing, or opening a register hole, the player can
suppress the fundamental and excite instead a higher mode; this higher mode now serves
as the fundamental, and provides the basis for the associated harmonic series. In the brass
instruments, players ascend through a number of modes by tightening the lips. On valveless
brass instruments such as the bugle, the only method for changing pitch is to hop modes,
and the only notes available are therefore those in the harmonic series of the lowest note of
the instrument. The hunting horn is also valveless; however, by changing the position of his
hand in the bell, the player can alter the bore enough to get the intermediate notes in the
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scale, at the expense of some uncontrollable tonal changes. In general, only the first two or
three modes are used in woodwind instruments. However, an interesting earlier woodwind,
the tabor pipe, is played using many of the upper modes. This instrument, as implied by
its name, is intended to be played with a tabor, which is a type of drum. The pipe, similar
in fipple mouthpiece to a recorder, is played with one hand, the drum beaten with a stick
by the other hand. This puts some rather severe constraints on the tonehole configuration
of the pipe, which must be both supported and fingered by one hand. In fact, the pipe
has only three holes, but with a combination of fingering and blowing pressure changes, the

player can accomplish a diatonic scale with a range of an octave and a fifth [45] [6].

The ability to change registers is crucial for an instrument to have any sort of playing range.
As Section 2.1 indicated, one of J.C. Denner’s great innovations in inventing the clarinet
was to include a vent hole that allowed a register change. One of the major limitations of
the capped reeds was that, because they had neither vent hole nor a way for the player to
exert embouchure pressure, they had a range of just over an octave. Only a small subset
of music literature accomodates such instruments. The cylindrical bore has an important
drawback in this regard; its second harmonic is not the musically convenient octave, but
the twelfth. In other words, the overblown C will become, rather than C’, a G’, and the

fingering patterns for the two registers will consequently be quite different..

Conical Bores

It turns out that the cylindrical bore is not the only bore shape with musical properties;
a conical bore will also support standing waves in harmonic proportions with one another.
In a conical bore, spherical waves, as opposed to the planar waves in a cylindrical bore,
will propagate back and forth as before, with some deformation and acceleration due to
the varying cross-section. However, the reflection/inversion characteristics of the conical
bore are not quite the same; the conical tube, stopped at the small end, behaves like a
cylindrical tube open at both ends. In other words, the wave propagation is similar to that
discussed in the fixed-end string example. The pulse must cover only twice the length of
the tube to complete a period oscillation, rather than four times the length of the tube as
in the cylindrical case, so the tube will sound an octave higher. Also, as with the string, the
conical tube will support all harmonics, both odd and even. The tone will be quite different

— this was demonstrated in the previous section — and more importantly, a conical tube
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instrument will overblow the octave. This is much more convenient. On the shawm, an
acoustically elegant instrument, switching registers is simply a matter of tightening the
embouchure. Because the new note is exactly an octave above the normally blown note, the
fingerings in the upper register are almost (but not quite) the same as those in the lower
register. This register change is relatively easy to accomplish, whereas on the open reed
cylindrical dougaine, it is virtually impossible. (According to D. H. Smith [62], adjusting
the reed resonance properly will allow higher notes to be played even on a cylindrical bored
instrument; it is however, not common to do so, and the limited range of the cylindrical

instruments is for the most part accepted as a fact of life.)

An intuitive discussion of why a conical bore behaves the way it does is difficult to come
by. Indeed, given the explanation of inversion due to airflow in and out of the ends, its
behavior seems contradictory. If the period is defined by only two lengths of the tube, then
the wave must reflect in the same manner at both ends, i.e., it must invert (or not invert)
at both ends. That it behaves in this manner can be proven mathematically, as Morse does
in [46]). Backus tried for an intuitive explanation in [2], but admitted failure and referred
the reader to the less intuitive mathematics. Suffice it to say that the difference has to do
with the fact that the wavefront is spherical and that the bore itself diverges.

In summary, the salient properties of a conical bore instrument are:
e Fundamental frequency of nc/2l;
e Supports odd and even harmonics;

e Overblows the octave.

Of course, a conical bore is never completely conical. If it were, there would no aperture in
which to insert a reed. A so-called “conical” instrument is really a truncated cone; the reed
and staple to which the bore is couple must, for the instrument to work properly, complete
the cone. The concept of “equivalent volume”, or the acoustic volume of reed and staple,
will be discussed below. No matter where the cone is truncated, however, calculations for
register hole placement, tonehole configuration, etc., are based on the assumption that the
instrument extends to the conical apex; the end of the instrument is considered to be at

the apex, even if the physical instrument does not extend that far.

The cylindrical bore and the conical bore are the two basic shapes used for woodwind
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instruments. They are modified to some extent with toneholes and bells, but still can be
characterized by one of these two shapes. An instrument which departs too much from the
ideal shape will not play well, because its resonances will not be harmonically aligned. These
two boreshapes are not the only useful ones; brass instruments are hybrids of cylindrical
tubing with exponential flare. The vocal tract can take on arbitrary bore shapes, although,
since the voice pitch is the result of vocal fold resonance, rather than vocal tract resonance

(i.e., pitch is independent of the tract), these shapes need not be acoustically proper [17].

2.4 The Reed

The previous section described the air column, the resonator in the coupled generator/resonator
system that comprises a reed instrument. This section examines the reed, which serves as
the generator. Both air column and reed will be presented as essentially linear elements.
However, these two sections will set the stage for the next section, which will detail the very

nonlinear coupling between reed and air column.

2.4.1 The Reed as a Pressure-Controlled Valve

A reed, in the sense used in this paper, is simply a mechanical flap that responds to fluc-
tuations in pressure by changing the size of the orifice through which the player introduces
air. Figure 2.4 illustrated the mouthpiece and reed of a clarinet. The player holds the reed
in his mouth, and blows air into the aperture between the tip of the reed and the facing
of the mouthpiece, known as the lay. There is a short section through which the air must
pass until it enters the bore, but the bore extends essentially directly beneath the reed up
to the opening. Thus, the pressure on the bottom of the reed is the bore pressure, while the
pressure on the top is, for the section within the mouth, the mouth pressure, and outside
the mouth, the ambient pressure. In addition, the player usually supplies some embouchure
pressure, which is really a point force applied at lips.

Figure 2.34 shows a diagram of the opposing pressures acting upon the reed. The reed,
being flexibl: will bend away from resultant force. Thus, if the mouth pressure, which is
roughly constant, exceeds the bore pressure, the reed will begin to close, constricting the

aperture. As the bore pressure increases, it will force the reed back up, reopening the orifice.
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A stiffer reed will require a greater fluctuation in pressure to deflect as much as a soft reed.
Figure 2.35, taken from [9], illustrates a typical flow versus pressure curve. In this figure,
positive flow denotes flow into the instrument, and the pressure difference is pmouth — Phore-
Below a threshold pressure difference, here denoted as py;, the flow increases with pressure
difference, as it would through a simple nondeflecting aperture. Beyond py;, the closure of
the reed begins to constrict the flow; as the pressure grows, the low now decreases. At the

point p., the reed finally closes completely.

Pbore airflow
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Figure 2.34: Opposing pressures acting on a single reed
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Figure 2.35: Typical Flow-Pressure curve for a single reed (after Benade)

Most literature defines reed deflection in terms of tip displacement, x, and pressure, P, which
integrates to force. In fact, these are really small angle approximations. The reed moves
rotationally, not translationally, and rotation angle and driving torque provide alternate,
more accurate, descriptions of the static and dynamic forces. For example, the deflecting
power of a force depends on its moment arm, or distance from the main pivot point. This
can be an issue when changing embouchure position, or describing the change in pressure

sensitivity as a clarinet reed curls over the sloping lay. For the most part, however, since




CHAPTER 2. BACKGROUND: REED WOODWIND ACOUSTICS 52

reed length stays roughly constant and the angle of its swath is very small, the translational

approximation is adequate and convenient.

It is worth noting that the actual flow through the reed is relatively small compared with the
flow through an air reed instrument such as the recorder, while required breath pressure
is relatively high. Players refer to this as high “back pressure”, or resistance. An early
lesson to all reed players is to make sure to breathe out before breathing in, as the lungs
are usually full of deoxygenated air that has not yet been expelled. It is usually easy to tell
by his obvious discomfort when a reed player has disregarded this rule.

The next section will discuss more specifically the implications of the coupling between reed
and air column. However, it is necessary to describe the physical interaction of the two to

put the behavior of the reed in context.

e As the player blows into the orifice, he creates the flowing air column that was

described in the previous section.

e At first, if he attacks with a low breath pressure, all he will do is start a dc, i.e.,
nonoscillatory, low through the tube.

o However, as he increases the breath pressure, the mouth pressure acting upon the

reed will begin to close it.

o  But this will constrict the air flow, and cause a rarefaction pulse to travel down the

air column.

e As we know from the previous section, the rarefaction will be reflected as a com-

pression.

e This compression represents an increase in bore pressure; when it reaches the reed

end, it will tend to push the reed open.

e This allows more air to flow in, so that the compression is reflected not only without
inversion, but with additional pressure from the added contribution of the input
stream.

e Reflecting again from the far end as a rarefaction, it returns to the reed as a low

bore pressure and pulls the reed shut (not necessarily completely). This shutting
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will constrict the air influx and intensify the rarefaction.

One could start this cycle with the initial compression pulse, depending upon the sharpness
of the attack. Either way, the reed intensifies the natural oscillations of the air column, not
only by allowing the player to inject energy into the system, but allowing that energy to
be injected at the ideal excitation frequency; the reed will oscillate, with a periodic motion,
at roughly the frequency of the air column about some null point that is a function of the
embouchure set pressure, and modulate the input airstream to that frequency. Initializing
the process requires a certain level of breath pressure, the “threshold blowing pressure”,
which Backus characterized in his initial clarinet paper [5]. If the input pressure is too
high, the reed will be forced shut before any oscillations can begin, and will not reopen.
It is worth mentioning that the reed can actually sustain some oscillation without any
connection to the bore, i.e., without any acoustic feedback. This is most likely a consequence
of the hysteretical hydrodynamic forces (flow dynamics) within the reed channel [27], and

is probably not significant in the coupled system.

2.4.2 The Reed as a Harmonic Oscillator

~ So far, our isolated reed looks like a straightforward valve. None of the dynamic char-
acteristics of the reed, save for the compliance which governs the sensitivity to pressure
fluctuation, have played a role in the basic generation of the sound. However, the reed,
acted upon by the embouchure, is a dynamic system in its own right. It has mass, the
mass of the reed itself. It has compliance, which imparts its springlike character. It has
damping. This damping is a characteristic of a cane reed, and is partially responsible for
the ability of the reed to vibrate easily at a frequency lower than its own natural frequency.
Hall distinguishes between “hard” reeds, generally metal, which have little damping and
tend to vibrate at their own resonance frequency, and “soft” reeds, such as the cane reed,
whose internal resonant vibrations are quickly dissipated and which can therefore be driven
easily at a nonresonant frequency [24]. The damping can be considered to be partially a
function of the embouchure, or lips, since the reed is actually pushing against the lip in its
vibration. Consequently, a reed has its own resonance, which is generally at a much higher
frequency than the fundamental note of the instrument. In Backus’ landmark analysis in
[5], the mass of the reed was neglected. Here, studies with varying embouchure pressures

revealed the importance of reed damping in tone production. Wilson and Beavers studied
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this matter more carefully in [75], including mass in their analytical model, and coming to

basically the same conclusion.

One interesting phenomenon related to reed resonance which has received some contradic-
tory explanation is that of the reed “squeaks” that plague inexperienced players. In [75)],
Wilson claims that insufficient reed damping will cause the reed resonance to be excited,
rather than one of the lower bore resonances. In this study, a damping ratio of 0.4 was suf-
ficient to quell any tendency of the reed to jump to its own resonance, even at low blowing
pressures. Benade, in [9], modified this to some extent, by defining the “reed plus staple”
frequency that would sound in the absence of a bore. Another theory is that the squeaks are
torsional waves set up in the reed because of an uneven embouchure, rather than a function
of damping (find other reference). From a musical standpoint, squeaking is often said to be
a consequence of insufficient breath support [40]. Indeed, it will be shown in the simulation
results that under certain conditions, the third register would sound at threshold blowing
pressure, with the desired fundamental register coming in solidly as the input pressure was
increased. Such a register shift could be perceived as a squeak at an inappropriate time,
especially in a cylindrically bored instrument which, recall, would sound an interval of two
twelfths. The damping argument is seemingly contradicted by the performance of capped
reeds, which do not allow the embouchure to touch, and therefore to damp, the reed. In
addition, plastic reeds, which would probably have less damping than a cane reed, are fre-
quently and successfully (some might argue this) used in the less expensive instruments
(Myers covers the relative merits and drawbacks of plastic reeds in [49]). This would seem
to imply that instruments such as the crumhorn should issue only the resonance frequency,
which is not the case. However, Herbert Myers, in [50], has pointed out that standing waves
set up in the windcap would couple with the reed in a way not modelled in [75); the effects of
windcap, and its biological counterpart, the vocal tract, is a subject of some debate. More
importantly, cornemuse reeds are designed specifically to be less prone to squeaking when
undamped than lighter reeds. This design requirement, satisfied by building a reed with a
wide throat, is in fact one of the main contributors to the limited dynamic range discussed
in the previous section; a reed which responds well in the upper register is also more prone

to squeaking [62].

In general, however, the reed of a woodwind oscillates at a much lower frequency than
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resonance, and its valving characteristics are much more important than its dynamic char-
acteristics. Studies in [25] with a stroboscope demonstrated a fairly simple flapping motion
of the reed tip. This is not the case for all reeds. Metal organ reeds oscillate at their
resonant frequencies, and tuning is accomplished by adjusting the effective length of the
reed itself with a tuning wire [2]. The oscillation of the party horn discussed in Section 2.2
was dominated by the reed resonance. This was demonstrated by punching a hole in the
cardboard cone which formed the “bore”; the hole had no effect on pitch, indicating that
the reed resonance, insensitive to bore length, was excited, rather than the bore resonances.
Even the complete removal of the cone (accomplished by accidentally stepping on it) had
little appreciable effect on the pitch or tone. A more musical example is the human voice;
the vocal folds are only weakly coupled to the bore formed by the vocal tract, and oscillate
at their own frequency, i.e., their “reed resonance” [17]. If this were not the case, we would
sing by contorting our vocal tract and not by changing the tension of our vocal cords, and

would not be able to form vowels without affecting our pitch.

Although the dynamics of the reed are of secondary importance in describing basic reed
woodwind behavior, they cannot always be totally neglected. From a practical point of view,
the reed resonance is important because it represents the highest playing frequency possible.
According to Thompson in [71}, early saxophones had a limited playing range because the
mouthpiece facing designs did not allow the reed resonance to be raised enough. Improved
facing designs allowed a higher reed resonance, and the saxophones were given a new octave
of playing capability. Another important aspect of reed resonance is the function it performs
in the upper register. It turns out that for higher notes, the reed resonance can play a major
role in stabilizing tone [72], especially under conditions of otherwise marginal stability. In
[60], D. H. Smith frequently emphasizes the importance of the reed resonance in the more
practical environment of reed-making. This is an aspect of the modal cooperation to be

discussed in Section 2.5.

2.4.3 Additional Nonlinear Effects

The above paragraphs assumed essentially static forces on the reed. However, the air column
is formed by air flow, and where there is air flow, there are hydrodynamic effects. This is
a subject currently under considerable debate. Earlier researchers had all assumed that

the flow through the reed was laminar viscous flow to which Bernoulli’s'equation could be
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applied. In [76], Worman described and quantified the Bernoulli force, and others, including
Keefe in [34], have stated it as fact. The basic idea is that there is pressure drop associated
with increased air flow; the faster the particle velocity, the lower is the air pressure. This

relationship is defined by the Bernoulli equa.tioﬁ
1 2
Pp + g = const (2.1)

The Bernoulli Force is the lift force which allows birds and airplanes to fly, and also,
according to some, what causes reed instruments to work the way they do. As the reed tip
closes and constricts the opening, the particle velocity through the aperture must increase
while the aperture width itself decreases. This will increase the Bernoulli pressure drop,
and therefore increase the downward force on the reed. Thus, the nearer the reed tip
approaches the lay, the stronger pulls the downward force. This is a nonlinear addition
to the simple harmonic oscillator we had before. For a single reed, Worman calculated
that the total Bernoulli force was only about 2% of the total force required to close the
reed. Benade experimented with the shape of the lay, and found the changes in lay shape
had considerable effects on tone; he attributed these effects to changes in the Bernoulli
forces which resulted [9]. Schumacher [58] included the Bernoulli effect, as formulated in
[51], in his clarinet model, and evaluated its importance by turning the force “on” and
“off”. He found substantial transient and spectral effects in the beating regime, including
a sharpening of the playing frequency by a half semitone (3%). However, Hirschberg, a
true fluid dynamicist, has contested the assumptions on which these findings are based [27].
Hirschberg is currently researching the area of hydrodynamic effects in reed instruments in
detail, and can be looked to for important findings on the behavior of airflow through the
reed aperture. The Bernoulli force as postulated by Benade and Worman, and Hirschberg’s
arguments against this theory, will be presented in more detail in the sections detailing the
mathematical models.

Another nonlinear wrinkle in this treatment is what happens if the reed finally touches
down on the lay. This event, known as beating, causes a considerable change in coupling
characteristics, and eliminates the linearity of the oscillator. Beating does not occur in all
playing. Indeed, in German style clarinet playing, Benade [9] states that that beating took
place in only the very loudest sections, while the French style incurs beating at a much lower
dynamic level; this implies a softer reed, since a stiff reed moves less readily, and requires

higher pressure fluctuations to deflect all the way to the lay. Beating causes the following
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phenomena to occur:

e The wave motion described by the motion of the reed tip is clipped on one side,
because once the reed is closed, the tip cannot move any further. This clipping
is less abrupt on a clarinet because of the slope of the lay. When the reed first
makes contact with the lay surface, it does not cut off that part of the bore aperture
sloping away from the reed. As the pressure difference driving the reed increases, the
reed will curl around the lay, eventually closing the aperture completely. However,
because the moment arm is small, the force required to effect this bending is much
higher than that which was needed to drive the original deflection (one could view
the reed as a non-linear spring, becoming stiffer as it deflects further). Consequently,

the shutoff of air will occur relatively gradually;

o The flow of air through the mouthpiece stops completely. Any hydrodynamic ef-
fects in process will cease abruptly, since they require flow. Just as with the tip
motion, the pressure wave representing air influx will be clipped; in addition, the dc

component of flow will be temporarily halted.

o The effective reed resonant frequency will increase as the tips are moved closer

together, because they have less distance to travel

e The reflection coefficient of the reed, which will be described in more detail in
Chapter 3, will be equal to one, implying that the returning wave exactly equals the

incident wave.

e The impact of reed against lay could generate a pressure disturbance (i.e., sound)
which, in low instruments like the bass saxophone, can be audible. The nature of
this sound will depend partially on whether the collision is elastic or inelastic. If
elastic , the reed will bounce back off the lay, and by virtue of its own dynamics,
rattle against the lay until the oscillation dies out. If inelastic, no bouncing will
occur; all kinetic energy is absorbed in the collision. (Stewart and Strong concluded
that the collision was inelastic [70], but Hirschberg has found evidence that there is
some elasticity [30])

e As the first point mentioned, the lay itself is a curved surface. Not only does
the curving of the reed around the lay round the edges of the clipping process, it
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also effectively shortens the reed and influences to some extent the reed resonance
However, in light of the stroboscopic evidence cited earlier, which indicated a simple
flapping motion, and Hirschberg’s studies, this effect is probably negligible. Again,
Hirschberg will probably be producing the next important data in this area.

e  The pitch will rise with blowing pressure. There are several explanations proposed
for this, some based on beating, and some on nonbeating. One theory, postulated
by Bak and Domler [7], but controverted experimentally by Hirschberg in [27], is
based upon the lay-induced curvature changes described above. Bak’s theory sug-
gests that the reed changes not only its own length and resulting resonance, but
the length of the overall air column. This would raise the pitch if the change were
appreciable. In [27], Hirschberg calculates the beating frequency as a function of
tip displacements, and suggests the rise in pitch is a direct result of the shift in tip
equilibrium position due to the tightening of the embouchure, the hydrodynamic
influences, and the effects of elastic collision against the lay. Another possible ex-
planation, related to Hirschberg’s, comes from the field of nonlinear mechanics. In
Duffing’s equation, the nonlinear spring force is represented by kz + k'z3. Here
k is the standard positive linear spring constant and k' is the nonlinear constant,
which can be positive or negative. According to Ogata in [53], as the amplitude of
oscillation changes, the frequency changes as well, according to the sign of k/. For
a reed deforming over the lay, the effective stiffness increases, corresponding to a
positive value of k’, which would normally decrease the oscillation frequency. How-
ever, in the presence of hydrodynamic forces which “suck” the reed toward the lay
or the other reed, the nonlinear spring term might be effectively negative, resulting
in an increase in frequency. Finally, Worman cites the rise as being a result of the
modal cooperation between misaligned resonances [76]. This view, which if anything

assumes the absence of beating, will be discussed more throughly in Section 2.5.

e Rocaboy claims in [57] that when a double reed attached to a conical bore closes
completely, the air trapped inside the reed channel, behaving like a compressed
spring, begins a free oscillation that forces the reed prematurely open. Although he
does give many details, he states that the same result occurs for a single reed with
a conical bore. If true, this would add an additional dynamic element only during
the interval of the beat. However, this theory is subject to debate.
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These are just some of the nonlinear effects present in a woodwind instrument. Future

chapters will treat them, and their consequences, more rigorously.

2.4.4 Double Reeds

So far, only single reeds have been discussed. Double reeds are a far more complicated case.
Figures 2.1 and 2.10 illustrated the shawm and its reed, in form one of the simplest of the
double reed instruments. The reed channel is quite a bit different from that in the single
reed channel discussed above. Instead of a short channel section, beyond which the reed lies
essentially over the bore, the reed channel is now a relatively long passageway bounded on
both sides by reed, connected by an even narrower metal tube, the staple, to the bore. The
reed valving will still be coupled to the air column oscillation, but the mechanism is much
less clear. Whereas with the single reed, it was easy to demonstrate a clear relationship
between constant mouth pressure, periodically fluctuating bore pressure, and the aperture
variation of the reed, while ignoring hydrodynamic effects for the most part, the role of the
reed channel is now much more important; hydrodynamic influences cannot be ignored. The
reed channel could be considered an extension of the bore, so that the difference between
mouth and bore pressures will produce the force on the reed as before. However, the
reed channel is much narrower than the bore, and air will flow through with a different
particle velocity. Certainly the pressure fluctuations in the bore will influence the air flow
through the reed, but the specific relationships are as yet unknown. Even Hirschberg, in
his investigations to date, has considered the double reed too difficult to focus on at first,
although some preliminary work has begun [30].

Hydrodynamics aside, it is still possible to discuss the double reed in a more general sense,
to lay the foundation for a somewhat intuitive understanding of its operation. The valving is
now achieved by the two reeds closing upon one another. Figure 2.36, taken from Rocaboy’s
study in [57], illustrate the mouthpiece pressure waveforms for a clarinet reed and a bassoon
reed. These are reminiscent of the output waveforms discussed in Chapter 2.2, but are closer
to the source of reed action. They contrast not only the effects of single and double reeds, but
cylindrical and conical bores. Note that the clarinet waveform has a roughly symmetrical
shape, closed for about the same amount of time as open. The bassoon reed, on the other
hand, is closed for a small fraction of time, a result Rocaboy attibutes to the air spring

effect discribed earlier. Figure 2.37 illustrates the waveform of a double reed mounted
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within a short cylindrical segment, as measured by Van de Laar with the optical setup
described by Backus. The waveform here is quite symmetrical, although the rising slope
is steeper than the descending slope. A comparison between this waveform and Rocaboy’s
bassoon waveform implies the profound effects of the boreshape on reed behavior. One
other interesting aspect of Van de Laar’s waveform is the obvious beating which occurs.
Rocaboy assumed that, on his bassoon pressure waveform, the negative portion of the pulse
corresponded to the time that the reed was completely closed. This assumption plays an
important role in his air spring theory, but he did not actually measure the deflection of
the reed.

AWAWAN
WAAWAW,

Single Reed, Cylindrical Bore

Double Reed, Conical Bore

Figure 2.36: Mouthpiece pressure waveforms measured by Rocaboy

Figure 2.37: Waveform of a double reed in a short test cylinder, measured by Van de Laar

The double reed is a far more sensitive device than the single reed, and reed making occupies
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a great deal more time for the oboist or shawmist than for the clarinet player. Part of this
is because of the greater number of variables offered by the reed — stiffness, dimensions,
scrape; the more options one has, the more opportunities one has for problems. Another
consideration is the conical air column to which most double reeds are attached. In order
to fulfill the musical requirements for the instrument, the reed assembly must “complete
the cone”. Again, because the assembly is so unconstrained, preparing the reed is an art in

itself. In [61], David Hogan Smith lists the three basic requirements of a double reed:

e The equivalent volume of the reed and the resonant frequency of the reed assembly

must be matched to the bore of the instrument;
e The reed should be free blowing and responsive in all registers;

e The reed should produce a desirable tone color.

The first point deals with the completion of the cone. This is not, of course, simply a reed
issue, but a reed plus bore issue. However, it is discussed here because adjustments are
limited to variations of the reed. As Section 2.3 discussed, the reed assembly is attached
to the truncated cone of the bore. For the instrument to work well, the reed and its
connecting tube, the staple, must provide the missing volume. A quick glance at any double
reed instrument would indicate that no instrument could possibly meet this requirement.
However, Benade, in [9], claimed that the acoustic volume of the compliant reed was much
greater than its geometric volume, and defined the equivalent volume as the volume of
a “hard-walled cavity whose shape is chosen to make the acoustical effect on the natural
frequencies of an air column identical with the composite effect of the actual reed-plus-cavity
on the playing frequencies of the air column”. This is a somewhat empirical definition. It
basically says that, since we assume from our acoustical knowledge that the reed must

complete the cone, it must represent more than its measurable geometric volume.

In [4],Backus cites Nederveen for calculating the equivalent volume due to compliance as
being equal to 0.9 Vp, with Vj the missing cone volume. Backus tested experimentally the
effects of compliance on the equivalent volume and resulting frequency shift. He found that
compliance had only one fifth of Nederveen’s predicted effect. In this same paper, Backus
challenged several other theoretical assumptions. Some of these findings are discussed in

Section 2.7, which covers the discrepancies between theory and reality.
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A reed connected to a cylindrical tube will also have an equivalent volume which will affect
the playing frequency. Here, the reed volume is not quite as critical because it is not
responsible for fulfilling the need of an acoustical bore. However, since the toneholes have
been designed for a given reed volume, the instrument would not work as well, even ignoring
the pitch deviation, because the resonances would not be as well aligned. The following

section discusses the importance of cooperating resonances.

Benade worked out the equivalent volumes for one reed by attaching it to various lengths
of cylindrical tubing, and, from the resulting playing frequency, calculating the equivalent
length of tubing for required for that note. He found that the equivalent volume remained
roughly constant over a wide playing range. In addition, he found that softening or thinning
the walls of the reed cavity enlarged the equivalent volume. In the case of a cone truncated
only to a small degree, changes in the equivalent volume had a much more pronounced effect
on succeeding modes; a slight change in the fundamental would have four times that change
in the second mode, and nine times that change in the third. Thus, a slight sharpening of
the fundamental, a result of too small a cavity, would result in an even sharper, octave; this
is referred to as widening. Conversely, a cavity with too much volume would have narrowed
octaves; the octave would be flattened much more than the fundamental. This could be
interpreted as a reedmaking tip. If the cone has been properly completed by the reed, the
second mode of the instrument, will be precisely one octave higher than the first mode.
Otherwise, the second mode will be either sharp (too small a volume) or flat (too great a
volume). A wide octave can therefore be fixed By thinning the blades of the reed, and thus
increasing the volume. A narrow octave requires a shortening of the reed, which effectively
stiffens it and decreases the equivalent volume. However, D. H. Smith, in [60] believes
that the reed resonance plays a much more important role than the equivalent volume in
determining the pitch of the octave. Of course, the embouchure plays an important role in

the overall sound of the instrument, as well as in the final adjustments.

The equivalent volume requirement represents a low-frequency constraint on reed design. An
analogous high-frequency requirement for completing the cone is that the playing frequency
of the reed assembly, Benade’s reed—plus— staple frequency, Fy,, is correct. This frequency,
which is not the same as reed resonance frequency, but which is affected by the same reed
parameters, should be equal to that of the missing part of the cone. Thus, if g is the length

of the missing cone section, then, using the period defined in Section 2.1 of 2z /¢, we get the
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relationship: F,, = ¢/2z¢, where c is, again, the speed of sound. Like the equivalent volume,
F,, is heavily dependent on the scrape of the reed; A thin blade will have a lower frequency
than a stiff one. In fact, we will see in Chapter 3 that the undamped reed resonance is equal

to y/stif fness/mass. A thinning of the blades will cause a reduction in both stiffness and

mass. If these effects occurred in parallel, the resonance would not be affected. However,
practical experience has proven that a thinner blade does have a lower resonant frequency,
and that the scrape therefore influences the reed stiffness are much more than the reed mass.
Benade found that, as with equivalent volume, F,, stayed constant on a given instrument
over a wide range. D. H. Smith provides practical advice for adjusting the reed. For a lower
F,,, one can cut a fan-shaped reed with wide tip, or, if the reed is already cut, thin the
blades. Maintaining a loose embouchure, and playing nearer the tip of the reed, will also
lower F,,. Conversely, F,, can be raised by tightening the embouchure or playing further
down the reed. Unfortunately, one cannot add material to the blades, so a low F,; can be

fixed only by playing control.

The second of Smith’s reed requirements is that it both play freely and be responsive in
all registers. This is a trade in stiffness and mass. According to Smith, a reed with less
mass will be freer blowing, and will “speak” more readily in the lower octave. In the upper
register, stiffness is required, especially on an instrument such as shawm with no register
hole, where register shifts are achieved entirely through embouchure control. Generally mass
and stiffness go hand in hand in the reedmaking process. However, by using the stiffest part
of the cane, directly beneath the bark, a lighter reed will result. Myers suggests in addition
[49] that the tips can be thinned while the bulk of the blades are left relatively thick. This
provides the necessary stiffness, while allowing a crisper attack and freer speaking.

Finally, the tone color of the instrument can be adjusted through the reed. According to
reed makers [60],[50], the critical factor in tone color is the way in which the tip closes.
Figure 2.38 illustrates the tip of the reed. If the reed is scraped evenly, the tip will close,
ideally, at one time. This will result in a more square waveform, and consequently, higher
harmonics and a brighter tone. If the reed is given a “spine”, i.e., scraped more on the
sides than at the center, the tip will not close at once, but rather, close first at the tips and
than work in toward the center. This rounds the waveform, and results in a darker tone.
That this type of tone control is considered an essential part of reed making indicates an

important observation about double reed mechanics; the reed must, in normal operation,
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close, or ”"beat”. If it did not, than the degree of spine in the reed would not have developed
into such an important factor in reed design. (Hirschberg and Van de Laar have in their

preliminary experiments verified that the double reed does beat under normal operation

(30)).

Open Tip

Even Scrape,
Even Closure

Spine,
Gradual Closure

Figure 2.38: Closing aperture of a double reed

One other variable which effects both tone color and playing comfort is tip displacement
[49]. A larger displacement will require a larger breath pressure to drive the system, and
will result in greater dynamic volume. As was described in the previous section, blowing
harder will raise the pitch. However, this sharpening is offset by the lowering in pitch due
to the increase in tip displacement, and consequently, the distance the reed has to cover
to complete a cycle of oscillation if it is beating. (This empirically derived explanation fits
nicely with Hirschberg’s theory of the dependency of pitch on breath pressure mentioned
above). Another interesting consequence of tip displacement, together with stiffness, is the
resulting stability of the tone and sensitivity to crossfingering. Myers states, again in [49)],
that larger tip displacements result in greater pitch fluctuations and less stable tone. The
result can actually be desirable, because a less stable tone will be more sensitive to cross-
fingerings, which are often required for producing semitone intervals, or chromatics. David
Hogan Smith has noted the same effect for reed stiffness; an instrument with a stiff reed
will be less sensitive to crossfingering [62]. His explanation is that an incorrectly adjusted
reed will have a mismatched equivalent volume and reed resonance, resulting in a less stable
tone. However, if this were the case, it seems there would be an optimum operating point

somewhere in the middle of the range, and that crossfingering sensitivity increase on both
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sides of this point, rather than towards the open, flexible side alone. Another potential
cause is the lowered slit resistance of a more wide open reed; the importance of resistance

and impedance in determining note stability are covered in the following section.

We now have the following qualitative model for a double reed. A valve, similar to the
single reed valve, controls the aperture through which the musician provides a steady flow
of air. The flow of air through the aperture is modulated by the pressure fluctuations
in the bore to which the reed channel leads. The resulting pressure fluctuations within
the reed channel, countering the mouth pressure of the musician, result in a fluctuating
force on the reed, deforms the reed, modulating the aperture size. The reeds can again be
modelled as harmonic oscillators, although this model is complicated by considerations of
equivalent volume and frequency, especially when connected with a conical bore. Because
the embouchure now entirely surrounds the compliant reed structure, embouchure effects
are more pronounced. Finally, we can assume that beating does take place in normal level
playing. This can be tested using some additional facts to be covered in the following

section.

2.5 The Coupled Reed / Air Column

The previous sections examined the air column and the bore as essentially separate entities,
with the relationship between the two mentioned primarily to provide context. This section
examines in detail the nonlinear coupling between two, and what that coupling implies.
First, the physical interaction between the two are recapitulated. The notion of impedance
and phase is introduced in preparation for a more mathematical discussion in following
sections. This is followed by a discussion of the consequences of nonlinear coupling. Finally,

the section describes the “Regimes of Oscillation” present in a musical instrument.

2.5.1 Interaction of reed and air column

Previous sections have described the essentials of the interaction between the reed, which
modulates the input flow, and the air column, which provides the necessary oscillation. To

sumimarize:
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e The air column contained within an arbitrarily shaped bore can transmit compres-
sion pulses as waves. The frequencies at which standing waves can exist are the

normal modes, i.e., the resonances, of the air column;

e Cylindrical and conical bores will support normal modes that are integer multiples

of one another. This is the relationship required for the production of musical tones;

e The reed reacts to fluctuations in pressure by deflecting away from the resultant
force, thvs changing the size of the aperture. The periodic action on the aperture
size, duc .o the periodic pressure fluctuation in the bore, modulates the d.c. input

pressure into a similar periodic function;

e The periodic input pulses excite the normal modes of the air column, causing a
sustained oscillation which is perceived as musical sound. In turn, the standing
wave thus excited provides the fluctuation necessary to drive the reed-induced input

modulation.

There exists therefore a symbiotic relationship between reed and air column which results
in a sustained oscillation, or “sound regeneration”. Unlike the plucked vibrating string,
whose modes could be excited almost arbitrarily by plucking at different points, the coupled

reed/air column has more rigid phase/mode relationships.

An important point not yet mentioned is that, even in a linear representation of the system,
there exists a threshold blowing pressure , below which the instrument will not sound. In [5],
Backus calculated this pressure analytically, and verified his results experimentally. This

has important implications both in dynamic flexibility and tone coloration.

2.5.2 Energy, Impedance, and Peak Frequency Shifts

The discussions up to this point have been primarily qualitative. The purpose of this section

is to set the stage for a more quantitative analysis of the physical system.

Previous sections have described the standing waves which represent the harmonic oscilla-
tions of the air column. A convenient representation of this oscillation is the input impedance
of the bore. This impedance is, technically, the frequency-dependent ratio of pressure to

flow, p/v, at the entrance to the bore for a given tonehole configuration. It consists of
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both: 1) a reactive portion, the imaginary part, which represents the periodic exchange of
potential and kinetic energy due primarily to the inertia of the air; and 2) a resistive por-
tion, the real part, due mostly to boundary layer effects, which is purely energy dissipative.
High impedances,or more specifically, impedances with high imaginary parts, imply high
pressures and little flow, and thus, a buildup of energy. Anyone who has pumped up a
bicycle tire can appreciate the energy buildup at the expense of the pumper as the pressure
in the tire becomes higher, provided there are no leaks in the inner tube to provide an
unwanted source of flow. Low impedances imply the converse, low pressures and high flow,
and consequently, an energy drain [76). It is very easy, at least from a muscular rather than
an aerobic standpoint, to pump a tire with a sizable leak, but all the energy transferred from
the pumper to the tire goes right out the hole. Because impedance can be measured, and
because it is commonly used in “acoustic circuits”, i.e., electrical analogues of acoustical
systems , and can thus be manipulated in the same way as any electrical impedance, it is

frequently used to characterize acoustical relationships.

The impedance function mimics the natural modes of the system; the resonances are de-
fined in this context by the frequency of the impedance peaks. In a reed instrument, the
impedance relationship leads to the coupling that results in sound. The input flow is at a
maximum when the aperture is at its widest. Since the aperture opening is a function of
bore pressure, this corresponds to the point in time when the bore pressure is highest. At
the frequencies corresponding to the impedance peaks, we have the best opportunity for
energy buildup, the required condition for sustaining the oscillation. Of course, if energy is
constantly flowing in, it must be also flowing out. The losses in the system are discussed
in a later section; suffice it to say at this point that a stable oscillation results from an
equilibrium between energy input by the player and energy loss from the instrument. (In a
flute, whose generator is a flow-controlled valve, the opposite is true; harmonic generation

takes place at the impedance troughs [9], or conversely, the admittance peaks.)

In the bore, the impedance is due to the combined effects of the bore itself, the toneholes
and bell, and any roughness or discontinuities along the path of the air. The bore itself
can be treated as a duct, which has a real characteristic impedance corresponding to its

cross-sectional area of
pc
= 2.2
ze="7 (2.2)
where p is the density of air and A is the cross-sectional area. A simple cylindrical section of




CHAPTER 2. BACKGROUND: REED WOODWIND ACOUSTICS 68

tube therefore has a real characteristic impedance associated with it, which implies that flow
in and out are in phase. However, an aggregate of such tubes, with additional contributions
of reflecting terminators such as the toneholes and the bell, provides the complex acoustic

impedance discussed above.

The bore is not the only source of impedance; the reed provides its own resistance to airflow.
Backus cites in [5] the Bernoulli relationship:

U=Ay2p/p (2.3)

where A is the area of the slit. This results in the following relationship for resistance R:
N
R=2 = 1(/®),1/4) (2.4)

In addition to its nonlinearity, being dependent on the square root of P, the resistance is
also proportional to the reciprocal of the area, which in turn, is proportional to the tip
displacement; the more open the reed, the less it resists the flow of air. We will see that
this is true for toneholes as well; the larger the opening, the lower the resistance. Backus

also provides an expression for reactance in a slit, but notes that its effect is negligible.

In [76], Worman describes the total system impedance as being the parallel combination of
the reed impedance and the bore impedance. The justification for this is that the air that
does not flow through the aperture will flow instead into the gap left outside the aperture
by the deflected reed. This is a somewhat suspect explanation, in this author’s opinion,
although it has been quoted almost verbatim in several other papers as fact. A better
justification can be had by looking at the reed/bore junction during the process of wave
propagation. When a compression pulse is initially introduced by the player, it must pass
first through the reed, then through the bore. This would suggest a series combination.
However, at the junction between reed and bore, part of the pulse will reflect back out
the mouthpiece. In addition, any pulses returning from the bell will, upon reaching this
junction, partially transmit out of the mouthpiece, and partially reflect back toward the
bell. A division of flow is therefore taking place, which implies a parallel arrangement.

The relationship between reed and bore impedance and their effect on coupling is elucidated
by Keefe in [34] by examining the reciprocal of impedance, the admittance. Like the
impedance, the admittance has its real and imaginary parts representing energy dissipation

and storage. The bore, which cannot create energy, must have a positive resistance, and a
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correspondingly positive real part. In order to inject energy, the reed must therefore have
a negative resistance so that the real parts counter one another; this is consistent with its
role as a generator. Since a sustained oscillation requires that more energy enters than exits
at the reed/bore junction, the reed admittance must exceed the bore admittance for sound
regeneration at that frequency to occur. The admittance troughs are aligned with the bore
resonances; this implies that the condition will be satisfied most readily at or near the bore
resonances. An additional condition for oscillation at the fundamental has to do with the
phase relationships. It turns out that, because of a change of sign in phase, oscillation is

possible only on the lower frequency side of the impedance peaks.

Another way of looking at the reed in its role as a generator is through the energy rela-
tionship implied by the flow control curve in Fig 2.35 of the previous section, as McIntyre
does in [43]. The basic requirement for the maintenance of oscillation is that the energy
supplied by the generator compensate for the energy losses throughout the system. The
energy supplied is equal to the product pu, where p is the pressure drop and u is the flow.
The average energy must be positive. Taking the time average over one period, the energy
average, E, is:

E = p(t)u(?) (2.5)

According to Mclntyre, this is satisfied when the operating point is such that the pressure
and flow are positively correlated, i.e., an increase in pressuré causes an increase in flow.
The pressure drop is pA = Pmouth — Phore; the mouth pressure is constant while the bore
pressure fluctuates. An increase in ppore Will correspond to an increase in flow to the right
of the crest. The operating point must therefore be somewhere along the negatively sloped
portion of the flow-control curve. Stability is guaranteed because large bore pressures will
cause an excursion into either the positively sloping side, implying negative correlation and
energy dissipation, or reed closure, which will temporarily prevent further introduction of

energy.

One result of the coupling between reed and air column is that the resonances of the system
are lower than the resonances of the air column alone. This flattening was observed by sev-
eral early acousticians, and properly attributed to several causes. According to Benade[9),
Weber showed that a yielding air-column termination lowers the natural frequency and
Helmholtz added the effects of the flow control action in the explanation. This result is

not surprising if one considers that the dynamic nature of the reed implies an additional
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phase lag at that end. A phase lag implies a time delay, and this would lower the natural
frequency. In addition, any damping in the reed would damp the resonance as well. The
phase relationship described in the preceding paragraph also defines a tend toward flatten-
ing; since oscillation can only occur below the resonance peak, and not above it, the pitch
will tend downard. This is an issue for reed simulation if tuning is to be an issue; if the delay
line length is based solely on the desired pitch frequency, without taking into consideration

reed-induced delays, the “instrument” will play flat.

2.5.3 Nonlinear Effects

The nonlinear coupling described above does more than simply sustain an oscillation; it

implies several important effects on tone quality.

One important effect can be heard by playing a crescendo on a clarinet, starting at a level
when the reed is not beating. As the volume grows, so does the influence of the higher
harmonics. This “blossoming of the spectrum”, as Keefe phrases it in [34], is a result of the

dependencies among harmonics. Benade [9] cites the non-beating harmonic relationship:

Pn X PT (2.6)

where p, is the amplitude of the n’th harmonic, and the constant of proportionality is the

height of the n’th impedance peak.

Keefe extends this to any wind instrument oscillation whose flow control function is weakly
nonlinear (e.g., a non-beating reed). The constant of proportionality is the magnitude of
the impedance at the harmonic. Equation 2.6 implies that each harmonic helps to drive
the succeeding harmonic. Worman proves this in [76]. The “blossoming” is not merely
a function of the exponential terms. The threshold pressure described above is actually
unique to each harmonic; a harmonic pressure which reaches this threshold becomes capable
of regenerating itself, and stabilizing the overall oscillation. The cooperation among modes,

discussed at length by Benade in [9], is the topic of the next section.

When the reed begins to beat, the flow control function becomes strongly nonlinear, and
the harmonic relationships change. Now all the harmonics grow at an equal rate [9]; a

change in dynamic level will not result in a change of tone, at least up to a point. This has
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important bearing on reed selection. A stiff reed, which will not beat readily, will provide
the dynamically influenced tonal changes. A softer reed which beats easily will have a much

more constant tone and feel.

Heterodyning is another nonlinear effect, the result of the dynamic system being driven by
a periodic source. In a musical sense, heterodyning is the process of combining tones into
new tones whose frequencies are the sums or differences of those tones already in existence.
For example, following Benade in [9], the combinations of tones P and Q will produce the
heterodyne components 2P, (P+Q), (P-Q), and (2Q). These components will then com-
bine with each other, and with the original components, to form new terms such as 3P
and (2Q+P). Difference tones can be very audible, particularly in high register instruments
such as recorder where the waveforms are not particularly complex, and can in fact be used
for tuning. Although heterodyning is similar to partial formation, it bears a significant
distinction: heterodyned components do not have to be harmonically related, whereas har-
monics do. Thus, the production of heterodynes can result in a multiphonic sound, the
which can be either jarring or effective, depending on the context. In general, the results

of heterodyning are most pronounced at high volume.

For a reed-driven system, heterodyning has the effect of producing oscillations that nor-
mally would not be supported by the air column. If the reed oscillation frequency (not its
resonance frequency) is P, then it would drive the system with components of 2P and 3P
as well. On a conical bore instrument, as we have seen, these components are part of the
normal spectrum anyway. However, on a cylindrical bore instrument such as the clarinet,
the 2P component would not be supported by the air column; recall that a cylindrical bore
supports only odd harmonics. Because the 2P component is part of the driving mechanism,
it will be present in the resultant oscillation, at some dissipative expense to the overall
energy balance. The result is that the clarinet spectrum will have weak even harmonics,
although at too low a level to support overblowing at the octave. There was, incidentally, a
great hue and cry in 1877 when these even harmonics were discovered, according to Worman
in [76]. Helmholtz had stated that clarinets would favor odd harmonics, for the reasons de-
scribed in Section 2.3, and that he had been unable to find even harmonics experimentally.
This was, apparently, interpreted by some as implying that even harmonics could not exist
in the clarinet. When even harmonics were found by Blaikley, Helmholtz’ reputation came

under severe fire. Worman states other examples of the unfair treatment of Helmholtz’
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work, results of misinterpretions of his findings, and concluded: “The shallowness of many
of Helmholtz’ critics is a.ppa.lling”. For better or for worse, the reexamination of Helmholtz
continues: Hirschberg, a current leader in reed hydrodynamic research, started a recent
presentation with the chart :“What does Helmholtz Neglect?” [28].

In addition to even harmonics, heterodyning can also produce components beyond the
cutoff frequency of the instrument. The cutoff frequency will be discussed in more detail,
but basically, it is the frequency at which the air column ceases to be capable of sound
regeneration. The cutoff frequency has a significant influence on tone. Just as heterodyning
can drive even harmonics in a column that cannot regenerate them, it can drive similarly
unsupportable high harmonics. This, according to Benade, is the source of the “buzzing”
that one frequently hears when instruments are played at a loud dynamic level. Recall
the buzzing of the capped reed instruments discussed in Chapter 2, which had a set of
fairly ragged looking high harmonics far into the frequency range. For both cases, the

unregenerated frequencies represent a drag on the system.

Of course, these are not the only nonlinear effects present in the reed instruments. The
effects of hydrodynamics, embouchure influences, and other variation are critical in the
resulting sound. A key area in research is trying to characterize the many nonlinear re-
lationships, and add more reality into the existing models. Many, including Lindeman in
[39], are investigating chaotic analysis as a potential tool. Results so far do not match well
with musical experience; however, chaos is seen as having great potential, particularly for

explaining nonperiodic instrument behavior such as multiphonics [34].

2.5.4 Harmonics and Regimes of Oscillation

So far, the coupling between air column and bore that drives an oscillation have been
described, as well as the existence and influence of harmonics. In addition, the relationship
in power between higher harmonics and the fundamental has been treated, and a symbiotic
relationship among all harmonics suggested. This section examines this relationship of

“modal cooperation” in more detail.

The dynamic response of a linear system is often described in terms of a “normal mode”
analysis, in which the various vibrational modes, the number of which is determined by

the order of the system, are decoupled. This technique is used on systems from circuits to
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spacecraft. Unlike the normal modes in such systems, which operate more or less indepen-
dently of one another, the modes in a musical system are codependent; being harmonically
related, they can excite and reinforce one another, and cannot be fully treated as individu-
als. To deal with this state of affairs, Benade defined “regimes of oscillation”, combinations
of coexisting vibrations which exist in a sustained oscillation. The basic features of this

system have already been suggested in earlier chapters:

¢  From Bouasse,quoted in [9]: “If the reed-valve is nonlinear, then oscillation is favored
if the air column has one or more natural frequencies that correspond to one or more

of the higher partials of the tone being produced.”

e From Benade, in [9]: “A regime of oscillation is that state of collective motion of
an air column in which a nonlinear excitation mechanism (the reed) collaborates
with a set of air-column modes to maintain a steady oscillation containing several
harmonically related frequency components, each with its own definite amplitude”.
Thompson added to the set of air column modes the modes of the excitation mech-
anism in this definition, in accordance with his proposition that the reed resonance

also plays an important role in upper register note stabilization.

One explanation of this cooperation follows from the requirements for a self-sustained oscil-
lation. To reiterate, when conditions are such (threshold pressure reached, reed admittance
higher than bore admittance, etc.) that energy can be injected into the system, sound
regeneration will occur. The harmonics are present whether or not they can regenerate on
their own. If they cannot regenerate, then they represent a dissipative load on the system.
Once regeneration occurs for a given mode, additional energy can be brought in. Thus, as
each harmonic comes into its own, it adds to the communal pool of energy that supports
all the harmonics. The more harmonics which are suitably excited, the more energy in the
system, and the more stable the note [76]. Note that unsupported heterodyne components,

such as the even clarinet harmonics discussed above, always represent energy dissipation.

This coupled set of oscillations explains not only the stability of notes, but also some of
the curious pitch behavior that occurs during changes in loudness (one is tempted to use
the more musically appropriate term, dynamics, or at least volume, instead of loudness.
Unfortunately, both of these terms have other specific engineering connotations which are

used elsewhere in this thesis), particularly on nonoptimal instruments. Following Worman’s
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example in [76], the two-peak impedance curve, illustrated in Figure 2.39, can be used to
demonstrate the interactions. For low pressures, the dominant oscillation is the fundamen-
tal. As the previous section described, as the pressure increases, the energy input into the
harmonics will increase. Therefore, a crescendo will soon bring the second harmonic, in
conjunction with the second impededance peak into play. If the impedance peaks are per-
fectly aligned, the result will be an even more stable, richer tone. However, if the impedance
peaks, and therefore the resonances, are not perfectly aligned, a pitch change will result as
well. This is because the instrument, being a physical system, is essentially self-optimizing,

and will try to maximize the energy input into the system.

i\

Figure 2.39: Misaligned resonance peaks, after Benade

Imagine now that the impedance peak is a bit wide, i.e., the second resonance is sharp. The
original second harmonic will fall a bit before the peak, and its sound regeneration will be
less efficient. However, if the fundamental rises just a bit in pitch, the second harmonic will
increase by twice that much and fall closer to the second impedance peak. The most stable
note will therefore be, approximately, the maximum energy solution for.the two harmonics.
As the crescendo advances, and the strength of the second harmonic increases, the pitch
will climb higher. The player can, and generally will, combat this trend with changes in

embouchure, but at the expense of additional energy dissipation and a more strangled tone.

Note that the “blossoming of the spectrum” which produces the above effect is present only
in the absence of beating; during beating, the harmonics grow in parallel. In the Section
2.4 on reeds, Hirschberg provided a different explanation for the dependence of pitch on the
playing volume dependent tip offset, which required that the reed do beat.

In the preceding example, not only will the pitch climb, but the note, even at its stable
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point, will not be bringing in as much energy as with the well-aligned instrument, and will
be more difficult to play. Instruments with badly aligned resonances will therefore require
much more energy. It might be noted that in flute-like instruments, which use an airstream
generator, Coltman [16] found that the optimal modal cooperation, evidenced by greatest
sound power radiation and tonal quality, occurred when the octaves were stretched by about
25 cents, rather than when they were perfect integer multiples. Benade explained this in
[9] for the case of louder playing by noting that, whereas the fundamental mode is sensitive
to breath pressure changes, the second mode is not. In order for the modes to be properly
aligned for mezzoforte playing, they must be stretched in the steady state. This stretch
will not be obvious at the pianissimo levels for which it exists because at those levels, the

fundamental mode is dominant anyway.

The preceding paragraphs described the importance of aligning resonances in the production
of a stable tone. It must be noted at this point that perfect alignment is not necessarily the
best musical arrangement. An example of too strong a cooperation is given by Myers in
[49]. He descibes the “honking” of early cylindrical recorders because the first and second
modes were aligned too accurately. Design improvements by c1400 involved degrading the
modal cooperation, by constricting the bore and consequently spreading the modes (This
may seem to be a contradiction in interpretation to the paragraph above on Coltman’s work.
However, the case is really opposite to that cited above; the modes on the untapered early
recorder were actually found by a present-day builder to be too well-aligned under playing
conditions. [50].) Most recorders used today, whether of modern design or modelled after
a prototype, are conically tapered toward the bell end.

2.5.5 Playing in the Upper Registers

The previous section illustrated how the different modes of oscillation cooperate with one
another, in accordance with their relative impedances, to stabilize a tone. This section

describes how that relationship can be exploited to produce upper register tones.

Recall that an upper register tone is achieved by exciting the second harmonic of the fun-
damental, without exciting the fundamental itself. From the discussion above, this would

seem like an impossible task; the cooperation among modes is so strong that excitation of




CHAPTER 2. BACKGROUND: REED WOODWIND ACOUSTICS 76

the second harmonic implies excitation of the fundamental. However, the musician has sev-
eral tricks in his bag to accomplish the job. On some instruments, increased volume alone
will cause a register change. Certain notes on a recorder, for example, can be played an
octave higher simply by blowing harder. According to Backus, this is because the period of
oscillation is indirectly related to the velocity of the air, which increases with blowing pres-
sure. When the blowing pressure becomes high enough, the corresponding period becomes
too small to be supported by the fundamental mode, and the second harmonic, which has

a shorter period, becomes the new fundamental of the tone [2].

With reed instruments, the musician must somehow change the resonance relationships. On
an open reed instrument such as a shawm, the player changes registers by tightening his
embouchure and blowing harder. As we have seen, increasing pressure increases the strength
of the higher harmonics. However, assuming that the shawm, a double reed instrument,
exhibits beating over most of its dynamic range, the second harmonic does not grow with
respect to the first. The embouchure-induced change in register is not well understood,
partially because the technique is not used much in modern-day instruments, and therefore,
has not yet been thoroughly investigated. One possible explanation is that when the reed
tips are beating so closely together, they simply cannot support the slower mode [49]. This
is similar to what happens in the flow-controlled flute. Another theory has to do with the
roles of equivalent volume and reed resonance. By tightening the embouchure, the player
alters the equivalent volume of the reed, possibly to the point where the reed can no longer
support the fundamental tone. In the upper register, however, the reed resonance is more
important than the equivalent volume, and can help to stabilize the higher octave note. In
this manner, the player selectively prevents one mode from being excited, while allowing
the desired mode to ring [62].

On most modern reed instruments, register shifts are accomplished by special toneholes
placed to alter the resonances of the instrument. The purpose of a register hole, or vent hole,
is to allow the second resonance to sound while somehow repressing the first resonance. This
is the same concept as the embouchure tightening described above for the shawm. Section
2.3 laid the groundwork for describing how the selective suppression can be accomplished.
Recall that in a plucked string, the relationships among the harmonics depend upon the
pluck point. Modes with nodes at the pluck point will not be excited at all, while modes
with loops will be excited most strongly. An extension of this is the bowed string technique
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of producing harmonics. The player can gently put his finger to the location of the node
of a desired harmonic. Rather than suppressing the mode, as in the case of the pluck,
he now damps out all other modes, and drives only those oscillations unaffected by the
damping (the process of bowing a violin involves a coupling similar to the reed instrument,
incidentally, and was studied by Julius Smith in detail in [66] and [63]). A similar action is
performed by opening a register hole. The added tonehole, which will not in itself completely
damp out affected vibrational modes, is placed ideally at the node of the second harmonic.
Thus, the second harmonic will be unaffected by the change. Figure 2.40 illustrates the
two harmonics of a clarinet, which are, the fundamental and its twelfth, since the octave
is not supported. The second harmonic has a node one third of the way down the bore;
this is the optimal place for a register hole. Note that the optimal register hole location
is a function of borelength, and therefore, of fundamental pitch. A clarinet cannot have a
register hole for each note; in fact, it has only one. Benade discusses the consequences of
this insufficiency [9].

Figure 2.40: Nominal location of a register hole on a clarinet

The effects of the register hole are more subtle than those of the violinist’s mode damping.
Its efficacy is very much a function of the required cooperation among modes, as described
by Benade [9]. Recall that, for a note to ring, the resonances must be aligned. This sets up
the regime of oscillation which feeds energy into the system. The purpose of the register
hole is to change the resonance pattern so that the first mode cannot be supported by any
of the other modes, and therefore not drive the frequency of the oscillation. If this can be
achieved, the next available mode will become the fundamental, and the sounding pitch
will rise accordingly. The hole accomplishes this both through its resistance, which reduces
the level of the peak, and through its reactance, which relocates the peak. The optimal
energy solution will then be based on the regeneration of the second mode, and the now

inharmonic first mode will be silent.
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Future chapters will describe a model of the register hole which was incorporated in the
simulation. There were many interesting results which illustrate the interaction of the

modes, even for tests where the register key was unsuccessful.

Figures 2.41 and 2.42 show the spectra for a shawm and a clarinet blown in the lower and
upper registers. As described, the clarinet register shift is achieved via the register key,
while the shawm shift is effected via embouchure changes. Note that the high note will be
necessity be much less rich in harmonics than the low note, although the higher frequency
harmonics it has will be more pronounced. This is the consequence of the cutoff frequency,
which puts an absolute limit on the modes supported. The fundamental frequency of the
clarion register is 2.5 times that of the chalumeau register, and the new first harmonic
2.5 times that of the new fundamental. Clearly, fewer harmonics can be supported; the
spectrum of the clarinet shows the number of harmonics above -30 dB decreasing from 17
to 5. The shawm fares similarly, in that it has an apparent cutoff frequency close to that
of the clarinet. Because the shawm is conical, it does have a few more harmonics on the
low-frequency end, in that the even harmonics are more pronounced. It is notable that
on the shawm, the fundamental peak is relatively small, while in the upper register, it is
quite significant; there is none of the upward sloping that the lower register displayed. The
upshot is that upper register tones are somewhat less interesting than the lower register
tones in terms of harmonic content. The decreasing sensitivity of the ear in the upper range
contributes to this effect. In recorders, the easiest distinctions among models can be made
in the low registers where the harmonic structure is most flexible. In the upper ranges, it
is much more difficult to tell the instruments apart spectrally. However, better instruments
have much nicer transient properties in the upper range, even if their steady-state properties

are undistinguished.

The reduction in harmonics implies not only a change in timbre, but a reduction in the
amount of modal cooperation, and the consequent stability of the note. There are simply
very few modes present to stabilize one another. This is where the role of reed resonance is
believed to become prominent. Stephen Thompson studied the influence of reed resonance
on modal cooperation in detail in [72]. The resonance of the reed, even while exceeding the
cutoff frequency, can still interact with supported modes and stabilize them. (D. H. Smith
found that, for double reeds, a reed resonance just above the instrument cutoff worked best

[60]). For this reason, a musician will continually adjust his embouchure as he ascends the
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Figure 2.41: Spectra for an alto shawm playing in two registers (Sound Source: McGill
Collection)

scale in the second register; he actually is adjusting the reed resonance to match a harmonic
of the note played, and thus enjoys an extra measure of stability. This makes sense for a
single reed instrument, and.gives justification for the inclusion of a dynamic reed model
for any simulation expected to operate in the upper register. The double reed case is a
bit more complex, because as the musician adjusts his embouchure, he adjusts not only
the damping/resonance of the reed, but the equivalent volume as well. However, if the
equivalent volume is truly important only in the fundamental register, than the resonance

matching argument still holds in high register [62].

2.6 Other Acoustical Features

The preceding sections have developed the fundamental relationships that allow a reed
instrument to work. There are many other aspects to the instrument that affect its sound
and stability, such as the toneholes, the bell, and even the vocal tract of the player. This

section describes the effects of these features.
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Figure 2.42: Spectra for a Bb clarinet playing in two registers (Sound Source: McGill
Collection)

2.6.1 Sound Radiation and Reflection: Bell and Toneholes

Until now, the reflection of pressure waves at the open end of the instrument has been
idealized. In Section 2.3, the wave reflection discussion implied a total reflection of wave
energy back toward the reed. If this were the case, the instrument would be extremely stable
(assuming boundary layer losses would offset the energy input) but produce absolutely no
sound at all; sound production requires wave transmission into the surrounding air. The
dimensions of the bell and toneholes play a major role in determining how much energy is
reflected — allowing coupling and oscillation regeneration — and how much is transmitted

as sound.

The open end of the tube was defined in Section 2.3 as essentially an acoustic barrier , with
perfect nodes and antinodes. It is possible to define a less rigid barrier by extending the
concept of impedance discussed earlier. Recall that impedances were used to characterize
the acoustic tube response. They can also characterize the partial reflection/transmission
of waves that occur at various locations in instruments. The presence of toneholes, the bell,
or changes in the bore diameter all result in changes in column impedance. An impedance

change acts like a flexible acoustic barrier, reflecting some energy and transmitting the rest.
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The relationship between the two can be represented by reflection coefficient, a measure
of the fraction reflected. The concept of impedances and reflection coefficients is a basic
component of the waveguide models in the following chapter, and will be described more

mathematically there.

Another way to view the toneholes and bell are as radiating pistons of air. This is how
Stewart and Strong modelled their bell in [70]. Keefe has done extensive work in this type
of modeling with toneholes [35],[37]. The piston action in the toneholes depends upon the
thickness of the walls of the instrument.

The purpose of a tonehole is to shorten the acoustical length of the tube by inserting an
acoustic barrier inside the bore against which waves can reflect. The hole allows the air
exchange required for wave inversion, as well as providing an outlet for the transmission of
sound power. Once again, an “end correction” is in effect, and the location of the tone hole
will not absolutely indicate the new, frequency dependent acoustic length of the tube. This
length, manifested in the pitch of the fundamental, is a function of hole diameters and wall
thickness. Benade discusses the subtleties of tonehole placement and spacing in [9]. Myers
expands on this in [49]. Tuning a woodwind instrument is accomplished only coarsely by
sizing the walls and drilling the holes. Fine-tuning is a process of iteratively widening the
holes (or filling them in with paraffin when the tuner overshoots the mark) until all the

notes are in proper pitch.

The action of the tonehole can be explained in terms of the impedance change it induces.
The amount of reflection at an impedance junction depends upon the ratio of impedances.
We can define a term r which represents the impedance ratio Z3/Z;, where Z; and Z»
are the impedances before and after the junction. As illustrated in Figure 2.43, a wave
approaching this junction is scattered according to r; Part of it is reflected and the rest
is transmitted. The following chapter describes the exact relationship between r and the
reflection which occurs. A value of r near unity implies little reflection; A value far from

unity implies strong reflection.

The dimensions of the tonehole determine its impedance. A very large tonehole has very
low impedance; air will flow in and out of it easily. The consequent impedance drop is very
large, and strong reflection will occur (Herbert Myers noted in [49] the practical relationship

between hole diameter and note stability). A large tonehole approaches the ideal end of
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Figure 2.43: Wave scattering at a tonehole

the tube, and the effective end of the tube will be very near the location of the hole. A
smaller tonehole will have a higher impedance, resulting in a smaller impedance drop and
weaker reflection. The end correction for this hole will be larger, that is, the effective bore
length is much longer than the length of the bore terminated by the hole. Thus, a tonehole
that is too small will cause a flattening of the fundamental it was designed to elicit. The
register hole described earlier is an example of a high impedance tonehole. The passage of
air in and out of it dissipates energy and causes the reduction in fundamental peak size.
In addition, the reduction in effective length which it causes is just enough to move the

fundamental peak to an inharmonic location.

Figure 2.44 illustrates the circuit equivalent of the tonehole junction. Looking again at
the scattering that takes place at the tonehole, the wave actually splits into three parts.
One part reflects back toward the reed, and is the part that sustains the oscillation. The
transmitted portion will travel either through the tonehole or further on down the bore.
The amount reflected depends actually on the parallel combination of the bore impedance
(assuming a cylindrical instrument where the bore impedance is the same throughout mest

of the instrument) and the hole impedance. The expression for impedances in parallel is:

1_1,1
Zw Zy 2y

When the tonehole impedance, Z; is large, its contribution to the parallel impedance, Zp;,

2.7)

is small; since the bore impedance, Z;, is constant through the junction, impedance change
will be small and the reflection correspondingly weak. When Z; is low, it dominates Z;; the
impedance drop across the junction is now large, and the reflection correspondingly strong.
The transmitted wave will split between the parallel paths, again according to Z; and Z;.

Part will transmit as sound from the hole; the rest will propagate further down the bore.
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Figure 2.44: Wave scattering at a tonehole

Thus, not only does the tonehole shorten the instrument, it provides a highpass transmission
port for the sound. A general rule of thumb is that a tonehole can transmit any wave with
half wavelength less than the hole diameter. A very large tonehole can radiate a significant
portion of the sound, while a smaller tonehole will be much less efficient. Whatever sound
energy does not transmit will propagate down the bore to next tonehole, which will transmit
another fraction, and so on to the bell, where any energy still remaining will again either
radiate or reflect[24]. The higher the frequency of the harmonic, the further down the bore
will its standing wave penetrate [9]. Notes sounded near the top of the tube, where the
unreflected portion must run a considerable gauntlet of toneholes before reaching the bell,
will be transmitted almost entirely through these holes. Lower notes, which use fewer open
holes (although some instruments contain vent holes which are never covered in order to
provide a lattice for the low notes), will rely more on the properties of the bell. The bell
is, essentially, the final tonehole, and, as implied above, and, according to some acoustics
texts [24], affects primarily the lower notes (in brass instruments, on the other hand, the

bell is the only outlet for radiation, and is therefore always active).

There is somewhat more flexibility in designing the bell, which has flare as a parameter
in addition to thickness and diameter. The bell is often described as being “impedance
matched”, meaning that the impedance at the end of the bell is quite close to that of
the ambient. A truly impedance matched bell would be a perfect transmitter. However, an
instrument with such a bell would lose its lowest note, because there would be absolutely no
internal reflection. Given that the bell is present partially to strengthen the lower notes, this
would be unfortunate. Instead, the bell is designed to be a compromise between the ideal
end of the tube, where all energy would be reflected, and the ideal impedance matched
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transmitter, where all energy would be transmitted. A good bell mimics the radiation

properties of the tonehole lattice, so that there is continuity in tone from lower to higher

notes.

The influence of the bell can actually be quite profound. According to D. H. Smith,an
important evolutionary step in the development of the shawm was the lengthening of the
bell section, which stabilized many notes considerably. Apparently, even on the shawm,
which has relatively large toneholes, enough of the wave energy makes it to the bell that,

even for higher notes, the reflection characteristics at the bell are critical [62].

Not all of the wave energy becomes transmitted sound; losses take up a considerable amount.
The tonehole lattice in particular provides many opportunities for energy loss, because the
toneholes have relatively sharp edges, which can result in loss-causing turbulence. Even
when closed, they form ducts which impede the air flow in the tube [9]. The additional
damping helps create the characteristic woodwind sound. Keefe has done quite a bit of work
in characterizing the tonehole and tonehole lattice [35], [33], [32]. The effects of the tonehole
lattice will not be discussed here, as it was not incorporated into the clarinet model. Again,

Myers has given a thorough treatment of the practical issues of tonehole alignment in [49].

A major consequence of the combination of tonehole lattice and bell which can be eas-
ily modelled is the cutoff frequency of the instrument [9]. The cutoff frequency, implied
by the partial reflection/transmission described above, is the limit at which sustained os-
cillations can no longer be supported. Each tonehole, including the bell, has its unique
cutoff frequency; one objective in tonehole design would ostensibly be to equalize the cut-
off [9]. However, Myers points out that, at least in earlier woodwinds, which had none of
the mechanical keywork advantages of modern woodwinds, cutoff frequency equalization of
toneholes was the least of the builder’s worries [49]. The flare of the bell is designed specif-
ically for this type of balancing; “mimicking the tonehole lattice” really implies duplicating
the tonehole cutoff frequency.

As an example, the cutoff frequency of a clarinet is about 1500 Hz. All of the strong
harmonics will have frequencies below that point. Notice in the clarinet spectrum presented
in Figure 2.7 that this cutoff frequency corresponds roughly to -15dB of attenuation in
the steady state sound. Thus, the bell/tonehole lattice can be represented as a pair of

lumped, complementary lowpass reflection and highpass transmission filters. Because of
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the importance of the internal coupling process, a rather nonintuitive situation results.
The clarinet has no problem transmitting the higher harmonics; without the coupling and
modal cooperation, however, they will be so weak that even fully transmitted, they will
be almost imperceptible. This is one of the paradoxes of the acoustic sound transmission
process; since efficient transmission implies inefficient reflection, and reflection is required
for coupling and reinforcement, a very efficient transmitter will produce a very weak sound
[9]. Benade studied the importance of the cutoff frequency by altering that value by +2% on
two identical clarinets. The instrument with the lower value had a dark sound well suited to
his classical friends but useless to his jazz friends. That with the higher value had a bright
sound that his classical friends spurned but his jazz friends borrowed frequently. Note that
the instrument with the bright sound had a high cutoff frequency, meaning that it was an
inefficient transmitter for relatively high frequency harmonics. The other instrument could

transmit a larger bandwidth, but without internal support, these harmonics were relatively
weak.

The term radiation efficiency is often used to describe the sounding power of an instrument
[24]). The radiation efficiency describes the end-to-end sound transmission capability instru-
ment, i.e., the power radiated out versus the player’s power input. This term encompasses
both the internal mode sustaining mechanisms and the individual transmission and loss
terms within the instrument. A high radiation efficiency indicates an optimal compromise

between the reflection and transmission needs described above.

A final example of the importance of the bell in a woodwind instrument and its effects
on the output spectrum is the instrument illustrated in Figure 2.45. This is a modern
reconstruction of a cylindrical capped reed of the cornemeuse family, named the Glastonbury
Pipe because it was designed after a medieval tapestry found in Glastonbury. The pipe has
the convenience of a removable bell; removing the bell effectively muffles the instrument
without altering the pitch. With the bell attached, the instrument has a fairly resonant,
loud tone suitable for playing with other instruments. With the bell off, the tone is quieter
and less forward, more suitable for blending with the voice or softer instruments. The
toneholes on this instrument are quite small, so that one can expect much energy to pass
through to the bell. In addition, the throat of the bell itself is perforated with tiny holes,
which maintain the effective borelength at its bellless dimension, and prevents the normal

lowering of pitch that would occur when an extra section is added on.
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Figure 2.45: Glastonbury pipe, with removable bell. Design Early Music Shoppe of London,
built by Tom Neumann, 1981. Instrument courtesy Tom Neuman, illustration by author

Figures 2.46 and 2.47 show the waveforms and output spectra for the instrument, without
and with bell, playing a low F, the lowest note on the instrument, and a high F, which
requires the closing of only two toneholes. As could be predicted from the associated
tonehole configurations, the waveforms differ more for the low than the high note. The
waveform without the bell has only one well-defined peak, whereas the bell waveform has
about 7 peaks per period. The high F waveforms are a bit closer, in that there are more
defined peaks in the bellless version. However, this version still has a single pronounced
peak, while its counterpart has many peaks of nearly the same height. These waveforms
hint at a reduction in the size of the fundamental, which is verified from the output spectra.
In both cases, the bell boosts the higher harmonics in the first quarter with respect to the
fundamental, so that there is a sloping upward in the spectral shape, as we saw in Chapter

2.2 with the conical reeds. Also, the bell spectra both show a slight formant structure in
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the second quarter, where the bellless spectra are relatively flat. Finally, the very high
harmonics in the final quarter are smaller for the bell spectra, which follows from the
reduction in cutoff frequency which a bell would induce. The slight reduction in buzzing

due to this greater attenuation may also be responsible for a smoother, more resonant tone.

The conclusion one can draw from this example is that the bell affects more than the
cutoff frequency; it influences the lower harmonics as well, in ways that are quite significant
musically. This is not really news. Although Benade emphasized the effects of the cutoff
frequency, he also treated the influence on independent, low order modes of perturbations
in the bore, of which the bell is one [9]. Another conclusion is that the musical quality
of “resonance” appears to be a function of the mid-range harmonics. Two phenomena
distinguished the resonant tones from the muffled tones — the boosting of the harmonics in
the latter first quarter, and the slight formant formed in the second quarter. These effects
were consistent for all notes recorded from the instrument. A good model of the bell would

reproduce these affects, as well as the more easily obtained cutoff frequency.
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Figure 2.46: Glastonbury pipe, with removable bell, playing Low F, the bottom note on
its scale. Left waveform and top spectrum: without bell. Right waveform and bottom
spectrum: with bell. Instrument courtesy Tom Neuman
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LA

Figure 2.47: Glastonbury pipe, with removable bell, playing High F. Left waveform and
top spectrum: without bell. Right waveform and bottom spectrum: with bell. Instrument
courtesy Tom Neuman

11000 ;

2.6.2 Sources of Loss

If the radiation efficiency of an instrument were perfect, all the blowing power input by the
player would be converted into sound power. In fact, the sound energy radiated is minuscule,
according to Nederveen in [51], compared to the losses internal to the instrument. The efforts
of the player, and the efforts of the instrument builder to align air column resonances, go
mainly into overcoming the energy dissipation. Any attempt at understanding the energy
equilibrium implicit in a stable note must take into account the deficit side of the equation.
In addition, any loss or internal impedance will lower the fundamental frequency of the note
played — as well as change the harmonic relationships among resonances — and therefore

has important tuning implications. This subsection discusses some of the sources of loss
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within the reed woodwind.

The major sources of loss are the boundary layer effects of friction and heat exchange at the
wall of the instrument. The friction is due to the viscosity of the air, and will bring particle
velocity near zero at the walls. Thermal losses occur because the pressure fluctuations in
the air column induce temperature fluctuations. The walls of the instrument are of roughly
constant temperature, and continuously exchange heat with the enclosed air. The thickness
of the viscous boundary layer is a function of fluid viscosity, fluid density, and the frequency

of the oscillation, in the following relationship from [51]:

t= /L (2.8)
wp

where 7 =viscosity = 1821078N — s/m2?, p =density= 1.2kg/m2, and w = frequency in
Hz. This leads to a boundary layer of only 0.05 mm for a frequency of 1000 Hz. Most of
the losses in the system are assumed to be in this very thin layer, while the losses in the
remainder of the air column are minimal. In a cylindrical tube this implies, again citing
[51], that particle velocity is constant over the air column cross section. A one-dimensional

plane wave is the result.

The presence of the boundary layer has two beneficent consequences for the modeller. The
first is that, because boundary layer loss dominates the real part of the impedance term,
that is, the nonoscillatory resistive part, losses can be lumped together in a simpler math-
ematical formulation. Second, because boundary layer damping increases with vibration
amplitude, this loss helps to stabilize the oscillation [76]. Just as a parachutist in free
fall reaches a terminal velocity at which aerodynamic drag matches gravitational acceler-
ation, the instrument has a loudness limit at which boundary layer drag prevents further

crescendo.

The presence of toneholes, closed or open, wall roughness, and any other departures from the
smooth-walled tube will increase loss. Based on various experimental findings, Nederveen
increased the boundary layer effect by 60 percent. The effect of wall material on losses
was discussed in an earlier section. Reiterating, experiments have shown that the material
surrounding a bore has been shown experimentally to have less than a 2 percent effect on

the internal losses, and are not considered a significant factor in this area [9].
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2.6.3 The player: Vocal Tract

A most important acoustical element in any instrument is its player. An exquisitely designed
instrument can sound no better than a toy in the hands of an inexperienced player. A
badly designed instrument can still sound exquisite in the hands of a musician. The player
controls not only the input to the instrument, through his breath, and the tonehole lattice
configuration, through his fingering. He may play a physiological role in the actual sound
generation within. The effects of the embouchure on the reed — damping and sweep — have
already been discussed. An additional, much contested control, is that which the player

effects by configuring his facial and throat muscles, that of the vocal tract resonance.

The significance of the vocal tract resonance in tone control has undergone significant de-
bate. The use of resonances, whether scientifically justified or no, is used by many instru-
mentalists, at least as an imaging technique, for getting across a certain tone. The performer
may strive to “find the resonance” in various parts of the face, from cheekbone to eyeball.
In addition, the degree to which the cheeks are puffed out and the openness of the throat
are, from the performer’s point of view, important factors in tone production. Whether the
changes in vocal tract resonance induced by these methods directly influence the tone is
difficult to assess. The thinking is that the player can tune “himself” to a harmonic of the
note played, and stabilize that note. Going further, he can change the harmonic content of
the tone, the brightness or darkness, by appropriate adjustments in the vocal tract, that is,
the shape of the mouth and throat.

That the player may have some measure of tone control through his tract shape can be
demonstrated by listening to the tone of an inexperienced and experienced player. Even on
a recorder, whose enclosed mouthpiece allows little additional control, the differences are
profound. The real question is whether the vocal tract air column is physically interacting
with the bore air column. An equally plausible explanation is that the shaping of the
tract helps the player to modulate and focus his airflow into the instrument, and that the
resulting airstream velocity and shape are what bring about the desired effect. Between
these two hypotheses is the possibility that the tract air column is not coupled directly to
the bore air column, but still bears the resonances of the tract and influences the input
excitation. The psychoacoustic coupling is important in all cases, particularly for the

technique of “finding resonances” in the facial cavities. Just as the player adjusts his
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embouchure somewhat unconsciously to bring about good tone, he can adjust his vocal
tract to strengthen noticeable effects, such as the ringing of a harmonic in a desired place.
Whether it is air velocity or air column resonance that accomplishes the task is immaterial to
him. His is essentially a “position feedback system” rather than a “force feedback system”;

how he reduces the system error is transparent.

Backus, a bassoon player himself who probably had encountered more than his share of
resonance pedagogy in his life, set out to test whether vocal tract resonances could have
appreciable effect in a reed woodwind [3]. He approached the problem experimentally,
by examining the possible influence of upstream, vocal tract impedance, on downstream,
instrumental, tone. His conclusion was that the upstream pressure fluctuations due to
resonance could not possibly be strong enough to influence the tone. (He also stated that
in years of bassoon playing, he had never noticed a tonal change induced by a change in
mouth volume). However, Keefe [34] and others have refuted Backus’ results, claiming that
vocal tract resonances have a significant effect. Keefe includes the vocal tract impedance

as an important term in his model formulation [34].

A vocal tract model is beyond the scope of this paper, save for its effect on the reed, and
will not be included in the simulation. However, a check on its potential importance can
be obtained by examining the windcapped instruments. Recall that in the windcap in-
struments, the reed is surrounded by a cap with a fixed aperture for the player to blow
through. Some believe that a standing wave can be set up in the cap, and that this can
contribute to the tone [50]. In support of this, the author has had a related experience
with a tenor Schrierpfeife, a windcapped instrument whose lowest note is a C’. When the
instrument is cold, it plays well throughout its lower register; the lowest notes are stable
and strong. When it becomes warm and moist, it begins to demonstrate an unfortunate
resonance somewhere between C and D when C is fingered, and between D and E when D is
fingered. This resonance is not only out of tune, but it has a choked, muffled quality, consis-
tent with it being inharmonic with the natural resonances of the instrument. Nonetheless,
it tends to dominate over the much clearer proper tones, and the instrument has at times
been rendered useless. The insidious resonance cannot be obtained with the windcap off;
playing on the open reed always produces the clean proper tone. This indicates a clear
contribution on the part of the windcap (although one might argue that the additional

damping caused by playing the open reed, and not the removal of the windcap air cavity,
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eliminates the resonance). An additional piece of information is the way the resonance is
combatted by different musicians. One succeeds by puffing his cheeks out “Dizzy Gillepsie”
style. Another (this author), takes pains to start the note softly and focus the air a bit “from
the top”. Another almost never encounters the problem and has difficulty understanding
the complaints of her colleagues. Still another conquers the >prob1em by refusing to play
the instrument. Clearly each of these performers has a way of dealing with an instrument
that offers relatively little opportunity for player control. The connection appears almost
indisputably to be the combined effect of embouchure and windcap on the internal standing

wave pattern.

This conclusion should be taken with a grain of salt, however. D. H. Smith has pointed
out that the bottom vent hole on the instrument, which comes into play only for the lowest
notes, could well be misplaced, so that the resonances for those notes were not aligned in
the first place. The varying compensation used by the different players may simply point
to the normal variation in the way different people combat instrument deficiencies. Some
experimentation with the effects of the windcap would be useful here, and could provide

important data on the influence of the upstream pressures.




Chapter 3

Digital Modeling of the Reed
Woodwind

Chapter 2 presented a primarily qualitative discussion of the acoustic workings of the reed
woodwind, and sought to lay a somewhat intuitive foundation for the theory. This chapter
takes a more mathematical approach, providing both the specific theoretical background

and the modeling equations for the woodwind simulation.

The ultimate purpose of the model developed here is to provide a realistic computer-
generated simulation of a reed woodwind instrument. Not only should it be capable of
sounding genuine, but it should offer the musician a genuine interface that allows him the
kind of control available on an acoustic instrument. This realism is a starting point. Un-
fettered by the physical constraints of a conventional instrument, the musician can vary
parameters formerly unavailable to him, or at best fixed for a given performance. But
even these “unphysical” variations should be associated with a physical reality; their effect
should be the same as it would be on a physical instrument could the musician control, say,

reed stiffness, as easily as he controls reed damping or input pressure.

On the flip side of the need for acoustic realism is the liberty to discard from the model
acoustically insignificant details. A twelfth-order transmission filter may be more accurate
than a second-order filter, but if the ear cannot discern the difference between the two,
then the difference does not matter. The limited perception of the human ear can greatly

simplify the computational requirements of an acoustic model.

94
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3.1 Frequency versus Time Domain Modeling

The term simulation usually implies a time domain model, while the term synthesis gener-
ally refers to the frequency domain (although it is often applied as well to sampling, which
is technically in the time domain). The first choice one must make in developing a model
is whether to design in the frequency domain or the time domain. Each has its advantages

and disadvantages. This section examines the essential elements of each approach.

3.1.1 Frequency-Domain Synthesis

In this day and age, most people are implicitly familiar with frequency domain music syn-
thesis, the source of the majority of “electronic” sound. Most musicians are in general also
familiar with the concept of overtones and resonances, if in an intuitive rather than a math-
ematical sense. In addition, much audio research is in the frequency domain, and physical
explanations for acoustic behavior — cutoff frequency, harmonically aligned resonances, etc.

— exist in that domain.

Until recently, all synthesizers used some sort of frequency-domain model to represent in-
struments. In the earliest versions, the characteristic set of overtones were constructed using
additive synthesis, which requires a separate generator for each harmonic. The converse
approach is subtractive synthesis, which requires the generation of only one waveform, such
as a square wave. Subsequent filtering produces the desired spectrum. Some state-of-the-
art synthesizers, such as the Yamaha X-series, use John Chowning’s Frequency Modulation
(FM) synthesis technique, which can synthesize complex waveforms using only two compo-
nents, the carrier and modulator signals. [15] [14].

And yet, the frequency domain approach has a considerable drawback; it assumes the steady
state. Time and again it has been demonstrated that, while the steady state behavior forms
the backbone of a perceived tone, the transients — the attack and decay, the fluctuations
— truly define it to the human listener. Psychoacoustic experiments have shown that
people often cannot identify the contributor of many steady-state tones even if the spectral
implementation is perfect [52]. For this reason, modern synthesizers must tack on samples of
attack and decay to a looping steady-state section. In addition, synthesizers can add vibrato
(although technically a frequency-based phenomenon, vibrato is perceived as a time-varying)
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to help define the tone to the human listener. These time-domain enhancements are not

merely embellishments; they are necessities.

Another problem with frequency domain modeling is that it is neither physical nor modular.
The model begins with the end result, the emitted tone. One cannot easily model different
components and connect them in a meaningful way, and an evolutionary construct is difficult

to come by.

Finally, nonlinear effects cannot be easily described in the inherently linear frequency do-
main. The results of these effects are frequency-based; this paper often makes reference
to regimes of oscillation, mode locking, reed and instrument resonances, coupling, and
impedance, all at least partially in terms of their spectral descriptions. But these descrip-
tions are after the fact; the model, the coupling, the interactions, are all executed in the
time domain. Just as the musician plays his instrument and compensates for errors in the
time domain, but assesses his results partially in the frequency domain, so must a good sim-
ulator program be allow the user to move freely from one domain to the other, to evaluate

and improve on his output.

3.1.2 Time-Domain Synthesis

An alternative to frequency domain synthesis that is currently enjoying much popularity is
the sampling approach. Sampled sound is simply digitally recorded sound, stored at various
pitches in a wave table. Ideally, there is a sound sample for every pitch of the instrument
being “synthesized”. In reality, sample rate conversion can be used to interpolate between
more widely spaced pitch samples. Crossfading serves to splice attacks onto steady state,
merge between pitch samples, and accomplish other temporal tasks. Memory requirements
are naturally sizable. Even more so than the frequency synthesis, sampling is a “black box”
approach. The musician is constrained to the particular instrument that was sampled. He
does not have the freedom even to modify the spectrum as he did with true frequency

synthesis. The results are very realistic, but very inflexible.

On the other end of the time-domain spectrum is physical modeling and simulation. Al-
though time domain simulation has been used as a tool for analyzing acoustic behavior since
the 1960’s, it has not yet entered the realm of real-time synthesis. Unlike the relatively effi-

cient frequency domain synthesis, time simulation is very computationally expensive. The
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earliest simulations required days for a few seconds of data — in 1979 Stewart and Strong
[70] reported a real-time ratio of 250,000 to 1, or 67 hours per second of simulation. Even
today, only the simplest models can be used in a truly interactive manner. As computer
technology develops, and machine speed accelerates, the possibility of using time-domain

synthesis is becoming viable.

One of the major strengths of the time domain is also one of its greatest potential drawbacks
— its ability and its need to incorporate physical models. No longer is the sound behavior
of the instrument alone enough to characterize it. The time domain simulation developer
must understand the inner workings of the “black box”. Every degree of freedom has its
price. Omit an important component, and the synthesized sound will lack. Just as the as-
piring musician learns to adjust nonintuitive physical parameters to enhance his sound, the
modeller, and the musician who will eventually play the model, must learn how the different
components of his simulation relate to his output. This is a much less straightforward path
than adjusting a harmonic or tacking on an attack sample. The creation of truly realistic
sounding time-synthesized sound relies upon accurate knowledge of how the system works
mathematically; unfortunately, much of the experimental research necessary for the devel-
opment of a comprehensive model has simply not yet been performed. Many assumptions
common throughout the literature are being refuted in new experiments. Hirschberg has
stated explicitly that no one really understands what makes a double reed function, and his

is the most recent work to date.

The time domain approach is the course taken for this research. Specifically, this paper
investigates the use of waveguide digital filters an efficient, modular modeling approach, in

incorporating various understood features of the sound generation process.

3.2 Digital Waveguide Bore Model

The previous chapter described the physical characteristics of the air column contained
within the bore of a woodwind. To summarize, this air column has the following salient

features:
e Essentially linear behavior;

e Supports compression waves traveling in both directions at the speed of sound;
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e Frequency of oscillation dependent on length of air column;

e  Partially reflects waves at impedance junctions. Reflections will invert at open ends,

but not at closed end;

o Highpass transmission, lowpass reflection at junctions where the impedance drops,

such as at toneholes and the bore terminus;

e  Ability to couple with a nonlinear element such as a reed.

This section develops a mathematical model which will reproduce these features.

3.2.1 The Wave Equation for Lossless Propagation

The first step to developing the model is to state the fundamental equations of planar, that
is, one-dimensional, lossless wave propagation. This discussion is taken from [41], [46] and
[47).

The wave variables for an air column in an acoustic tube can be defined as p, the pressure,
and u, the volume velocity. If A represents the cross-sectional area at point z, and p
represents the density of air, than the familiar force = mass x acceleration relationship,

which implies conservation of momentum. :an be written as:

dp(z,t) —_ Ou(z,t)

Al =5, P~ 5

(3.1)

Conservation of mass is implied by the equivalence of the mass outflow to the change in
density, § [47]:

4@ =~ [(p+ 6] = ~(p+ 5 o2 — u S (3.2)

For adiabatic compression, the change in density can be related to the change in pressure

by the approximation [46]:

P (3.3)
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where 7. is the specific heat ratio, generally equal to about 1.4 for air, and P, is the ambient

pressure.

It turns out that the speed of sound through the medium, c, can also be expressed as a

function of v, and Pp:

c= /120 (3.4)
p
or

Ypo = pc? (3.5)

Then the pressure/density relationship becomes:

1
6= p_c2p (3.6)
Substituting into 3.2:
A(z)0p _ ( P )au u Op
pcz ot + pct)dz  pc? oz 37

Eliminating second order terms, canceling p, and exchanging sides yields:

pBu(z, t) _ _A(z) 9p(z, 1)

Oz c2 5t (38)
This is the continuity of mass equation in [41].
Equations 3.1 and 3.8 can be combined to yield the Webster Horn Equation :
9 [ 1 Bu(a:,t)] _ 1 (s, (3.9)
0z |A(z) 90z | c2A(z) ot2 ’

In a cylindrical tube, the cross-sectional area is constant, and A(z) can be simplified to A,

which then cancels itself out. Equation 3.9 reduces in this case to:

%u(z, ) _ ia2u(z,t)
or?2 2 o2

(3.10)
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Similarly for pressure:

32p(2:,t) - l 82p(z,t)
Oz2 ¢z 0ot?

(3.11)

These equations can be satisfied by decomposing the waves into their right and left-going
components. Recall that this decomposition was described in the previous chapter for the

purpose of justifying the boundary conditions affecting wave reflection. The pressure and

flow functions now become:

p(z,t)=pT(t—z/c) +p (t+z/c) (3.12)

u(z,t) =ut(t—z/c)+u (t+z/c) (3.13)

where the two components of each are the right and left-going waves respectively.

The solution to the wave equations above then takes the oscillatory form:

p=pt +p = Pfe*=t) 4 pyetk(atet) (3.14)

With the left and right-going formulation, the momentum conservation equation 3.1 can be

rewritten as:

dp*t(z,t)  Op~(z,t)| _ Out(z,t)  Ou(z,t)
A(z) 2wt | T Tt e (3.15)
Since the time taken to travel distance x is linked to the speed of sound:
At= Bz (3.16)
c
the time and spatial derivatives of the components are similarly related as:
oft+z/c) of(txz/c)
m = (—-c¢) % (3.17)
afit—zfc) Of(txz/c)

5 = (c) % (3.18)
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Using this in equation 3.15, and dividing through by A to get all constants on the right
hand side:

ot (@,1) 6p_(z,t)] _pe [au+(x,t) _ Bu(z,1) (3.19)
oz '

oz A oz oz

This same result can be obtained through similar manipulation of the mass conservation
relationship in equation 3.8. Now the constants on the right hand side of the equation can

be grouped into one constant, R:

R=%= VerPy (3.20)

A

Examining again the relationship in equation 3.19, we see that R relates pressure to flow.

Simplifying for a unit section, we have:
+ _
pT==xRu (3.21)

This expression is almost identical to the impedance relationship first presented in Chapter
2. This term R is in fact defined as the characteristic impedance , or, more appropriately, the
characteristic resistance , of the air column. Whereas the input, or acoustic, impedance
discussed in Chapter 2 was a complex quantity, the characteristic impedance is always
real and positive (the complex acoustic impedance at a point is often normalized by the

characteristic impedance to form the specific acoustic impedance).

One subtlety in equation 3.21 is sign reversal for the left-going wave. This is because of
the flow direction implied by a rarefaction or compression, as illustrated in 3.1. Flow will
always head into a compression, and away from a rarefaction. Because the right going and
left going flow will accordingly travel toward the same pressure antinode, where the flow
goes to zero, the sign of the left-going flow wave must be opposite that of the right, or,

equivalently, opposite that of the pressure.

3.2.2 Impedance and Acoustic Circuits

Chapter 2 discussed the parallels between wave propagation along a string and in a tube, and

the complementary relationship between pressure and flow wave. In fact, there are many
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Pressure —l

Figure 3.1: Flow associated with a compression wave

other wave propagation phenomena in nature. All exhibit essentially the same mathematical
behavior. All have the dual relationship between a force variable, such as pressure, and
a flow variable, such as volume velocity. Shearer et.al. categorizes these variables even
more generically in [59]. The through variable is represented in an absolute sense by, for
example, flow or current. It has the same value at the two ends of an element, satisfying
mass conservation. The across variable is represented in a relative sense by, for instance,
pressure or voltage drop. The across variable represents a potential which can change across
an element. Once the through and across variables of any dynamic system have been defined,
that system can be distilled to a generic network containing elements and variables with
well-known relationships. The physical particulars of the system are no longer important.
For this reason, the well known Kirchoff’s Law and Ohm’s Law, developed for electrical

systems, apply equally well to acoustic, thermal, or mechanical systems.

The conditions satisfied by Kirchoff’s laws are those of compatibility and continuity. The
compatibility constraint requires that the across variable be the same for all ports of a
junction, as represented by Kirchoff’s Voltage law. Figure 3.2 illustrates a mechanical
system, whose across variable is displacement, or actually, velocity. It is easy to see that
the displacement Zj,mper must be equal to the Z,pring, regardless of the particulars of
damper and spring. The same is true for the equivalent electrical system in Figure 3.3. The
voltage drop across section A must be the same as that across section B. This implies that

the total voltage drop around a loop must be zero.

Kirchoff’s current law satisfies the continuity constraint, which requires that the through
variable be conserved. In Figure 3.2, this implies that, while the force Fy can be distributed
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Figure 3.2: Typical Mechanical System
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Figure 3.3: Typical Electrical System

unequally between damper and spring, the sum of the two components Faamper and Fspring
must equal Fy. In the electrical example, the current must be conserved, so that the currents

flowing through loop A and loop B sum to the current supplied at point I. Restating, the
through variables must sum to 0 at a junction.

Finally, Ohm’s Law for electrical circuits states the relationship between through and across
variables in terms of resistance (there is also an entirely different acoustic Ohm’s Law which
states dependence of sound perception on relative harmonic amplitude rather than phase
[24]). Extending the purely dissipative resistance to the complex, frequency-dependent

impedance term Z, we have again the relationship:
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Z = Through/Across (3.22)

These generalized relationships can be restated for an acoustic system, where the through

variable is flow and the across variable pressure:
e The acoustic pressure drops around a loop must sum to zero;
e The airflows entering a junction must sum to zero;

e The pressure is related to flow by: P = ZU.

Most acoustical studies have involved the reduction of the system into this sort of acous-
tic circuit. Some, such as [57], have attempted to create specific electrical analogs for
each acoustical element, by transforming air inertance, compressibility, and dissipation into
equivalent inductance, capacitance, and resistance. While this places the problem in a more
familiar realm for the electronically oriented, it removes some of the physical sense of the
system. A more general approach is to model the system purely in terms of its generalized
impedance, rather than by a point-for-point analog. This is the avenue taken by waveg-
uide / transmission line theory. Not only is it simpler conceptually, but it allows elegant
mathematical modularity and efficiency.

3.2.3 Reflection Functions and the McIntyre Woodhouse Model

One of the cornerstones of the waveguide technique is the use of reflection coefficients . The
reflection terms directly model the physical consequences of impedance changes, that being

the partial reflection / partial transmission of a wave at a junction.

The groundbreaking work of McIntyre, Schumacher, and Woodhouse, documented in [43]
and [58] introduced the concept of formulating the acoustic model by separating the right
and leftgoing waves. In their simulation, which was intended as an aid in studying and
quantifying acoustic behaviour, the use of reflection functions was vital for reducing the

computational load.

Traditionally, linear time-invariant (LTI) dynamic systems are characterized by their im-

pulse response, or Green’s function. If the clarinet response is represented by g(t), the
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mouthpiece pressure by p(t), and the air volume velocity by u(t), then the equation for

mouthpiece pressure, following [58], is the convolution integral:

p(t) = /0 (¢ )ult — ¢)dt = g+ u (3.23)

Because of all the internal reflection which bounces the wave back and forth, the impulse
response g(t) takes some time to decay, and therefore has many terms. This causes the

above equation to be quite computationally intensive.

A more fundamental, more compact, dynamic term is the reflection that occurs at the clar-
inet bell (this simple model does not include toneholes). As we have seen in the discussion
of cutoff frequency in the previous chapter, the bell acts as a lowpass filter. An impulse,
which contains in theory infinite bandwidth, will be reflected as a finite bandwidth hump;
in the time domain, this implies that the impulse reflection is smoothed, or “temporally
smeared” in the words of [43], as shown in Figure 3.4. The reflection function, r(t), is
simply the impulse response of the equivalent lowpass filter. Note that r(t) decays much
more rapidly than did the total system impulse response, g(t).

Figure 3.4: Reflection of an impulse in a clarinet (after McIntyre and Woodhouse)

The left-going wave, i.e., the reflected wave, is the result of the convolution of the right-going

wave with the reflection function:
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pilt) = /0 " (@ )polt — t)dt = po(t) + (2) (3.24)

Because the reflection function decays quickly, this integral is computationally much easier

to evaluate than that in equation 3.23.

For his reflection function, McIntyre [43] chose to use a simple time-domain Gauss function

which approximated a cylindrical tube without toneholes:

r(t) = {ae_b(t—T) » (220); (3.25)

0, (t<0)
In his related additional work, Schumacher [58] chose to define the reflection function in
the frequency domain, R(w). The relationship between R(w) and the associated tube
impedances can be derived by examining the pressure/flow relationships at the reed/bore
junction. Following the discussion of McIntyre, the flow and the pressures are related at
the reed by the real characteristic impedance, Z,:

Zeu(t) =pt(t) —p~(2) (3.26)

The total pressure is the sum of right and left-going waves, as described above:

p(z,t)=pt(t—z/c)+p (t+z/c) (3.27)

At the reed, z = 0, so this simplifies to:

p(t)=p* () +p~(2) (3.28)

Eliminating p* in equations 3.26 and 3.28, and substituting the resulting term for p” in
3.24:

2% () = r(t) * {Zcu(t) + p(t)} (3.29)

Again from equations 3.26 and 3.28, the total pressure p can be expressed as:
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p=2p%(t) + Zeu (3.30)

Combining;:

p=r(t)*{Z.u(t) +p(t)} + Zcu(t) (3.31)

This is the equation implemented by McIntyre. In the frequency domain, using the convo-

lution theorem, equation 3.31 transforms to:

P(w) = RW){Pw) + Z.U(w)} (3.32)

Solving for the reflection function, R(w):

_ P(w) - Z.U(w)

M”“Hm+awm

(3.33)

At this point, we can define the complex acoustic impedance, Z,, with the standard

impedance ratio definition:

zmn=%% (3.34)
Equation 3.33 now becomes:
_ Za(w) = 2,
R(w) = ADFYA (3.35)

A similar result can be found at the terminating junction. In his derivation, Schumacher
replaced impedance with admittance, Z = 1/Y, so that at the bell:

Rw) = B=Y )

where Yj is the characteristic admittance (i.e., the reciprocal of the characteristic impedance
discussed above), and Y (w) is the complex input admittance, which Schumacher calculated

using the one-dimensional Schrédinger wave equation.
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Taking the Fourier transform of R(w) yields r(t), the reflection function in the time domain:

r(t) = 51-7; T w)etdw (3.37)

—00

The preceding formulation was a physicist’s approach to analyzing acoustical behavior. The
purpose of the simulation was to better understand the workings of the clarinet, but not
to replicate it. McIntyre’s comment on the procedure indicates much about his perspective

(italics mine):

“Indeed, if the convolution integral were done by hardware using integrated circuits available
for the purpose, and the remaining programming done as efficiently as possible in assem!

language, a fast minicomputer could produce results at a cycle rate in the audible rar,,. .
The result would perhaps have some novelty: an electronic musicai instrument based on a

mathematical model of an acoustic instrument. ”

3.2.4 Waveguide Digital Filters

The concepts employing right and left-going waves along with reflection functions to rep
resent wave propagation through impedance junctions, introduced by McIntyre and Wood-
house to model musical instrument behavior, extend easily to a filter architecture known as
the Waveguide Filter (WGF). This approach has been developed extensively by Julius O.
Smith, and much of this section follows directly from a compendium of Smith’s WGF work
in [64].

History

The term filter is generally used to denote any medium througix which a substance may be
passed and operated upon. For example, liquid or gas filters can be used to purify incoming
material by separating components. A color filter can separate spectral components of li:ht
by selective absorption. In electronic or digital systems, filters are used for shaping an inj. at
signal, either through their frequency-dependent amplitude response, such as for lowpass
or bandpass filtering, or phase response, such as for communication channel equalization.

These filters are usually time-invariant and linear, with fixed phase and amplitude response.
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Although originally conceived for the purpose of signal shaping, the filter definition in digital
systems has been extended to any network which produces some desired system response
to a defined input. In particular, it can be applied to networks constructed to implement a
mathematical model of a physical system. In this case, the filter represents a simulation of
a real system or plant, and is designed with the intention of duplicating the input/output
characteristics of the plant. Feedback control systems frequently rely on such models to
shape their response to errors. Because plant characteristics are seldom time-invariant,
neither are the filters designed to model them. Self-adapting filters, such as Kalman filters
and all forms of adaptive filters have the capability of adjusting their own parameters based
upon some feedback error measure. However, these operate under the assumption that the
coefficient changes will be very slow. After an initial convergence period of rapid change,
the filters are expected to be “quasi-static”, i.e., seemingly time-invariant with respect to the

filter impulse response. Should rapid changes occur, performance degradation can result.

One problem with conventional filters is that, while they can be used to model the in-
put/output behavior of physical systems, their forms often bear little resemblance to the
reality which they represent. These filters are usually designed in the frequency domain, to
reproduce the resonances and damping, or poles and zeros, of the modelled plant. In their
time domain forms, they have little meaning. Even if an “acoustic circuit” of capacitor,
inductor, and resistor equivalents are set up, the resulting parameters are not intuitive, and
cannot be varied in a physically meaningful way. Also, because the implementation is a
digital realization of a continuous system, there is an implicit continuous-to-digital mapping

which can be exact at only a limited set of frequencies.

The Waveguide Digital Filter structure was enlisted to combat the above problems by mod-
eling physical wave propagation directly. The WGF was not the first filter structure used
for this task. Fettweis developed the Wave Digital Filter , which combined the notion of
wave variables and scattering layers with the use of equivalent circuit elements [23]. Markel
and Gray, in their work on speech synthesis in [41], introduced the use of the “normalized
lattice filter for simulating the properties of the “acoustic tube”. These employed cascades
of equal length cylindrical tubes, each with its own unique diameter and corresponding
characteristic impedance. As we have have seen in earlier discussions of wave propaga-
tions, scattering would occur at each junction according to the ratio of impedances. While

computationally stable, this formulation had two disadvantages: 1) it required a perfectly
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reflecting (and therefore nonphysical) termination, which limited its modularity; and 2) it
was computationally intensive, requiring four multiplications per pole, as opposed to the
one multiplication per pole necessary for a one-multiplier lattice filter. Smith has extended
this work to the WGF, by creating a highly modular, computationally efficient and stable,

framework for acoustic modeling [64].

Description / Advantages

The Waveguide Digital Filter is a network of component waveguides, or transmission lines,
which represent the medium through which waves can propagate. Again, following Smith

in [64], it has the following features:
¢ Designed in the time domain to realistically simulate acoustic wave propagation;

e Component waveguides are cylindrical sections with fixed characteristic impedance.
At this fundamental level, the flow and pressure is in phase and the impedance is

real and positive, which is very convenient;

e Component waveguides support both right and leftgoing waves, using the wave

propagation rules discussed above;

e  Lossless scattering is implemented at junctions between sections, based on scattering

coefficients which have been computed from cross-sectional area;

e  Waveguide networks follow the laws of continuity and compatibility discussed in the

previous section;

e Any waveguide network may be connected to another network, or terminated by

some other sort of filter;

e W{PF’s are linear, finite-order, and recursive. In special cases they reduce to NLF

form.

The following section will discuss these features in more detail. The advantages of the

WGF, based upon the basic description above, include:

e Precise, physically meaningful representation of the plant. Time-domain design
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obviates digital-to-continuous mapping. Parameters can be varied in a realistic
manner. This is a necessity for a musical instrument with an interface to a live

performer, who will want to use intuitive gestures for controlling the musical output;

e Computationally stable. The inherent stability is a strength of normalized lat-
tice/ladder filters in general. Because they have unity power gain at each node,
there can be no overflow within a stable filter, and consequently, no zero-input over-
flow oscillations. With magnitude-truncation arithmetic, which guarantees that the
signal will never by increased by rounding, there will be no zero-input limit cycles.

In addition, the roundoff noise properties are good;

e Algorithmically stable. This is also a feature of all normalized lattice filters. As long
as the input signal is bounded, and the reflection coefficients are less than unity, the
filter will be stable;

e Extremely modular. Components can be combined in series or in parallel, junctions
can have any number of ports, with no sacrifice in stability and power decoupling.

This allows instruments models to “evolve” easily;

o Because the WGF reduces in certain cases to the NLF, it can be analyzed and

manipulated with time-honored NLF techniques.

These advantages are particularly important for the application of WGF’s to the modeling
of musical instruments. Smith points out other more general advantages in his discussion in
[64). In particular, Smith covers the n-dimensional waveguide, with arbitrary connections
and m-port junctions. The treatment here will be limited primarily to the 2-dimensional
waveguide, which adequately models the propagation of waves through a linear medium

such as an acoustic tube.

Basic Waveguide Section

The components of the WGF are, as suggested above, extremely simple. The basic waveg-

uide section, taken again from Smith [64], is illustrated in Figure 3.5.

e The characteristic impedance of the section, Zs, is based on its cross section.
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Figure 3.5: Waveguide Section (after Smith)

o Right and left-going waves propagate from, respectively, adjoining sections with

impedances Z; and Zs.

e  As the right-going wave, Pj'(t — T), reaches the 1-2 junction, it partially reflects
back through section 1, according to the impedance ratio.

e  The portion which is transmitted, Pyt (t), is scattered again at the 2-3 junction. The
reflected portion here is superimposed on the left-going wave, Py (t 4+ T'), which is

taking a similar route from section 3.

e The waveguide section represents one time delay, T'. Its “length” is correspondingly

cT', where ¢, as always, is the speed of sound.

Note that these steps are essentially the same as those discussed earlier for wave propagation.
This arrangement can be represented by Smith’s simulation flow diagram in Figure 3.6.
Here, the transmission gains are represented by g; and the reflection gains by p;. The

traversal time delay, T, takes the form z=7T.

We now have a system characterized by a network of simple sections and junctions, which
can be described completely by the set of transmission and reflection gains. In fact, the
next section will show that this set of gains — four per section — can be distilled to one

reflection coefficient, p, which characterizes the junction.
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Figure 3.6: Block Diagram of a waveguide section (after Smith)

Scattering Equations

The manipulation rules from which the basic waveguide equations derive are the same as
those discussed earlier for wave propagation - the pressure/flow/impedance relationship,
continuity, or conservation of mass, and compatibility, or conservation of energy. Restating

and simplifying from earlier sections:

e  Pressure/Flow/Characteristic Impedance

Pt =2zUt (3.38)
P =-ZU~ (3.39)

where P¥ is left/right-going pressure in the ¢’th section, UZ is left /right-going flow in the

1’th section, and Z; is the characteristic impedance of the 7’th section;

e Decomposition into Left and Right-going Waves

P,=Pr+P" (3.40)
U;=Ur+07 (3.41)

where P; and U; are the instantaneous pressure and velocity in section #, with respect to

both space and time;
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e Conservation of Mass and Energy (Continuity across a Junction)

Pi—1(cT,t) = P,(0,1) (3.42)
Ui-1(cT,t) + U;(0,t) =0 (3.43)

The continuity equations can be modified by noting the relationships in Figure 3.5. By
definition in this figure, the pressure at the entrance to a section, that is, the extreme right

where z; =0, is:
Pi(0,t) = PF(t) + P/ (%) (3.44)

Ui(0,) = U (1) + U7 (t) (3.45)

Similarly, at the extreme left of a section, where £ = ¢T and T is the time required to

traverse a section:

Pi_y(cT,t) = P (¢~ T) + Py (¢ +T) (3.46)
Uii(cT,t) =UF,t—T)+ UZ,(t+T) (3.47)

Then equation 3.43 can be rewritten as:

0=Ur,t-T)+U_,(t+T)+U(t)+ U (2) (3.48)

For the sake of brevity, the ¢ arguments will be dropped for now, remembering that:

i =t ?‘_1=>t—T; 1 =>t+T; (3.49)

Simplifying equation 3.48 in this manner:

0=Ur,+UZ,+ U+ U7 (3.50)

In order to put this in terms of pressure, we can use equation 3.39, and define the admittance
Y =1/Z. Then:
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0=Y;. P, -Yi P ,+Y:Pt -Y.P~ (3.51)

t

Again from equation 3.43, the pressures P;_; and P; must be equal to each other. Defin-
ing Py as this junction pressure, using equation 3.41 to eliminate the right-going wave

components for now, and solving for Py:

Yio1Po, + YiP,

P;=2 3.52
7 A7 (3.52)
Again using equation 3.41 to reintroduce P+ and eliminate Pj, and solving for P,-"':
Y P +Y: P
PFr=2 =1 73 3.53
! Yioi+Y; ! (3.53)
Y1 P P (~-Y;.1+Y)
Pr=2 e : 3.54
' Yiai+Y; Yia+Y; (3.54)
We can now define the reflection coefficient , p;, as:
YooY _ Zi—-Zi-
;= L = 1 (3.55)

P Yi4Yia  Zi+Zia

Using a similar procedure to derive P;_,, and bringing the ¢ arguments back in, we get the

scattering equations:

Pr(t)=[1+p@)) Pt (t—T) - pi()P7(2) (3.56)

PZy(t+T) = p(t)PLy(t —T) +[1 - ()] P7(2) (3.57)

Figure 3.7 illustrates the implementation of these equations. This configuration is known as
the Kelly-Lochbaum junction. Note that, as promised, the set of four transmission reflection
gains for each section can now be characterized by a single reflection coefficient. Again, these
apply to the simplest 2-port junction. Smith provides the more general equations in matrix
form in [64].
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Figure 3.7: Kelly-Lochbaum Scattering for a 2-port Junction (after Smith)

Cascaded 2-Port Waveguides

The final element necessary for connecting the sections defined above to form a complete
filter is the sample delay, denoted in conventional signal processing nomenclature as z~7T.
This represents the transit time across one section. These sections can now be linked as
illustrated in Figure 3.8, taken from [64]. Figure 3.9, taken from the same source, depicts
the same system in classical ladder/lattice structure. It can be shown that the two are
equivalent; the delays can be “pushed” around the loop so that they are limited to the
“lower rail”. From these two structures, we can see the advantages of Smith’s approach.
The ladder structure has only half the number of delays, which may be more computationally
efficient. However, it no longer internally represents the physical wave propagation of left
and right going waves (although the input/output is identical). Also, it must have a purely
reflective termination, which, as we shall see, precludes the possibility of a realistic radiation

model.

Py*() P2*()
Po*(t)—s] STHeee—s
840 S,
Pyl =— -—.-—.T -—.o—'-T o —i
° Py) Py ’

Figure 3.8: Waveguide Filter Structure (after Smith)
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Figure 3.9: Normalized Ladder/Lattice Structure (after Smith)

Signal Power and Junction Passivity

Waveguide sections constructed in the above manner have an instantaneous signal power

(P) of:

PH(t) = PF(t)UF(t) = [P"+(t)]2 3.58
(t) = i(t)i(t)—T(t) (3-58)
2
- g~ [P i_(t)]
Pr(t) =P (U7 (t) = 70 (3.59)
Pi(0,t) =P*(t) + P (¢) (3.60)

For the 2-port WGF network defined above, Smith shows that power is conserved by sum-

ming the ingoing and outgoing power components:

2
P2y RU; (3.61)

i=1

Since the pressures, P;, seen by all contributors must be equal:

P;(0,t) = P [Ui—1(cT, t) + Ui(0, )] ' (3.62)

But from equation 3.43, the flows within the brackets must sum to 0. Then:

P;(0,) =0 (3.63)
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Thus, power is conserved, and the junction is, ideally, lossless.

An important power-related issue is computational stability in the presence of numerical
errors due to rounding. In this case, equation 3.43 may not be exactly satisfied. However,
Jjunction passivity can be assured if the incoming power always bounds the outgoing power,

i.e.:

|Pi-1(cT, )| 2 [P:(0, 2)]| (3.64)

For the waveguide, we can denote P as the finite-precision form of the ideal P. Using
the definition of signal power in equation 3.60 with the passivity requirement leads to the

constraints:

|BF (1) < |PF (@) (3.65)
|BE (¢t +T)| < |PE (¢ +T))| (3.66)

This is equivalent to requiring that rounding always be implemented as a trunction toward

Zero.

Implementation Issues

The above equations present the basic waveguide representation of the acoustic tube. These
can be reformulated for more efficiency, and for other computational benefits. Salient mod-

ifications suggested by Smith include:

e Reconstruction of the Kelly-Lochbaum junction, which requires 4 multiplies and
2 additions, into the one-multiply scattering junction, which entails 3 additions.
This can be more efficient computationally. In addition, it reduces the number of

multiplicative error sources to one.

e Formulation of the “half-rate waveguide filter”, which lies between the WGF and
ladder structures described in Figure 3.8 and 3.9 above. This structure com-
bines the reduction in delays with the extendibility of the full-rate WGF. It is still,
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however, conceptually a step away from the wave propagation being modelled.

e  Power-normalizing the filter, which implies that the signal power in a section will
be fixed, regardless of characteristic impedance. Smith suggests several methods for

accomplishing this:

1. Normalizing the waveguide by scaling the wave down (or up) at impedance
junctions (specifically, at the delay line outputs) according to the square root of
the impedance ratio. This conserves signal power, but introduces two additional
multiplies per second. Also, a change in characteristic impedance entails a change

in the reflection coefficients of both the affected section and its neighbors;

2. Propagating rms-normalized waves by modifying the reflection coefficients. Al-
though this approach is not more costly in the conventional Kelly-Lochbaum struc-
ture, the resulting scattering cannot be reduced to the one-multiply form. How-
ever, it makes transforming between duals (e.g.,pressure and flow) much easier,
because the reflection coefficients will be the same for both. Changes in charac-
teristic impedance in a section will be isolated to the reflection coefficients of that

section, rather than propagating to its neighbors;

3. Using transformer-coupled waveguides. This technique implements the normal-
ization gains just at the entrance (left-hand side) of the section. This allows the
one-multiply scattering junction to be used, but retains the advantage of isolated

characteristic impedance / reflection coefficient changes.

3.2.5 Adaptation of the Waveguide to the Reed Instrument Model

So far we have defined a two-dimensional cascaded waveguide filter with undefined termi-
nators. This filter can now be applied to an acoustic model of the woodwind bore similar to
that discussed in previous sections. The terminators will represent, at one end, the power
input provided by player through the reed, and at the other end, the radiation of sound
from the bell and toneholes. Just as described in Chapter 2, the combination of bore and
bell forms a resonator which will couple nonlinearly with a generator, the reed model. The

remainder of this section discusses the waveguide construction of the woodwind resonator,
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which could be extended to any wind instrument regardless of generator type. The follow-
ing section will treat the reed generator model, which we will see can be formulated as a

time-varying reflection coefficient.

The Bore

The acoustic tube model represented by the WDF is in itself an accurate depiction of
the bore of an instrument. In the simplest case, the cylindrical bore with no toneholes,
there is a constant cross-sectional area, and therefore impedance, throughout the bore.
The waveguide then reduces to a simple pair of delay lines, representing right and left-
going “rails”, as shown in Figure 3.10. The length of the delay line depends upon the
fundamental frequency of the desired note. Recalling that, for a cylindrical bore, the period
of the oscillation is equal to 4 times the borelength, the number of delays required, nq can

be computed as:

Ws

= dwy

ng (3.67)

where wy is the desired fundamental frequency w;, is the sampling frequency.

~1|1|41]|,-1 |j0oe|,-1],-1
mput | o 2]z |z Bl | Outout
— O b -
Model Model
Breath Af1] 1, -, Sound
Pressure iz |z (el 2

Figure 3.10: Reduction of WGF to a simple delay line for a cylindrical bore (after Smith)

For example, with a 22050 Hz sampling frequency, typical in sound applications, the precise
“length” required for the standard A440 is 12.53, or somewhere between 12 and 13 delay
lines. Note that this number is very small, and that errors due to integer trunctation will
be appreciable, particularly in the upper harmonics. This problem can be countered in a
number of ways. One would be to increase the sampling rate. The sampling rate, however,
is often fixed. The NeXT computer does offer a higher sampling rate of 44100 Hz, which
would double the length of the delay line. However, this is at the expense of doubled storage
and computational requirements. The delay line can also be doubled in length by dropping
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the note an octave, i.e., halving its frequency. This is the option selected for the studies here,
and in fact, well matches the chalumeau register of the Bb clarinet. The lower tone turned
out to be the better choice from the standpoint of researcher comfort as well; the higher
tone was more annoying to listen to. This was particularly important for the register hole

experiments, which raised the fundamental by a 12th, or 2.5 times the original frequency.

It turns out that this computation will yield only an approximation of the desired frequency.
The presence of the reed should, as Chapter 2 stated, lower the sounding frequency. In
addition, the bell model, which will be discussed shortly, can introduce a significant amount

of phase lag, and correspondingly, a flattening of the pitch.

A conical bore is much more complicated, because it entails a continuous change of cross-
section. This can be modelled in waveguide form by using a “finite-element” approach,
cascading a series of cylindrical sections, each with increasingly large cross-section. Fig;
ure 3.11 illustrates the conical bore in sampled form. For an accurate representation, the
length of a single section should be shorter than the wavelength of the highest frequency

oscillation expected.

|'° rnj
fﬁ —_—

e

Figure 3.11: Representation of a conical bore as a series of cylindrical waveguide sections

In {18], Cook modelled the conical bore of a saxophone in this manner. He calculated the
cross-sectional area of a bore section, a,, based on the bore radius, r,, the flare coefficient,

f, and the distance along the bore, z,, as:

an = n(ro+ fzn)? (3.68)

Because cross-sectional area is inversely related to impedance, the corresponding reflection

coefficient is:
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Gn — Qn—-1
= — 3.69
Pn & + Gnt ( )

Note that, because the bore is conical, the relationship between fundamental and sampling

frequency is now:

Ws

= 2wy

ng (3.70)

By including junctions at every spatial sample, i.e., every unit delay element, an exact
simulation at the sample points is obtained. Cook also experimented with reducing the
number of junctions from his nominal value of 40, running cases with 20, 10, and 5 evenly
spaced sections. As could be expected, the coarser models exhibited degraded performance,
although even the 5-section bore had roughly the same form of FFT as the 40-section
bore. Cook also tried dividing the bore into unequal sections; the result was a waveform
reminiscent of the evenly divided examples, but with a unique harmonic series for each

section that manifested itself in a stable, multiphonic sound.

Although Cook’s model reportedly worked well, it required quite a bit of computational
time. Julius Smith [68] has recently been exploring a more efficient model of the conical bore,
using spherical coordinates to describe the spherical wave which propagates. Recall that
for a cylindrical section, the real characteristic impedance, unscaled by area, is expressed

as:

Zeyr = pe (3.71)

where p is the density of air and c is the speed of sound.

Smith describes the characteristic impedance of a conical section as:

zh, =t = Tyt (3.72)
1- % 1-3%

- —pC — eyl
Zogn = i = 1 (3.73)
“on 14 Thr 1+ 55
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where r is the distance from the apex of the cone.

With this approach, a "finite-element” sampling is unnecessary. A single conical section can
extend from output point to output point, with no approximation errors. In the simplest
case of the conical bore without toneholes, this reduces to a simple delay line similar to that
of the cylindrical bore above. More generally, the cylindrical and the conical waveguide
sections can be depicted as shown in Figure 3.12, taken from [68]. These can extend all
the way from reed to bell, or cover the distance between two toneholes. The two are quite
similar in implementation, save that the pressure output in the conical section must be

divided through by r, the distance of the output point from the apex.

Cylindrical Section
P*(n) P*(n-M)
. M samples Delay
P(nT,0) P(nT, McT)
. M samples Delay e
P(n) P (n+M)
x=0 x = McT
Conlcal Section
P*(nT-re/c) PH(nT - ro/c -MR/c)
.. M samples Delay v
P(nT,rg) 1o P(nT, r + MR/c)
s M samples Delay PN
P(nT+rg/c) P(nT + rg/c + MR/C)
r=ry r=rg+MR/C

Figure 3.12: Delay Line representation of cylindrical and conical bore segments (after Smith)

The Bell: Models of Radiation and Reflection

The termination of the waveguide bore must model the wave reflection and sound radiation

at the bell. To summarize these functions:
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o The bell acts as a highpass filter, transmitting high frequencies and refiecting low

frequencies;

e The cutoff frequency of the instrument, influenced by both bell and toneholes, de-
termines the reflection/transmission proportions. On a well-designed instrument,

the cutoff frequencies of toneholes and bell are all roughly equal;

e Very large toneholes approximate a bell, and imply strong reflection and sound
radiation primarily at the first open tonehole. Crossfingerings below this hole will
have little effect. Thus, a simple bore with only a bell terminator and a time-
varying borelength based on desired pitch can be considered to accurate represent
an instrument with large toneholes. Smaller toneholes imply weaker reflection at
the first opening, and consequently a more distributed radiation pattern as well as
more sensitivity to tonehole lattice configuration. A simple bore/bell model alone

cannot be used to model the effects of the toneholes in this case;

e The presence of the bell can also affect the amplitudes of the lower and midrange
harmonics, as was demonstrated in Section 2.6. This may be seen as its contribution
to the overall air column and air column resonances, or as a formant-like filtering
operation on the incident pressure wave. More experimental and theoretical work

would have to underlay any meaningful model of this effect;

To fulfill the reflection/transmission function, a pair of complementary lowpass/highpass
filters serve to terminate the waveguide bore, as shown in Figure 3.13. The right-going

wave, P,'v", enters both filters. The reflected wave, Py, is given by:

Py = —fLp(PF) (3.74)

The radiated sound, Pg, which is written to a sound file, is:

Pr = fup(Py) (3.75)

Alternatively, the output can be taken as the total pressure at the end of the bore, which

is the equivalent of the residual left from the lowpass wave reflection [20], or:
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Figure 3.13: Two Representations of the bell: 1) As Complementary Highpass Transmission
and Lowpass Reflection filters (after Smith) 2) As Lowpass Reflection filter and residual
(from Cook)

Pr = P + Py = P + frp(Py) (3.76)

This formulation is also shown in Figure 3.13. In eliminating the highpass filter, it provides
less independent control over the sound radiation; if the reflection/transmission is truly
complementary, however, no information is lost. This implementation also fits in nicely
with the definition of an "imperfect” pressure node, as described in Chapter 2. At an ideal
node, the entire wave will reflect, the pressure will be zero at the end of the tube, and no
sound will radiate. The sound radiation is a consequence of incomplete reflection and a
nonideal node; the deviation of the pressure at the "node” from 0 is precisely the residual

pressure which must be radiated as sound.
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Toneholes and Register Holes

The effect of sideholes drilled into the bore is to induce an impedance drop, which, if large
enough, will induce a new, shorter standing wave at higher pitch. A waveguide scattering
junction serves this function well. Figure 2.43 illustrated the wave behavior at a tonehole
junction. Figure 3.7 showed a lossless 2-port scattering junction, which will serve as our

starting point for the implementation of a tonehole.

The reflection coefficient can be determined directly from the ratio of tonehole diameter
(d:) to bore diameter (dp). Let:
A
y=din/dp (3.77)

denote the ratio of diameters.

Since the characteristic admittance, Y, is proportional to the hole diameter:

Y=Y, (3.78)

Recall that for a 2-port scattering junction, we can define the reflection coefficient in terms

of the impedance change:

p= ] (3.79)
where
_Z2_ 1
r= 7Y, (3.80)

The impedance and admittance of the first section are simply those of the bore, Z; and
Y;,. As Chapter 2 noted, the impedance of the second section is the parallel combination
of tonehole and bore impedance. But this means that the corresponding admittance is the

simple sum of Y}, and Y;. Thus:

="
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=Y +Y:=Ys(1+7)

Then the reflection ratio, r, becomes:

Yi 1
===— 3.81
and the reflection coefficient, from Equation 3.79, becomes:
A__1
p= 111 Y (3.82)

1 =-
e +1 2+
This is the reflection coefficient for implementation in Equation 3.57.

Note that, thus far, loss has not been included in this scattering model, as it must be to
implement the tonehole radiation that occurs. To effect this, an attenuating gain could
be inserted at the output of the scattering junction to represent that portion of the wave
that would have been lost through the hole. Equivalently, a 3-port, rather than a 2-port
junction, can be modelled, as shown in Figure 3.14. Smith developed the general equations
for an n-port junction in [64]. They will be duplicated here without proof, as the derivation

follows the lines of the 2-port junction already discussed and is well covered in [64].

Tonehole | | P3
Py Po
———————] >
< Scattering | ¢
Bore Bore

Figure 3.14: Three-port junction representation of a tonehole

The following variables can be defined for the n-port junction:

e  junction admittance

N
vEY Y (3.83)

i=1
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e junction impedance

Z;2y;! (3.84)
e junction flow
’ N
U,S2) ViRt (3.85)
=1

In addition, the parameter vector @ can be defined that linearly combines the N incoming

pressure waves into the single junction pressure:

a; =27;5Y; (3.86)
N
i=1

As we have seen before, the outgoing pressure wave, P, , is equal to:

Pr=P;-P} (3.88)

Note that the nomenclature has changed somewhat from that used for the cascaded waveg-
uides. Now the superscript * denotes waves entering the junction, and ~ denotes waves
exiting. In the earlier notation, T entered the junction for the forward delay line, but exited
the junction for the reverse delay line. This is so that the notation is compatible with
the matrix formulation to follow. At the end of this development, these differences will be

reconciled.

Using Equation 3.87, this can be expanded to matrix form:

P a;—1 s ay P1+
P2— ay ar—1 ... ay P2+

(3.89)

P& ay [0 ... any—1 P;\’;
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This is the generalized scattering matriz of the junction. It is worth repeating Smith’s
derivation of the general 2-port junction, as a familiar example, before going on to the

tonehole 3-port junction.

The values of « for the 2-port junction are, from 3.86 and 3.84:

o =2t
Y1+Y2

02=2 1,2
Yi+Y2

Using the scattering matrix, we get the following equations for pressure:
Pl = (a1 = 1)Pf + ooPsf (3.90)
Py = a1 Pl + (e — 1)P§ (3.91)

The reflection coefficients, p;, can be defined as the reflected value of P,-+ if all other Pj+ = 0.
Then the values of p are related to the a-parameters by:

pi = o — 1 (3-92)

In this case, we get:

h-Y2 2Z,-2,
Y1+Ye Zi+2

P11 =01 — 1= (393)

This is the same value of p we found earlier. The value for ps can be found by noting that,

since

N
> Y2y,
i=1

the a-parameters must sum as:

N
Y ai=)Y22;Y:i=22;) Yi=2

N N
i=1 =1 i=1
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Then, in the 2-port case:

ay +ar =2 (3.94)

Using this to solve for ps

p=ag—-l=1—-a=-p (3.95)

Thus, the scattering equations of Equation 3.57 are duplicated.

The procedure is similar for the 3-port junction. Here:

Y

=9 -1
N Y Y2+ Y3

as =2 Y
SR T iy A

Y3
=9— -3
R TR e A

These yield the reflection coefficients:

_Nh-Y-Y;
o Y+ Y2+ Vs
_YB-Y1-Y;
P2 Y+ Y+ 71s
_YB-H-Y

B+ +7;

Note that p;, which corresponds to our original single reflection coefficient, can be grouped

as:

Y1 - (Y2+Y3)

pl=Y1+(Y2+Y3)

IfY) =Y2 =Y, and Y3 = Y}, as before, we get the same parallel combination of bore and
tonehole. This validates the assumption that the tonehole and bore impedances could be
treated as such. Reducing the admittances to Y, and 7Y}, the a-parameters simplify to:
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a = ——
1 2+

a2 =) = o—

247

T 244

These are equivalent to p-values of:

— —a —
=5y ="°

_ _ —"Y
P2 =p ——2_'_7

n=Try

The pressure equations follow from Equation 3.89. Note that, for a realistic representation,
the tonehole port must be connected to some kind of terminator, for example, a lowpass
reflection filter. This will provide the function for P;’ , which models the piston action of
the air in the tonehole, and looks much like a miniature bell. Like the bell, the tonehole
radiation function looks like a highpass filter, intensified by the fact that most of the low-

frequency energy of the incident wave was reflected back into the bore.

A special case of the tonehole is the register hole, i.e., the venthole which suppresses the
fundamental mode and allows the second harmonic to sound. Recall from Chapter 2 that
the optimal location of a register hole in a clarinet is 1/3 of the way down the effective bore.
For a purely resistive register hole, i.e., one that attenuates the fundamental mode without
displacing it, the scattering junction equations become almost as simple as in the 2-port
case. Now the register hole is assumed to reflect no energy at all, and Py is set to 0. The
pressure P; represents the energy which is lost through the hole, but does not need to be
calculated unless the register hole radiation pressure is desired for output. The scattering

equations now become:

Pl =pPt + (p+1)Ps

Py = (p+1)P} + pP{
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The radiated pressure is:

Py = (p+ )Pt +(p+ )P

Finally, returning to the notation of the cascaded waveguide, with the s — 1’th and the ¢’th

sections flanking the register hole, and combining multiplication operations for efficiency:

PZ,=pPt +(p+1)P- (3.96)
P =(p+1)Pt +pP/ (3.97)
Pt.=(p+1)(PL, +P) (3.98)

These equations, illustrated in block diagram form in Figure 3.15, are similar in form to the
lossless Kelly-Lochbaum junction, but profoundly different because of the sign differences.
It would probably be possible to find some sort of efficient computational form, such as the

1-multiply junction, for their implementation.

/R——u 1+p —>P+h0|3
\Z/

P*iq "
1+p ()

O

p

Pl
- {(Z Je—1+p

Figure 3.15: Wave scattering at a 3-port junction representing a regis:ter hole

P

p—>{ ©

Note that theoretically, the upper register should also be attained without any mode sup-
pression at all when the hole, placed 1/3 of the way down the bore, becomes large enough
to effectively terminate the air column. Such a hole would result in a fundamental 3 times
higher in pitch than the original tone, exactly where the first harmonic lay. However, this

cannot be achieved with a purely resistive register hole model, such as that described above.
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A full tonehole model, with both resistance and reactance, would be necessary for any kind

of realistic fundamental pitch control with a fixed-length delay line.

A register hole was included in the ClariNeXT testbed, and experimental results will follow.

3.3 Digital Reed Models

While the output end of the WDF bore is connected to a simple linear reflection/transmission
filter pair, the input end must be connected to a nonlinear element representing the reed.

Summarizing from the previous chapter, the reed has the following properties:

e  Sensitivity to pressure fluctuations that results in aperture size changes that regulate

the input airflow;
e Beating and nonbeating modes of operation;
e  Characteristic impedance based upon the instantaneous aperture opening;

e Linear resonant frequency, based upon stiffness, mass, and a combination of internal
and embouchure-induced damping, of roughly 10 times the cutoff frequency of the

instrument;
e Modified beating frequency based on tip displacement;

o Influenced to some extent by the hydrodynamic forces associated with the airflow
through the reed.

The fundamental reed model must provide at least the first property, which allows the
critical coupling between bore and reed. The other properties are enhancements which
have, in many cases, still not been measured and properly assessed, and are therefore more
difficult to model accurately.
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3.3.1 Modeling the Reed in a Waveguide Context
Survey of Reed Models

The reed has generally been treated as a simple harmonic oscillator coupling in the manner
described above with the bore. In early models, the oscillator was considered to be purely
linear; no beating was admitted into the analysis. Backus [5] measured the acoustic mass
experimentally and included it in his initial model, but concluded that its influence on the
resonant frequency was neglible; Nederveen [51] agreed with this conclusion,l although he
retained the term in his linear model. Stewart and Strong [70] modelled the reed as a
damped, nonuniform cantilevered bar. In his independent work in [58], Schumacher used
the traditional harmonic oscillator equation and included as well a differential equation for
the flow through the slit. However, his cooperative effort with McIntyre and Woodhouse
[43] neglected dynamics completely, and relied on the empirical pressure/flow curve of Fig-
ure 2.35, which implicitly includes a beating model, to provide values for the flow into the
instrument. Smith, whose work will be developed in the following sections, also used a

lookup table, but in a formulation that required no calculation of flow at all.

The WGF Reed as a Time-Varying Reflection Coefficient

The utility of reflection functions in modeling acoustic systems has already been demon-
strated. This section develops the adaptation of the reed action to the WGF model, and is
based entirely on the work of Smith in [64] et. al..

As we know from earlier sections, the flexible reed will change the size of the aperture in
response to pressure fluctuations. From our knowledge of impedance changes and reflection

functions:

e When the reed is fully closed, its associated impedance, Z,, is effectively infinite;
The wave will reflect, uninverted, in its entirety. However, the player can inject no

additional energy at this point;

o When the reed is partially open, its impedance will go to a finite, non-zero value.
An oncoming wave will partially reflect back into the bore, and partially transmit
through the reed, in proportion to the degree of reed closure. For this model, we
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will assume that the transmitted portion represents an energy loss. In addition, the
aperture will admit flow from the mouth, thus introducing added energy. Although
one might expect some of this flow to be reflected at the reed/bore junction, con-
sistent with earlier statements that the reed and bore act in parallel, Smith’s model

considers the two elements to be entirely in series;

e When the reed is fully open, none of the oncoming pressure wave is reflected. How-

ever, the maximum amount of flow energy is injected at this point by the player.

Intuitively, we can predict a reflection coefficient function based, through its dependency on
the instantaneous aperture size, on the instantaneous pressure difference between mouth and
bore. In addition, a good formulation would elegantly handle the essentially complementary

relationship between wave reflection and energy input.

e Flow into the mouthpiece

As always, the derivation starts with the continuity requirements for pressure and flow.

Defining the pressure acting on the reed as Pa:

Pr=P,— P, (3.99)

the flow admitted into the the mouthpiece, U,,(Pa), is:

Py

Um(Pa) = Z.(PY)

(3.100)

Note that the reed impedance, Z,, is indicated as a function of Pa.

o Flow into the bore
The flow into the bore follows from the pressure/flow relationships for the left and right-

going components of the wave:

P,=P}+ P (3.101)

Ut = z,pt (3.102)
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U, =-2ZyP, (3.103)
b b
Summing;

P;-_Pb_

Up= Z

(3.104)

e  Continuity of Flow

Assuming a series connection between mouthpiece and bore, the flow into the mouthpiece

must equal the flow into the bore. Then, substituting in for Px:

Pt +P  -Pn PB'-P]

= 3.105
Z-(Pa) Z (3.105)
Solving for P,”, the returning portion of the wave:
- Zr + Zb +
P = (Zr — Zb) B — Zy Py, (3.106)

o Definition of Reed Coefficient
We can now find a term expressing the reflection and energy admission of the system based

upon the reed and bore impedances. First, define the impedance ratio, r, as:

Zy
Zr(PA)

r(Pa)2 (3.107)

Then, using equation 3.106 as a model, the reed coefficient, p,, can be similarly defined by:

1—7(Pa)

pr(Pa) = T57(P) (3.108)
Now equation 3.106 is in the simpler form of:
Py = p(Pa)P} + 1=p(Pa)p (3.109)

2
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Notice how both energy input and wave reflection are governed by the same coefficient,
pr(Pa). When p,(Pa) is 0, corresponding to a fully open reed, the left-going wave is lost to
the system while the maximum portion of the incoming wave is propagated. At the other
extreme, a value of 1 for p,.(Pa) will result in complete reflection of the left-going wave, but
no incoming augmentation. At levels in between, where both the reflected wave and the

incoming pressure can contribute to the reflected pulse, augmentation can be considerable.

o Reduction of reed reflection equation to one-multiply form

The above expression is complete, but not efficient, as it contains a subtract and two

multiplies. Ideally, we would like a more elegant expression of the form:

Py =p:0Bf + Pa (3.110)
where g,() is a modified reed coefficient and P, is a precalculated function of the input
pressure.

First, define a new term, PZ , which is independent of the returning pressure:

Pt =2pPf - P, (3.111)

Solving for P,+ and substituting into equation 3.109:

- Pl  Pn
Py = p,(PA)—ZA +5 (3.112)

The factors of two can be imbedded in, respectively, the reed coefficient, which as we shall
see can be represented by a precomputed lookup table, and the driving pressure. Also, if
the reflection coefficient is a function of A, it can also be expressed as a function of A*, so
that, for a given Py, P,;" ,and P":

pr(Pa) = 26:(P}) (3.113)

Rewriting 3.112 accordingly, using Pj, to denote half mouth pressure:
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P
Py = p“,(P;{)—2— + Py (3.114)

Thus we have an efficient expression relating the reflected wave to the incident and input
waves, based indirectly on the size of the reed aperture. In Smith’s original formulation,
and Cook’s implementation work in [18], a simple lookup table representing reed stiffness
and valving, but not reed dynamics, was incorporated. As will be shown in the next section,
reed dynamics and other phenomena can be modelled through the calculation of coefficient

pr, at the expense, of course, of added computation.

Reed Tables

The previous section demonstrated the representation of the reed action in terms of a time-
varying reflection coeflicient. The reed model is represented in the way that the reflection
coefficient is calculated.

The most direct way to implement the static reed model is by a simple normalized lookup
table. The table employed by Smith [64] and Cook [18], illustrated in Figure 3.16, was of
the form:

1.0, PAV < Puosed;
pr =14 1.0=m(P}), PY < Popen; (3.115)
0.0, PY > Popen

Here, the reed table index, iﬁ , is computed as:

+

iN =int (-Pf—A + Poﬂset) (3.116)
8

where F, is the normalizing pressure scale factor and P, .. is the pressure bias exerted by

the combination of embouchure and reed tip setting.

and the slope of the table is defined by the difference between the breakpoints Popen and
Pelosed-

With these parameters, the following reed properties can be represented:
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é ] Reed Closed
Reed Offset
g / (Operating Point)
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2
39 Reed Open
0 Pressure 1024

Figure 3.16: Standard Reed Lookup Table

e Reed Closure: Reed closure corresponds to a value of p, of 1.0, or everything to the
left of the sloped line (since P} is equal to 2P} — Py, the larger the value of P},
the more the reed is pushed open). The breakpoint, Pg,eq, indicates the pressure
at which the reed just begins to open and admit airflow;

o Reed Opening: Conversely, the fully open reed is represented by a reflection coeffi-
cient of 0, to the right of the sloped line. Its breakpoint, Pypen, is the point at which

the reed just begins to constrict airflow;

e Reed Stiffness: reed stiffness, or the sensitivity to pressure fluctuation, corresponds
to the slope of the operating line, or alternatively, the pressure difference between
Pelosed and Popen. Reed stiffness can also be varied by changing scale factor f,,
which is intended to map from the Soundfile-normalized pressure difference to the
4-byte reed table scale;

e Reed Position / Offset: The initial reed position, a function of reed setting and
embouchure pressure, results in the value of P,fsset. The lower P, 41, the closer is

the reed to being closed in its null position.

This representation cannot incorporate any hysteretical or dynamic properties. However, it
can represent the most important nonlinear phenomenon of beating (in this case, necessarily

inelastic). The representation is elegant, efficient, and easily parameterized.
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Several additional features could be incorporated to the reed table without severely im-
pacting the computational requirements. For example, the nonlinear stiffness of the spring
which characterizes deformation over the lay, or uneven closing of the tips in a double reed,
can be modelled by reducing the slope as the reed nears closure, and the reflection coeffi-
cient accordingly nears 1. A later section will discuss the computation of a Bernoulli-like
force which tends to suck the reeds closed: this corresponds to a steeping of the slope near
closure. To be even more elaborate and realistic, a table synthesized from experimental
data could be incorporated. There would be no additional computational expense, since
the table is precomputed. It would be more difficult to parameterize such a table, but with
sufficient experimentation to understand how different reed properties affect the curve, a
reasonable approach might be developed. Alternatively, the reed program could choose
from several different reed tables, each representing a single reed sample. However, this

approach is more in the spirit of sampling than simulation.

A feature which would incur additional computation would be to allow hysteresis, i.e., to
have a unique table for ascending and for descending PZ. The program would have to
determine the direction of pressure change. However, effects such as elastic beating and

hydrodynamic hysteresis could be incorporated.

Reed Dynamics

A much more computationally intensive approach is to dynamically model the reed. Such a
model would allow the reed resonance stabilization of the upper notes discussed by Thomp-
son [72]. The simplest form of this model is the damped harmonic oscillator, generically

represented by:

& + 2wy + Wiz = WEF (3.117)
where (, is the damping ratio, w, is the reed resonance, and F is the driving force, A(Po+P.)
where A is area.

In this conventional form of the equation, the force term is scaled by w? in order to provide

unity gain at steady state, i.e.:
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Lo tfore=i=0

F

For the reed, the oscillator takes the form of a mechanical mass/spring/damper system, as

shown in Figure 3.17. For this case, the dynamic equation can be written as:

mi+bz+kz=F (3.118)

where m, b, and k are, respectively, the mass, damping, and spring constant of the reed.

X, X

Figure 3.17: The Reed Modelled as a Mechanical Spring/Mass/Damper System (Second
Order Harmonic Oscillator)

There is therefore the following relationship between reed static and dynamic parameters:

k
Wy = ‘/; (3.119)

(= —— (3.120)

Rewriting in the form of 3.117:

., b. Kk
T+ p—l + T = fi(F) (3.121)

where fi(F) is a scaling of the input force which will now be determined.

From equation[3.118], the steady-state position is driven solely by the spring constant and
the driving force:
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F=kz,forz=3=0 (3.122)

In order to satisfy this condition, the driving force must be scaled accordingly. From
equations[3.121] and [3.117]:

k
—Tas = w0 = fi(F) (3.123)
This gives:
1
Tes = Ffz(f ) (3.124)
From equation[3.122]:
1
Then:
w?
A(F) =+ (3.126)

Finally, the equation of motion for this model of the reed, in terms of resonant frequency,

damping, and stiffness, is:

2
& + 2pwrd + wit = %F (3.127)

An additional relationship is the damped, or playing frequency of the reed, wy, which

represents the player control over the effective reed resonance. This can be expressed by:

wq = wnyf1 - ¢2 (3.128)

Note that the player can only lower the playing resonance (although in the case of beating,
the playing resonance can be raised by decreasing tip displacement, as was discussed in
Chapter 2). The critical damping ratio, (., has a value of 1. A higher value indicates
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overdamping, and a tendency toward slow response. A lower value indicates underdamping,
and a tendency toward overshoot, and resonant response to discontinuities in the forcing
function such as collisions against the lay. In fact, the usual range for a control system is
between 0.4 and 0.8 [53]; this turned out in the simulation to follow to be a good working

range for the reed as well.

As an example, consider a reed with a free resonance of 2620, which is 10 times the frequency
of C-262. Thompson, in [72] specified the adjustable resonance range as 2000-3000 Hz, so
this is a reasonable number. Note that the “free” resonance, which can be measured by
plucking the reed blades, is already internally damped by the inherent reed fiber friction, so
that w, is already below the true natural frequency. In order to play A-440, the player will
want to adjust the reed frequency to a harmonic of that note. The closest applicable value
to 2620 is 2200, the fifth harmonic. The required damping ratio can be found by solving

3.128 for (,:
(r = Vl ( 3.129
.= - _“‘d) (3.129)

Here, the value of (, is therefore 0.54, a relatively low number. For the next lower note on
the even tempered, diatonic scale, G-392, the sixth harmonic can be used, at 2352 Hz. The
player can loosen his embouchure somewhat, to bring (, to 0.44, a change of 10 percent.
Alternatively, if he is transitioning from the the more heavily damped note, he may choose
to tighten up the embouchure and tune to the fifth harmonic at 1960 Hz. The corresponding
¢» for this choice is 0.66, now 19 percent higher than before. In this case, the player had to

compensate roughly the same amount in each direction.

A final consideration in implementing the reed equation is the boundary conditions. If z is
the displacement from the reed equilibrium position, and a. is the reed closure displacement,

then for inelastic collision:

Forx=a,: x=0 (3.130)

For elastic collision (which Stewart in [70] claims does not occur, but which Hirschberg
claims does [27]), instead of nulling velocity upon collision, the velocity is negated. This

also doubles the change in momentum at that point. Then:
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Forx =a.: x = —kex (8.131)

where k. is a scalar from 0O to 1 representing the degree of elasticity.

Because of the flexibility of the lips, it will be assumed that the reed is unconstrained at
that end of its swath.

The reed displacement, z, maps directly to the reflection coefficient, p,.. The dynamic model

can be equated to the static model by analyzing the steady state.

o Reed closure displacement

i=&=0 (3.132)

T =a, (3.133)

w2z = wlac = W2 PuosedAr (3.134)
ac = —PeiosedAr (3.135)

This gives the value for the maximum positive offset, a.. Note that the sign of displacements
a and z is opposite that of pressure P. This is because, by the definitions above, z is positive
toward closure. By convention, however, a positive value of P implies compression, which
would push the reed outward in its negative direction. Conversely, a negative value of P is

a rarefaction pulling the reed closed.

e Free flow displacement

As mentioned above, the reed does not have a maximum outward limit; it is assumed that the
lips maintain a constant, nonterminating force. However, the offset at which unrestricted
flow begins, although not a limit, can still be expressed in terms of the early parameter

Popen, as:
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8o = —PopenAr (3.136)

e Mapping to reflection coefficient, p,

Between the extremes, the piecewise linear mapping is similar to that for the reed table.

The total swath, a,, is the absolute sum:

as = |ao| + |ac| (3.137)

Then the general relationship between x and p, is:

0.0, T > ac;
pr= ”—;T“l, a. <z < @} (3.138)
1.0, z<a,

A lookup table for this relationship could be generated to save a multiply and a subtract.
However, given the number of computations involved in propagating the dynamic equations
(5 multiplies and 4 additions for a rectangular integration scheme), the savings here is less

significant than it was above.

The reflection coefficient computed using this approach is really a function of Pa and not the
desired PX . In other words, the true pressure difference driving the reed depends partially
on the value of the left-going wave, as discussed earlier. The only time Po = P is when
the reed is completely closed so that P = P;". Assuming small incremental changes in

pressure, pr could be computed in any of the following ways:
e In exactly the same way as the reed table, so Pa is considered approximately equal
to Pg';
e Using the current value of P,;* and the previous value of P;". This implies a delay

€error;

e Using the previous value of P;’ , implying a full unit delay in response. Since the
reflection at the yielding reed is not truly instantaneous, this may represent reality

better than the instantaneous reed table;
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e Using the current value of P;" and extrapolating from previous values of P to
estimate a “current” value of P, . This approach is most consistent, but requires

additional computation.

3.3.2 Nonlinear Refinements to the Reed Model

Both reed models discussed above were in themselves linear, although they represent the
nonlinear element in the coupled system. In this section, nonlinear aspects of the reed
will be discussed. Note that so far, no distinction has been made between the single and
double reed. It is assumed that the basic models are essentially the same, even though the
parameters of the models and the subsequent behaviour can be quite different. Even in the
nonlinear discussion, the basic phenomena discussed will be assumed to be present in both

reed types, while the degree to which they manifest themselves will vary.

Beating

The first phenomenon to be discussed is beating, either of the reed against the lay or two
double reeds against each other. This phenomenon was already covered to a certain extent

in the previous section.

For the reed table implementation, inelastic beating is implicitly modelled by the constant
unity portion of the reflection coefficient, which will result in the complete cutoff of incoming

flow. Elastic beating cannot easily be represented in this form, since reed transients are not
modelled.

The dynamic reed model does allow both types of beating, by virtue of the choice of bound-
ary conditions at a. discussed above. Another way to model a varyingly elastic impact
would be to apply an instantaneous force of F, = 2m.% at the time x reaches a., as well as
limiting = to a.. The kinetic energy conserved could be adjusted by the choice of m,. This

is a more physical modeling of what occurs than simply reversing the reed velocity.
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Hydrodynamics

The modeling of hydrodynamics is a far more complicated problem, as it requires a knowl-
edge of the actual airflow, an issue that our model has thus far been able to avoid. Although
the derivations have all been based on impedance arguments, and impedance is by definition
the complex pressure/flow relationship, the actual impedance term, and the related flow,

all dropped neatly out of the equations by the time the derivation was complete.

Trying to incorporate flow into the model means stepping into a very gray area of woodwind
knowledge. Conventional theory has it that a Bernoulli “lift” force, dependent upon the in-
stantantaneous tip separation, acts upon the reed to pull it down increasingly more strongly
as the reed approaches the lay. Worman [76] attributed 2 to 3 percent of the total force
acting on the reed to the Bernoulli force. Schumacher [58] noted a pronounced difference in
results when he switched his Bernoulli model in and out of his simulation. The contention
is that the Bernoulli effect would be much more pronounced for the double reed because of
the extended length of the reed channel, along which the two reeds lie quite close to one

another.

This section will present the traditional theory, offer some modifications, and discuss aspects
of its implementation. Incorporation into the two reed models discussed above will be
covered in Chapter 4. Uncertainties and imprecisions in the assumptions on which this
model is based will be treated as well. For much of the analysis presented here, it is
assumed that most of the pressure drop for the instrument occurs at the mouthpiece, so
that the the steady-state pressure within the bore is equal effectively to zero throughout.
Only the steady-state flow originating at the mouth is treated; the pressure fluctations in
the mouthpiece due to the internal reflection of compression and rarefaction pulses do not

factor in.
The so-called “Bernoulli Force” results from the pressure-flow relationship specified in the

“Bernoulli Flow Equation” [74):

2
P+ i’;— +pgz = P, (3.139)

where p is the applied pressure, P, is the “stagnation” or ambient pressure, p is fluid density,

v is the particle velocity, and gz is the gravity vector which we can neglect in the short
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woodwind. This assumes an instantaneous pressure drop to ambient. In the more general

case, we can replace P, with P,, the pressure of the gas stream in the channel, which for

Bernoulli flow is constant everywhere.

The corresponding volume flux, ®p, is simply the product of particle velocity and cross-

sectional area A:

Pp = Av = awv (3.140)

where a is the tip displacement and w is the width.

The pressure drop, Ap = P,, — P,, is then:

Ap=2L (3.141)
Application of this equation assumes the following conditions for Bernoulli flow [27][26]:

e moderately high Reynolds number: The Reynolds number, a dimensionless param-
eter cited in [74] as the most important number in fluid flow, is essentially the ratio
of inertia to viscosity. A low Reynolds number implies very viscous flow with sig-
nificant boundary layer effects. Hirschberg states that for Reynolds numbers below
10, Poseuille flow, rather than Bernoulli flow, occurs. As the Reynolds number
becomes higher, the boundary layer thins out. The boundary layer is normally as-
sumed to be thin enough to justify the use of planar wave propagation [51]. At very
high Reynolds numbers, above about 1000, the flow starts turning turbulent. [74].

e frictionless flow

o flow separation with no reattachment: this is a function of the viscosity, as repre-

sented by the Reynolds number, discussed above.

e steady, incompressible, irrotational fluid flow. This implies that mechanical energy

is conserved.

Backus considered the Bernoulli equation to be a valid representation of flow through the
slit aperture formed by the reed [5]. Hirschberg agrees that, in the case of the clarinet, the
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Bernoulli equation provides an acceptable model [26],{27] as the rapid increase in cross sec-
tion at the end of the reed channel, and the short length of the channel, assures the necessary
flow separation without subsequent reattachment. However, he does include a contraction
coefficient which accounts for the difference in size between the separated airstream and the

reed channel.

It is worth noting that the empirically derived relationships between flow and pressure all
take the form of the power law [34]:

® = BpHat? (3.142)

For the clarinet, Backus found values of B = 37, pu; = 2/3, and ps = 4/3. These deviate
quite a bit from the ideal Bernoulli relationship. The bassoon reed, measured by Nederveen,

came closer, with values of y; = 1/2 and pg = 1.

Note that the nonlinear relationship between u and p seems to be at odds with the lin-
ear impedance relationship of Z = P/U. This is actually not a contradiction, as Backus
pointed out in [5], because the value for Z is instantaneously equal to P/U, even if it grows

nonlinearly with U.

The “Bernoulli Force” occurs whenever there is a localized increase in particle velocity as
a result of a constriction in the flow duct. It plays an important role in the functioning of
the vocal cords. Figure 3.18, taken from [29], illustrates the glottis. Here, the volume flux
is determined by the separation point. At the constriction, in order to maintain the volume
flux, the particle flow must increase. From equation 3.141 above, the increase in particle
flow implies a simultaneous decrease in the pressure at the constriction. The additional
pressure drop is manifested as a suction force which pulls the vocal folds closer together,

intensifying the effect.

A similar force is believed by many to play a role in the functioning of a reed, and especially
so in the double reed, where the reed channel is very long and narrow. The generally
accepted model for the clarinet reed, introduced by Worman in [76], defines the additional
downward pressure on the reed as identically the pressure in the Bernoulli equation (here

inverted so the downward pressure is expressed as positive):
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Giottis

sgparatlon/roi:

Figure 3.18: Bernoulli Pressure Drop in the Glottis (from Hirschberg)

Shear-layer

2
Pg=Pn—P, = 1’12’- (3.143)

The reed channel, which was illustrated for the clarinet in Figure 2.4, has a cross-sectional

area which varies with the distance along the reed, y. The volume velocity is then defined
as

o(y) = v(y)A(y) (3.144)

where

A(y) = wytan, (3.145)

The Bernoulli pressure thus acts upon the entire reed, and can be lumped into a single force

term by integrating over the length of the reed:

=2 [law)ay (3.146)

For the clarinet reed, in which the reed bounds a wedge-shaped area defined by the reed

angle, O, Worman determined the area function to be:

A(y) = wy tané, (3.147)

The Bernoulli force in this case is, ostensibly:
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p®?

Fp= 2w tan 8z (t)

(3.148)

This force is dependent on both flow and tip displacement. Worman then substitutes in
the experimental relationship for flow described in 3.142 to calculate the Bernoulli force.
This derivation has recently been questioned by Hirschberg in [27], because, in assuming a
pressure gradient along the length of the reed channel, it implies no flow separation until
at least the end of the reed channel. This condition, however, invalidates the use of the

Bernoulli’s equation at all.

One seemingly inconsistent aspect of this theory is our knowledge that the airflow occurs
in the first place as a result of the pressure drop between mouth and ambient, P, — P,.
It would seem that, without any constrictions at all, the Bernoulli pressure is necessarily
equivalent to the pressure drop driving the flow, rather than 0. In fact, this is true. The
Py, portion of the Py, — P, force on the reed defined in the preceding sections is actually the
Bernoulli pressure in the ideal case, where the volume flux is determined at the tip and the
pressure drops instantaneously to the ambient of zero. What is generally referred to as the
“Bernoulli Pressure”, or “Bernoulli Force”, is the difference between this nominal pressure
and the pressure derived from the Bernoulli equation. In other words, it is the difference
between the true channel pressure and the ambient. For our purposes, then, the Bernoulli

pressure is defined as the channel pressure, rather than the pressure drop:

2
Pp=P,= % - P, (3.149)
For the nominal case discussed above, since:
2
_o
P, = 5

we have Pg = 0 where there are no constrictions.

A different situation occurs if the volume flux is not determined at the tip alone. This is in
fact what Worman was assuming when he substituted in the empirical relationship for flux
rather than the Bernoulli flux. If the true volume flux is greater than the Bernoulli flux

associated with the region in question, then the region represents a constriction in which
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the relative pressure is reduced, i.e., the channel pressure drops below the ambient. In
the glottis example above, the volume flux, &, = As\/i—::—‘?- was determined by the driving
pressure and the cross-sectional area at separation. In order to maintain that flux in the
constriction, the particle flow had to increase and the pressure drop. Were the flow instead
to separate at the narrowest part of the constriction, the volume flux itself would have been
lower — &, = A, \/E—I,E , Or %f@,. The only pressure would be the source pressure, Py, with

no additional “Bernoulli” contribution.

Similarly for the reed, if the volume flux exceeds the Bernoulli flux associated with the reed
tip, there will be an increased particle velocity and downward force in the reed channel. The
easiest representation of this situation is one which parallels the glottis, where the separation
point occurs somewhere beyond the tip (Hirschberg’s flow visualization on a double reed
model indicated clear separation at the tip [30]; this was, however, just a model, and may
not have included the downstream conditions). Figure 3.19 illustrates a reed channel where
the reed channel is a wedge beginning at the tip and divérging linearly to the mouthpiece
entrance. Here, the separation point occurs at separation a,. The volume flux is therefore,

assuming Bernoulli flow throughout the channel and instrument:

P =a,w, 2P = a,w,v2 (3.150)
V p

Reed Mouthpiece

739;,

Figure 3.19: Hypothetical Visualization of Bernoulli Flow and Consequent Pressure Drop
in a Reed Mouthpiece

At the tip, the particle velocity is:

h=—-= Vs (3.151)
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Assuming that the reed channel is rectangular so that w; = w,, the associated pressure

drop is then:

1 9 1 [/ 7 2 2
Pt = Pm - Pc = ‘2—th = -2'p (a—t) Vg (3152)

The Bernoulli pressure acting at the tip of the reed is the difference in pressures between

tip and separation point, or the channel pressure if an ambient pressure at separation is

assumed:

2
Pg=P,—P,=P.=—P,+ %pvf (f;-) (3.153)
t
or, since Py, = %puf:
ag 2
Pp=P,|1- (a—) (3.154)
1

which, for a; << a,, approximates to:

2
Pp=—P, (“—) (3.155)

a;

The equivalent force would be this integral evaluated from tip to separation point, or:

Ty 12
fp = —a2Ppn f dz (3.156)
0

where:

as — Q¢

a=a;+

z (3.157)

s

A similar approach would be to base the volume flux on the experimentally determined flux,
as Worman did. This is not particularly easy to justify, as the pressure-flow relationship
over the entire instrument is nothing like the Bernoulli relationship, indicating that there
is much more complicated flow behaviour occurring. Bearing this in mind, but proceeding

anyway, we define the particle velocity in the mouthpiece as:
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®
VW= —
wa;
where ® was defined in equation 3.142.
The pressure drop is then:
1 p®?
Fn=Fe=3uta?

and the Bernoulli pressure is:

1 pd?

PB=P3+Pm=Pm+§w2a?

154

(3.158)

(3.159)

(3.160)

One example of the incorporation of this pressure into the reed models discussed above will

be given in Chapter 4.

Double Reeds

One of the initial goals of thesis research had been to distinguish the double reed from the
single reed. This has proven to be a difficult task because of the dearth of expemimental

data. Although several have studied the reed action in oboes and bassoons, the cross has

always been from the cylindrical bore single reed to the conical bore double reed. It is

almost impossible to draw conclusions about the contrast between double reed and single

reed because of the profound contribution of the boreshape to the experimental results.

Some of the unique properties of double reeds can be isolated:

e Two dynamic components: The most obvious distinction between the two reed types

is that the double reed has two, rather than one dynamic component. Although the

two reeds are related, being the result of creasing and bending a single strip of cane,

the two sides can still have different mass and stiffness. One can lump the dynamic

properties into a single component that then implies symmetry, but then one loses

any effects of asymmetry which might be present in a real instrument.

e Normal operation in a beating state: In general, double reeds seem to operate best
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in a beating state, although, depending on the spine of the reed, complete closure
may not occur. The nonlinear stiffness described for the reed as it curls over the
lay likely applies to the double reed as tip closure begins as well. It is quite possible
that the beating helps to cancel out the effects of asymmetry described above, by
resynchronizing the two reeds with every period of oscillation. In addition, the extra
impulse provided by the collision, if elastic, could aid in maintaining the oscillation.
It is interesting to note that when D. H. Smith experimented with the oboe single
reed described earlier, he found that it too required beating for proper operation.
It is difficult to say, however, that this was a peculiarity of the geometry or simple

the fact that the threshold blowing pressure was close to the beating pressure.

o Extended, narrow reed channel: Unlike the clarinet reed channel, which is very
short and terminates in an abrupt change in cross-section inside the mouthpiece,
the double reed is relatively long and narrow. In addition, it terminates, not in the
bore, but in a staple of much smaller radius which leads into the bore. Because of the
long channel and the uncertainty of the downstream conditions, the hydrodynamic
behavior is difficult to characterize [27]. It is generally believed that the Bernoulli
effect is much more important in the double reed instrument because of its channel
geometry, but nothing has yet been proven. The tendency of double reeds to “snap
shut” was noted by Benade, who accepted the Bernoulli effect as a given [9]. Even
if the Bernoulli force is not the proper model for whatever hydrodynamic forces act
on the reed, as Hirschberg claims, it seems clear from experimental evidence that
something unique to double reeds is at work. However, since all the double reeds
with which Benade experimented were attached to conical bores, which can be a

critical factor in reed behavior, such conclusions must be drawn cautiously.

e More sensitive to the embouchure. Although the player has some control of the
behavior of the single reed, he has much more influence over that of a double reed.
By changing embouchure, he can profoundly change the tone quality and the pitch
of the instrument. He has access to both reed resonance and equivalent volume,
and can vary the various parameters as he wishes. Again citing D. H. Smith’s
experiences with the oboe single reed, he said the most frustrating aspect of the
device was the reduced control one had over tone production. Even were the tone

quality acceptable, it was still somewhat rigid.




CHAPTER 3. DIGITAL MODELING OF THE REED WOODWIND 156

Rocaboy found profound differences between the reed behavior of a clarinet and a bassoon
[57]. His pressure profiles were presented earlier. For the clarinet, a very symmetric response
was found, with an equal amount of reed opening and closure time. The bassoon reed, on
the other hand, was closed for a very short amount of time, resulting in a highly asymmetric
waveform and its characteristic tone. Rocaboy attributed this behavior to the bore, rather
than the reed, however, and claimed the same results for a single reed fitted to a conical bore
(quite likely of the same type used with the oboe for this research). Rocaboy’s theory is that
the air trapped in the reed cavity when closure occurs acts like a spring, forcing the reed
back open, and that this is a function of the accelerated air in a conical bore. His discussion
is beyond the scope of this paper, which does not deal in general with boreshape. However,
it is worth mentioning, because it indicates that some of the characteristics considered
unique to the double reed are really unique to the conical bore. It just so happens that
in modern instruments, the two often seem synonymous (except for the saxophone, which

Rocaboy did not examine).

One interesting feature of Rocaboy’s bassoon waveform was the ratio between opening time
and closure time for the reed. He observed that the opening time was equal to the double
transit time for the wave to propagate to the end of the bore and back, while the brief
closure time corresponded well to the time it would take for the wave to travel to and
from the fictitious apex of the cone (the acoustic length of a truncated cone is the distance
from projected apex, not from the point of truncation, to end). Rocaboy interpreted the
short closure time as being a function of the air spring activation. In fact, an explanation
more consistent with his observations on the timing of the pulses would be the nature of
wave reflection in a conical tube. Recall that a conical bore acts like a tube open on both
ends, and supports both odd and even harmonics. This implies that a pulse inverts both
at the bell and at the reed. A rarefaction pulse, traveling to the reed, will tend to force
the reed closed. But soon after, this pulse will reflect off the apex, invert, and return as a
compression, canceling out the effects of its predecessor. The closure time in this case will
be equal to the transit time to and from the apex, exactly as Rocaboy noted. If the reed
has a large enough offset to bias it toward being open, this one spike will be the only closure
time involved. This explanation is a gross oversimplification of the behavior of a spherical
wave at the conical apex, which is not at all well understood. However, it is an alternate

explanation for some classical conical behavior.







Chapter 4

Interactive Reed Woodwind

Modeling Workbench

Chapters 2 and 3 described the basic acoustics of a woodwind instrument. These models
were implemented on the NeXT computer in an environment suitable for integrated and

flexible testing. The purposes of the digital Workbench were:
o To provide a means of testing the various models that were proposed;

o To test how well the model obeyed various theoretical predictions and empirical

observations about how the instrument should work;

e To survey the relative importance of various model refinements with respect to their

worth in terms of computational cost;

e To perform interactive parametric studies linking simulation parameters with re-

sulting sound;

e To form a basis for a future instrument implementation on the NeXT DSP chip, for
access through the NeXT MusicKit.

e To provide an evolutionary programming structure for future programming enhance-

ments and modeling studies.

The NeXT computer provided an ideal platform for these goals. It was designed to handle

157
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sound files and audio output. Its graphical Interface Builder program allowed an intuitive,
flexible user interface. Its object-oriented development tools allowed rapid prototyping, and
rapid incorporation of other related tools. Finally, its ability to run many interactive jobs
simultaneously allowed the cooperative use of several tools at once without having to link

them in a single program.

4.1 NeXT Object-oriented Environment

Before getting into the specific models and interfaces developed for this research, it is
worth mentioning the context for which they were designed. This is not intended to be
an introduction to object-oriented programming, but simply a discussion of its utility in
developmental acoustic research.

The basic element of an object-oriented environment is the object. An object can com-
municate with another object by passing messages, which invoke an action on the part
of the receiving object called a method in NeXT Objective C. Methods can be compared
roughly to subroutines, although a true object-oriented programmer would cringe at the
thought. Just as one subroutine can call another which might reside in some library that
the programmer has never opened, one object can message another object which is totally

independent.

The NeXT Interface Builder is a set of interface primitives which the developer can link
together and assign objective properties to. For example, a button can be defined to trigger
a method in an application object. When the button is ”"pressed” by the user, the method
fires. Code within the method may message a graphical object in the interface to display
a result of the calculation. In performing its computations, it may message other interface
objects to determine their values. In addition, it may message nongraphical objects to
execute some of their defined tasks. For example, the Play Note button on the ClariNeXT
Workbench triggers the method runprog in object clarinext, which is defined as the main
application. In determining the clarinet parameters, runprog interrogates the appropriate
graphical objects for user input and uses them to send an initialization message to the reed
object, Reed, so that it knows to read the graphical objects appropriate to it and set up
its constants and reed table. runprog then loops through the number of desired samples,

iteratively messaging the reed and filter routines. Finally, it writes the simulation results
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to the soundfile indicated in another graphical objects, and some summary information in

the appropriate form objects.

The workbench was not designed for computational efficiency. Because of the many options
to be tested, there are many if-statements and tests necessary that would be eliminated from
a streamlined version. Thus, computations take much longer than they would in a dedicated
instrument program that used a more rigidly defined set of methods. However, the models

themselves were developed with efficiency in mind so that meaningful comparisons among
them could be made.

4.2 Modeling Workbench Description

The purpose of this section is to describe each panel in the ClariNeXT workbench, both
in terms of its interface and the specific implementation of the element represented. The

workbench consists of the following panels, selected from the menu displayed in Figure 4.1:

clarinet2

Figure 4.1: Main Menu: ClariNeXT Workbench.
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Play Panel

e Main Go button which initiates simulation
e Noise and Vibrato level selection
e  Output normalization control

e  Soundfile specification

Attack Panel

e  Attack envelope specification
e  Attack envelope graphical display

e Decay envelope specification

Waveguide Configuration Panel

e Note (Delay Line length) Selection
e Octave drop option
o Register Key Select

e  Scattering junction parameters

Reed Box

¢ Reed Table/Model select
e Reed Table parameters
e Reed Table graphical display

e Bernoulli Pressure select / scaling
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e Beat elasticity specification
e Reed Model reed resonance calculator
e Reed stiffness specification

e Reed Model embouchure parameters

Bell

e Bell Reflection Filter type select

e Bell Reflection Filter Cutoff Frequency
o Bell Reflection Filter Gain

e Bell Transmission Filter Select

Bell Transmission Filter Parameters

Spectrum

e Impulse Response trigger
e Graphical spectrum display (courtesy P.R. Cook)
¢ Resonance peak frequency and relative gains

e Cooperatios (interpeak ratios)

Certain elements which were not incorporated into this workbench were sound playback
and analysis tools. However, the NeXT Sound Editor and Spectro, an interactive spectrum
analyzer developed by P. R. Cook were used in conjunction with the Workbench to provide

post-simulation capabilities.
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4.2.1 Overview of Simulation

The simulation was based on the Smalltalk clarinet developed by Perry Cook, on which he
based his waveguide report in [18]. Cook’s parameters, which derived from experimental
work in his normalized waveguide environment, served as the starting point for the param-
eters here, rather than any physical parameters. A later section will discuss the equivalence

between the normalized simulation parameters and their physical counterparts.

One of the objectives of the normalized clarinet was to allow as much integer operation as
possible. Thus, pressures were computed and propagated in integer form wherever feasible.
The only exception was in the delay lines of the terminating Butterworth filters. There, the
truncation errors degraded performance to such an extent that intermediate filter values

were calculated and retained in floating point form.

Figure 4.2 illustrates the flow of the simulation. The basic steps taken, following models

described in previous chapters, were:

1.Advance circular buffer pointers and buffer delay line outputs:

tdel = Mod(iger + 1, Nger) (4.1)

where 14.; is the buffer pointer and Ny is the number of delays in the line, specified by the
user. The implementation of the register key necessitated the addition of an extra delay

line, so this procedure was extended.

dloy: = dl(idel) (4'2)

where dloy; is any of the delay lines used.
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Mouth Pressure

Reed (Lookup Table or Dynamic Model)

A

Bore (Delay Line)

Bell (Lowpass / Highpass Filter Pair)

Bell Radiation
(SoundFile)

Figure 4.2: ClariNeXT Simulation Flow
2.Compute input pressure based on input envelope, noise and vibrato specifications:

I)input = Fenv + Pnoise + Pyibrato (43)

3.Compute the reflected, left-going wave at the bell (reflection filter) and insert into
reverse delay line:

Preverse Hdel] = reflect(P, forwardout) (4.4)

4. Compute the right-going wave reflected at the reed (reflection method takes carc

of wave inversion) and insert into forward delay line:

P, forward[idell = reedReflect(Preverseout) (4.5)
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5. Compute the radiated sound at the bell (transmission filter)

P.umnd = trans'nit'(Pforwm'dcmt) * Ksound (4-6)

or alternatively

Pyound = (Pforwardout + Pforward[idel]) * Kyound (47)

where Kounq i8 the user-defined output scaling gain.

6. Play the sound and write the data to a Soundfile.

Because the delay line outputs are buffered at the start of each iteration, these steps are
commutative. The parameters governing these operations are controlled by the user through
graphical interface panels. The remainder of this section will discuss the various aspects of

the integrated models and user control over their operation and selection.

4.2.2 Main Panel

The purpose of the main panel is to specify the basic input/output parameters for the run.

The input options are:

Noise

Noise is implemented as additive white noise in the input pressure. The user specifies the

level of the noise, f,, as a fraction in the range [0,1] of the nominal input level, P;,, so that:

Pintnz = Pin[l + (1 = RU() * fn] (4.8)

where RU is a uniformly distributed random number between -1 and 1.

Chris Chafe and Perry Cook have explored better ways of modeling noise in a musical signal
[13],[19]).
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Figure 4.3: Main Panel: ClariNeXT Workbench.

Vibrato

Vibrato is implemented as an additive amplitude modulation of P;;, ;.. The user can specify
both the fractional level, f,, and the modulation frequency, w,. The modulated pressure
signal, Piyn4v, or simply, Pinpy is then:

-Pinput = Pingnz + foPin4n: Sin(iw) (49)

Note that, unlike a frequency domain-based system, the vibrato is implemented via ampli-
tude modulation only, and not through any frequency modulation. This is, of course, the
way a player of a real wind instrument produces vibrato - by periodically varying his breath
pressure (in recorders there is also a direct frequency modulation through the technique
of flattement, or finger vibrato; this does not extend to reeds however, except possibly
for some types of folk music [10]. Because, for various reasons that have been discussed,
the played pitch is amplitude dependent, the resulting tone on a true instrument will be
frequency modulated as well as amplitude modulated.
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Output File

The NeXT computer provides a convenient Sound class which permits the writing of data to
a Soundfile. This Soundfile can be read as such by other programs. Because the ClariNeXT
program is intended to be run in tandem with extant sound analysis tools, there is little

built-in capability for replaying and editing the simulated sound.

The program actually writes to three different Soundfiles. To the main Soundfile goes the
radiation from the bell, which is the Soundfile played upon completion of the run. In addi-
tion, the reed position, based on the reflection coefficient computed in the Reed methods,
is written. The reed position is automatically normalized to the scale of the soundfile and
inverted so that a value of 0 is closed (reflection coefficient = 1) and a maximum value is
fully open (reflection coefficient = 0). Finally, the output at the third port in the scattering

junction (“tonehole” radiation), is written.

Output Scaling

The ClariNeXT Workbench uses a Soundfile with 16-bit data format and 22050 Hz sampling
implying a range of £32767. This can be compared with a normalized input pressure within
the range [13000 - 20000]. If an output point exceeds this range, it will saturate the value;
the resultant clipping will corrupt both the sound and any subsequent analysis. Therefore,

some output scaling options are included to allow the user to normalize the amplitude:

e Constant gain: User-defined gain on the output. This is really equivalent to changing

the gain on the transmission filter;

e Attack amplitude: This option is appropriate for parametric studies which involve
the variation of the input amplitude, so that results can be correlated independently

of the input pressure;

e  Previous maximum normalization: Because the Soundfile is so large (22050 samples
per second of sound), the output data is not buffered before being converted to
Soundfile type. However, the program does track the maximum amplitude, max-
amp as the data are computed, and saves the value. If the same set of parameters

is run with the Previous maximum option set, the program will this time scale the
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output by maxamp / SOUNDMAX , where SOUNDMAX is the desired maxi-
mum amplitude. This is the option of choice when coping with numerous simulations

where clipping is common.

4.2.3 Attack Panel

Figure 4.4: Attack Panel: ClariNeXT Workbench.

The transients, and even the distribution of the steady-state modes of oscillation, depend
upon the nature of the initial attack. This panel allows the user to set the breakpoints for
a two-segment attack envelope, which is then displayed in the slider-bounded window. The
attack parameters, which were based on the Perry Cook’s results [18] are:

e Steady-state attack amplitude: the pressure level at the conclusion of the attack.
Attack amplitudes generally ranged from about 13,000 to 20,000.

e  Overshoot amplitude: the fractional midattack overshoot, which produces a sforzando
effect. This value can be set to 0 to produce a smooth, ramped attack;

e Attack length: length of the attack, in samples. The attack length affects the slope
of the attack ramp, and therefore the perceived articulation. The nominal value was
set to 2000, or about 0.1 second;
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e  Overshoot segment length: length of the first attack segment. Also affects perceived

articulation.

The resulting envelope is written to an attack lookup table, which is used by the simulation
to set the input pressure for the length of the attack. From that point until the point of
decay, which is based on the user-defined decay length, the steady-state pressure is used.
Finally, the decay table, which is simply a ramp from the steady-state pressure to zero in

the time specified by the user, terminates the tone.

4.2.4 Waveguide Panel

Figure 4.5: Waveguide Panel: ClariNeXT Workbench.

The waveguide panel defines the configuration of the waveguide, which represents the res-
onating air column. The user can set both the nominal fundamental tone, which defines

the overall delay line length, and the register key. Options are:

e Note and Octave Drop: This option sets the length of the delay line, based on an
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equal-tempered scale starting at a C with database frequency wpqese- The frequency

of the note, indexed chromatically from C, is:

Wnote = ( 1\’/Q)"""“ * Whage (4.10)

For reasons mentioned earlier, it is often convenient to drop the octave so that there are
more elements in the delay line and so that the resulting sound is less grating on the user.
This could be done by dividing wpese by 2, but that value is transparent to the interactive
user, as it is not expected to be an experimental variable. Instead, the octave drop flag,

%oct, 18 used in the calculation of the delay length.

The number of delay elements is then:

. (w
Nger = (int) ———)
T+ioct Whase

(4.11)

e Register Key/Bore Perturbation: Inclusion of an intermediate scattering junction
representing either a single bore perturbation or a register hole at an arbitrary point
along the junction. The user can set the position of the hole/perturbation (on or
off), the type of junction used (lossless 2-port or 3-port), the relative size of the
register hole or perturbed bore with respect to the bore diameter, and the fractional

position along the bore, f,5.

Incorporating tonehole capability entailed a major change in the structure of the waveguide,
as illustrated in Figure 4.6. Now the forward and reverse delay lines are separated into two
parts, joined by the scattering junction. The lengths of these new segments, n4e10 and ngein,

are computed as:

Tdelo = Ndel * frh (4.12)
Ndell = Tdel — Tdel0 (4.13)
To implement the scattering junction, an object, Scatter, was defined which had methods

for both the 2-port and 3-port scattering junctions defined in Chapter 3. The waveguide

propagation steps discussed above now include the intermediate step:
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Mouth Pressure
/ \ Reed (Lookup Table or Dynamic Model)

&

f Upper Bore (Delay Line)
i
i
Register Hole - ‘| Register Hole (3-Port Scattering Junction)
Radiation -« -
(SoundFile)

Lower Bore (Delay Line)

Bell (Lowpass / Highpass Filter Pair)

Bell Radiation
(SoundFile)

Figure 4.6: ClariNeXT Simulation Flow with Scattering Junction

3a. Calculate the reflections at the scattering junction if the register key or perturba-

tion is set:

if regkey set

Proin, Pr1in = scatter(Priout, Proout) (4.14)

else

Proin, Pflin = Irlout, PfOout (4.15)

The scattering junction was computed following the method described in Chapter 3. If the

2-port junction was selected, the Kelly-Lochbaum reflection coefficient, p, was computed

as:




CHAPTER 4. INTERACTIVE REED WOODWIND MODELING WORKBENCH 171

2

_ 4.16
24+~ ( )

p=

where 17 is set by the user in the waveguide panel. The panel displays the value for p which
is calculated. In addition, the scattering coefficients (p + 1) and (p — 1) are computed a
priori . The one multiply junction could be used for a more efficient scattering, but has not

yet been incorporated.

Rewriting the scattering equations presented earlier to use f and r to denote forward and

reverse lines, and in and out to denote incoming and outgoing paths:

out = PPL, +[1— p] P}, (4.17)

Pl,=[1+p| Pf - pP], (4.18)

The three port junction used a purely resistive port to represent the register hole, as de-
scribed in Chapter 3. The reflection coefficient was the same as for the Kelly-Lochbaum

junction, but only the additional value (p + 1) was needed for computing the reflections.

In the 3-port case, the scattering equations were:

vut = PPL +[1+ o] P, (4.19)

Pl =1+ P} +pP], (4.20)

In addition, the pressure escaping through the tonehole was computed for program output
purposes:

Pty = (L+p)PL+ (1+ p) P}, (4.21)

Nominal values for scattering parameters were derived experimentally, and will be discussed

in the next chapter.
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4.2.5 Reed Box Panel

Figure 4.7: Reed Box Panel: ClariNeXT Workbench.

The reed box panel allows the user to define the parameters of the reed. Two implementa-

tions are offered — reed table and reed model — as were discussed in the previous section.

Reed Table

The reed table is defined in much the same way as the attack envelope. The user sets,
in normalized pressure samples, the closure breakpoint (P.oseq), the endpoint, or opening
breakpoint (Popen), the zero-input operating point (Pof,et), and the scale factor, f,, which

maps from the normalized pressure sample space to “true” pressure. The nominal values,
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which were taken from Perry Cook’s Smalltalk version [18], are set to:

Pelosed = 255
Popen = 1023
Poffaet =700

£ =80

Restating equation 3.116 for convenience:

~N_ .. [P
ip = int f_ + Poffset (4.22)
38

where P{ = P,— Pp,. Note that this defi: -cion of P differs from that described in Chapter
3 by a factor of 2. This is because that factor is already imbedded in the value of the mouth
pressure (which is really the half pressure) and in the reed table scale factor.

As Chapter 3 discussed, the user can change the effective stiffness by varying either f, or
the operating slope, which is defined by Popen and Pejgseq- The reflection coefficient used in

the reflection equation:

P+
P = ,;,(13,3‘)7A + P, (4.23)

is set to 1 for pressures less than Pjoseq and O for pressures less than Pypen.

Reed Model
The dynamic reed model implements the equation:

2
% + 2pwrd + wlz = —%AP (4.24)

This is a particularly convenient form because of the implied steady-state equivalence of
displacement, z, and negated pressure, - P (normalized area is assumed, so that [ PAdA =
P = F) for a unity value of stiffness k..




CHAPTER 4. INTERACTIVE REED WOODWIND MODELING WORKBENCH 174

The dynamic equations were implemented in state space form with simple rectangular

integration as follows:
1. Set up first order differential equations
Jfl =9
2

. W,
2= f(—AP‘*‘ Poff.set)
r

where AP is the pressure drop across the reed. Note that A P must be negated to account for

the definition of positive tip displacement for closure, and positive pressure for compression.

2. Propagate states
t+At
] = / T1dt = 71 + 1At
t

t+At
T9 = / Fodt = To + T2Al
t

3. Limit tip excursion on positive side for beating
T 2 Qglosed and T2 > 0.0 then

T1 = Gclosed

3 = —KelqstT2

The model allows for elastic or inelastic collisions. The user can set the elasticity constant,
kelast, to define the fraction of momentum conserved in the collision. The normal range of
this constant is [0 1], where 0 represents total inelasticity, i.e., the reed comes to a complete
stop, and 1 represents total elasticity, i.e., the reed bounces off with the same absolute
velocity as it had when it collided.

4. Map z; to the equivalent reflection coefficient, p,, as described in Chapter 3.

0.0, T 2 Gcloseds
pr= x;::t:“ sy Gclosed < T < @open; (4.25)

1.0, T < Gopen
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5. Calculate the wave reflection

+

P
P = ,,,,(AP)TA + P, (4.26)

e  Driving Pressure

As Chapter 3 mentioned, while the dynamic reed model can be implemented in a manner
fully compatible with that of the reed table, so that the pressure determining the reed
displacement, AP is PX . However, since the dynamic model is more physical than the reed
table, this nonphysical term poses a potential problem. An alternative would be to base
the driving pressure on the true junction pressure drop, Pa, to determine the tip opening
and resultant reflection coefficient, while maintaining the use of PI to calculate the actual

wave reflection:

Pr=P}+P - P,

and

P} =2P} - P,

Unfortunately, the value of Pa is not accurately known, since it relies upon the value of
P, which is the quantity being calculated in the first place. Instead, the program uses the
previous value of Py, so that there is a sample delay in P,". This is still a more accurate
estimate than was P}. A better estimate would result from calculating the rate of change
in P, and using the most recent rate to extrapolate to the current expected value of P, .
Note that this delay affects only the value of the reflection coefficient, and not of the wave
itself, which is still based on the current P}.

e Maximum Resonance (Reed stiffness)

The dynamic reed model allows the user to define both stiffness and damping in terms of
the reed resonance. The interface is designed with the assumption that the user is most
interested in the harmonic collaboration of the reed with the bore resonances. Therefore, the

default values allow the user define parameters in terms of the waveguide options selected.

e Maximum Resonance (Reed stiffness)
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The nominal reed resonance, in the absence of embouchure damping, is the natural frequency

of the reed. The user can set:

1. The playing pitch on which the reed resonance will be based. The default value
is C’, the highest available chalumeau register pitch on the instrument (actual value
depends on the user-defined wyqse). The resulting factor is computed, as the playing
pitch was, as:

( l\z/i)if“wbaae

4.2
1+ 200t (4.27)

Wreed =

2. The harmonic multiplier, f which scales the base reed resonance. The default

value is 10, which reflects the 10x factor in a clarinet reed.

3. The natural frequency in Hz. This can be calculated automatically as the product
of the above two factors or set directly. In addition, the user can use the adjoining

slider to vary the frequency within a + 20 percent range.
e Reed Damping

When the “New Reed” option is selected, the program will automatically compute the
damping that will set the damped resonant frequency, wq, to an integer multiple of the
playing pitch selected in the Waveguide Panel:

Wd = Wnotefh (428)

To handle a register key, which will result in a tone 2.5 times the playing frequency, the

equation is modified to:

1.5%reg
14200t

wq = (wnote + )(.fh - (1 + 3irey)) (429)

where 1,4 is set to 1 if the register key is set.

The damping ratio is then computed by:

=11 (ﬂ)z (4.30)
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The user can also set the either damped frequency or the damping ratio directly. The “New
Chops” button will cause the calculation of one from the other, based on which value is
selected as the driver in the panel. If the “New Chops” option is not selected, the program

will use whatever values are present for (, and wy without correlating the two.

e Embouchure Pressure

The initial pressure offset, or alternatively, initial tip displacement, affects the playing of the
instrument by changing the mean reed impedance. In the beating regime, the tip offset also
determines the swath of the reed, and consequently, affects the beating frequency. Unlike
a physical reed instrument, the user can set this parameter independently of damping.
Either the offset pressure or the offset displacement can be specified. Again, the “New
Chops” button will calculate one from the other in accordance with the user selection.
From Equation 4.24:

2
wlt = ‘;—’P (4.31)

if

t==0

For k normalized, the nominal condition, offset pressure and displacement are equivalent.

Bernoulli Model

Chapter 3 developed the equations describing the “Bernoulli effect”. The equations for the
moveable separation point were incorporated into the simulation. Recall that this models
a condition where the reed tip represents a constriction where flow is accelerated and the
related pressure drops below ambient. Rather than try to determine the location of the
separation point, it was assumed that the pressure would drop off quickly enough that it
would be appreciable only along a small, finite segment at the tip. The scaling of the force

implies the distribution of the resulting pressure across the entire reed.

For the reed table model of the reed, the effect can be most efficiently designed directly into
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the reed table itself. This is consistent with the streamlined approach on which the reed
table model is based.

The Bernoulli force for the reed table is based on the reed tip displacement represented

by the nominal table. The nominal table, p, can be computed as discussed earlier. The

Bernoulli force is of the form:

Pp = —- (4.32)
The scaling constant, K p, represents both the separation displacement, a,, and the distri-
bution factor which spreads the point pressure at the tip over the reed.

This can be be mapped to a reed table index by:

_ (int)Pyp

E (4.33)

B

The idea is to replace the reflection coefficient at pressure point ¢, with the reflection

coefficient at iy, where p’ is the pressure augmented by the Bernoulli pressure. The reed
table index can then be adjusted by

1A =1ip +iB (4.34)
bounding i} by 0 and N.

Figure 4.8 illustrates the implementation of such a table. Note that the slope is steeper
at reed closure. In addition, the closing point moves to right, reflecting the lower pressure
drop required for complete closure. This will bring about the desired effect of an increased

closing rate near reed closure. No additional steps need be taken for this implementation.
For the dynamic reed model, the force was calculated based on the current position as:

Asywa
pp=Kp—222 _(1_4)P, (4.35)
Qclosed — T1

The (1 — )P term accounts for the flow restriction due to the reed closure.

and subtracted from the forcing pressure in the dynamic equations.
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Figure 4.8: Reed Table with Bernoulli Force

4.2.6 Bell Panel

The bell panel determines the implementation of the reflection and transmission filters at
the end of the delay line. Because the reflection filter is critical in determining the internal
wave behaviour, while the transmission filter affects only the output, the reflection filter
was allowed much more complexity. Because of this, the filters do not form the ideal
complementary pair. When the radiation was modelled as the identically the pressure at
the bore, i.e., the sum of left and rightgoing waves, or equivalently, the unreflected residual

of the rightgoing wave, the ideal complementary relationship was restored.

All filters are of the form:

Y B
3=+ (4.36)

where Y, X, A, and B are all vectors with length determined by the order of the filter.
The delay lines Y and X represent, respectively, the previous outputs and states. The filter
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Figure 4.9: Bell Panel: ClariNeXT Workbench.

coefficients, B and A, are based upon the filter selections of the user, and were precalculated
using the interactive program MATLAB [42].

The bell reflection is then computed and propagated using:

Poell = Ynew = k(BoZnew + Bl,norderipast) - A?,m:

e Filter Type

Two basic filter types are offered for reflection: a first order averager, which can be imple-
mented in the most computationally efficient manner; and a Butterworth filter, for which
2nd, 4th, and 6th order versions can be selected. The Butterworth filters are the more phys-
ical, and allow much more flexibility in determining the cutoff frequency, at the expense of
added computational burden and phase delay.

e Filter Cutoff

For the Butterworth filters, a range of cutoff frequencies from 1000-5000 Hz was offered. In
particularly, a pair of cutoff frequencies at 1550 Hz and 1450 Hz were defined specifically to
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represent the two percent change which Benade found to be so important [9]. The radius of
the simple averaging filter can also be adjusted to weight the past value when calculating
the average.

e Filter Gain

Nominally, the filter gains are set to 1. However, the user can set the gain arbitrarily to

study the effects of losses within the system.

e Transmission Filter parameters

The transmission filter is of the form of a single pole filter:

k
knorm = ————— 4.7
=D )

y=rknz—ry! (4.38)

The user can set both filter gain and weighting radius. The transmission filter gain is
not nearly as important as the reflection filter gain, as it has no effect on internal reflec-
tion. Rather, is simply scales the output, which may be scaled again by the normalization
procedure described earlier.

It is worth repeating that the transmission filter is not considered to be an accurate model
for sound radiation. Attention for this research was focused on the internal reflections,
and not so much on the actual sound quality. A more comprehensive model would contain
the complementary filter pair. Also, a filter pair is necessary only for a cylindrical bore
with relatively small bell, where the impedance ratio at the bell is close to infinite. For a
conical bore with impedance matched flaring bell, the associated scattering junctions can be
extended all the way to the end of the instrument, and no additional filtering is necessary.
In the current mode, the sound radiation out of the register hole provides a somewhat more

realistic example.

4.2.7 Spectrum Panel

The purpose of the Spectrum panel is to generate the impulse response of the bore and
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Figure 4.10: Spectrum Panel: ClariNeXT Workbench.

display its spectrum, using the SpectrumView object developed by Perry Cook. The impulse
response is calculated using code that parallels the main simulation. This allows the user

to compare the bore resonances with the final sound.

The impulse response is generated by:

1. Initializing the first element of the forward delay line to the impulse pressure.

The normal input pressure is set to 0.

2. Freezing the reed at its steady state offset, as defined by the reed table or reed
parameters. The reed reflection coeflicient is thus fixed at one value, so that the

nonlinear coupling of the reed does not interfere with the impulse response.

3. Propagating the delay lines as was done earlier, but for only 1024 samples.
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4. Shipping the output data to the program spectrumView, which calculates the
Hartley transform and plots the resulting spectrum in the panel. The panel also
displays the locations and relative sizes of the peaks, which then correspond to the
impedance peaks discussed in the literature. A final display in the output is the
Peak Frequency ratios, or ”cooperatios”, which indicate how closely the resonances
are aligned with one another. This particular capability will become much more
valuable when enhancements to the bore, such as conicity or a tonehole lattice, are

incorporated.

4.3 NeXT SoundEditor & Spectro

As was mentioned earlier, the program was designed to be used in conjunction with existing
signal processing software on the next, and no effort was made to duplicate extant tools.
The most useful were the NeXT SoundEditor, which allows the user to play SoundFiles, as
well as cut and paste parts of the waveforms within, and Perry Cook’s Spectro program,
which computes a cascade of frequency spectra for a time-varying signal by windowing
portions of the input array and taking the Hartley transform. These tools were invaluable
to the development of the reed workbench, and to the subsequent analysis and simulation

work performed with it.







Chapter 5

Results

5.1 Summary of Results

This section reports some of the results obtained with the simulation workbench described

in this thesis. To reiterate from Chapter 1, the functions of the simulation were:

e To implement J. Smith’s clarinet model in an interactive environment on the NeXT

computer;

e To explore the acoustic behavior of a generic reed instrument with the help of this

model;

e  To assess those refinements in the model which might be useful in a real-time musical

instrument.

In general, the simulation performed very well, considering its simplicity. The essential
behavior of a reed instrument was duplicated somewhat realistically, aJthough the devel-
opers of many earlier clarinet models have been able to claim the same. The register key,
which, to the knowledge of the author, was new to this simulation, worked quite nicely; the
second register was achieved cleanly and easily. The dynamic reed model, which is not a
new concept but is new to this particular WGF formulation, exhibited some interesting, if
musically undesirable phenomena, including “squeaking” =t both the reed resonance and in

the third register of the instrument. This model had som: advantages under normal playing

184
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conditions, and offered some aural improvement in sound quality in the non-beating regime;
however, when special conditions were imposed, such as elastic collisions and hydrodynamic
effects, which resulted in frequent discontinuities such as hard beating against the lay, the
model suffered from too slow a sampling rate, and possibly too simplistic an integration
scheme. Because of this, it was difficult to aurally assess the success of the modeling of these
conditions; the chattering due to the limit cycling of the reed model dominated the sound.
However, some results could be garnered by focusing on appearance of the overall waveform,
from which the dynamic problems could be filtered out. Although it would benefit from a
number of enhancements, the simulation proved to be a useful tool, not only for developing
sounds, but for providing a better understanding of the acoustic interactions which occur

in a reed woodwind.

5.2 Basic Acoustic Behavior of the Simulation

This section discusses the various aspects of the behavior of the simulation. The specific
parameters which served as the default for all the runs to follow are provided in Appendix

A. The nominal model provided:
e Sampling rate of 22050 Hz;

¢ Reed Table implementation of the reed model, with parameters based on Perry
Cook’s SMALLTALK simulation;

e Fundamental tone set approximately to A220;

e  Second order Butterworth filter with a cutoff frequency of 1500 Hz to model reflec-
tion at the bell. The radius of the zero in the one-zero transmission filter was set to
0.9.

e Attack amplitude of 16700 soundfile-normalized pressure units (see Chapter 4),
which, for the default reed parameters, was situated in the thick of the non-beating
regime, but well above threshold pressure. A 25 percent attack overshoot was pro-
vided for the default attack. Total attack time was 2000 samples, or about 0.09

sec;
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e No noise or vibrato added to the input;

e Most simulations were rerun with output gain normalization to equalize the results

for comparison in terms of spectral content and general shape (see Chapter 4).

5.2.1 Observations on A Simple Tone

Figure 5.1 illustrates the overall waveform of a typical tone. In it, one can see the regener-
ation process develop; the steady state is reached at about 7000 samples (0.32 sec), about
5000 samples (0.23 sec) after the conclusion of the actual attack portion of the input enve-
lope. This means that the transient portion of the tone far exceeds the length of the attack.
Zooming in on the attack envelope in Figure 5.2, we see a smooth, nonlinear envelope,
starting from the initial bias output from the attack through the repeated augmentation
of successive compression pulses. This can be compared to the true clarinet attack that
was originally shown in Section 2.2., and which is repeated here for reference in Figure 5.3.
The development of the attack was a bit more interesting for the true clarinet because its
steady-state waveform, to be discussed presently, was much less smooth than the simulated

clarinet, and the blossoming of the higher harmonics is much more apparent.

Figure 5.1: Waveform profile for a tone on the ClariNeXT simulation

The steady state portion of the waveform is magnified in Figure 5.4. Although there is
evidence of some higher harmonic activity, there is not nearly as much as there was for
the true clarinet, whose wave form is also duplicated here, from Section 2.2, in Figure 5.5.
Whereas the simulated wave is close to a square wave, the true clarinet exhibits an output
closer to the triangular wave. Recall that this triangular shape was evident as well with

Cook’s clarinet stub, for which the internal waveform was measured by fitting a microphone
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R

Figure 5.3: Attack portion of true clarinet waveform (Bias removed by recording preampli-
fier (Sound source: McGill University Master Samples)

in a hole drilled in the side. The transmission filter with which the bell is modelled has some
influence on the interpretation of the output, but the correlation between Cook’s internal
waveform and the McGill clarinet external waveform indicates that both share the major
characteristics. This was true with the simulated model as well; at an earlier stage in the
development, the internal pressure fluctuations were tapped. It was found that, with the
transmission filter described here, the internal and external waveforms had fairly similar
shapes. The “ideally complementary” transmission filter, that is, the total pressure at the
bell node, actually results in a very different looking waveform, as will be discussed. Even
8o, it is still convenient to use a filter that mimics the internal wave behavior, since it is
the internal behavior that really governs the interactions that characterize the sound. More
careful quantitative studies of this behavior would require the tapping of the actual internal

waveform, rather than the bell output currently provided.

The spectrum of the bore resonance is illustrated in Figure 5.6. The effects of the cutoff

frequency are apparent. Notice, too, that the even harmonics are completely absent, as
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Figure 5.5: Steady-state portion of a tone on a real clarinet

theory would suggest. Figure 5.7 shows the corresponding output spectrum, including
an approximation of the peak locations for comparison with the bore resonances. This
spectrum has some important features. First, the even harmonics are now present, and the
difference between intervening even and odd harmonics decreases as the frequency increases.
This is somewhat similar to the true clarinet spectrum, shown again in Figure 5.8. For the
true clarinet, the second harmonic was much lower than for the simulation, and succeeding
harmonics grew, so that the fourth harmonic is at a level close to that of the simulation,

while the sixth harmonic exceeds the level of the simulation.

A second feature, which does not obey theoretical prediction, is the close agreement between
the first resonance and the first output harmonic. Chapter 2 noted that the presence of
the reed should lower the playing frequency, but here, it appears to have negligible effect.
The simulation diverged from experience for other pitch-related phenomena as well. The
presence of the bell does affect the frequency of both resonances and output harmonics.
The note displayed, whose nominal value was A220, is actually closer to a G#. In order to

match more closely, the G# sample of the true clarinet was chosen for comparison.
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Figure 5.6: Bore resonances on the ClariNeXT simulation

Finally, we can see an attenuation of about 40 dB at the bore resonance cutoff frequency of
1500 Hz (the first peak is about 9dB, so the -30dB line really indicates an attenuation of -39
dB). The spectrum does not exhibit the high frequency behavior of its true clarinet coun-
terpart. However, this is due at least partly to the modeling of the highpass transmission

filter discussed earlier.

5.2.2 Influence of the Input

In this section, the sensitivity of the simulation to the input profile is discussed. The in-
fluence of the input pressure on the output tone is extremely important for a potential
real-time instrument, because the input pressure is one of the musician’s primary sources
of control during performance. The ability to control tone with breath pressure and ar-
ticulation is a gesture that, for the most part, is not available with conventional synthesis
techniques; a sampler would have to provide a waveform, not only for varying notes, but for
varying levels of pressure on each one. Even then, the implementation of mode transition

would require nonphysical workarounds.

Both the transient and steady-state phases of the attack envelope were investigated. First,
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Figure 5.7: Output spectrum of the ClariNeXT simulation

the steady-state amplitude of the input pressure was varied, to determine if the amplitude-
dependent generation of harmonics would occur as described by Worman [76] and observed
on real clarinets. This also allowed definition of the nonbeating and beating regimes, as well
as the total pressure range between thresholds, that is, between where the reed just begins
to support the oscillation and where the reed is blown completely shut before oscillation can
begin. The next subsection examines the effects of the attack envelope itself. Articulation

— the way a musician shapes his attack by tonguing and breath pressure — is critical

I

W T

Figure 5.8: Output spectrum of a real clarinet
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from a musical standpoint. It is important therefore to understand how the simulation will

respond to attack envelope variations.

Sensitivity to Input Pressure Amplitude

To summarize from Chapter 2, a true clarinet exhibits the following input-amplitude de-

pendent behavior:

e Threshold blowing pressure beneath which a sustained oscillation cannot be pro-
duced;

e Non-beating regime where increased input pressure generates increasingly higher

harmonics;

e Beating regime where increased input pressure generates parallel growth in harmon-
ics;

e Maximum blowing pressure where the reed blows shut;

o  Pitch fluctuations with input amplitude fluctuations.

On the first four points, the simulation performed quite well. Threshold blowing pressure,
the “blossoming of the spectrum,” the onset of beating, and the blowing shut of the reed,
were all attained. For the nominal model, the pressure ranges, in soundfile-normalized

(x32768) pressure units, were as follows (normalized pressure input):
e  Threshold Blowing Pressure: 15630
e  Onset of Beating: 17400

e Maximum Blowing Pressure: 36200

Figure 5.9 shows the input/output pressure relationship for the default parameters, but with
the delay line set for a G rather than an A. Here, the break at the threshold blowing pressure
is quite apparent. The initial slope, once a successful oscillation has been achieved, is quite
steep until it catches up to the fairly linear portion of the graph which begins roughly at the
non-beating region. Often, under the threshold pressure, there was some oscillation, but at

a very low level that was far exceeded by the bias portion of the input. Also, the threshold
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marked a more precipitous climb in output pressure for some cases than others. Where
the threshold pressure was high, the initial slope was extremely steep. Where the pressure
was lower, the transition from nonplaying to playing was less defined, with an intermediate
oscillation level that was too weak to be considered well-supported tone, but strong enough
to produce some small amount of sound. In these cases, it was difficult to define a true
threshold.

Output Pr vs Input P
G, 2nd Order Butterworth, 1500 Hz Cutoff
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Figure 5.9: Input/Output pressure relationship for typical clarinet simulation. QOutput
pressure has been scaled down by 4*1.3

These pressures are in the integerized, soundfile normalized units of the simulation. How-
ever, in terms of relative range from threshold to beating, they agree quite well with Wor-
man’s results [76]. He cited a threshold blowing pressure of around 2000 Nt/m?, and an
additional pressure of around 300 Nt/m? to bring the reed to the beating state; this equates
to a 15 percent change in pressure between threshold and beating (these were actually ana-
lytical results, but he claimed that they reflected experimental results). For the simulation
pressures above, the equivalent pressure change is 11.3 percent, which is extremely close to
Worman’s number; the simulation behaves quite realistically in this regard. No experim

tal data were available for the upper threshold pressure; many early studies, from wh

much of the experimental data derived, stopped at the edge of the beating regime.

Figure 5.10 and Figure 5.11 illustrates the normalized wave profile and individual waveforms
for three levels of input: near threshold (16000}, onset of beating (17400), and moderately

strong beating (20000). The associated reed positions, computed from the reed reflection




CHAPTER 5. RESULTS 193

coefficients, are shown in Figure 5.12. Here, the transition of the reed from nonbeating
through hard beating can easily be seen. Note that the steady-state is achieved much more
quickly as pressure increases; the third wave profile, for the relatively high input pressure of
20000, approaches the size of the actual attack envelope with its transient of just over 2000
samples. The spectra of the two non-beating cases are shown in Figure 5.13. The generation
of harmonics is evident; the lower frequency harmonics will move as little as 2dB, while the
higher harmonics grow quite a bit more than that. As could be expected, the tone became
brighter as the higher harmonics became more prevalent. The spectrum for the beating
case is shown in Figure 5.14, along with the spectrum for a relatively high input pressure of
25000. Note that these two spectra are much more similar than the two nonbeating spectra
were, even though the difference in the driving pressure is over three times as large. This
follows from the parallel growth of harmonics that occurs once beating begins. The relative
sizes of the harmonics should not change, and the normalized spectra should match closely,
as they do. Note too that, as the reed beats harder, the even harmonics shrink with respect
to the odd harmonics. It appears that the even harmonics are growing weaker, but these

are normalized spectra; the odd harmonics are growing stronger.

One aspect of predicted behavior which is absent here is the dependency of pitch on input
amplitude. Recall that this effect has been attributed to 1) misaligned harmonics in the
nonbeating regime [9], 2) changing tip offset in the presence of elastic collisions [27], and
3) amplitude-frequency dependency for a nonlinear spring [53]. None of these features
are present in this nominal case, and so, the pitch dependency cannot be expected. This

aberration will, however, be a recurring theme in this chapter.
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Figure 5.10: Output pressure profile for clarinet simulation blown at 16000 (non-beating),
17400 (beating threshold), and 20000 (moderately hard beating)
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Figure 5.11: Pressure waveforms for clarinet simulation blown at 16000 (non-beating), 17400
(beating threshold), and 20000 (moderately hard beating)
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Figure 5.12: Reed Position waveforms for clarinet simulation blown at 16000 (non-beating),
17400 (beating threshold), and 20000 (moderately hard beating)
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Figure 5.13: Output spectra for nonbeating regime: 16000 and 17400

Sensitivity to Attack

The previous section discussed the influence of the steady state pressure on the waveform
and output spectrum. Another issue of great importance in playing a reed instrument
is the form of the attack, as defined by the player’s articulation. The simulation attack
envelope provides for an initial overshoot, or sforzando stage, before settling down to the
steady state. The default attack envelope, illustrated in the panel description in Chapter
4, specifies a 25 percent overshoot which peaks 30 percent of the way through the attack.
For this experiment, both the overshoot slope and the overshoot peak size were varied to

ascertain their influence on the steady state waveform.

First, the slope of the overshoot was varied by moving the breakpoint from 0, for an almost
infinite slope, to the end of the attack at 2000. The overshoot peak was maintained at 25
percent. The final steady-state showed no sensitivity at all any of the variations. Although
the transient, of course, changed, both aurally and visually, the final output pressure con-
verged on the nominal steady-state waveform. Next, the degree of overshoot was changed,

from 0 to 90 percent. Again, there was no influence on the steady state.

Although the attack did not appear to have much affect beyond the transient portion of the

note in the preceding example, the variations were performed under an extremely stable
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Figure 5.14: Output spectra for beating regime: 20000 and 25000

set of conditions, where there really was only one possible outcome. Where attacks play
particularly important roles are in situations where the system is at least bimodal, that is,
there is more than one different stable steady-state which can be achieved with the same
instrument configuration. A good example of this is provided by certain notes in the upper
register on the recorder, which cannot be played without a solid, accurate attack. There
are notes on some shawms that cannot be played at all if articulated; the player must slur
up or down from a nearby note to excite the desired mode. Misalignment of resonances can
also lead to a bimodal condition.

A similar situation exists at the threshold blowing pressure; a strong attack to initiate the
note can be followed by a reduced blowing pressure sufficient to sustain it. This case was
tested on the ClariNext simulation. The steady-state input pressure was set at 15500, below
threshold, even with the 25 percent overshoot. The overshoot fraction was increased from
25 percent to 100 percent. Figure 5.15 shows the radiation profile for the 25 percent and
100 percent overshoot. The increase in overshoot succeeded in exciting the mode, although
the resulting sound, dominated by the large sforzando at the onset, had a rather unique
quality to it, almost like a cross between a pluck and a note blown across the mouth of
a bottle. Figure 5.16 shows the transition from attack to steady-state. The harmonics
present in the attack die out leaving behind an extremely smooth waveform, as shown in
Figure 5.17, along with the corresponding spectrum. The fundamental is quite dominant
here, which explains the flutelike quality in the tone.
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Figure 5.15: Pressure profiles for underblown clarinet simulation with attack overshoot of
25% (top) and 100% (bottom)
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Figure 5.16: Transition from attack to steady-state for underblown clarinet simulation

In summary, the preceding experiment showed that, at least for the ClariNeXT, the attack
affected the steady state only in the case of a marginal mode, where the attack could serve to
set up an oscillation that could not have otherwise been excited. It must be re-emphasized
that the perceived quality of a note is highly dependent on the transient startup phase,
regardless of the steady state. These results therefore in no way imply that the attack
parameters have no affect on the overall perceived tone, or that the simulation is deficient
in this regard. They do, in fact, reinforce the notion of the psychoacoustic importance of

the attack, simply because they do decouple the measurable attack from the steady state.
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Figure 5.17: Steady-state pressure waveform and output spectrum for underblown clarinet

5.2.3 Influence of the Reed Tahle Parameters

A series of experiments was performed to determine the importance of the reed table pa-
rameters relating to stiffness and tip offset in clarinet operation. The reed table used was

the piecewise linear one described in Chapter 4.

Reed stiffness was varied by changing the breakpoint, and the resulting slope of the operating
region. Steepening ‘h~ slope by moving the breakpoint to the right implied increasing
pressure sensitivity, and softening the reed. Moving the breakpoint to the left reduced
pressure sensitivity and stiffened the reed. In fact, the results were extremely linear. As
could be expected, stiffening or softening the reed raised or lowered the output pressure
accordingly. However, if the input pressure amplitude was adjusted to compensate for
the change in reed stiffness, the waveform produced was almost identical to the original

waveform; reed parameter changes were therefore equivalent to input pressure changes.

Figure 5.18 shows the input/output pressures for three different reed stiffnesses: the “nom-
inal” reed, with breakpoint at 255, repeated from Figure 5.9 above; a “soft” reed, with
breakpoint at 275; and a “hard” reed with breakpoint at 235 (recall that these numbers
are in pressure units of the normalized reed table, with range 0-1024). Note that the three
plots show the three different threshold pressures, but converge in the blowing regime. This
convergence is somewhat surprising. Certainly the lay serves as an equalizer on the reed

closure side, but the softer reed would still be expected to deflect more on the reed opening
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side, allowing stronger compressions to develop. If the coupling from the reed is stronger
on the closing part of the period, where under beating conditions, all reeds deflect the same
amount, then the convergence, based only on the absolute maximum of pressure would be
explained. However, the waveforms were biased on the positive, rather than the negative

side, which belies this theory.
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Figure 5.18: Input/Output pressure plots for three stiffnesses of reed in a linear reed table
(output pressures scaled down by 4*1.3)

The results of changing the tip offset, or operating point, were also quite predictable.
Closing the tip increased the intensity of beating for lower pressures, and opening it de-
creased the beating. The consequent harmonic generation changed accordingly to match
the non-beating/beating regimes. As could be expected, the threshold blowing pressures
also changed to match the new conditions. Because of this, the acceptable offset had a finite
range which could support a tone. The nominal value was 700, and the table breakpoint
at 255 (Recall from Chapter 4 that the total range of the table was 0-1024, representing
a quantized soundfile-normalized pressure range of about 60,000). At an offset of 458, the
reed was blown shut at the default input pressure level. At an offset of 713, the input

pressure level dropped below threshold, so that a note could not be sustained.

In summary, variations in the reed table produced realistic, predictable results. For a linear
reed table, the same effects of varying the reed parameters could be obtained by changing
the input pressure, which is much easier and more intuitive. In a performance situation, it

would probably be much more straightforward to “stiffen” or “soften” the reed by changing
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a gain on the input pressure rather than by trying to change the reed table itself. A gain

on the output would compensate for any consequent output volume changes.

It must be noted that the reed table does not have to be linear. Julius Smith has exper-
imented with an effective nonlinear stiffness, with good results in terms of tone [63]. If a
nonlinear reed table is used, the equivalence between reed parameter changes and input
pressure changes no longer holds. In addition, a nonlinear reed table might result in the

pitch/amplitude dependence which could not be replicated here.

5.3 Scattering Junction Experiments

This section deals with two implementations of a scattering junction — the first to simulate
a register hole, and the second, to simulate a bore perturbation. The register hole was
included as a new musical feature, and the bore perturbation as a research tool to explore

acoustic behavior further.

5.3.1 Implementation of a Register Key

A register key was implemented following the procedures outlined in Chapters 3 and 4. It
worked extremely well, without any additional variation in parameters. The twelfth was
obtained cleanly and easily, and in fact was more accurate than the twelfth provided by
shortening the delay line by the appropriate amount, which turned out to be a semitone
flat if a Butterworth filter was used for the bell. This latter case will be discussed in a later

section.

Figure 5.19 shows the bore resonances for a diameter ratio between hole and bore of 0.1.
For these notes, the delay line length was set for a low C, so that the played note, a twelfth
higher, was a high G’. Note that the first peak is suppressed, but not by much. The output
spectrum, however, illustrated in Figure 5.20, shows indisputably that the playing pitch
was based on the third harmonic; the first harmonic is completely absent, and all playing
harmonics are multiples of the third. Note that the number of harmonics is quite low; recall’
that when harmonics are widely spaced, there will be fewer of them below cutoff. The
resulting waveform is rather smooth, as shown in Figure 5.21. Also shown in Figure 5.21 is

the waveform of the pressure escaping through the register hole. Notice how the highpass
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nature of the register hole results in a much more triangular waveform than the waveform
from the bell. The register hole also sounded a bit more “clarinety”, which is not surprising,

since the real clarinet also exhibited a more triangular waveform.

Figure 5.19: Bore resonances for a register hole G’ with diameter ratio 0.1

The size of the register hole did not appear critical in achieving the jump, as long as
enough input energy was supplied. Since the register hole represents a pure dissipation,
its use naturally raises the threshold blowing pressure. For an input pressure of 16700,
the acceptable range for the diameter ratio, a, was 0.04 to 0.15 for a base note of low
C. A value of 0.02 actually achieved the jump as well, but with a rough, multiphonic
sounding startup transient. Raising the base note to low A decreased the upper limit to
0.08, perhaps reflecting the frequency-dependent loss through the hole. Raising the input
pressure to 18000 raised the upper limit of the hole size to 0.6.

One interesting effect of the register hole size was its influence on the bore resonance fre-
quencies. Recall from Chapter 2 that Benade stated that a purely dissipative hole should
serve primarily to attenuate, and not relocate, the fundamental resonance [9]. Figure 5.22
plots the locations of the first four peaks for a register hole to bore ratio ranging from 0 to

0.5. Figure 5.23 shows the percent change in peak location for the same range. The first
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Figure 5.20: Output spectrum for a register hole G’ with diameter ratio 0.1

peak was quite sensitive, moving by as much as 16 percent for a ratio of 0.5. The second
peak, which will become the fundamental if the input pressure is high enough to sustain the
note, moves by only 1 percent for the same range. In both cases, the peaks move downward
in frequency. The third peak, on the other hand, moves upward, by as much as 2.6 percent.
Since the first peak is not expected to be excited, the third peak should be unimportant
in the final tone as well, since it is not a multiple of the second. Finally, the fourth peak
exhibits small changes similar to that of the second. Thus, even without any reactance, the
register hole has successfully displaced the first mode, largely independently of the other
modes. Figure 5.24 shows the bore resonances for the extreme case where « is 0.5. Save for

the second mode, the resonance pattern has completely deteriorated.

Surprisingly, the peak locations were not particularly sensitive to the location of the register
hole. The first peak in particular barely moved over the working range, although the other
peaks moved somewhat more, but still less than 1 percent. However, the amplitudes of
the peaks were somewhat sensitive, and the resulting strength of the played note as well.
Figure 5.25 shows the output amplitude as a function of the register hole position for a
base note of low C. The optimum point in terms of this amplitude was not at precisely one
third, or 0.333, as cited by Benade [9], but rather at 0.373. The total acceptable range for
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Figure 5.21: Waveform of a register hole G’ with diameter ratio 0.1

this note, with a value of 0.1 for o, was from 0.293 to 0.413.

Finally, the register hole note can be compared with the equivalent shortened delay line
note. The first aspect of this comparison - that the register hole produced a much better
twelfth than the delay line truncation, was already mentioned. Figure 5.26 shows the input
and output pressures for a high G achieved through register key, and through delay line
length. For comparison, the plot for the low G is repeated. Note that the threshold blowing
pressure is higher, and the transition steeper for the register hole version. Also, the linear
part of the graph has a greater slope for the delay line than for the register hole, as could be
expected because of the added dissipation from the hole. The bore resonances and spectrum
of the delay line note are shown in Figures 5.27 and 5.28; the higher harmonics are a bit

more pronounced than they had been for the register version presented earlier.

In summary, the register hole worked almost surprisingly well. It was not particularly
sensitive to variations in its size and location, so long as the input pressure was high enough
to overcome the extra dissipation. It produced an accurate interval of a twelfth, with a
clean attack.
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Figure 5.22: Bore resonant peak locations vs register hole diameter to bore diameter ratio
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Figure 5.24: Bore resonances for a register hole G’ with diameter ratio 0.5
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Figure 5.25: Output amplitude as a function of register hole position
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Figure 5.26: Input/Output relationship for a G’ achieved through register hole and through
delay line truncation (Output pressure scaled down by 4x 1.3)

Figure 5.27: Bore resonances for a high G’ achieved through delay line truncation

5.3.2 Experiments with Bore Perturbation

One of the difficulties in comparing the simulation results with published experimental data,
as well as musical experience, is that the simulation worked too well. With no tonehole
lattice, the resonances were extremely well aligned for all notes, and many of the artifacts

of marginal modes could not be duplicated.

For this reason, a bore perturbation in the form of a lossless 2-port Kelly-Lochbaum junc-
tion was included. It served to misalign the resonances enough so that real instrument

phenomena could be explored.
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Figure 5.28: Output spectrum of a high G’ achieved through delay line truncation

The major subject of interest was pitch dependency on input amplitude. The pitch changes
which occur because of the increasing excitation of a misaligned mode as input amplitud:.
increases, described by Worman [76], was discussed in Chapter 2. Figure 5.29 shows a typical
resonance spectrum for the perturbed bore. It can be seen that the modes are no longer
well niigned. Theoretically, th pitch should vary as the higher harmonics develop. This did
not happen. Many paramete: variations were tried, but in no cases did the pitch change
noticeably with input amplitude, except for cases when a mode transition occurred. It is
possible that the pitch changed slightly — this was difficult to measure with the resolution
of the output spectrum display — but aurally, there was nothing like the pitch change one
gets on a real instrument without adjusting the embouchure. TL: simple explanation of
a compromise between harmonic locations did not hold. This indicates two conclusions:
1) the pitch dependency due to cooperating harmonics as input amplitude fluctuates i:
more complicated than a simple optimization between peak sizes and locations: and 2) the
simulation model is still missing whatever causes this dependency to occur. It is possible
that the conical bore contributes to the pitch deviation; Cook reported a distinct pitch

fluctuation when he applied input amplitude vibrato to his waveguide saxophone in [18].

Although the bore perturbation was not intended as a musical feature, it actually produced
some fairly interesting tones, including multiphonics, mode transitions, and metallic timbres
that could be musically useful. For the case of the bore resonances illustrated in Figure 5.29

the result was a sound which started multiphonic, with a base note and an extremely flat
twelfth, and eventually made the full transition to the higher note. This mode transition
was amplitude dependent; for some levels, the lower note became dominant. For some, the

higher note sounded. Figure 5.30 shows the spectrum as it develops from the multiphonic
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Figure 5.29: Bore Resonances for a pertubed bore

stage to the pure tone. The multiphonic spectrum, in the lower part of the figure, has many
peaks, but even the two largest, the second and fourth, are not actually aligned. This is
what causes the multiphonic tone to be perceived; if the modes were aligned, one would
hear only one note, with its timbre influenced by the presence of the higher harmonic.

Figure 5.31 shows the multiphonic portion of the wave form.

The implementation of the bore perturbation would be improved by a better model, partic-
ularly one which included the mass reactance at the bell. This would improve its potential
for future investigation of resonance and mode transition phenomena. However, even as is,

it presents a possible source of alternative musical sound.

5.4 Implementation of the Bell

This section investigates issues of bell implementation. As has been discussed, the bell
model consists of two portions — the lowpass reflection filter, and the highpass transmission
filter. Because the reflection filter has a strong influence on the fundamental internal wave
behavior, while the transmission filter is merely an operation on the output, much more

attention was paid to the reflection filter. From a musical point of view, of course, the
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Figure 5.30: Mode transition from a multiphonic tone (bottom) to a pure high tone (top),
achieved with a Kelly-Lochbaum bore perturbation

transmission filter is very important, since through it, the actual sound radiates.

5.4.1 Bell Reflection Filter

For the reflection filter, two forms were offered: a simple averaging filter and a Butterworth
filter. The Butterworth filter allowed the choice of second, fourth, and sixth order, as well

as a number of optional cutoff frequencies. Figures 5.32 shows typical bore resonances for

Figure 5.31: Multiphonic waveform, achieved with a Kelly-Lochbaum bore perturbation
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the averager and the three orders of Butterworth. The resulting output spectra are shown
in Figures 5.33 and 5.34. These were taken for an input pressure of 17000, slightly higher
than the default of 16700, to sharpen the attack for the sixth order Butterworth.

Figure 5.32: Bore resonances for four reflection filters: averager, and 2nd, 4th, and 6th
order Butterworths with 1500 Hz cutoff

Figure 5.33: Output spectra for averaging reflection filter and 2nd order Butterworth filter
reflection filter with 1500 Hz cutoff

The advantage of the averaging filter was its efficiency: it could be implemented with a
single 1-bit right shift and add. The Butterworth filter requires more computation, but is

much closer to the physical case, representing in a simplistic manner the radiating piston of
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Figure 5.34: Output spectra for 4th and 6th order Butterworth reflection filters with 1500
Hz cutoff

air at the end of the bore. The Butterworth filter also allows direct control over the cutoff
frequency, which is a key element in determining tone [9]. The averager, on the other hand,
being a first order one-zero filter, does not impose as steep a cutoff, and in addition, does
not allow direct control of cutoff frequency. One does has some measure of control through

the radius of the zero, which can varied along the real axis of the z-plane.

The results of the experiments can be summarized as follows:

e The averaging filter produced a very bright, but somewhat clarinet-like sound. The
added high harmonics probably contributed much to the very square waveform the
simulation produced.

e The Butterworth filter produced a somewhat more muffled tone. This would be
expected from all of Benade’s work on the importance of cutoff frequency [9], and
from general experience in the influence of higher harmonics on timbre. However,
the Butterworth filter also allowed much more flexibility in defining the tone, since
it offered the parameters of both cutoff frequency and order. Figure 5.35 shows the
output waveforms for the second order and fourth order Butterworth filters. As the

filter order increases, and the resulting cutoff slope steepens, the highest harmonics
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are more attenuated. As the figure shows, this results in an easing of the squareness
of the waveform, and, one would expect, a darkening of the tone. It was actually
difficult to compare the aural characteristics of the tones resulting from the different
orders of Butterworth filter because of the pitch differences. A slightly sharper note
tended to sound brighter when compared to a flatter note, even if the flatter note

had more pronounced harmonics.

Figure 5.35: Output waveforms for 2nd order (top) and 4th order (bottom) Butterworth
reflection filters with 1500 Hz cutoff frequencies

e  The Butterworth filter implied a phase delay that translated into a flattening of the
pitch; each two orders of filter resulted into approximately a semitone drop for the
low A. In addition, the relative tuning for a given filter was corrupted. The interval
between C and C’, for example was somewhat less than an octave. This could be
expected, because the phase delay amounts essentially to the lengthening of the
bore, and is a smaller fraction of the total borelength for low notes than for high
notes. The averaging filter always yielded the desired note in this range. However,

this would not be the case for very high notes or very low sampling rates.

This aberration in pitch introduces a musical problem. If the Butterworth filter is to be
used, the tuning defects it causes must be fixed. One obvious option for tuning adjustment
would be minute changes in the sampling rate; however, this is not currently possible on

the NeXT system, which allows only 22K and 44K sampling. A coarse correction could
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be effected by including the phase delay of the bell in the calculation of the length of
the waveguide. However, as was previously noted, the length of the delay line itself is by
necessity heavily quantized, and in that, is part of the problem anyway. In addition, this
solution offsets only one source of tuning deviation. Finer, and more general, tuning could
be achieved by appending an allpass filter, such as that described in [31}, to correct for any
unwanted delays, be they the result of the bell or of other elements in the model [20] [69].

The adjustments described above could be precalculated for each available note, and ac-
cessed by the program through a lookup table or parameter list. A more dynamic approach,
which would require some work, would be to implement a feedback control loop that adjusts
parameters to bring the played pitch to the desired pitch. This approach is inviting only if
one wants a fixed scale. In fact, experienced musicians often vary the playing frequency of a
given note to fit the musical and harmonic requirements. The same note value will be played
differently if it forms part of an interval of a third than if it completes a fourth. A good con-
trol system would produce some user-specified equilibrium point, perhaps even-tempered,

perhaps meantone, about which the player can bend the pitch to his needs.

The idea of using a feedback control system to regulate instrument output extends beyond
pitch. The simulation provides many variables — reed parameters, embouchure, the tuning
adjustments described above, bore perturbation, etc. — and many aspects of output quality
— loudness, pitch, spectral shape. In a very sophisticated control scheme, the user might
define a cost function weighting the various contributors and outcomes. The combination
of this and the definition of a set of gestures interpretable by the system could result in
considerable artistic freedom. However, it would also require considerable computational

time, and is probably not be feasible with the hardware available today.

e The Butterworth filter, particularly the fourth and sixth order filters, tended to
interact with the rest of the instrument to produce more transitional modes, partic-

ularly at threshold blowing pressures.

e The threshold blowing pressure required for a clean attack was somewhat dependent

on the bell filter used. A sixth order filter required a slightly higher attack pressure.

e Changes in the cutoff frequency should have produced a brighter or darker tone,
according to Benade [9]. However, the cutoff frequency also affected the pitch,
because the filter delay increases as the cutoff frequency decreases. A slightly sharper
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tone, as mentioned above, does also sound a bit brighter. Figure 5.36 and Figure 5.37
shows the spectra for a second order Butterworth with cutoff frequencies at 1000
Hz, 1450 Hz, 1550 Hz, and 2000 Hz.

Figure 5.36: Output spectra for 2nd order Butterworth filter reflection filters with 1000 Hz
and 1450 Hz cutoffs

Figure 5.37: Output spectra for 2nd order Butterworth filter reflection filters with 1550 Hz
and 2000 Hz cutoffs
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5.4.2 Transmission Filter

The transmission filter, which ideally should radiate all the unreflected energy, is generally
modelled as a highpass filter [64]. Recall that the wave energy which escapes is but a
small portion of the internal wave energy and that the input to the highpass filter is very
much defined by the upstream reed/bore coupling which is intensified by the action of
the lowpass filter [9]. To be correct, the transmission filter should be complementary to
the reflection filter. For the sixth order Butterworth filter, H(z), this implies having an
associated complementary sixth order highpass filter, 1-H(z). Because the work performed
here focused more on the mechanics of the internal interactions than the actual sound,
except in a relative sense, little computational time was allocated to the transmission filter.

Instead, the simple one-pole filter used by Cook in his clarinet was implemented.

Since the simulation results have been compared to a clarinet, it is worthwhile to at least
touch upon the nature of the transmission filter. The waveform emanating from the register
hole discussed earlier, which was, by the nature of the scattering junction, highpass filtered,
had a nice tone to it, and as was shown, a much different shape. On the other hand,
Cook’s experimental clarinet waveforms, which were measured internally and discussed in
Chapter 2, were reminiscent of the actual clarinet waveform, suggesting that the internal
and external sounds should be very close. Of course, the only real answer would be one

obtained by measuring the internal and external spectra of a single instrument.

Chapter 3 suggested a different implementation of the sound radiation, which involved
radiating the total pressure at the node, which, recall, equates to the residual left from the
lowpass reflection filter. This implementation, suggested for this simulation by Cook [20],

is much more efficient than the explicit highpass filter, and is inherently complementary.

Figure 5.38 shows the waveforms for: the default filter parameters; the internal waveform,
obtained by setting the filter radius to 0; and the implicit highpass filter discussed here.
Note that the waveforms for the one-pole filter and for the internal spectrum are almost
indistinguishable. The waveform for the implicit highpass filter, on the other hand, is
profoundly different. Although still symmetric, there is no longer the character of a square
wave. As could be expected from the boosted higher harmonics, the timbre of the note
is quite a bit brighter. The internal waveform sounds muffled in comparison. Figure 5.39

shows the waveforms for the second register G, using the register hole. Here, the implicit
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filter imparts a more triangular look, but has a less dramatic effect. Figure 5.40 shows
the output spectra of the first and third waveforms for the lower note(the internal pressure
spectrum was almost identical to the one-pole radiated spectrum, and is not shown). The
fundamental harmonic is about 8 dB stronger for the one-pole filter, but the other harmonics
are boosted for the implicit filter. The bore resonances for these two cases are, of course,

identical. Changing the transmission filter parameters has no effect on the internal behavior.

Figure 5.38: Waveforms for a low A: 1) radiated pressure using one-pole highpass filter with
radius of 0.9; 2) Internal pressure waveform of the right-going wave; 3) radiated pressure
using implicit highpass filter.

In [70], Stewart and Strong, with their model, produced waveforms somewhat similar to
these. They defined a low blowing pressure, for non-beating reed, and a high blowing
pressure, for beating reed, and reproduced both mouthpiece and radiated pressures. Their
low blowing pressure waveforms had few harmonics, and matched in form the fundamental-
dominated waveforms our simulation produced for the register hole notes. For the low
pressure case, their internal and external waveforms were extremely similar. Although
their high pressure mouthpiece pressure waveform did not have the definition ours did,
at least in terms of the internal spectrum discussed, the radiated pressure looked much
like the radiated pressure waveform depicted for the implicit highpass filter in Figure 5.38.
Although one might conclude from Stewart’s waveform that the very different shape of the
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Figure 5.39: Waveforms for a high G, with register hole, using one-pole and implicit trans-
mission filters

high-pressure example was due to the beating of the reed, our corresponding case resulted
from a nonbeating reed; it is the presence of the harmonics in the internal spectrum due
to the high input pressure, and not the beating reed, which are amplified by the output
filter. It is this which results in the dramatic difference in waveform from less harmonically

complex internal pressure fluctuations.

The work on the effects of the bell has really just begun. The experiment with the Glaston-
bury Pipe in Chapter 2 indicated the importance of the bell in defining midrange harmonic
formants, and this cannot be modelled with the simplistic approach taken here. The fil-
ter parameters could be modified to duplicate the midrange boosting which occurs in the
frequency domain. This would require increasing the order and complexity of the filter. A
more physical approach, consistent with the philosophy of physical modeling, would be to
model the mass of air at the end of the bore more accurately, as, for example, Stewart and
Strong did with their model of a radiating piston [70]. For such a model to be musically
useful, however, it would have to be very good. Otherwise, all the advantages of ha:
the model, in this case, are lost, and a frequency-domain based filter will give better av: ..
results. There is a definite trade here. In the first :.pproach, experimental data can be ana-

lyzed with, for example, linear prediction techniques to produce a filter that gives realistic
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Figure 5.40: Output Spectra for a Low A, using one-pole and implicit transmission filters

effects, but is still based on non-physical specifications. In the second approach, the filter
parameters are based on the physical model of the bell, but they must be implemented

very accurately or the spectral results so easily obtained in the first approach will not be

obtained.

5.5 Implementation of a Reed Model

The previous sections all used the static reed table proposed by Smith in [63]. In this series

of experiments, the dynamic models discussed in Chapter 3 were investigated. The issues
of interest were:

e Influence on the transient and steady-state portions of the waveform,;
o Influence of the reed resonance on steady-state timbre and note stabilization;
e Influence of the reed on mode transitions

e Influence of the elasticity of collision against the lay.

The first point covers basically the transient effects of the dynamic overshoot by the reed,
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which cannot be duplicated by the static reed table. The second deals with the interaction
of reed resonance with the regime of oscillation, as discussed by Thompson in [72]. The
third examines a phenomenon commonly known as “squeaking,” a musically undesirable
event well known to beginners. Finally, the last treats one particular aspect of reed behavior
for which contradicting experimental results have been published; Stewart and Strong claim

total inelasticity [70) and Hirschberg claims elasticity [27] in the collision.

5.5.1 Influence of the Time-Domain Properties of the Reed Model

The first issue investigated was the time-domain effects of the reed model, that is, the
effects of dynamic overshoot on the instrument timbre. Figure 5.41 show the waveforms
associated with the reed table and the two reed models (recall that one reed maodel accounts
for the different treatment of right and left going waves in the look-up table apj;roach). The
reed model was designed to be essentially equivalent to the reed table in the non-beating
case. For the first reed model, this equivalence worked out to be a.ccurate, at least in terms
of maximum output pressure, which is governed in part by the fluctuations of the reed in
response to bore pressure, and is therefore very sensitive to reed parameters. An input
pressure of 16820 matched the reed table output with the reed model output for the default
input pressure of 16700. The input pressures resulting in the waveforms in Figure 5.41 were
set to equalize the unnormalized output pressure. They were not, however, normalized as
was usually done to the soundfile, since the resultant stretching made it harder to compare
the overshoots. The second reed model, which is more realistic, was not as closely matched
in response; it required an input pressure of 17110 for a matched output. This was entirely
expected, because the first reed model was designed specifically to be compatible with the

reed table, while the second reed model was not.

The waveforms displayed in Figure 5.41 shows some definite differences among the imple-
mentations. The reed models show more overshoot at the onset of the peaks, as could
be expected from the momentum of the mass in the model. For the second reed model,
these overshoots were clearly defined, as were the transitions out of the overshoot phase.
While the overshoots were also well defined for the second reed model, the transitions were
much smoother. These differences were also evident in the reed position plots, which are
not presented here because they provide no additional information. The first reed model

produced the harshest tone, while the second produced the most mellow. The second tone
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was also slightly flat, as would be expected because the second reed model involves more
phase lag. In a direct comparison between tones of slightly different pitch, the flatter tone
does tend to sound a bit darker, regardless of the harmonic structure. The spectra, shown
in Figure 5.42, yield more information about the differences. The first reed model and the
reed table are quite close out to about 1800 Hz, at which point the harmonics of the reed
model do not drop off as quickly. This could be expected from the comparison of wave-
forms and the tonal differences. The second reed model spectrum was less predictable; the
even harmonics, particularly the first two, were boosted while the flanking odd harmonics
dropped a bit. In addition, the harmonics above 1800 Hz dropped more rapidly than in the
other two implementations.

Figure 5.41: Nonbeating waveforms for three reed implementations: reed table, reed model
1, and reed model 2

The previous examples showed that the reed model did make a difference, if a second or
third order difference, in the tone. For the beating reed, the results were not quite as
sensitive, as Figure 5.43. The input normalization required took a different direction. Here,

the second reed model gave the strongest output for a set input pressure. To match the
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Figure 5.42: Nonbeating output spectra for three reed implementations: reed table, reed
model 1, and reed model 2

first reed model at 20000, the reed table input pressure had to be raised to 20353, while
the second reed model pressure was lowered to 19859. This was a less intuitive result, since
it would seem that beating would intensify the dynamic interactions. However, it would
appear that, at least with inelastic collisions, the act of beating in itself, whether the model
was static or dynamic, dominated the results. The effects of elasticity in the collision, which
is direction-dependent and could be implemented only with the dynamic models, will be
discussed presently.

5.5.2 Influence of the Reed Resonance on Stable Modes

To reiterate from earlier discussions, the reed resonance is believed to play an important
role in the stabilization of upper register notes, for which the cutoff frequency and more

widely spaced harmonics result in a sparser regime of oscillation than for lower register
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Figure 5.43: Beating waveforms for three reed implementations: reed table, reed model 1,
and reed model 2

notes [72]. A number of experiments were performed on the effects of reed resonance. The

following variations were performed:

e Varying the reed resonance through the embouchure damping to ascertain its effect

on the output strength;
e Varying the reed resonance through the base reed resonance;

e Aligning the reed resonance to the first bore resonance, rather than the ideal waveg-

uide designed playing frequency;

e  For chalumeau notes, a bore perturbation was introduced to misalign the resonances
so that the stabilizing effects of the resonance could be ascertained. Clarion notes
with the register key could not be tested in this manner because the simulation allows
for only one scattering junction, and the register key and the bore perturbation

cannot both be selected simultaneously. However, the delay line was truncated to
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produce the clarion register, and the bore perturbed.

None of these variations had any appreciable effect. The output amplitude did increase
somewhat linearly as the damped resonance was increased, and the damping lowered, but
there were no local maxima observed where the reed resonance matched a harmonic. Again,
the simulation was limited by its own inherent stability. Even with the misaligned modes, no
reed resonance advantages could be measured. The stabilization which the reed participates
in is most likely in situations where undesired mode transitions are possible, and this simply
wasn’t the case here, for the most part. The reed resonance at this stage in the development
contributed little to either musical potential or acoustic understanding. However, a more

comprehensive study would be valuable.

Recall that the reed model panel was carefully set up to automatically align the reed reso-
nance with desired playing note. In fact, this procedure was not entirely advantageous be-
cause the actual playing frequency, by virtue of the phase lag induced by the bell discussed
earlier, was not necessarily anywhere near the desired note. The tuning filter, described

above, would reduce this problem by bringing the desired and played notes closer together.

5.5.3 Influence of the Reed Model on Mode Transitions

It turned out that for reproducing musically undesirable events, the reed model could prove
extremely useful. In particular, the reed model could duplicate, in various ways, the phe-

nomenon of “squeaking”.

The first form of squeaking discovered was a register change that occurred near threshold
blowing pressure. This was very dependent on the bell filter used, as well as the note
played. Figure 5.44 shows the spectra for a low A, obtained with the 2nd, 4th, and 6th
order Butterworth filters. The 2nd and 4th order filters interacted with the reed to cause
a jump to the second register; the 6th order filter resulted in a jump to the third register!
If unexpected, this could certainly be perceived as a squeak. For the high A, both 2nd and
4th order filters produced the proper note, but the 6th order filter produced a 2nd register
jump.

Raising the input pressure or increasing the damping both served to halt the squeaking,
although the damped tone was still marginal. One is tempted to conclude that the cause of
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Figure 5.44: Register shifts for the reed model with 2nd, 4th, and 6th order bell reflection
filters

squeaking is insufficient damping on the part of the player. This was suggested by Wilson
and Beavers in [75], who studied the effects of damping on reed resonance effects, although
in their case, the squeak was a reed resonance oscillation and not a bore register. In
fact, a reed teacher will probably tell you (when asked) that squeaking is due to insufficient
support, i.e., not blowing hard enough [10][40] . The musical “problem” duplicated with the
simulation was one of insufficient input pressure, not insufficient damping; an experienced
musician would not blow at threshold blowing pressure, and is much less likely to squeak.
Wilson did note the effects of raising pressure, and also hypothesized that the threshold
blowing pressure for the higher mode was lower than that for the lower mode, and so more
likely to be excited at lower blowing pressures; his conclusions, however, focused on the
damping. Benade discussed the octave “sneak” in [9] in the saxophone and taragato, the
result of a weakened regime of oscillation in which the second mode could take over on its

own. This is unlikely to be the case here, however, as Benade attributed the problem to a
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defective instrument, and the simulation is highly idealized. Benade did not describe any
such jumps to the third register. In fact, a “sneak” does not have quite the aural effect of

a “squeak”; a third register jump is bound to be more jarring than a second register jump.

Mode transitions were not merely the result of blowing pressure that was too low. A register
shift was also obtained with an input pressure of ranging from 23600 to 26000, which is
relatively high. Interestingly, this register shift was obtained with both the first reed model
and the reed table, although the input range for the reed table was much more narrow. In
both cases, the second order Butterworth filter was used. The second reed model did not
produce such an effect, although it probably would have with some exploration. Experience
has demonstrated that overly enthusiastic blowing can also result in squeaking, although

probably at a higher frequency than the second register attained here.

Finally, the most commonly postulated source of squeaking is the reed resonance itself.
This musical feature was also available from the simulation. One example is shown in the
spectrum of Figure 5.45. Here, the reed damping was set to 0.39, resulting in a damped
frequency of 2413 Hz. The base frequency was 2620 Hz. Figure 5.45 shows a clear dominant
mode at 2650 Hz, which is higher than both the natural and the damped reed frequencies.
However, 2650 is almost precisely 13 times the frequency of the first peak in the spectrum,
which lies at approximately 204 hz. This is the location of the fundamental peak for the same
case with the reed table, as has been shown in the sections above. The irony is that here,
the fundamental mode has apparently helped to stabilize the reed resonance, whereas the
reed resonance is supposed to stabilize the fundamental (or really, the third harmonic). The
resonance was produced with the “nominal” blowing pressure of 16700; however, increasing
the pressure did eventually eliminate the squeak (with some very interesting transitional

tones on the way up).

The reed resonance demonstrated above was quite clean. In fact, the damping ratio that
would allow such a clean tone was extremely narrow; and variation up or down would result
in a harsh multiphonic tone with many peaks, sometimes focusing onto one pitch by the
end of the note. A damping of 0.425 and higher produced the fundamental clearly, with no

reed resonance present at all.

In summary, the reed played a clear role in certain mode transitions in the instrument. In

one case of mode transition, a single-register shift was obtained for a band of moderately
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Figure 5.45: Reed resonance mode on ClariNeXT model

hard input pressure that could be obtained with both reed table and reed model. This could
be meaningful in light of the discussion about overblowing earlier. There, it was postulated
that either the corruption of the equivalent volume or the ability of the reed to support the
slower oscillation given a reduced tip displacement aided in overblown register shift. These
results suggest that the right conditions can cause a register shift even without an narrowed
tip opening (in fact, the mean tip opening is larger for harder blowing because the reed will

open further, while being constantly limited by the lay on the closure side).

The shift to the third register was also significant, because it suggests a new explanation for
reed squeaking that occurs only at very low breath pressure, where beginners tend to tread.
The reed resonance was also pressure dependent, but occurred at higher pressures where one
would expect the tone to be stable. It would be instructive to try to accurately measure
the squeaks of an instrument, if one could find a willing subject; a beginner would be
unpredictable, and an experienced player unlikely to subject his instrument to the indignity

of such a sound.

5.5.4 Influence of Elastic Collisions

The dynamic reed model included a boundary condition to allow any degree of elasticity
in the collision. The purpose was to better understand the effects of elastic reed collision
on the waveform. In addition, Hirschberg had described a link between the sought-after
pitch/amplitude dependency and a beating elastic collision [27], and this was to be tested.

Figure 5.46 shows the waveforms and reed position plots of the simulation with inelastic

and elastic collisions at the point that beating begins. There is no discernible difference
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between the two. This is not really surprising when one considers the velocity of the reed
as it strikes the lay. Since the reed is very close to turning around on its own at this point,
its velocity is very low, and the impetus added to its return trip is insignificant compared

with the pressure forces acting on it.

Figure 5.46: Pressure waveform and reed position plot for inelastic and elastic collisions
under just-beating conditions

A more extreme case is shown in Figure 5.47. Here, an input amplitude of 19000 assured
hard collisions, as the reed position plots indicate. Now there is a noticeable difference
between the two, because the reed chatters against the lay in the elastic case until the bore
pressure releases it. Except for this chattering, however, the waveforms do not differ. The
initial overshoot on the upper peak is no larger for the elastic case than the inelastic case.
Again, the real driver is the pressure driving the reed against the lay. In the final beat,
the pressure wave, which is not completely square, does not have as much force as for the
initial beat, and the final velocity is not high enough to provide much bounce. The spectra
in Figure 5.48 verify this. The low frequency harmonics all match well, and it is only in
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the last quarter of the band shown that the chattering is evident for the elastic example.
Aurally, the chattering is very apparent, and does change the perceived tone, even though

the chattering itself sounds like chattering and not like some multiphonic.
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Figure 5.47: Pressure waveform and reed position plot for inelastic and elastic collisions
under strong beating conditions

Thus, elastic collision appears to affect only behavior at the lay, and does not provide
enough momentum to influence the rest of the waveform; the reed motion is still dominated
by the force of the standing pressure wave in the bore. With a more triangular pressure
waveform, as was evidenced by the real clarinet, there might be more opportunity for the
elasticity to make a difference. In addition, if the reed were modelled as more of a nonlinear

spring near the lay, as suggested by Hirschberg [30], the model might be more effective.

The other elastic experiment was on pitch/amplitude dependency. Once again, no depen-
dency was found. With a purely elastic attack, and the offset set as far as 11000, the pitch

remained constant.
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Figure 5.48: Output spectra for inelastic and elastic collisions under strong beating condi-
tions

5.6 Implementation of Hydrodynamics (“Bernoulli Effect”)

The previous discussion of elastic collision was an example of an effect which could be
implemented much more easily with a dynamic reed model than in the precomputed reed
table (although a velocity-dependent pair of reed tables, one for closing and one for opening,
could be designed for direction-dependent phenomena). In this section, the implementation
of a hydrodynamic behavior model in both reed table and reed model, as discussed in

Chapter 3, is investigated.

From the nature of the Bernoulli implementation, we can expect an effectively softer reed,
because it will close at lower pressures. Beating will consequently occur more easily. It must
be noted again that the assumptions on which this model is based are suspect [27]. On the
other hand, it is an accepted truism, be it true or not, that one of the chief characteristics
of the double reed is its hydrodynamic behavior, and in particular, the Bernoulli effect. For
this reason, it was worth trying.

First, the reed table form of the Bernoulli model was simulated. Recall that including the
Bernoulli effect in the reed table would result in a translated breakpoint, because the reed

will tend to close for lower pressure differences, and a steeper slope at closure, similar to
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a nonlinear spring. A typical such reed table was illustrated in Figure 4.8. Recall that
the result of the effect is a “sucking” of the reed toward closure as it nears the lay (or
the other reed). Figure 5.49 shows the result. All three waveforms resulted from an input
pressure of 18201, which normally produces strong beating. The first waveform includes
a Bernoulli force of strength 250. The second waveform shows the waveform without the
Bernoulli force. For the third waveform, the linear reed table was adjusted so that the new
breakpoint coincided with the Bernoulli breakpoint from the first waveform — this was to

eliminate differences due to the change in effective stiffness.

Figure 5.49: Bernoulli effect: waveform 1 has Bernoulli-type force of level 250; waveform
2 represents the same reed table with no Bernoulli force; waveform 3 represents the reed
table with adjusted breakpoint

The three waveforms do not look remarkably different. They do, however, sound consid-
erably different. The Bernoulli waveform has a distinct, almost nasal timbre. In fact, the
spectra of the first and third cases, presented in Figure 5.50 show a marked difference. The
odd harmonics match fairly well; the even harmonics are, however, much more prevalent

for the Bernoulli spectrum. This effect was obtained even with much lower Bernoulli levels.
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It might be mentioned as an aside that, while the Bernoulli-adapted reed table looks and acts

much like a non-linear spring, there was still no noticeable amplitude/frequency dependence.

Figure 5.50: Bernoulli effect: Top spectrum with, Bottom spectrum without

The reed model was similarly affected, except as with the elastic collisions, there was much
activity during the period where the reed touched the lay. Figure 5.51 compares the wave-
forms with and without the Bernoulli model for the default input pressure of 16700. Whereas
before, the two waves were almost indistiguishable in their time-varying form, the two waves
here are quite distinct by virtue of the ragged beating portion. Figure 5.52 shows the spec-
tra. Although it is likely that the even harmonics might have had the prevalance thay had
with the reed table, the ragged portion of the waveform significantly disrupts the higher

harmonics, dominating the sound to some extent.

Figure 5.53 shows two more extreme cases of the Bernoulli effect on the reed model, with
the levels set at, respectively, 500 and 1000. Certainly part of the cause of the chatter is
physical; as the reed is sucked toward the bore, it moves with increasing velocity. When it
hits, cutting off the flow, the hydrodynamic force vanishes, leaving only the restoring force
of the bore/mouth pressure to pull it back. For this reason, the most extreme effects are
obtained at a moderately low input pressure when the beating is caused by the Bernoulli
force alone. With such an arrangement, the bore pressure will always pull the reed back up

as soon as the Bernoulli force is cut off. At this point, some possible computational problems
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Figure 5.51: Bernoulli effect on reed model: waveform 1 has Bernoulli-type force of level
250; waveform 2 represents the same reed table with no Bernoulli force

arise. The reed has one sample time to rise up off the lay. Because the flow is no longer
cut off, the next pressure calculation will once again include the Bernoulli force, which may
then be sufficient to slam the reed back into the lay, where the force vanishes again. Thus,
a limit cycle may be occurring because of the on-off nature of the Bernoulli model in this
implementation. This is particularly apparent in the 1000-level force in Figure 5.53, but
is potentially invasive for all models with lay discontinuities. The most obvious solution
would be to multisample the reed, that is, run the reed at a higher rate than the rest of the
simulation. This way, the reed will not have as much rise time before encountering the force
again. It is quite possible that the elastic collision results suffered from the same type of
cycling, due to the instantaneous velocity change that was part of the boundary condition.

In summary, the Bernoulli model did yield some interesting sound differences, although it did
not produce a magical double reed. The reed table implementation worked quite nicely, and
yielded a smooth spectrum with boosted even harmonics. The reed model gave more ragged
results, although in some respects more physical results. Continued experimentation with

the reed model would require multisampling it so that numerical artifacts can be reduced.
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Figure 5.52: Bernoulli effect on reed model: spectrum 1 has Bernoulli-type force of level
250; spectrum 2 represents the same reed table with no Bernoulli force

S

Figure 5.53: Bernoulli effect: Levels of 500 and 1000 on reed model







Chapter 6

Conclusions

The ClariNeXT simulation provided a convenient testbed for checking out acoustical con-
cepts and models. Its object orientation allowed for easy incorporation of new enhance-
ments, and its interface allowed for intuitive, almost real-time experimentation. It serves
the purpose of both the earlier research simulations, in demonstrating acoustic phenomena
for better understanding, and of a development environment for the creation of, eventually,

a real-time instrument.

Some acoustical behavior was quite realistic - the generation of harmonics with amplitude,
the register jump due to the register hole, the ratio of nonbeating regime to nonplaying
regime, and mode transitions, all followed prediction from the literature. Other behavior
could not be repeated. The basic dependency of pitch on amplitude which every musician
learns to correct was not reproducible, at least to the ears of the author, by implementa-
tion of any of the three possible explanations included here: cooperation among misaligned
modes; effective reed beating resonance; and nonlinear spring behavior. These implemen-
tations were somewhat crude however, and might have yielded more had they been refined.
Also, the pressure waveform radiated was much more square than that from a real clarinet,

and this may have masked other results.

From a musical standpoint, the register hole scattering junction and the variable cutoff
Butterworth filter, particularly the 2nd order filter, were the most promising. These were
relatively inexpensive, and could be efficiently included in a real-time model. The register

hole simply worked, as did the filter, which allowed a more realistic cutoff frequency. The

237
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mode transitions which could be induced by a lossless scattering junction were not as desir-
able for a basic clarinet, but did produce some interesting sounds. Given that the “clarinet”
is just a starting point in providing a physical vocabulary of gestures to the musician, the

method of mode misalignment might lead to a new variant of the instrument.

The incorporation of the reed dynamics was less successful from a musical standpoint,
although it was certainly successful from a simulation standpoint. The use of the reed
model afforded no real musical advantages over Smith’s reed table. It did exhibit some reed
resonance behavior that the reed table could not, and was effective as a study tool, but at
this point would probably not be worth the cost in a real-time simulation. Improvements in
results might be had by a more refined reed model. At the very least, the reed could be run
at a higher rate to avoid some of the high amplitude limit cycling during reed closure times.
A trapezoidal rather than a rectangular integration scheme would implement a bilinear
transform in the propagation of the dynamics, and might help as well. In addition, the reed
itself might be modeled more carefully, with account taken of its cantilevered nature (as
in Stewart’s model in [70]) and the nonlinear spring effects at the lay or junction with the

other reed.

One of the greatest advantages of using the reed model was the ease with which additional
nonlinear behavior could be incorporated. For example, while the elastic collisions did
not prove very interesting, they were easy to incorporate, and the results quite believable.
Multisampling the reed would improve the utility of the reed model, since any nonphysical
limit cycling at discontinuities would be reduced.

Although one of the original objectives of this author was to design the definitive double
reed model, it turned out that so little was actually understood about double reed behavior
that there was little to base this definitive model on. On the other hand, experimental
data, both from the author’s experiments and published results, indicate that the behavior
unique to the double reed may yield only a second order effect (although certainly not in
terms of the technique required to play it, as a double reed player would be quick to point
out). The characteristic sound of the orchestral double reed seems to be, at the primary

level, more due to the conical bore than the reed itself.

Similarly, it is probably not worthwhile at this point to try to develop a more accurate
hydrodynamic model; the data simply isn’t available. The Bernoulli force model attempted
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to implement the “essence” of this folkloric effect, and in this, was useful. Both reed table
and reed model did yield some different timbres with this force included, although whether
they displayed realistic behavior is debatable. The boosting of the even harmonics with the

reed table was a significant result in controlling timbre.

In fact, the experiments with the Bernoulli force indicated that much could be done through
manipulation of the reed table itself. Smith has indicated as much, and has reported tone
improvement with nonlinear adjustments to the table [69]. Some features, such as nonlinear
spring stiffness near beating, would be easy to precalculate in the reed table. Others, which
are hysteretical or direction-dependent in nature, would be more difficult in the current
formulation. It would be worthwhile to develop a tandem reed table — one for opening and

one for closure — that could be used for implementation of these effects.

If the piecewise linear reed table is chosen for a real time instrument, a pair of gains on
the input and output pressures would be functionally equivalent to varying the reed table
parameters, except for the offset, which defines the operating point. Changing these gains
to adjust stiffness would probably be more intuitive than trying to adjust the reed table
itself.

Many of the mode transitional behavior, such as the reed resonance and the third-register
shift, might have been duplicating real behavior, or might have occurred because of com-
putational artifacts. The numerical issues affecting the computation should be investigated
thoroughly to distinguish one from the other. If the register shift is truly a physical result, it
is a significant one; all the work the author has come across has attributed the phenomenon
of “squeaking” to reed resonance rather than register shifting. As mentioned above, the
mode transition behavior, if properly understood, could add an important dimension to a

real-time instrument.

The simulation could, of course, benefit from an addition of behavior models. The most
tempting at this point is the efficient conical bore model which Smith is developing [68),
which would add an entirely new dimension. A frequency-dependent lumped loss source
is very important. No loss has been explicitly modelled thus far, save for sound radiation
at bell, toneholes, and mouthpiece. Boundary layer effects were neglected, yet are known
to be significant. It could well be that much of the deviation from realistic behavior was
due to the deficient loss modeling. Finally, an allpass filter, as described in [31] must be
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implemented for tuning if the simulation is to be at all musically practical.

Other potential improvements are not quite as pressing at this point, but still enticing. A
better bell model could be designed, which better duplicates the effects of boosting midrange
harmonics and improving perceived tone resonance, as well as merely imposing a cutoff fre-
quency that affects primarily the higher frequency harmonics. Possible improvements to the
reed table and reed model have already been discussed. Following along the development
path of the register hole, a true tonehole, with both reactance and resistance, should be de-
signed. Of course, a single tonehole leads to a tonehole lattice. Finally, a model of the vocal
tract would prove interesting. These enhancements would require much experimentation

with real instruments.

Even with the addition of the above models, the simulation still runs open-loop; any ad-
justments to the parameters are up to the user, and are fixed for the length of the run. Of
course, the eventual goal is to have an abbreviated real-time version of the instrument, with
an interface to a live performer, who would close the loop just as he would on a physical
instrument. An ambitious undertaking would be to define a multivariable control system
that would aid in the adjustment of the many parameters to achieve some tonal goal. The
performer would select a cost function to his liking, and through this, and a battery of
gestures understandable to the control system, he could concentrate his musical efforts on

other aspects of the performance.

In summary, the ClariNeXT reed workbench turned out to be an effective tool for acoustic
research and musical development. With continued development, it could play an important

role in the developing field of physical modeling of musical instruments.




Appendix A

Default Simulation Parameters

All the results presented in Chapter 5 were, unless otherwise stated, based on the following

set of default parameters, in “simulation units”.
¢ Sampling Rate: 22050 Hz

e  Waveguide Parameters

Base Frequency:C 262
Desired Note: A

Octave Drop: ON
Number of samples: 20000

e  Scattering Parameters

Position: Scattering OFF
Diameter Ratio (when turned on): 0.1
Hole Position (when turned on): 0.3333

e Reed Parameters:

Reed Model Selection: Reed Table
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Reed Table:

Breakpoints: 255 and 1024 normalized pressure units
Offset: 700

Scale Factor: 80

Reed Model:

Reed Resonance multiplier: 10
Open Position: -25840

Closed Position: 35600
Stiffness: 1

Tip Offset: 0

Collision Elasticity: 0 (inelastic)

Bernoulli Force: OFF

e Bell Parameters:

Reflection Filter Type: 2nd order Butterworth
Cutoff Frequency: 1500 hz

Gain: 1

Transmission Filter Type: one-pole filter
Transmission Filter Gain: 1.3

Transmission Filter Radius: 0.9

e Attack Parameters:

Note Length: 19000 samples
Steady State Amplitude: 16700
Attack Length: 2000 samples
Decay Length: 10 samples
Attack Overshoot: 0.25
Overshoot position in Attack: 0.3
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Vibrato Level: 0
Vibrato Frequency: 6 Hz
Noise Level: 0
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