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Abstract

An important acoustical phenomenon for the theory and practice of musical intonation is
the beating of partials of nearly coinciding frequency in simultaneous notes. It is well-
known that beating partials are used when tuning certain instruments. It is also often
assumed that intervals sound more in tune when the beating is siower, and there is some
experimental evidence to this effect. However, in acoustic (non-electronic) musical
instruments, the rate of beating is inextricably coupled to the tuning of the interval, making
it difficult to ascertain whether the “out-of-tune” percept is caused by the tuning of the
interval itself (as measured by the logarithm of the frequency ratio) or by the concomitant
beat rate. With synthesized sound, on the other hand, one can manipulate the beat rate
independently of the tuning by frequency-shifting the appropriate spectral components.

The question motivating this research was to what extent beat rate itself is responsible for
the sensation of “out-of-tuneness” that is normally only found in tandem with a mistuned
fundamental frequency ratio. Three psychoacoustic experiments were conducted using
synthesized stimuli and musically experienced subjects. In the first two experiments, the
interval was the perfect fifth F4-CS5; in the third experiment it was the major third F4-A4.
The beat rate was controlled by two different methods. The first was simply to change the
size of the interval, as in traditional instruments, and the second was to frequency-shift one
partial of each pair of beating partials, without changing the overall interval tuning. The
second method introduces inharmonicity. In addition, two levels of beat amplitude were
introduced by using either a complete spectrum of 16 equal-amplitude partials for both
notes, or by deleting one partial from each pair of beating partials.

The results of all the experiments indicate that, for these stimuli, beating does not contribute
significantly to the percept of “out-of-tuneness,” because it made no difference statistically
whether the beat amplitude was maximal or minimal. By contrast, changing the interval
size had a great effect. For the fifths, frequency-shifting the appropriate partials had about
as much effect on the perceived intonation as changing the interval size. For thirds, this
effect was weaker, presumably since there were fewer inharmonic partials, and they were
higher in the harmonic series. Subjects were less consistent in their judgments of thirds than
of fifths. The major third of just intonation was not preferred overall to the equal-tempered
third.

Since it is unlikely that beats would be more audible in real musical situations than under
these laboratory conditions, these results suggest that the perception of intonation in music
is dependent on the actual interval tuning rather than the concomitant beat rate. In addition,
they indicate that inharmonicity can affect perceived intonation, and that the tuning of fifths
is less ambiguous than that of thirds. If beating partials are unimportant vis-a-vis interval
tuning, this strengthens the argument for a cultural basis for musical intonation, as opposed
to the acoustical basis set forth by Helmholtz and others.
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Chapter

Introduction and Review
of Related Literature

This dissertation investigates the role of beating partials in the perception of musical
intonation. When the two simultaneous notes of a consonant harmonic interval are
mistuned slightly from their “pure” tuning—in other words, their tuning in the system of
just intonation—there are usually several pairs of beating harmonics. In each of these pairs,
a harmonic of one tone almost coincides in frequency with another harmonic of the other
tone, creating an interference pattern within the ear that is audible as beating. An influential
theory holds that this phenomenon not only explains consonance and dissonance, but also
makes the intervals of just intonation sound the most in tune. In this study we examine
whether the beating itself actually has any effect on the intonation as judged by musically
trained listeners, or whether it is just the size of the interval that is relevant. This chapter
reviews the related literature, and Chapters 2 - 4 present the results of three psychoacoustic

experiments designed to shed light on this question.
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1.1 Introduction to the Problem

One of the earliest discoveries of a numerical principle embodied in physical
phenomena was the finding, attributed by the Greeks to Pythagoras and by the Chinese to
Ling Lun, that the fundamental musical intervals correspond to ratios of small integers.
Pairs of otherwise identical strings or pipes produce consonant musical intervals when the
lengths of their vibrating portions are related by small-integer ratios, such as 2:1, 3:2, and
4:3 (which correspond to the musical intervals of the octave, perfect fifth, and perfect
fourth). Small-integer ratios have been essential to Western music theory, and have also
appeared prominently in the musical traditions of non-European cultures, including China,
India, and the Arab world. At the beginning of the Scientific Revolution these ratios of
string lengths (or pipe lengths) were found to be identical to the ratios of the vibration

frequencies of the sounding bodies.

Furthermore, the degree of simplicity of the ratios has some correlation with the
degree of consonance as traditionally defined by music theory. In addition to the “perfect
consonances” just mentioned, which were accepted by the ancient Greeks and in turn by
Medieval European music theorists, Renaissance theorists recognized new “imperfect”
consonances of 5:3, 5:4, 6:5, and 8:5 (corresponding to the musical intervals of the major
sixth, major third, minor third, and minor sixth). The dissonant musical intervals
corresponded to yet more complex ratios (such as 9:8 or 10:9 for the major second, 15:8 for
the major seventh,16:9 for the minor seventh, 16:15 for the minor second, and 45:32 for the
tritone). Similar schemes have been present in the music theory of other cultures. This
apparent correspondence between consonance and simplicity of ratio did not escape the

attention of theorists; on the contrary, it was not only a fundament of Western music theory
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but also the object of scrutiny by a number of eminent scientists and philosophers from the
late 16th century on. The phenomenon of consonance formed a bridge between order in the
natural world and order in the human mind, and thus was of interest for mathematics,

physics, and philosophy.

It was Hermann Helmholtz in the 19th century who first offered a thorough,
acoustically based explanation of consonance that is still scientifically satisfactory. The
phenomenon of beating had long been known, as had the harmonic series, but Helmholtz
put the two together to propose that beats of upper partials were responsible for dissonance.
For example, in a perfect fifth, the third partial of the lower note coincides in frequency with
the second partial of the upper note, and when the interval is mistuned these two partials
beat with each other. The more the fifth is mistuned, the faster the beating, until at some
point maximal roughness is reached. Intervals with more complex ratios have fewer
coinciding harmonics and tend to have more beating pairs. The smaller the integers in the

interval’s frequency ratio, the more of these pairs of coinciding harmonics there are.

Much earlier, theorists had been on a similar track, in seeking to explain dissonance
by interfering vibration patterns, but their explanations of interference dealt with the
vibrations of the fundamental frequencies rather than of upper partials, and they were at a
loss to explain exactly how the interference caused dissonance. Helmholtz’ familiarity with
Ohm’s law and the harmonic series enabled him to think about musical tones in terms of
their constituent frequencies, and furthermore his understanding of physiology permitted
him to see how neighboring frequencies would interfere within the ear, causing roughness.
These capabilities resulted in the first well-founded physiological explanation of the

phenomenon of consonance.
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Not only did Helmholtz use his theory to explain the historical genesis of musical
scales, but he also felt that the intervals of just intonation (those based on simple integer
ratios) sounded more in tune than tempered intervals (those that deviate from such ratios).
The implication is that beating partials not only explained the origin of the culture’s musical
materials, but also contributed to the perception of intonation: beating made intervals sound

out of tune.

It is this second question which is addressed in the present study—not the remote
origin of the consonances, but whether beating is a significant component of intonation for
the contemporary listener. If listeners hear beat rate as contributing to an interval’s
goodness of intonation, this would indeed support the theory that beats were responsible for
the adoption of small-integer ratios in music. If beating is unimportant for contemporary
listeners, this weakens the theory. However, in either case one can argue that listeners judge
intonation according to learned references, whether the reference is a familiar beat rate, in
the first instance, or a familiar interval size, in the second.! Thus judgments of intonation
by modern ﬁsteners can offer only evidence, not proof, of the origin of musical intervals.
In any case, the contemporary musician is more concerned with the practical question of
modern listeners’ perception. If beats are important, they represent a possible constraint on
a composer’s choice of tuning system, and systems that minimize beating, such as just
intonation, would have a greater theoretical justification. But if beats are not significant, the
composer interested in nonstandard tunings might equally well choose some arbitrary

system with no small-integer frequency ratios.

1. In the former case the argument is somewhat tenuous, since the beat rate of any interval depends
on its register, and thus listeners would need to learn many more reference points than in the latter
case, where one need only learn the size of 12 intervals.
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In the course of answering the question of whether beat rate affects perceived
intonation, this dissertation will shed further light on a related question that has already
been the object of a good number of studies in the twentieth century—whether listeners do
in fact judge the intervals of just intonation to be more in tune. The present study attempts
to disentangle these two questions—whether beating is important, and whether just
intervals are preferred—by using a technique in which the rate of beating is manipulated
independently of the fundamental frequencies of the two notes in the given interval. I
believe this approach to be original to this dissertation. To my knowledge, no one has
previously studied the perception of ostensibly just intervals that contain rapid beating, for
example. The role of beating is examined in this research by separating beat rate from
interval tuning. One of the techniques used—frequency-shifting certain partials to control
the beat rate without changing the interval size—has the side effect of introducing
inharmonicity, as discussed further on page 50. Thus we are interested in previous literature
on the topics of beating, interval perception, and inharmonicity, as these relate to the

perception of intonation.2

The subsequent sections of this chapter summarize some of the relevant literature,
both musicological and psychoacoustic. We begin by briefly reviewing theories of
consonance, since—as we have already seen—these are closely related to matters of

intonation and beats.

2. We shall not digress into a detailed treatment of the mathematical relations between beat rates and
tuning systems. The interested reader is referred to Rasch (1984) for a thorough description of the
mathematics of beats and intervals, and to Rasch (1983) and Blackwood (1985) for the mathematics
of tuning systems.
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1.2 Consonance Theories

Eom € cuppovia pev xpaoig dvo ¢8oyywv, o&viepov xou Baputepov. Atopmvia 8
ToVVaVTIOV SV0 $B0YYOV auiEla, UT OV € Kpadnvor, cAla TPAXLVENVOL TNV AKONY.

[Consonance is the blending of a higher with a lower tone. Dissonance is incapacity to mix, when

two tones cannot blend, but appear rough to the ear.] 3
—Euclid

It is useful to examine consonance theories as a backdrop for reviewing the studies
on beats and intonation, since many of these studies were designed to shed light on the
question of consonance. First a semantic issue must be addressed: most of the
psychoacoustic studies on consonance have assumed that it is a property observable in
isolated harmonic intervals. In this limited sense, consonance is a property of certain
frequency ratios that is independent of musical context, but which makes these intervals
suitable for certain uses in musical contexts. More specifically, it is often assumed that
some acoustic feature of small-integer ratios is responsible for their importance in
traditional music theory, which describes or prescribes the harmonic use of such intervals
at points of lessened tension in musical passages. But while it is true that music theory has
made much of the small-integer ratios as seemingly absolute entities, it is also true that
musical practice and theory have often defined consonance and dissonance relative to a
musical context, taking into account contrapuntal motion, tonal centers, modal or scalar
structure, style, and the like. As an example, the perfect fifth F# - C# would have a dissonant
effect if embedded in a traditional cadential passage in the key of C. Modern
psychoacousticians with some musical awareness have generally understood this
discrepancy, using words like “tonal consonance” or “sensory consonance” to refer to

psychoacoustic aspects that are still present in isolated intervals, and terms like “musical

3. Euclides, ed. Meibomius, p. 8. Cited by Helmholtz (1877/1954), p. 226, trans. Ellis.
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consonance” to refer to aspects dependent on context and style.* The studies of consonance
reviewed here do not address the contextual treatment of intervals. They simply attempt to
explain the importance of small-integer ratios in music and the fact that music theory’s

traditional ordering of intervals by consonance roughly follows the order of complexity of
the respective ratios. The validity of such studies holds, in spite of some authors’ apparent

ignorance of the more flexible connotation of “consonance” among musicians.

One may sum up theories of consonance with the categories “numerical,”
“physiological,” and “environmental By “numerical,” I mean theories, such as virtually
all explanations up to the 16th century, that rely on the actual or supposed properties of the
ratios themselves, without considering the physical means by which such numbers might
be apprehended by the human ear and brain. With the advent of the Scientific Revolution,
scholars began to attempt to explain the physiological process, whether they felt that the
brain could apprehend the ratios as such, or (as was more common later) that some
intermediary mechanism was affected by the vibrations in such a way as to give the simple-
integer frequency ratios a special characteristic. By “environmental,” I refer to theories that
assume that people would not hear such sounds as consonant if they did not learn to do so

through frequent exposure to them.

4. See, for example, Terhardt (1977) or Rasch and Plomp (1982).

5. Other writers have categorized consonance theories. Linda Roberts (1983) refers to
“psychoacoustic” and “relativistic” theories. (She also mentions some early 20th-century
explanations, now abandoned, that are based on heredity.) Her “psychoacoustic” category consists
of temporal mechanisms, whether concerning “fusion” or some sort of ratio detection, and spectral
mechanisms such as Helmholtz’. Under “relativistic” she includes “learning,” “contextual,” and
“cultural” explanations. Burns and Ward (1982), taking a less historical view, refer to three
competing theories: ratio detection, beating (3 la Helmholtz), and learning based on the harmonic
series (2 la Terhardt [1977]). H. F. Cohen (1984), considering the points of view during the early
stages of the Scientific Revolution, discusses “numerological,” “mathematical,” “experimental,”
and “mechanistic” approaches, and subsequently mentions the later theories based on the harmonic
series and on beats.
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The oldest approaches are numerical, but they persist today. For the Pythagoreans, the
world was simply an embodiment of mathematics, as proven by the presence of the small
integers in the consonant musical intervals. The numbers two and three had special
significance, as evidenced by the Pythagorean tuning, which uses only these two prime
numbers. (For example, the Pythagorean major third is 81:64 rather than 5:4.)
Numerological treatment of intervals spanned cultures and centuries. During the Middle
Ages in Europe, music was considered one of the four mathematical disciplines of the
Quadrivium, along with arithmetic, geometry, and astronomy. The leading music theorist
of the Renaissance, Gioseffe Zarlino, formulated the senario, a largely numerological
explanation of why the consonant musical intervals used only the first six whole numbers
in their string-length ratios. (The one exception, the 8:5 ratio of the major sixth, occasioned
additional forensic contortions.) Some later philosophers like Kepler cast their numerical
treatments in a slightly more rational mold, while still being preoccupied by the
mathematics themselves, which in Kepler’s case took a geometric turn. A tradition of
numerical, as well as numerological, treatment of musical intervals has continued unbroken
to our time. While modern musical thinkers are not unaware of scientific approaches, there
is considerable discussion today of the properties of various prime numbers for just
intonation. In some cases, the participants appeal to physiological theories, such as that of
Boomsliter and Creel (1961). The idea that different prime numbers correspond to different
affects seems to be particularly appealing.6 This idea has not been experimentally tested.
However, Maher (1980) found “only partial support for the popular notion that each
musical interval has a unique psychological effect.” In the results of his psychological

experimentation, many intervals were not discriminated from each other on any affective

6. For examples, see Makeig (1979 - 1980, 1982), and the interview with Ben Johnston in Keislar
(1991).
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scale, including all the intervals from the minor third through the major sixth. Certainly

discrimination on the basis of prime factors would be even less likely.

A necessary addendum to any numerical theory of consonance is the concept of
tolerance. Any number describable as a ratio of small integers has, of course, an infinite
number of extremely nearby neighbors that cannot be so expressed (whether they be large-
integer ratios or irrational numbers), yet the ear could not possibly discriminate these from
the “pure” interval even if a means of producing sound so accurately could be found.
Theories of consonance based on physiology have less difficulty explaining tolerance, since
physical phenomena (such as the vibration of the basilar membrane in the ear) have limits

of resolution.

Physiological explanations of consonance came to prominence during the Scientific
Revolution. H. F. Cohen (1984) traces in great detail the development of theories of
consonance in the 16th and early 17th centuries, which saw the emergence of a scientific
approach involving both human physiology and the physics of vibrating objects. The major
figures cited by Cohen are: Giovanni Battista Benedetti, Vincenzo and Galileo Galilei, and
Marin Mersenne, as representatives of “the experimental approach”; Johannes Kepler and
Simon Stevin (“the mathematical approach”); and Isaac Beeckman and René Descartes
(“the mechanistic approach”). Some of these thinkers will be mentioned again below in the
discussion of beats. The prevailing theory of consonance during this epoch was what Cohen
calls “the coincidence theory,” first formulated by Benedetti in 1563.7 The connection
between vibration and pitch had been discovered; scholars were now aware that the ratios
of musical intervals, which had traditionally described the relative lengths of vibrating
strings, also applied to the vibration frequencies. Thus it was natural that they should

attempt to explain consonance by the synchrony of some aspect of vibration. They
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supposed, for example, that every third pulse of a lower note would coincide with every
second pulse of a note a perfect fifth above it. Some writers such as Beeckman were more
specific and postulated sound particles or globules that struck the eardrum periodically to
produce a certain pitch. It was assumed that the periodic coincidence of two such pulses or
impacts upon the ear yielded greater pleasure. Apparently no one until Isaac Newton
recognized the fatal weakness of this coincidence theory: it was helpless to explain

consonance when the two vibrations are out of phase.

The major new theory of consonance in the 18th century was Rameau’s assertion that
the harmonic series was responsible for the importance of small-integer ratios (Rameau
[1737]). In his earlier Traité de I’harmonie (1722/1971), Rameau followed the tradition of
explaining consonance in terms of numbers and string lengths. After reading the acoustical
writings of Joseph Sauveur, however, he reformulated his theory of consonance on the basis
of overtones.® The major triad’s appearance in the first few partials of the harmonic series
provided a “natural” basis for musical art, the emphasis on nature reflecting a major theme
of the 18th-century zeitgeist. Not being a scientist, Rameau was less concerned with
physiological investigations; it was sufficient to discover in nature the most important chord
of music theory. Rameau’s might thus be considered an “environmental” approach; one
creates music organized by principles audible in natural sounds. He also introduced the

principle of the basse fondamentale, or the root of a chord, which he used to establish a new

7. Cohen, a science historian, says that around this time Benedetti wrote a letter to the composer
Cipriano de Rore which “ends with a brief, 40-line theory on the generation of the consonances
through the ‘cotermination of percussions’...Benedetti now takes as his starting point the regular
strokes that are produced by a vibrating string. He realizes that at different intervals the number of
these strokes per unit time is inversely proportional to the lengths of the strings that are sounded.
Apparently he takes this property to be self-evident, as there is no trace in his account of even an
attempt to prove it...” (Cohen [1984], pp. 75, 77).

8. This debt to Sauveur is emphasized by Philip Gossett in the introduction to his translation of
Rameau’s earlier treatise (Rameau [1722/1971}), p. xxi.
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approach to harmonic analysis in which chords retained their essential identity through
different inversions. Some modern writers® have cited Rameau as a forerunner of temporal
or pattern-matching theories of consonance, because his notion of the basse fondamentale
bears some similarity to later ideas such as Schouten’s (1938) “residue pitch,” the “long

pattern” of Boomsliter and Creel (1961), or the “virtual pitch” of Terhardt (1974a).

In the 19th century Hermann Helmholtz combined the concept of interference,
inherited from the 17th-century coincidence theory, with an understanding of the harmonic
series, found in the 18th-century writings of Sauveur and Rameau. The resultant synthesis
was a theory of consonance based on interfering harmonics that solved problems of both
the earlier consonance theories.!? Helmholtz had read d’ Alembert’s presentation of

Rameau’s theories, of which he says:

In his book there is no mention of beats, and hence of the real source of distinction between
consonance and dissonance. Of the laws of beats very little indeed was known at that time...!!

Further, Helmholtz’ understanding of both auditory anatomy and Ohm'’s law (based
on Fourier’s theorem) enabled him to propose a physiological model of hearing that
explained consonance with unprecedented thoroughness. He was convinced that beats of

upper partials, interfering within the ear, explained dissonance:

...it is apparent to the simplest natural observation that the essence of dissonance consists merely
in very rapid beats...Consonance is a continuous, dissonance an intermittent sensation of tone...

Hence I do not hesitate to assert that the preceding investigations, found upon a more exact analysis
of the sensations of tone, and upon purely scientific, as distinct from esthetic principles, exhibit the
true and sufficient cause of consonance and dissonance in music.!2

9. for example, Terhardt (1974a), Mathews and Pierce (1980), Roberts (1983).

10. H. F. Cohen (1984) presents this insight into the synthetic nature of Helmholtz’ achievement.
11. Helmholtz (1877/1954), p. 233.

12. Helmbholtz (1877/1954), pp. 226 and 227.
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In a sense, Helmholtz moved the old coincidence theory from the time domain to the
spectral domain: the emphasis was now on coinciding frequencies, rather than coinciding
pulses. Helmholtz understood from current anatomical research that the basilar membrane
is in effect a series of resonators, so that each location along the membrane vibrates in
response to a different portion of the audible frequency spectrum. Since the membrane has
finite elasticity, two frequencies whose locations are near to each other, but not quite
coinciding, will interfere, causing beating. When the sound source consists of two complex
tones (i.e., tones containing harmonics), certain pairs of their component frequencies
coincide when the two fundamental frequencies are related by small-integer ratios. If such
consonances are mistuned, beating occurs. The dissonant intervals can be viewed as

extremely mistuned consonances.

More will be said below, under “Beats,” about Helmholtz’ influential theory, as well

as 20th-century extensions to it. (See pages 20 - 38.)

Stumpf (1898) proposed an alternative to Helmholtz’ theory, saying that consonance
is created by the sensation of fusion, i.e., how well the tones blend into a unitary sound. This
theory offers little in the way of a physiological explanation, but was influential for some
time. Brues (1927) asked subjects to rate the “fusion” or “unitariness” of all the intervals in
the quarter-tone scale. The perceived fusion of an interval was not dependent on the
simplicity of the ratio, providing evidence against Stumpf’s theory. DeWitt and Crowder
(1987) found limited support for Stumpf; subjects were slower to identify octaves and fifths

as having more than one tone.

Helmholtz’ model relies on the “place” mechanism, i.e., the spatially distributed

frequency sensitivity of the basilar membrane. The other important sort of physiological
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explanation of consonance relies on temporal hearing mechanisms (although the
anatomical component tends to be less explicit in such explanations). Irvine (1946) noted
that the waveforms of harmonic intervals with small-integer frequency ratios had shorter
periods than those with more complex ratios, and hypothesized that the length of this
cumulative period was responsible for the degree of consonance. Resnick (1981) offered a
refinement of this idea, connecting it with the minimum time required to perceive the pitch
of a tone. According to this model, if the period of the tone is shorter than the minimum
time for pitch perception, the tone is consonant. Boomsliter and Creel (1961) offered a
theory, based on synchrony of neural firings, that can be viewed as an updated physiological
enhancement of the old coincidence theory. They conducted a number of musical studies,
making rather extensive claims about musicians’ preference for various integer ratios.!3
Roberts (1983) cites Houtsma and Goldstein (1971) as proposing that a central processor
of pitch (as opposed to the auditory periphery) is responsible for consonance and
dissonance. Terhardt (1974a) proposed a pattern-matching scheme in which a “virtual
pitch” is calculated from the frequencies of the harmonics in a stimulus. This pattern-
matching mechanism would also be sensitive to simple ratios, a fact that Terhardt thought
explained “musical consonance,” as opposed to the “psychoacoustic consonance”—based
on roughness—that Helmholtz treated. Although this pattern-matching theory bears some
similarity to temporal theories, it is based on detection of frequency patterns across the

spectrum.

Terhardt (1974a) also proposed that one develops a template for simple ratios by
hearing the harmonic series in speech sounds starting from infancy. This theory would be

classified as an “environmental” one, and is somewhat like Rameau’s ideas. Also in this

13. See page 51 for more on this study.
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“environmental” category would fall all explanations based on cultural factors. Cazden
(1962), for example, offers an eloquent rebuttal of reductionist approaches to art,
specifically Helmholtz’ notion that music can be reduced to terms of physiological
sensation. Theories of consonance that appeal to culture, learning, or context imply a higher
level of processing than that which psychoacoustics delineates. Certainly what has been
referred to as “musical consonance” (in opposition to “sensory consonance’”) must fall
primarily into the cognitive, rather than psychophysical, realm. There is ample evidence
that the perception of the simplest musical elements, such as the pitch of notes in a musical
scale, is dependent on a cognitive framework. Shepard and Jordan (1984), for instance,
found that subjects made significant errors in judging the pitch relation of notes in a
stretched major scale. The study of Ayres, Aeschbach, and Walker (1980), discussed on
page 24, presents the idea that unfamiliarity with musical materials (in their case, quarter-
tones) affects judgments of consonance even in an experimental setting that follows the
psychoacoustic paradigm. From the cognitive perspective, the assumption that a certain
arrangement of frequencies must be perceived as having this or that degree of consonance
is analogous to the notion that a certain succession of phonemes must mean the same thing
in every language. Since the focus of this dissertation is not on consonance, but on beats
and intonation, we shall not belabor this point with respect to consonance, nor review all
the related literature on music cognition. However, the same caution holds with respect to
intonation; and when we examine the results of the psychoacoustic experiments presented
in this dissertation, we shall again encounter the fact that subjects judge intonation with

reference to a learned framework.

We close this review of consonance theories with a final caveat concerning the

historical origins of consonant intervals. It has usually been assumed, but it can probably
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never be proven, that the use of musical intervals corresponding to small-integer ratios
preceded awareness of the numerical relationship they embodied. Although the association
of consonances with small integers was taken to be evidence of order in nature, it is
conceivable that the causality is reversed—namely, that ancient musicians treated these
intervals as special because of the theoretical principles they embodied, rather than because
of any innate properties requiring the intervals to be heard as consonant. If so, then the
hierarchy of consonances would be a cultural phenomenon based on non-universal
materials. Such a view would explain the use, in some cultures, of scales that lack these

intervals, such as the slendro tunings of Indonesian gamelan.14

The truth may lie somewhere in between these two viewpoints—perhaps acoustical
phenomena determined the choice of, say, the octave, fifth, and fourth; and once the ratios
of these intervals were ascertained, other small-integer ratios were consciously added to the
system. The octave and fifth, at least, could scarcely have gone unnoticed (for example, in
wind instruments). In combination, these intervals yield the fourth, and a cumulative series
of fifths (or fourths) yields the entire set of Pythagorean intervals. The “Ptolemaic” major
third (5/4) may simply have arisen as a numerical approximation to the Pythagorean third
(81/64), although it is not unreasonable to imagine that it was originated by ear instead. It
is worth noting another point, seldom addressed by modern advocates of just intonation:
ancient theorists had little choice other than to express all intervals in terms of integer ratios,

because decimal fractions—not to mention logarithms—were still unknown.

14. The inharmonicity of the gamelan has been mentioned as a counter-argument for this specific
example, but see the comment about Pressing (1980) on page 37.
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1.3 Beats

1.3.1 Early Writings

Itis difficult to imagine that the ancients could have been unaware of the phenomenon
of beating; certainly they could not have failed to notice the beating of mistuned unisons.
Musicians probably listened to the rate of beating to tune pairs of strings (if not pipes) to
the beat-free just intervals described by ancient theorists.!> However, [ am unaware of any
description from ancient times that would verify this supposition. Beating was not part of
Pythagoras’ treatment of musical intervals, as it has been handed down to us in the

descriptions of later writers.

Since the sustained tones of the organ make beats easy to hear, it is likely that
Medieval organ tuners listened to beat rates to tune the pure fifths of Pythagorean
intonation, which was the tuning advocated by theorists of the time. Beats were used in the
Renaissance to tune organs to tempered intervals (such as those of meantone temperament),
and the same was probably true for harpsichords, if not other stringed instruments.

H. F. Cohen cites the organ composer Arnolt Schlick, in his Spiegel der Orgelmacher und
Organisten (1511) as indicating, “though in a purely qualitative fashion, the rate of beating

necessary for tempering the fifths and thirds to the extent he thinks desirable”!6

Marin Mersenne, who carried on a prolific correspondence with contemporary
scholars and musicians, was also aware of this practical use of beat rate in tuning organs,

and he describes beating in his Harmonie universelle of 1636/37. According to Cohen,

15. Scholars believe, for example, that the strings of the kithara and lyra were tuned in anhemitonic
pentatonic scales, yielding many fourths and fifths (Marcuse [1975], p. 322); and the Chinese legend
of Ling Lun, discoverer of music, has him tuning bamboo pipes by the circle of fifths.

16. H. F. Cohen (1984), p. 248.
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Mersenne didn’t attempt to explain the phenomenon, other than to note that beating
shouldn’t be confused with the putative coincidence of pulses that Mersenne held to be
responsible for consonance. Mersenne was also an early advocate of equal temperament
(although not exclusively; he also described a system of just intonation with 18 notes per
octave as being “the most perfect” system). On page 20 of the volume of Harmonie
universelle entitled Nouvelles observations physiques & mathematiques, he describes the

use of beats to tune equal temperament:

Quelque-uns croyent qu’ils peuvent trouver I’accord precedent des demitons égaux...par le nombre
de tremblemens, ou batemens que font la Quinte & les autres consonances temperées: par exemple,
la Quinte bat une fois dans chaque seconde minute, lors que la Quinte est temperée comme il faut,
tant sur I’Orgue que sur 1’Epinette, au lieu que quand elle est iuste, elle ne bat plus.

{Some people believe they can find the aforementioned tuning of the equal semitones...by the
number of tremblings or beats that the fifth and other tempered consonances make: for example,
the fifth beats once each second, when it is tempered as necessary (on the organ and the spinet
alike), whereas when it is just, it does not beat anymore.]

Mersenne doesn’t mention the register here, but this would be the middle register.
According to a rule of thumb cited by Alexander Ellis,!” equal-tempered fifths in the octave
above middle C should beat once a second, and fourths in this register beat three times in

two seconds.

It was Isaac Beeckman (1588 - 1637), according to Cohen, who first offered an
explanation of the phenomenon of beating, and more importantly for our discussion, who
first associated beating with dissonance. Again, Beeckman learned of the practical use of
beats for tuning from an organist. The organist would first tune fifths exactly pure (so they
were beat-free), and then

...he taps the pipes in such a way that the sounds run counter to each other as if they said wow, wow,
wow, the one wow differing from the other in time as much as one pulse in the radial artery from

17. in his 1885 translation of Helmholtz (1877/1954), App. XX., Sect. G, p. 489.
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the other, and then all is well. But if he makes them even more unequal, the wows come still 5 or
6 times i:éoser together; and if he makes them worse again, the sound passes into something like
rattling.

Note the use of one’s pulse as a reference for judging beat rate. (Musical references
have also been used; Barthold Fritz (1780)19 gave tuning instructions that compared the
beat rate to eighth-notes in common time.2%) Beeckman implies that a beat rate of
approximately 1 Hz is fine, a rate of several beats per second sounds worse, and higher rates
have a different quality—"rattling”—which may approach what in this century has usually
been called “roughness.”

Beeckman continues by describing that if two organ pipes are tuned to a fifth, there
is no beating. If the upper pipe is slightly mistuned,
it overtakes [the other] every 30th time or so, which begins to take away the agreeability of the fifth.
But if it is still worse, it rattles and is really vicious, since now the ratio is no longer as 2 to 3, but
as 17to 18 or 20 to 21 or 10 to 11, etc., which are all dissonances, for instead of the one string {sic]

moving three times against the other one twice, the strokes now come together only once every
eleven or 12 times, or s0.2!

Beeckman’s numbers are specious: the ratios he mentions (17:18 and so on) are
closer to a minor second than to a fifth. But the passage can be corrected without changing
the substance of its argument, by substituting ratios such as 30:19. As such the passage
could almost be taken as describing “waveform beats,” which Plomp (1967) called the
“beats of mistuned consonances”—a periodic change in the cumulative waveform of two
simultaneous sinusoidal tones. But this phenomenon is very weak; the beats clearly heard

in mistuned organ pipes are the beats of upper partials. At this time people did not realize

18. Cohen (1984), p. 144, from Beeckman (1604 - 1634/1939 - 1953), vol. 3, p. 51.

19. Cited by Barbour (1953), p. 48.

20. In earlier centuries the beat, or ractus, was a more absolute unit of time than when tempo
designations came into use.

21. Cohen (1984), p. 145, from Beeckman (1604 - 1634/1939 - 1953), vol. 3, p. 51.
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that it was upper partials, not the fundamentals, that beat in a mistuned perfect fifth, so
Beeckman attempted to explain beating in terms of the relation of the fundamental
frequencies. He did, however, understand that beating was a process of one vibration
pattern lagging behind the other, and that the period of the beat is equal to the time it takes

the two patterns to coincide again.

Later writers touched upon the relation between the consonance of small-integer
ratios and their lack of beating. Christiaan Huygens considered ratios based on the number
seven to be suitable for consonances, a possibility that Mersenne had already entertained
but, for the most part, rejected. Huygens noted in 1676 that the close approximation in
meantone temperament to the ratio 7/4 “appears to be consonant. For it emits a sound that

is agreeable to the ear, and it does not beat.”2

At the beginning of the eighteenth century, Joseph Sauveur published various
writings, such as his Principes d’acoustique et de musique (1700/1701), in which he set
forth a number of new acoustical findings and procedures. Sauveur authoritatively
described the overtone series and included the idea that dissonance might be caused by
beats.2? He also originated the use of logarithmic units of frequency to measure intervals,

and set forth a method of establishing a standard reference frequency, using beats of organ

pipes.

Other 18th- and 19th-century figures wrote about beats and tuning. Georg Andreas
Sorge has been cited as setting forth ideas relating beats to dissonance in the mid-eighteenth

century, more than a century before Helmholtz.2* Robert Smith analyzed the mathematics

22. Cohen (1984), p. 226, from Huygens 20:60.
23. Cohen (1984), p. 235. ’
24. Sorge (1745 - 47), cited in Plomp and Levelt (1965).
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of beats and frequency ratios, publishing in his Harmonics of 1749 tables of the beat
frequencies in different tunings, as did later writers such as Alexander Ellis.? Kimberger
(1779) discussed tuning by beats of fifths.?® Scheibler (1834) developed a set of tuning
forks to use as a tuning reference; a given note of an instrument’s would be tuned to beat

four times per second with the corresponding fork.

1.3.2 Helmholtz

As mentioned above (page 3), Hermann Helmbholtz is generally credited with being
the first to understand the beating of harmonics and to base a theory of consonance
primarily on this phenomenon. Even if there were forerunners of this idea in the writings
of Beeckman, Sauveur and Sorge, it was certainly Helmholtz who gave it a physiological
basis and who crafted it into a monumental treatise purporting to explain musical harmony.
Helmholtz mathematically analyzed the strengths of beating partials27 and used this to
draw a graph of roughness versus interval size over a two-octave range.28 The graph shows
peaks whose relative heights roughly correspond to the traditional ordering of the

consonances and dissonances.

Helmholtz had some understanding that, apart from beat rate, there was an effect

related to interval size:

...the 66 beats of the interval b" c™ are much more distinct and penetrating than the same number
in the whole Tone b® c", and the 88 of the interval ™ f™ are still quite evident, while the 88 of the
minor Third a' ¢" are practically inaudible... Hence it is not, or at least not solely, the large number
of beats which renders them inaudible [when the beat rate is increased beyond some threshold].

25. in his 1885 translation of Helmholtz (1877/1954), App. XX., Sect. G, p. 489.

26. Kirnberger (1779), 2nd part, 3rd Division, pp. 179 ff. Cited by Barbour (1953), p. 64.

27. Helmbholtz (1877/1954), App. XV, pp. 415 - 418: “Calculation of the Intensity of the Beats of
Different Intervals.”

28. Helmbholtz (1877/1954), Fig. 60 A and B, Chapter X, p. 193; also Fig. 61, p. 333.
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The magnitude of the interval is a factor in the result, and consequently we are able with high tones
to produce more rapid audible beats than with low tones.

...equally large intervals by no means give equally distinct beats in all parts of the scale. The
increasing number of beats in a second renders the beats in the upper part of the scale less
distinct...The beats of a whole tone, which in deep positions are very distinct and powerful, are
scarcely audible at the upper limit of the thrice-accented octave [say at 2000 vib.—Ellis]. The
major and minor Third, on the other hand, which in the middle of the scale [264 to 528 vib.—Ellis]
may be regarded as consonances, and when justly intoned scarcely shew any roughness, are
decidedly rough in the lower octaves and produce distinct beats.

On the other hand we have seen that distinctness of beating and the roughness of the combined
sounds do not depend solely on the number of beats...The roughness arising from sounding two
tones together depends, then, in a comgound manner on the magnitude of the interval and the
number of beats produced in a second. o

He goes on to discuss the anatomical reason for the latter observation, namely that if
the interval is wide enough, the vibrating parts of “Corti’s organs” will be too far apart to
permit interference. However, he does not seem to propose that the beat rate yielding
maximal roughness might change as a function of frequency; this would remain to be

contributed by the critical band theory in the 20th century.3°

As H. F. Cohen points out,3! Helmholtz’ theory helps explain why more consonant
intervals aré more susceptible to mistuning (namely, because they contain more coinciding
or nearly coinciding partials that can beat). However, some writers have argued that the
fifths can withstand more mistuning than the major thirds, and indeed meantone
temperament is based on this principle. (For more on the relative sensitivity of thirds versus
perfect intervals, see the comments about Hall and Hess [1984] and Vos [1986] on page 27.)

Helmbholtz also notes that although the less consonant intervals will have their beat rate

29. Helmbholtz (1877/1954), pp. 171 - 172.

30. Where Helmholtz thought the two important factors were beat rate and interval size, discussions
of the critical band theory often present the two factors of beat rate (or frequency separation) and
Jrequency. Any two of these factors are sufficient to determine the third. To use Helmholtz’ example,
given a beat rate of 66 Hz and an interval of a minor second, the frequency of the lower tone must
be b", or about 988 Hz.

31. H.F. Cohen (1984), p. 240.
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increase more quickly as the interval is mistuned, this will cause the beats to disappear

sooner into inaudibility:
...if the amount by which one of the tones is put out of tune remains constant [in cents], the number
of the beats increases according as the interval is expressed in larger numbers. Hence for Sixths
and Thirds the pitch numbers of the tones must be much more nearly in the normal ratio, if we wish
to avoid slow beats, than for Octaves and Unisons. On the other hand a slight imperfection in the

tuning of Thirds brings us much sooner to the limit where the beats become too rapid to be
distinctly separable.’

Helmbholtz devotes considerable discussion to the beats of combination tones with

each other and with upper partials, but says:

Butssince all tones which are useful for musical purposes are, with rare, exceptions, richly endowed
with powerful upper partial tones, the beats due to these upper partials are relatively of much
greater practical importance than those due to the weak combinational tones.>

Helmholtz also noticed that the pitch of a mistuned unison could be heard to fluctuate
subtly during the minimum-amplitude portion of the beat cycle. He included in his book an
appendix with a trigonometric derivation of this phenomenon, given to him by G. Guéroult
(who translated Helmholtz’ book into French).34 The phenomenon has been further studied

in our century (Feth [1974]; Feth, O’ Malley, and Ramsey [1982]).

1.3.3 Extensions and Tests of Helmholtz’ Theory

Following Helmholtz, a number of other papers treated consonance along similar
lines (Wundt [1880], Ogden [1909], Montani [1947], Husman [1953]).33 The next major
addition to Helmholtz’ theory, however, was based on the concept of critical band (Zwicker,

Flottorp, and Stevens 1957), which defined, as a function of frequency, the maximum

32. Helmboltz (1877/1954), p. 185.
33. Helmbholtz (1877/1954), p. 180.
34. Helmholtz (1877/1954), Appendix XIV, pp. 414 - 415.
35. These papers are all cited by Plomp and Levelt (1965).
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frequency ratio within which two sinusoids would still interfere with each other on the
basilar membrane. Plomp and Levelt (1965) used this idea to relate perceived consonance
of sinusoids to Helmholtz’ model. They presented listeners with simultaneous sinusoidal
tones in various frequency ranges and beat rates, and asked for judgments of “consonance,”
which was defined as “beautiful” or “euphonious” for subjects unfamiliar with the term.
(The subjects’ musical experience was not reported.) Their listeners judged tones to be
most dissonant when they were separated by a quarter of a critical bandwidth, and intervals
larger than this were judged as increasingly more consonant. Thus the maximally dissonant
beat rate was found to vary with register, whereas Helmholtz had suggested a beat rate of

30 - 40 Hz, independent of register.

Helmbholtz had extrapolated from his computations of the beat intensity of sinusoids,
to graph a curve of dissonance for complex tones. Similarly, Plomp and Levelt extrapolated
from their psychoacoustic data on sinusoids to the condition of simultaneous complex
tones, assuming that the consonance of such tones could be computed as a linear sum of the
judged consonances of each pair of sinusoidal components in the tones. For six partials per
tone, the resultant curve has peaks at the consonances of just intonation, with relative
heights that roughly follow the traditional ordering of consonances. This pattern is nearly
independent of frequency over a large range, but below a critical frequency that depends

upon the interval, the interval becomes more dissonant, as reflected in musical practice.

This prediction was tested by Kameoka and Kuriyagawa (1969a, 1969b) with
psychoacoustic experiments using both sinusoidal and complex tones. For sinusoidal tones,
their results were somewhat different from Plomp and Levelt’s: maximal dissonance was
not simply proportional to the critical bandwidth, but increased with both frequency and

sound pressure level. Complex tones again showed peaks at the simplest frequency ratios.




Chapter 1. Introduction and Review of Related Literature 24

Kameoka and Kuriyagawa developed a somewhat different model from Plomp and Levelt’s
linear model for predicting the consonance of arbitrary intervals with arbitrary spectra. (See

Vos [1986] for a critique of Kameoka and Kuriyagawa’s model.)

Hutchinson and Knopoff (1978, 1979) provided another formula for calculating the
consonance of chords from their component frequencies, in an attempt to reach a result

useful for music theory. Danner (1985) used this model to characterize pitch-class sets.

Ayres, Aeschbach, and Walker (1980) studied the perceived consonance of dyads
consisting of complex tones with eight partials each. The intervals included not only the
standard equal-tempered intervals, but also intervals from the quarter-tone scale (i.e., the
division of the octave into 24 equal parts). They found a number of cases where a quarter-
tone interval was judged more dissonant than either of its chromatic neighbors. Ayres,
Aeschbach, and Walker held that Plomp and Levelt’s model could not predict this, and
concluded that their subjects judged the quarter-tone intervals as more dissonant because
they were more unfamiliar. While the latter hypothesis seems reasonable, it is difficult for
the reader to evaluate the authors’ statement that Plomp and Levelt’s model was inadequate,
for the predictions they show are based on Plomp and Levelt’s curves for tones with six
(presumably equal-amplitude) partials, but the stimuli that Ayres, Aeschbach, and Walker
used in their experiment had eight partials with unequal amplitudes. Still, the study serves
as a reminder that cognitive factors might override psychoacoustic ones in such
experiments. (Another illustration of this point is the experiment on auditory illusions by

Shepard and Jordan [1984].)

Nordmark and Fahlén (1988) also conducted some experiments with complex tones

to test Plomp and Levelt’s model. The subjects had some musical experience. In the first
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experiment, the stimuli were harmonic intervals with six equal-amplitude partials per tone
and a duration of four seconds. The task was to rate the stimuli’s dissonance. The results of
this experiment matched Plomp and Levelt’s model fairly well, although removing some of
the partials in a dissonant interval (the minor ninth) did not increase its consonance as
predicted. A second experiment was run with tetrads (four-note chords) in different
inversions and tunings (equal temperament, just intonation, Pythagorean intonation, and an
“irregular” tuning). Neither Plomp and Levelt’s nor Kameoka and Kuriyagawa’s model
matched the data for these chords.36 For example, a tempered chord could be more
consonant than the just version, although the models predict the reverse. Nordmark and
Fahlén attempt to explain the results with recourse to periodicity pitch, but it seems that
learning would provide a better explanation. With these more explicitly musical stimuli, it

is likely that the subjects’ exposure to the Western musical tradition played a definitive role.

Terhardt (1974b) studied roughness in beating pairs of sinusoids as well as in
amplitude-modulated tones, frequency-modulated tones, and pulse trains. Some of his
findings are: (1) Roughness is determined mainly by relative amplitude envelope
fluctuations. It is proportional to the square of the ratio of amplitude fluctuations to steady-
state amplitude value. (2) Roughness is also dependent on frequency of the stimulus, as
well as on the rate of amplitude fluctuations. It is maximal at about 50% of the critical
bandwidth. (Plomp and Level had found maximum roughness at about 25% of the critical
bandwidth.) (3) The roughness of a pair of beating sinusoids is about half that of a 100%-
amplitude-modulated tone having the same frequency and a modulation rate equal to the

pair’s beat rate.

36. Nordmark and Fahlén rejected Hutchinson and Knopoff’s formula, since it allows a given
interval to vary by factor of 10 over a three-octave range.
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Roberts and Mathews (1984) found that some subjects preferred chords with beating,
while others preferred chords tuned in just intonation. The stimuli in their study had a
“typical bland electronic organ timbre”: 10 harmonics, with a 9 dB/octave rolloff. The
chords were the major and minor triads of conventional just intonation, plus two
nontraditional chords (with frequency ratios 3:5:7 and 5:7.9, respectively). The middle note
of each chord was tempered by -30, -15, 0, +15, or +30 cents. There were 13 subjects,
ranging from professional musicians to musically untrained people. All subjects were
always able to discriminate between the temperings. When asked to judge which of a pair
of chords was more in tune, they fell into two groups: the “rich” listeners who preferred
beating and the *“pure” listeners who preferred the just tuning. (This pattern did not hold for
the minor triad.) When asked which of the pair was more smooth or more pleasant, the
“rich” listeners responded the same as when asked which was more in tune, but the “pure”

listeners showed distinctions between these tasks.

Roberts and Mathews offered two possible explanations for the preference of the
“rich” listeners: either they simply preferred some beating (which may have helped enliven
the bland electronic timbre37), or they preferred equal temperament. The latter explanation
does not account for all the data, but the former does not explain why in some conditions
(minor chords, and in I - IV - V progressions) the “rich” listeners preferred tempering in the
direction towards equal temperament but not in the opposite direction. This problem
suggests an experiment separating beating from tuning, such as the experiments presented

in this dissertation.

37. Synthesizer manufacturers, for example, often add beating to their “patches” in order to make
them richer and more evocative of natural sounds.
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Hall and Hess (1984) had musically trained subjects evaluate the acceptability of the
tuning of a large number of intervals (including the entire range from the unison to the
octave, quantized no more coarsely than in 4-cent increments). The stimuli in this study
were isolated harmonic intervals of three seconds’ duration, using an “oboelike” timbre
based on a pulse waveform (whose spectrum has equal-amplitude harmonics), filtered with
a low-pass filter whose cutoff frequency was 2.5 kHz and whose rolloff was 24dB/octave.
For the most part, however, the authors only show representative per-subject graphs and
data analysis, making it difficult for the reader to determine average results. Hall and Hess
state that subjects gave the highest ratings to the intervals of just intonation; none of their
seven subjects was a “rich” listener. Consonances were easier to judge than dissonances.
The intonation of perfect intervals (e.g., fourths and fifths) was more ambiguous than that
of thirds and sixths when the physical mistuning was expressed in terms of cents, but less
when expressed in terms of beat rate. Hall and Hess interpreted their results to mean that
both beating and interval tuning contribute to intonation judgments. We shall return to this

question in the discussion of Joos Vos’s work.

1.3.4 Vos’s Research on Pure and Tempered Intervals

Certainly the most extensive and thorough research on the importance of beats for
intonation has been that conducted by Joos Vos, most of which was included in his doctoral
thesis (Vos [1987]). A series of psychoacoustic experiments (Vos [1982, 1984]; Vos and
Vianen [1985a, 1985b]) found that beating partials were the main factor in discriminability
between pure and tempered harmonic intervals; later studies (Vos [1986, 1987]) found beats
to be important for the perceived intonation of both isolated intervals and musical passages.

This research merits the more detailed treatment in the following paragraphs.
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Vos (1982) examined thresholds for discrimination between pure and mistuned fifths
and major thirds. The stimuli were simultaneous complex tones of various durations and
beat frequencies. The “discrimination threshold” was measured as a difference in level
between the two tones of the interval; thus one tone was typically at a much lower sound
pressure level than the other. (In other words, the threshold was the maximum difference in
level at which the pure interval could still be discriminated from the mistuned one). One of
the experiments also measured “identification thresholds,” in which the subject had to
identify the direction of mistuning (whether the interval was larger or smaller than the

“pure,” i.e., just, interval). The conclusions of this study were:

(1) Mistuned fifths are more easily discriminated from the pure interval than are
thirds. Unlike the results of Hall and Hess (1984), this finding is true both as a
function of beat rate and as a function of mistuning in cents.

(2) Slow beating makes discrimination more difficult. (The beat rates ranged from
Sto32Hz)

(3) Longer durations make discrimination easier, especially at low beat rates.
(Durations ranged from 1/4 to 1 second.)

(4) Both fifths and thirds must be mistuned by 20 to 30 cents to identify the direction
of mistuning reliably.

(6) For both fifth and third, the just interval was the point of “mean subjective
purity,” i.e., the tuning where an equal number of responses say the interval is
compressed as stretched.

(7) Sensitivity to beats is about the same for thirds and fifths, and is usually
independent of the beat rate.

(8) Discrimination is determined mainly by beats, but also by perception of the
interval size, especially for fifths when the lower tone is quieter than the higher.

Vos’s next study (Vos [1984]) determined that the earlier results, which concerned
thresholds where one tone was much quieter, were a good predictor for supraliminal
conditions. (There are some exceptions with the major third, however.) The thrust of this
study was to determine the relation between the previously found discrimination thresholds

and the pairs of beating harmonics in the stimuli. Vos found that the thresholds for
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discrimination between pure and mistuned intervals are determined mainly by the lowest
pair of nearly coinciding harmonics (for example, in a fifth, the second partial of the upper
tone and the third partial of the lower). This result is true for fifths but less so for major
thirds, where harmonics other than the lowest pair enter into play. (In the major third, the

lowest pair are the fifth harmonic of the lower tone and the fourth of the upper.)

The study also found that the perceived beat rate is equal to the absolute value of
pf; — gf}, where f; and f, are the fundamental frequencies and their ratio closely
approximates the small-integer ratio p:q.38 This perceived rate usually corresponds to the
beat rate of the first pair of beating harmonics, but it even holds for cases where the
component at pf; is absent (in which case the first pair of beating harmonics, if any, would
have a faster rate than the perceived rate). The perceived beat rate occasionally
corresponded to that of the second lowest pair of beating harmonics, especially if the first
pair was absent. It is surprising that even when the first pair was missing, it was more likely
that pf, — qf} was heard as the beat rate. This rate was also heard faintly when there were
no beating partials; Vos invokes waveform beats (Plomp’s “beats of mistuned

consonances”) to explain this.

In order to generalize Vos’s findings to other intervals, Vos and Vianen (1985a)
studied discrimination thresholds for the intervals with the following frequency ratios: 1/1
(unison), 2/1 (octave), 3/1 (twelfth), 3/2 (fifth), 5/2 (major tenth), 4/3 (fourth), 5/3 (major
sixth), 5/4 (major third), 7/4 (“subminor seventh™), 6/5 (minor third), 7/5 (“subminor
fifth’”), 8/5 (minor sixth), and 7/6 (“subminor third”). A main result was that, as in the

previous study, discrimination thresholds were caused mainly by nearly coinciding

38. The convention here is that f; < f, and thus p < q, although the formula also works with f; > f,
andp>q.
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harmonics. Because of the relation between the harmonic series and the frequency ratios of
these intervals, the thresholds were also strongly correlated with the complexity of the
frequency ratio (as expressed by p+q). In other words, as the ratios get more complex, it
becomes more difficult to discriminate between the pure and the tempered versions of the
interval. Because the traditional order of the consonances corresponds roughly to the
ordering by ratio complexity, Vos and Vianen concluded that discrimination thresholds
seemed to be a measure of “tonal” or “sensory” consonance (as studied, for example, by
Plomp and Levelt 1965). Although beating harmonics were again found to be important,

the thresholds did not change when the spectrum changed from flat to a 6 dB/octave rolloff.

Vos and Vianen (1985b) generalized the early results on discrimination thresholds to
other registers. They followed the same experimental procedure as Vos (1982), but
extended the stimuli to the four-octave frequency range from C2 to C6. The results showed
that thresholds are independent of register, when plotted versus beat rate. (Since a given
interval beats faster in higher octaves, the effect of register was removed by plotting it this
way.) This suggests that all the results of Vos’s previous studies (for example, the effects of
duration and spectrum) are valid over this entire frequency range. Also, the authors noted
some implications for traditional tuning systems such as equal temperament and quarter-
comma meantone temperament. Whereas tempered fifths in these systems are not very
discriminable from pure fifths in the octaves below Middle C, major thirds are, at least in

the range where they would occur in traditional music.

The study most relevant to the present research is Vos (1986), which examined
subjective “purity” for isolated major thirds and perfect fifths. Vos found that beats affect
purity judgments: the beat-free just intervals were rated the purest, and removing beating

partials increased the purity of mistuned intervals. The study consisted of two experiments.
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In the first, the fifths and thirds had complex spectra with a 6 dB/octave rolloff. The
variables were interval type (fifth or major third), tempering from 0 to 50 cents, duration (1/
4 or 1/2 second), and spectrum of the higher note (first 20 harmonics or first 10 odd
harmonics). There were two different tasks: to rate the purity of a single interval on a scale
from 1 to 10, and to decide which of a pair of intervals was purer. Graphs of the main results
are presented in Figure 1. The most important result for our purposes is that deletion of
beating partials resulted in higher purity ratings, especially for the major third. The curves
of purity versus tempering in cents could be described by exponential functions. Fifths
compressed by up to 15 - 25 cents or stretched by up to 10 - 20 cents were rated purer than
the corresponding thirds, but the reverse was true for larger temperings. (This experiment

is described in greater detail on page 152ff. of this dissertation.)

The second experiment of this study was similar, but used sinusoids rather than
complex spectra, and also compared harmonic intervals with melodic. The variables were:
interval (ﬁﬁh or major third), tempering from 0 to 50 cents, simultaneous versus successive
presentatio;l, and loudness (0 dB attenuation versus 25 dB). The resultant curves were much
flatter than for complex tones; i.e., the mistuned sinusoids sounded purer than the
corresponding complex tones. 25dB attenuation of simultaneous sinusoids resulted in
higher purity (except for compressed thirds); attenuated simultaneous sinusoids had about

the same purity curves as successive sinusoids.

With the techniques used, Vos was unable to decorrelate interval tuning and beat

rate.3 The experiment with sinusoids was intended to shed light on the contribution of

39. Vos recognized that separating beat rate from interval tuning would be desirable. On. p. 243 of
Vos (1986), for example, he suggests amplitude modulation as a means of inducing beats without
changing the interval size.
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Fig. 1. After Vos (1984). Subjective purity of perfect fifths and major thirds, plotted vs.
tempering in cents. The center point at 0 Hz is the just interval. Re-plotted here with second-
order polynomial regression curves, and responses normalized to a range of 1 to 9, for
comparison with results of the present research. (See “Comparison with Results of Vos (1986)”
on page 152.)

interval tuning to purity judgments, since beats were eliminated in this experiment (at least
at the quieter level). Because the sinusoids were rated as purer than the corresponding
complex tones, Vos concluded that interval tuning was not as important as beating. This
may not have been a correct assumption for two reasons. First, it is often more difficult to
make musical judgments about sinusoids than about complex tones. The pitches of the
sinusoidal tones may have been less clear, which would make judgments of interval tuning
more difficult. (Indeed, Vos found in a later study { Vos and Vianen (1986), discussed below]

that the use of sinusoids reduced discriminability of melodic intervals.) Secondly, there was
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a drastic change in timbre between the two sorts of stimuli; one must generally be hesitant
about conclusions when there is a covarying variable. It is not clear that the timbral change
would affect the perceived intonation (although there is some evidence for timbral effects
on intonation), but, as discussed on page 158, it might affect judgments of “purity.” In any
case, Vos’s interpretation that intonation judgments are based mostly on beats and
roughness, rather than interval tuning, was apparently not derived from any rigorous
quantitative analysis. As we shall see, the results of the present study lead to the opposite

conclusion.

In his dissertation (Vos [1987]), Vos included a chapter titled “Subjective
acceptability of various regular twelve-tone tuning systems in two-part musical fragments.”
In this research, partially presented at earlier conferences,*? the findings of the previous
study were extended to short musical passages in two voices extracted from Michael
Praetorius’ Musae Sioniae, Part VI (1609). The synthesized music was presented in various
regular 12-tone tuning systems, as defined by Rasch (1983).41 They included (in order of
decreasing size of the perfect fifth) an extreme tuning with a fifth of 704 cents, Pythagorean
tuning, equal temperament, Silbermann, quarter-comma meantone, Salinas, and an extreme
tuning with a fifth of 692 cents. In these tuning systems the size of the major third is linearly
related to the size of the fifth; since four fifths minus two octaves is a major third, a unit of
decrease in the size of the fifth means four units’ decrease in the size of the major third.
Pythagorean tuning has a pure (3:2) fifth, quarter-comma meantone a pure (5:4) major

third, and Salinas a pure (6:5) minor third. Vos found that subjects rated the tunings from

40. Fifth Workshop on Physical and Neuropsychological Foundations of Music, Ossiach, 1985; and
12th International Congress on Acoustics, Toronto, 1986.

41. Rasch uses “regular twelve-tone tunings” to refer to tunings of twelve notes per octave, forming
a circle of fifths in which eleven of the fifths have the same size. This definition is similar to
Blackwood’s (1985) “recognizable diatonic tunings.” (Blackwood’s usage of the term “diatonic” is
idiosyncratic.)
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Pythagorean through meantone to be equally acceptable, and the others less acceptable. In
a second experiment, the beating harmonics were deleted from the spectra, resulting in
higher acceptability, with the same effect of tuning system as before. The most important
finding of this study is that the acceptability of the musical passages could be predicted
from a linear combination of the purity ratings of fifths and major thirds found in Vos
(1986). This constituted a neat justification of the previous study, just as the 1985a and
1985b studies had generalized earlier studies to more intervals and registers, and just as the

1984 study had shown the first study (Vos 1982) to be applicable to supraliminal conditions.

Most of these studies had involved harmonic intervals. Vos and Vianen (1986)
investigated discrimination thresholds for melodic intervals of the unison, major third, and
fifth. Two spectral conditions were included—sinusoids, and complex tones of 20
harmonics with 6dB/octave rolloff. The average thresholds were 17 cents for the unison, 40
cents for the major third, and 39 cents for the fifth. Melodic intervals were more difficult to
discriminate than harmonic intervals had been in the previous studies; the interval needed
to be tempered about 10 cents further to discriminate it from the pure version. Especially
for major thirds, intervals smaller than just were easier to discriminate from the just version
than were intervals larger than just. Since just major thirds are already noticeably smaller
than the equal-tempered major third, Vos and Vianen hypothesized that subjects were using

equal-tempered major thirds as an internal reference.

Vos and Vianen found that for the melodic intervals, the sinusoidal stimuli were
harder to discriminate, with thresholds about 7 cents higher. This suggests that the use of
sinusoids in Vos (1986) had indeed reduced the sensitivity to interval size, instead of only
eliminating beating as intended. As mentioned in the description of Vos (1986) above, Vos

had concluded from that experiment with sinusoids that beating, not interval size, was the
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primary determinant of intonation judgments. That assumption appears to be weakened by
the results of Vos and Vianen (1986). This point is noteworthy, since the present dissertation

finds interval size to be much more important than beating."’2

1.3.5 Beating and Consonance of Inharmonic Sounds

Several studies have used inharmonic stimuli to test whether coincidence of partials
is more important than interval tuning for consonance. Pierce (1966) used spectra with a
spacing that approximated the spacing of the harmonic series, but all partials were members
of the diminished seventh chord built on the fundamental. In other words, each partial was
placed at some quarter-octave point, with larger gaps towards the lower part of the
spectrum. Two types of intervals were tested: those found in the diminished seventh chord,
and those that differed from the first type by 150 cent§ (three quarter-tones). The former
intervals, in which the partials of the two notes coincided or were ét least a minor third
apart, were judged to be more consonant. The latter intervals (members of the quarter-tone
scale) had some partials separated by an eighth of an octave (150 cents) and were judged
more dissonant. In light of the results of Ayres, Aeschbach, and Walker (1980), who found
quarter-tone intervals to be judged more dissonant, it is worth asking what contribution the
nonstandard intervals made to the perception of dissonance. One might also wonder
whether musicians would not simply hear such stimuli as diminished seventh chords rather
than single pitches, since inharmonic sounds are less likely to fuse. (The reported spectra
indeed sound that way to my ear, at least with equal-amplitude partials.) If so, the intervals
judged more consonant would be heard as a single diminished seventh chord, and the ones

judged more dissonant would be heard as two diminished seventh chords having roots three

42. My intent is not, however, to de-emphasize the extensive contributions and superior caliber of
Vos’s research.
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quarters of a tone apart—clearly more dissonant from a musical point of view, regardless

of critical bands and beats.

Slaymaker (1970) also reported that coincidence of partials appeared to be critical for
the amount of consonance in his inharmonic stimuli. Geary (1980) reported the most
convincing evidence that coincidence of partials overrides interval tuning in determining
consonance, at least in decidedly inharmonic stimuli. His stimuli had all components
separated by an equal number of Hz, but the distance from the lowest component to zero
Hz was different. (The spacing between components was VZ times the frequency of the
lowest component. To my ear, such tones sound inharmonic, and have slightly ambiguous
pitch, but not more so than carillon tones, for instance.) Geary found that traditionally
consonant intervals are judged dissonant if the partials clash, and traditionally dissonant
intervals are judged consonant if the partials coincide. Especially significant is the fact that
this relationship was pronounced for musically trained subjects, whom one might expect to

be influenced more by the interval tuning.

Mathews and Pierce (1980) used spectra with stretched harmonic series to study
consonance in cadential passages. Most of their results argued against Helmholtz’ theory
that dissonance is caused by interfering partials, since the cadence’s sense of finality was
altered by stretching the harmonic series without altering the interference. However, by
choosing an inharmonic spectrum and a cadential formula in which the penultimate interval
contained beating but the final one did not, they were able to create a sense of finality that

was not destroyed by stretching.

E. Cohen (1984) had subjects adjust the tuning of simultaneous notes having

stretched or compressed harmonic series. The “pseudo-octave” ranged from a frequency
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ratio of 1.4, which is about a tritone (maximum compression), to 3.0, which is a twelfth
(maximum stretch). In tuning the intervals (fifths or octaves), one subject used coincidence
of partials exclusively. The others mostly used perception of interval size, but also used
coincidence of partials for pseudo-octaves close to the normal octave (with frequency ratios

from 1.9 to 2.1).

A sound example published by the Institute of Perception (Houtsma, Rossing, and
Wagenaar [1987]) offers evidence that consonance might be related to the positions of
partials. A Bach chorale is played with either normal tuning or a stretched tuning witha 2.1
“pseudo-octave,” and with the partials either stretched or unstretched. The normal tuning
with unstretched partials sounds acceptable, of course. Interestingly, the stretched tuning
with stretched partials also seems to sound less rough than either the normal tuning with

stretched partials or the stretched tuning with unstretched partials.

One of the arguments put forth against an acoustical basis for consonance and
musical scales is the fact that a number of non-Western scales do not make use of small-
integer ratios. The various gamelan scales of Indonesia are often cited. A counter-argument
is that gamelans have inharmonic timbres and so should not be expected to use the same
ratios; this sometimes leads to speculation that such scales might be derived from the
inharmonic spectra of the corresponding instruments. However, Pressing (1980) informally
reported investigating the spectra and tuning of a gamelan, using data gathered by John

Grey, and he did not find this sort of acoustical basis for the tuning.
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1.4 Perception of Interval Size

Several of the studies of beating mentioned above (Vos [1982], Hall and Hess [1984],
Vos [1986], Vos and Vianen [1986]) made reference to a two-component model of interval
perception, in which beat rate is considered to be one cue for judging intonation, and
perception of the size of the interval the other. As mentioned, E. Cohen (1984) found that
coincidence of partials and perception of interval size were both relevant in tuning an
interval with inharmonic partials; however, she concluded that interval size was more
important. All of these researchers had to use induction to evaluate the relative importance
of beat rate and interval size, in contrast to the present research, in which the two are

independent variables.

In this section, we review the literature dealing with the perception of interval size.
(Note that in speaking of “interval size” we are concerned with the fine-tuning of interval
perception. Clearly, competent musicians can accurately identify the intervals of the
chromatic scale, but it is less obvious how well they perceive more minute gradations of

frequency ratio.)

Although “perception of interval size” is a fundamental factor in the production and
appreciation of music, it has not found an important role in the history of music theory,
perhaps because it is viewed as a practical skill for performers rather than an explicit
component of composition. One might, however, point to writers who emphasized the
importance of determining interval tuning empirically rather than on a numerical basis. An
often-cited father of musical empiricism is Aristoxenus, a practicing musician who decried
the computations of the Pythagoreans, insisting that the ear must be the arbiter of musical

scales and tuning. (Some writers have also attributed the invention of equal temperament to
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Aristoxenus, since he asserted that six whole tones constitute an octave. A reading of
Aristoxenus [translated by Macran 1902] reveals, however, that on the one hand he does
make use of mathematical proofs—even though his calculations are fatally flawed, as in his
“proof” that the fourth consists of two and a half tones—and that on the other hand he was
probably too mathematically unsophisticated to appreciate the numerical difficulties of
exact equal temperament.) A later empiricist was Vincenzo Galilei (father of Galileo), who
disputed Zarlino’s dogma that the intervals with small-integer ratios were the “natural”
ones. H. F. Cohen (1984) translates this inflammatory excerpt from Galilei’s writing:

...Now those musical intervals are as natural (as I have said) that are contained in the ratios of the

Senario, as are the others that are outside those ratios, and the major third that is contained in 5:4

is as natural as the one that is contained in 81:64. Just so is it also as natural for the octave to be

consonant in the ratio 2:1 as it is natural for the seventh to be dissonant in the ratio 9.5; and let
Zarlino trouble his head about this as much as he wishes.*?

If music theorists have relegated interval perception to an inconspicuous role,
scholars in the sciences have certainly conducted many studies on the musical interval
sense. We cannot review all the literature here. Pikler (1966) offers a historical survey,
starting from Mersenne and concentrating on 19th- and early-20th century experiments.
Burns and Ward (1982) provide a summary with an emphasis on more recent

psychoacoustic research.

The psychoacoustic measure that most directly ascertains the perception of interval
size is the JND (just noticeable difference) for frequency ratio. A canonical procedure
would be to play two intervals (whether melodic or harmonic) and ask the subject to say
which is larger (or smaller). However, relatively few experiments have studied ratio JND’s.

Using melodic intervals and sinusoidal waveforms, Houtsma (1968) found a JND of 16

43. Galilei (1589), pp. 92 - 93, quoted by Cohen, p. 80.
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cents for the octave. JND’s for all the intervals of the chromatic scale were studied for one
subject; they ranged from 14 - 25 cents, with a tendency for the smaller intervals to have
smaller IND’s. Burns and Ward (1978) also studied successive sinusoids, for the intervals
from the minor third to perfect fourth. Using an adaptive paradigm, their musically trained
subjects had initial JND’s of about 20 - 50 cents, which dropped to 15 - 30 cents after they
reached asymptotic performance. Neither Houtsma nor Burns and Ward found any
evidence that subjects were more sensitive at the small-integer ratios. Viemeister and
Fantini(1987) studied simultaneous sinusoids with musically untrained subjects, with
similar results. As mentioned above, Vos (1982) found thresholds of 20 - 30 cents for the
perfect fifth and major third using simultaneous complex tones; and using melodic intervals
Vos and Vianen (1986) found thresholds of 17 cents for the unison, 40 cents for the major
third, and 39 cents for the fifth. I am unaware of any more extensive study of ratio JND’s
using simultaneous complex tones, which are of course more directly relevant to musical

inquiry than are sinusoids.

Other experimental paradigms can shed light on the perception of interval size. In
adjustment tasks, subjects control the tuning of a tone generator such as an oscillator,
setting it to what they believe to be the correct tuning for the requested interval. The classic
study of this type is Moran and Pratt (1926), who studied all the intervals of the chromatic
scale and found average errors of 14 - 22 cents. A more recent experiment along similar
lines is that of Rakowski and Miskiewicz (1985). They found average errors ranging from
about —12 cents, for the minor second, to +22 cents for the major seventh. This study turned
up neither an effect of timbre on the intonation of melodic intervals nor any evidence for
either just or Pythagorean intonation. Their subjects tended to stretch the larger intervals

and shrink the smaller, with respect to equal temperament.**
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This tendency to stretch the larger intervals and contract the smaller ones is also
found in some studies of intonation in performance, as summarized by Burns and Ward
(1982), who also conclude there is no tendency towards either just or Pythagorean
intonation. Where some earlier researchers such as Greene (1937) concluded that string
players used Pythagorean intonation, Salzberg (1980) found that string players play sharper
than Pythagorean, supporting the conclusion of Burns and Ward. Mason (1960) also found
a tendency for woodwind players to play sharp; the more experienced players tended
towards equal temperament. Hagerman and Sundberg (1980) found evidence contradicting
the popular notion that barbershop quartets sing harmonies in just intonation. Besides the
lack of support for just or Pythagorean intonation, the other important distillation from
many studies of intonation in performance is the large variability. Ward (1970) reports
ranges up to 78 cents and interquartile values up to 38 cents. With reference to singing,
Sundberg (1982) stresses that some of the variations may be attributable to conscious
inflections for expressive purposes, and that the use of vibrato may help disguise deviations

from theoretically correct pitches.

Because musicians “overlearn” the intervals of the chromatic scale, it would not be
surprising if they use these categories as reference points when judging the size of arbitrary
intervals. A number of studies have found evidence for some degree of categorical
perception of musical intervals, including Locke & Kellar (1973), Siegel and Siegel (1977a,
1977b), Burns and Ward (1978), Zatorre and Halpern (1979), Wapnick, Bourassa, and

44. Szende (1977) performed an extensive study on interval perception, which should mentioned
simply because of its scope; almost 900 musical subjects were tested, and the resuits filled a book.
Unfortunately, the methodology of this study is quite dubious. For example, the tunings used for
some of the augmented intervals were all smaller than the equal-tempered version, which was not
included. For theoretical reasons, the author prejudged the larger ones of these to be “sharp,” and so
a subject response that labeled such an interval as smaller than the (internalized) correct tuning was
considered inaccurate, and “to be taken into consideration only occasionally”! (p. 50).
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Sampson (1982), and Zatorre (1983). For example, subjects may discriminate best between
two intervals when they lie on opposite sides of a category boundary. (The boundary is a
quarter-tone, assuming the categories are those of equal temperament.) In evaluating such
results, it should be noted that some of these experiments use procedures that elicit
categorical perception. With an adaptive paradigm, Burns and Ward found that categorical
effects tended to disappear when asymptotic performance was reached. Siegel and Siegel
used a magnitude estimation task in one of their experiments, in which subjects were asked
to judge the relative sizes of intervals without necessarily using the familiar interval
categories. Another interesting task would be to have expert listeners evaluate interval sizes
in cents, or to have them place the interval on a line chart having tick marks for the standard
intervals. (I am unaware of any such experiments, aside from some pilot studies I conducted

prior to my dissertation research.)

The overall conclusions we can reach from this summary of studies on interval size

are:

(1) The just noticeable difference for interval size is from 15 - 40 cents, depending
on the interval, waveform (sinusoidal versus complex), presentation (harmonic
versus melodic), musical training, and experimental paradigm. It is not known
to what extent musical training with microtones could reduce this threshold.

(2) In performance, a given interval can take on a fairly wide range of sizes and still
be heard as in tune.

(3) Small intervals (e.g., the minor and major second) tend to be compressed while
larger ones tended to be stretched, relative to equal temperament.

(4) Generally, people do not perform in just intonation, nor do they prefer just
intervals. It is not known to what extent this is a result of exposure to equal
temperament.

(5) Under conditions of stimulus uncertainty, listeners have a tendency to assimilate
nonstandard intervals to the known intervals of the chromatic scale (displaying
partially categorical perception).
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It is not known to what extent these findings could be altered by training. Since
musically trained individuals can discriminate and label intervals more easily than
untrained subjects, is reasonable to hypothesize that microtonal ear-training might further

reduce the JND for interval size and reduce categorical effects based on the chromatic scale.

1.5 Inharmonicity

Of the three psychoacoustic factors listed in the title of this dissertation, the final is
inharmonicity. As previously mentioned, inharmonicity is a by-product of the technique
used in this research to control beat rate independently of interval size; and as such it is not
a primary focus of this dissertation, but needs to be addressed in order to explain the
experimental results. The literature on inharmonicity is much scantier than that pertaining
to the other two factors (beats and interval size). In this section we examine the literature
on inharmonicity per se; see page 35 for experiments using inharmonic spectra to test

consonance theories.

1.5.1 Inharmonicity in Instruments

Early writings dealing with inharmonicity concern instruments. The makers of
percussion instruments have long been aware that the component pitches of their
instruments were not all members of the series of ratios 1:2:3:4:5, etc. Bell founders, for
example, were aware of these different pitches, and crafted bells so as to emphasize certain
ones. Plomp (1987) cites the composer and carillonneur Jacob van Eyck as showing, in the
year 1644 or so, how to tune the lowest five partials of a bell to the ratios 1:2:2.4:3:4, which

became typical for carillons. These ratios correspond to the prime, octave, minor tenth,
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twelfth, and double octave. Note the inharmonic ratio 2.4 interposed in the harmonic
series; this component gives carillons a characteristic minor-third sound. Since the
founders’ quest was to make their bells as musical as possible, they must also have been

well aware of the greater inharmonicity in bells of poorer quality.

The concept of inharmonicity depends by definition on the concept of the harmonic
series. It is likely that early craftsmen simply viewed the components of bell spectra as
pitches that did or did not coincide to those of the musical scale, rather than seeing in them
departures from the harmonic series. Even musical thinkers who were aware of the latest
acoustical investigations may not have had much knowledge of inharmonicity. For
example, Helmholtz says of Rameau’s notion that the major chord is the most “natural” of

all:

...if Rameau had listened to the effects of striking rods, bells, and membranes, or blowing over
hollow chambers, he might have heard many a perfectly dissonant chord. And yet such chords
cannot but be considered equally natural. That all musical instruments exhibit harmonic upper
partials depends upon the selection of qualities of tone which man has made to satisfy the
requirements of his ear.4

Helmholtz’ apparent exclusion here of the percussion family from “musical
instruments” is at least partly a reflection of contemporary musical practice. Helmholtz was
aware of Chladni’s investigations into the inharmonic modes of vibration of plates. He
devotes a chapter of his book to “Musical Tones with Inharmonic Upper Partials,”
discussing, and in some cases entabulating, the frequenpy components of tuning forks,
straight elastic rods of glass, wood, or metal, elastic plates, bells, and stretched membranes

such as tympani. With respect to the perceptual attributes of inharmonicity, Helmholtz says:

45. Helmholtz (1877/1954), p. 232.
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...if the [inharmonic upper partials] are of nearly the same pitch as the prime tone [i.e., the
fundamental], their quality of sound is in the highest degree unmusical, bad and tinkettly.46 If the
secondary tones are of very different pitch from the prime, and weak in force, the quality of sound
is more musical, as for example in tuning-forks, harmonicons of rods, and bells; and such tones are
applicable for marches and other boisterous music, principally intended to mark time. But for
really artistic music, such instruments as these have always been rejected, as they ought to be, for
the inharmonic secondary tones, although they rapidly die away, always disturb the harmony most
unpleasantly.. *7

Although he devotes considerable attention to the harmonics of the piano, Helmholtz
never mentions any inharmonicity, presumably being unaware of this property of piano
strings. The phenomenon has been well-documented in the twentieth century, including its
relation to the “stretched tuning” of the extreme registers of the piano (Shankland and
Coltman [1939], Shuck and Young [1943] Young [1952], Rasch and Heetvelt [1985]). The
acoustics of other instruments with inharmonic spectra, notably the percussion family, have
also been better documented, but rather than digress further, we shall return to our primary

focus on inharmonicity as a perceptual variable.

1.5.2 Pitch of Inharmonic Sounds

The effect of inharmonicity on pitch has only been studied in the last few decades,
starting with de Boer (1956). Increasingly inharmonic sounds lose thé unitary pitch
perception characteristic of harmonic sounds (deBoer 1976). The pitch extraction models
of Goldstein (1973) and Wightman (1973a, 1973b) assume a harmonic input; the pitch of
an inharmonic stimulus would be determined by a best fit to a harmonic series. The model
of Piszczalski and Galler (1979) removes inharmonic components from the decision-

making process. Terhardt’s (1974a) model of “virtual pitch” also assumes a harmonic

46. I presume this word (Ellis’ coinage?) means “like a tin kettle.”
47. Helmholtz (1877/1954), p. 73.
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template-matching mechanism, to which inharmonic stimuli would be compared to find the

most likely matching pitch or pitches.

Moore, Glasberg, and Peters (1985) used inharmonicity to investigate the relative
dominance of individual partials in determining the pitch of complex tones. Their stimuli
had 10 or 12 equal-amplitude harmonics, one of which was frequency-shifted up or down
by an amount ranging up to 8% (133.2 cents). They found that only the first six harmonics
have an effect on pitch. The maximum pitch shift (about 8.6 cents) occurred at a frequency
shift of 4% (68 cents). For mistunings from 0 to 3% (51 cents), the shift in pitch is a linear
function of the shift in the partial’s frequency. (In this range, the pitch shift is about one
sixth of the partial’s shift.) However, it was impossible to determine which partials of the
first six are dominant for pitch perception, as there were great individual differences. Thus
the authors caution against fixed formulas, saying that the pitches of inharmonic stimuli
may differ significantly across individuals. A conceivable weakness of this study is that the
subjects were not asked to match the pitch they were judging, and thus they may have been
listening to the shifted partial rather than the overall pitch. In my own listening to such
stimuli, I find it possible to switch between analytic and synthetic modes; in the first case
one can hear the shifted partial’s pitch separately from the fundamental, and in the latter
one hears a unitary percept whose pitch may change if the partial is frequency-shifted

enough.

Moore, Peters, and Glasberg (1985) tested thresholds for the detection of
inharmonicity, using stimuli similar to those of their previous study. They found that
inharmonicity in the lower partials (up to about the fourth) was detected mostly by the
partial’s “standing out,” while thresholds for higher harmonics appeared to be determined

by detection of waveform fluctuations (the “beats of mistuned consonances” of
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Plomp [1967]). The thresholds were approximately the same for different harmonics, when

measured in Hz.

Similarly, Eggen and Houtsma (1986) frequency-shifted each partial of a bell sound
in order to detect its contribution to the pitch. The pitches in the bell spectrum included the
“hum” (an octave below the perceived pitch), prime, minor third, fifth, octave, twelfth,
double octave, double minor tenth, and double eleventh. For this bell, the octave and twelfth
were the most important in determining pitch, and the double octave, which was quieter,
less so. It is difficult to make generalizations about complex tones from this stimulus, of

course.

1.5.3 Inharmonic Partials and Multiple Sources

As a partial becomes increasingly inharmonic, it can be perceived as an individual
tone separate from the rest of the complex tone of which it is ostensibly a part. Moore,
Glasberg, and Peters (1986) determined the threshold at Which one of the first six partials
was heard as a separate tone. The threshold usually occurred at a shift in Hz that was
between 1% and 3%of the harmonic’s frequency. Since the partial can still affect the pitch
when it has been shifted beyond this threshold, as reported by Moore, Glasberg, and Peters
(1985), this again raises the possibility of a gray area where two modes of perception—

analytic and synthetic—are possible, as suggested above.
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1.6 Related issues

We have discussed the literature concerning beats, perception of interval size, and
inharmonicity. There are some related issues which are important for music, and which will
help put the findings of this dissertation into a broader perspective. These include the
perception of the overall tuning system (instead of isolated intervals) and the effects of

timbre and context on intonation.

1.6.1 Preference for Tuning System

The merits of different tuning systems, particularly just intonation versus equal
temperament, have been hotly contested for centuries. We cannot trace the history of this
issue here, nor mention all the tuning systems that have been used or proposed. (For a
history of tuning in Western music, see Barbour [1953].) We shall mention Helmholtz’
views, however, since these have been remarkably influential on twentieth-century
acousticians, and even on composers such as Harry Partch (Partch [1974]). Moreover,
Helmbholtz’ opinions are of particular interest for the present dissertation, which is

essentially a test of the relevance of Helmholtz’ theory to the perception of intonation.

Stated simply, Helmholtz felt that the coincidence of partials in the intervals of just

intonation rendered it patently superior to equal temperament.

As regards musical effect, the difference between the just and the equally-tempered, or the just and
the Pythagorean intonations, is very remarkable. The justly-intoned chords, in favourable
positions, notwithstanding the rather piercing quality of the tone of the vibrators [of Helmholtz’
harmonium], possess a full and as it were saturated harmoniousness; they flow on, with a full
stream, calm and smooth, without tremor or beat. Equally-tempered or Pythagorean chords sound
beside them rough, dull, trembling, restless. The difference is so marked that every one, whether
he is musically cultivated or not, observes it at once.
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...In a consonant triad every tone is equally sensitive to false intonation, as theory and experience
alike testify, and the bad effect of the tempered triads depends especially on the imperfect Thirds.*8

After citing experiences in London with the singers of the Society of Tonic Sol-faists
and with the Enharmonic Organ of General Perronet Thompson, as well as experiences
accompanying singers with his own justly tuned harmonium, Helmholtz states:

I think that no doubt can remain, if ever any doubt existed, that the intervals which have been
theoretically determined in the preceding pages, and there called natural, are really natural for
uncorrupted ears; that moreover the deviations of tempered intonation are really perceptible and
unpleasant to uncorrupted ears; and lastly that, notwithstanding the delicate distinctions in

particular intervals, correct singing by natural intervals is much easier than singing in tempered
intonation.*

Helmholtz’ “experiments” in comparing just intonation to equal temperament were
hardly rigorous by modern standards. In the twentieth century, a number of psychological
experiments have focused on preference for tuning system. As noted above under
“Perception of Interval Size” (page 38), studies of isolated intervals usually show no
evidence of a preference for just intonation. There are important exceptions, notably Hall
and Hess (1984) and Vos (1986) (discussed under “Beats” on page 16), which found just
intervals to be rated as more in tune. A number of tests of tuning preference have been
conducted using more extended musical materials, whether chords, melodies, chord
progressions, or excerpted musical passages. Most but not all of these studies show that

listeners prefer equal temperament to just intonation.

It is important to note, however, that unlike equal temperament, “just intonation” is
not a single tuning, but rather a principle of tuning—the exclusive use of ratios of relatively
small integers—which can find expression in a variety of scales. The form of just intonation

that is often used in psychological experiments is limited to twelve notes per octave, and

48. Helmholtz (1877/1954), pp. 319 - 320.
49. Helmholtz (1877/1954), App. X VIII, p. 428
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the exact tuning is seldom reported. (Part of the blame may be placed on acoustics
textbooks, which typically give only one of these limited versions; keyboard instruments
are largely responsible as well.) Such twelve-note tunings have a “wolf fifth,” often between
D and A, which generally is heard as very out of tune. By contrast, “extended” just systems
offer microtonal variants of certain pitches to overcome such problems. Helmholtz used an
extended just system on his harmonium, as did some of his contemporaries,5 0 and most

musicians working with just intonation today make use of such microtonal variants.

Vos (1987) cites Loman (1929) as running an experiment in which musicians listened
to the same passage played successively on two pianos, one tuned in just intonation and the
other in Pythagorean intonation. All listeners preferred the Pythagorean version of the
passage, which was taken from the beginning of Wagner’s prelude to “Die Meistersinger
von Niirnberg.” Van Esbroeck and Montfort (1946) used a special pipe organ called the
“orthoclavier,” which could play in equal temperament, just intonation, or Pythagorean
tuning. Melodic or harmonic fragments were played for a large number of musicians and
non-musicians. The subjects who could distinguish between the tunings preferred equal
temperament. 55% of these subjects preferred equal temperament when compared to
Pythagorean tuning, and 60% when compared to just intonation. Vos (1987) analyzed their
data further and found that the differences were slight in the judgments of the harmonic
fragments, but significant in the melodic case. Kok (1954, 1955) used an electronic organ
capable of different tunings to test tuning preferences of musicians and non-musicians. The
latter could not discriminate between equal temperament and meantone temperament;
musicians could, however, and preferred meantone in certain types of chordal passages.

According to Roberts (1983), Kok also found that equal temperament was preferred to just

50. For a review of microtonal keyboard instruments, see Keislar (1987).
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intonation for both melodic and chordal passages. Ward & Martin (1961) compared just
intonation and equal temperament on an electronic organ. The stimuli were ascending
diatonic scales. Most subjects, including musicians, could not discriminate between the two
tunings; a few musicians could, and seemed to prefer equal temperament. In a study of
consonance using isolated triads, Roberts (1986) also found that nonmusicians could not
distinguish between equal temperament, just intonation, and Pythagorean intonation.
Musicians, however, rated equal-tempered triads as the most consonant, followed by just,
then Pythagorean. As mentioned on page 33, Vos (1987) found that two-part musical
passages were judged equally acceptable when the tuning was equal temperament,
Pythagorean tuning, or meantone temperament. Just intonation was not included in that

experiment.

A few experiments have shown overall preference for just intonation. Boomsliter and
Creel (1963) used a special organ capable of playing many different intervals, including
just, Pythagorean, and equal-tempered. They claimed that musicians who were asked to
find melodiés on this organ used successive small-integer ratios, rather than adhering to any
of the canonical 12-note tunings (including the usual “textbook” just scale). However, the
experiment was not at all rigorous; for example, the equal-tempered intervals were located
on a separate keyboard, which could bias the performer. O’Keeffe (1975) played four-
measure excerpts of electronic organ music, including harmony, from “Silent Night” and
“America the Beautiful.” The subjects were students aged 13 - 18. There were no significant
differences between musicians and non-musicians, nor between the two pieces. However,
56% of the subjects preferred just intonation (p < .01), and boys showed a greater

preference for just intonation than did girls (p <.01). O’Keeffe speculated that the harmony
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was more influential than the melody, since his results contradicted those of Ward and

Martin (1961), who simply used scales.!

It was mentioned above that there is evidence that performers tend to expand the
larger intervals and contract the smallest ones. Similarly, there is some evidence of a
preference for a slightly stretched tuning in the case of musical passages (Kolinski [1959],
Martin & Ward [1961], Terhardt and Zick [1975]). Terhardt and Zick (1975) found that a
stretched intonation was preferred for cases with a high melody and a low accompaniment,
i.e., a large separation; but that an unstretched tuning was preferred otherwise, and for
chords with “high spectral complexity” (i.e., more frequency components), even a

contracted intonation was acceptable.

1.6.2 Timbre

The effect of timbre just mentioned contradicts the results of Rakowski and
Miskiewicz (1985), mentioned on page 40, who found no effect of waveform. Vos and
Vianen (1985a) likewise found no effect of spectral rolloff for discrimination between pure
and tempered intervals (see page 29). Studies finding some effect of timbre on intonation
include Greer (1970), Biock (1975), Platt and Racine (1985), and Geringer and Madsen

(1981). These studies mostly concern musical instruments, rather than the electronic

51. These studies raise two issues worth noting about just intonation: the difference between “free”
and fixed just intonation, and the possible importance of harmony. When constrained to a fixed set
of twelve pitches, just intonation has some intervals that are not inexpressible as small-integer ratios
(such as the “wolf fifth” D-A in one common version). Some experimental studies might not avoid
these intervals, yielding a lessened overall acceptability of the tuning. With “free” just intonation,
all intervals can be perfectly tuned, but passages with traditional cadences might wander in pitch.
(See Blackwood [1985] for a discussion of this problem.)

If, as O’Keeffe suggests, harmony is an important factor in the preference for just intonation, perhaps
the tuning is more critical for intervals in sustained and prominent chords. Experimental studies
sometimes fail to make any distinction between such intervals and other intervals in the passage
whose tuning might be expected to have more leeway.
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stimuli used by Rakowski and Miskiewicz (1985) and Vos and Vianen (1985a). The effect

of timbre on tuning is a multifaceted issue for which many questions remain unanswered.

1.6.3 Context

Another inherently complex aspect of intonation is the effect of context. The present
dissertation, like many of the studies cited here, deals with isolated stimuli. Clearly many
cognitive factors come into play when evaluating musical passages. We have alluded to the
research of Shepard and Jordan (1984), in which subjective sizes of intervals depended on
expectations based on the internalized traditional diatonic scale, rather than on absolute
size. Intonation judgments can also be affected by the surrounding notes, rather than an
internalized standard. Biock (1975) stated that context affected intonation judgments for his
subjects. Wapnick, Bourassa, and Sampson (1982) found that musicians judged intonation
more accurately when the intervals were presented in a musical context. Cuddy, Cohen, and
Mewhort (1981) also found that the context influenced subjects’ ability to perceive
differences in tuning. Like timbre, the effect of context on perceived intonation is a fruitful

area for future research.

1.7 Summary

A central feature of traditional music theory and acoustics is the rough correlation
between the degree of consonance of an interval and the degree of simplicity of its
frequency ratio. Helmholtz held that the beating of harmonics was responsible for this
relation. A number of psychoacoustic studies have offered support for this view. The main

competing theory of consonance explains it as a cultural phenomenon, mediated by
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cognitive processes. It may be that the acoustic factors described by Helmholtz were
responsible for the historical origin of at least the “perfect” intervals (octave, fifth, fourth),
but that cultural factors are largely responsible for listeners’ perception of consonance and

dissonance in music.

If beating causes roughness and dissonance, the intervals of just intonation might
sound the most in tune. Helmholtz indeed stated that equal temperament sounded more out
of tune than just intonation. Most studies of preference for tuning system find, to the
contrary, that subjects prefer equal temperament to just intonation. Studies of intonation in
performance again show little evidence for just intonation. Along with some
psychoacoustic studies, they instead reveal a tendency to stretch larger intervals with

respect to equal temperament and to contract the smallest intervals.

Several authors have presented a two-component model of intonation perception, in
which the two components are beat rate and interval size. The relative contribution of these
two components has not been thoroughly examined. No previous studies have controlled
beat rate independently of interval size. However, Vos (1986) found that subjects rated fifths
and major thirds as more pure when the beating partials were removed. The judged purity
of these isolated intervals was also found to be a good predictor of the acceptability of the

intonation of two-part musical passages (Vos 1987).

The purpose of the present dissertation research is to decouple beat rate and interval
size, in order to help determine whether beating really is a significant component of
intonation for musically trained listeners. Beat rate is objectively ascertainable, whereas
knowing the “correct” interval size requires training, whether through education or simply

through exposure to music. Thus the relative importance of beating versus interval size
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S5

lends itself to interpretation as the relative importance of immediate versus learned
properties, or psychoacoustic versus cognitive factors. The latter interpretation is an

oversimplification, but a useful one.
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Chapter

Experiment One: Pairs of
Perfect Fifths

2.1 General Design of the Experiments

The purpose of the experiments was to determine the contribution of beating to

judgments of intonation. Three independent variables were chosen:

(1) “Projected beat rate”
(2) Beat amplitude
(3) Method of controlling beat rate
(a) changing interval tuning but keeping tones harmonic
(b) keeping interval tuning constant but making beating partials inharmonic

The main thrust of this dissertation is to study beat rate independently of interval
tuning. Because these two factors are normally coupled, however, they must be studied
indirectly rather than being two of the independent variables themselves. The relation of
beat rate and interval tuning to the three independent variables listed above requires some
explanation. It may be helpful to refer to Figure 2 below, “Experimental design:

independent variables.”
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Minimum (beating
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o — Retuning the interval by
Projected 2 — shifting the entire lower tone
Beat . (all partials are harmonic)

s I i
Rate o [ Method of
(H2) o5 Controlling
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only one partial of
each beating pair

(interval tuning is
constant but
inharmonicity is
introduced)

Fig. 2. Experimental design: independent variables.

In normal instruments, beat rate can only be changed by changing the interval tuning.

With computer-generated sound, we can make interval tuning independent of beat rate by

introducing another technique of controlling the beat rate—frequency-shifting the beating

partials. With this technique, rather than moving all the partials of a tone in parallel (as

would be the case in a normal instrument), we examine the partials of the two tones to see

which pairs of partials are beating, and just move one partial of each pair in order to change

the beat rate. In the stimuli used in the present study, several pairs of partials beat; the higher

beating pairs always have frequencies that are integer multiples of those of the lowest

beating pair. The beat rate of the lowest beating pair corresponds to the perceived beat rate

(Vos 1984), and the rates at which the higher partials beat are always integer multiples of

this rate. To change the beat rate, we find all the partials in the lower tone that beat with
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partials in the upper tone, and shift the former in concert, such that the beat rates themselves

always stay as a harmonic series (which helps maintain a unified perceived beat rate.)!

Unfortunately, this technique introduces a covarying inharmonicity, which might be
perceived and might affect the intonation judgments. As a check on this possible side effect,
we do two things. First, we compare inharmonic sounds that have beating with the same
inharmonic sounds with the beating removed. The beating is removed by simply deleting
the appropriate partials of the upper tone. This yields the second independent variable listed
above, beat amplitude. Secondly, we compare this frequency-shifting technique with the
normal method of controlling beat rate (i.e., retuning the entire note). This constitutes the

third independent variable listed above: method of controlling beat rate.

Although we are most interested in the effect of beat rate, and although we have two
different methods for controlling it, each of these methods introduces another change (in
either the tuning or the inharmonicity). To isolate the effect of beating from these two
covarying variables, we need the third independent variable—we can remove the beating

without affecting the harmonicity or the tuning (as the case may be).

Note that “projected beat rate” is defined even when the beat amplitude is zero. That
is why I have used the qualifier “projected.” “Beat rate” is not itself an independent variable,
but is replaced by this qualified term, which refers to the amount of shift of the frequencies

(whether all the frequencies of one note, in the case of the first method of controlling beat

1. Another approach would have been to make all the beat rates the same, instead of having them
form a harmonic series. In this case each partial would have been shifted by a different amount in
cents and the overall inharmonicity would have been less. However, it was decided to have as close
a comparison as possible with naturally occurring stimuli, particularly with respect to beating.
Having all the beat rates be the same would have unnaturally accentuated the primary beat rate in
the “shifted partials” stimuli, in comparison with the “retuned interval” stimuli.
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rate, or only those partials that beat, in the case of the second). When the beat amplitude is
zero, “projected beat rate” does not describe a perceptible beating of partials, but it does
still refer to the number of Hz that separates the partial of the lower note from that partial
in the higher note with which it would beat had the latter’s amplitude not been reduced to
zero. In achieving this projected beat rate, the partial in the lower note may have been
shifted to an inharmonic position, or it may have been moved along with all the other

partials of the lower note, by retuning the interval.

To prevent the deletion of partials from affecting the degree of inharmonicity, we
frequency-shift only partials of the lower note. We choose to frequency-shift the lower
note’s partials and delete the upper note’s, rather than vice versa, because the beating
partials of the lower tone are higher in the harmonic series, which means they will introduce
less perceptual inharmonicity (Moore, Glasberg, and Peters 1985). The trade-off is that the
upper note has more partials deleted—most of the even-numbered partials—which has a
greater effect on the timbre. However, the results of the experiments vindicate this decision,
as we shall see: inharmonicity appears to be significant for intonation, but removing partials

from the spectrum does not.

The nature of the stimuli is described in the descriptions of the individual
experiments. In addition, an exhaustive description of every stimulus is included in the

Appendix (page 168).
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2.2 Experiment One: Method

The first experiment studied intonation by means of relative judgments: subjects were
presented with pairs of stimuli and asked how much more in tune one was than the other.

Details on the stimuli and the experimental procedures are given below.

2.2.1 Stimuli

The stimuli were digitally synthesized sounds. The constant and variable features of
the stimuli are listed below. Not all the component frequencies of each tone are listed here,
since the algorithmic selection of partials to be shifted in frequency resulted in too lengthy
a list. A more complete specification of the stimuli is given in the Appendix, along with the

algorithm that selected the partials to be frequency-shifted or deleted.

Constants

Harmonic musical interval (two simultaneous notes)

Pitch of upper note: C5 (523.251 Hz, which is equal-tempered with respect to
A440)

Pitch of lower note: approximately F4 (could be retuned; see variables below)

Time-invariant frequency spectrum

Flat frequency spectrum (0 dB/octave rolloff)

16 partials per note (1st 16 of harmonic series, though some may be deleted or made
inharmonic in some stimuli)

Duration: 1.5 seconds

Trapezoidal amplitude envelope

Attack portion of amplitude envelope: .05 seconds

Decay portion of amplitude envelope: .5 seconds

Beginning phase of all partials is 0.0 (not randomized phase), sine phase

Variables
(1) Beat amplitude (2 levels):

(a) maximum (beating partials have equal amplitude)
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(b) minimum (partial of upper note deleted, for each beating pair)
(2) Projected beat rate (5 levels): 0,2, 5, 10,25 Hz

Note that this variable is present even when beat amplitude is zero. This is
because we want to test other effects of the methods used to control beat rate.

(3) Method of controlling beat rate (2 levels)

(a) Retuned interval

The entire lower tone (F4) is transposed (all partials). This method preserves
harmonicity but changes the interval tuning. To achieve beat rates of 0, 2, 5, 10,
and 25 Hz, the F4 is transposed to:
348.827, 349.493, 350.493, 352.160, 357.160 Hz
=0.0, 3.3, 8.3, 16.5, 40.9 cents higher than the “just” F4
or-2.0, 1.3, 6.3, 14.5, 38.9 cents higher than the equal-tempered F4

(b) Frequency-shifted partials

The partials in the lower tone that beat with partials of the upper tone (or that
would beat if the partials of upper tone were not deleted) are shifted in
frequency. This method introduces inharmonicity but preserves the fundamental
frequency ratio. F4 is always equal-tempered with respect to A440 (as is the
upper note, C5), and thus has a constant frequency of 349.228 Hz.

2.2.2 Trials

The stimuli were presented in A/B pairs. A and B alternated continually until the
subject stopped them. There were 20 different stimuli and 80 different A/B pairs of stimuli.
Not all possible pairs were used. Rather, every pair had at most one variable change
between A and B. A and B could be the same. Each A/B pair appeared in the experiment
twice, once with A presented first and once with B presented first. Thus there was a total of
160 trials in the experiment, which took approximately 40 minutes to run (the time varying

according to the subject’s pace).
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Before doing the experiment itself, each subject did a “trial run” consisting of 25

trials chosen randomly from the 80 unique A/B pairs used in the main experiment.

2.2.3 Apparatus

The sounds had been generated on CCRMA'’s Systems Concepts Digital Synthesizer
(“Samson Box”) using additive synthesis, and were transferred beforehand to a NeXT
computer. There was no danger of aliasing: the Samson Box synthesis used a sampling rate
of 37707.39 Hz, making the Nyquist rate over twice that of the highest frequency in the
stimuli, which was about 8370 Hz. The synthesized stimuli were converted to analog and
simultaneously transferred to the NeXT computer using a Metaresearch Digital Ears
device, without making an intermediary recording. The specification of the Metaresearch
analbg-to-digital conversion and the NeXT digital-to-analog conversion is 16-bit samples

at 44100 Hz.

The subject sat at the monitor of the NeXT computer, in a soundproof room, with thé
NeXT CPU in another room to isolate its fan and disk noise. The NeXT audio was
connected via a Hafler power amplifier to two high-quality Westlake speaker units. The
speakers were symmetrically placed at about plus and minus 45 degrees from directly ahead
of the subject, at a distance of about one and half meters. The sound pressure level of the
stimuli at the subject’s position was measured to be approximately 63 dB, using a standard
USASI S1.4 (and IEC R123) sound level meter. Curve “A” (45-dB weighted) and curve “B”

(flat) gave similar readings.
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2.2.4 Subjects

There were eight subjects, all of whom had considerable musical experience2 and no
hearing problems. All were men under 40, and all were current or former students of
computer music. In addition, some of them had previously been subjects in psychoacoustic
experiments, and three of them had experience in music with nonstandard tunings. Details
on the subjects, all of whom were volunteers, are given in Table 1 on page 64. The subjects
are ordered in the table according to how consistent their responses were, as described
under “Consistency of responses” on page 96. A ninth subject also did the experiment, but
his results were omitted from the analysis because he was significantly more inconsistent

in his responses than the others (see Table 6 on page 97).

2.2.5 Procedure

The task was to judge how much more in tune stimulus A was than stimulus B, or
how much more in tune B was than A. The possible responses ranged from 1 to 9, with 1
being “A is much more in tune than B,” 9 being “B is much more in tune than A,” and 5
being “both are equally in tune.” Subjects were asked to use their normal sense of musical
acceptability in judging the intonation. The instructions did not mention beating; but

neither did they indicate that pitch relations should be the sole criterion for judgment.

The subject’s responses were entered by using a mouse to click on a graphical item
on the NeXT computer’s screen. The program interface (see Figure 3 below) included 9

graphical buttons for the various responses. There were also graphical buttons for replaying

2. All of my experiments studied musicians only, since the intonation judgments were likely to be
too difficult for novices and it was desirable to use subjects expected to be capable of using pitch
relations as well as beating in their judgments. Restriction to musically trained subjects is not
atypical for experiments of this kind (see, for example, Hall and Hess [1984] or Vos [1986]).
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Table 1. Subjects in Experiment One.

Subject| Consis-| Age | Years | Musical Years of |Highest |Experi- | Years | Ever Comments
tency of activity: musical | music | ence of before
ratin musical] Instruments | education |degree | with study |beena
O to m experi- | studied for LTcTE non- in subject
ence | more than stan- |psycho-| ina
3 years efo|n dard | acous- |psycho
(including | S [ Y |S tunings | tics |acous-
voice); s|rje ? tic
[Composition | © | S | I experi-
nie|b ment?
s |s |1
e
1 .880 | 29 20 Drums, (0 {0 [O | None No 0 No Subject is self-taught
piano, guitar;
composition
2 .865 | 24 15 Piano n/a| n/a| n/aj B.A. No 3 Yes
3 792 | 27 14 Percussion; |2 | 3 |5 | None Yes 4 Yes | Composes microtonal
composition music
4 774 |36 | 27 Cello; 9 [8{12|DMA.{ No 1 Yes
composition
5 762 | 30 17 Clarinet; |10{ 9 |10| MM. Yes 12 | Yes Experience with
composition Chinese instruments
6 700 | 31 26 Piano, voice; |30 (12| 8 | MIFA.| Yes 172 | Yes |Has composed some
composition microtonal music
7 698 | 25 17 Trombone |15 2 | 10| None No 172 | No
8 687 |32 | 22 Piano; 10(8 |0 |[DMA.| Yes 172 | Yes |Experience as a piano
composition tuner
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the current trial, stopping its playback, and playing the next trial. The screen also displayed
the current trial number and the subject’s response. While the stimuli were being played,

the screen showed whether A or B was currently sounding. The subject might listen to the
current stimuli as long as desired, and might stop and restart them and/or change responses

as many times as desired before starting the next trial.

Fig. 3. User Interface for Experiment One.

2.2.6 Data Reduction

A paired-comparison matrix is a way of getting single values for a stimulus variable
from judgments of pairs of stimuli. In Experiment One, subjects were asked to judge not
the intonation of an isolated stimulus, but rather how much more in tune one stimulus was

than another. For example, they compared a stimulus having a 2-Hz projected beat rate to
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a stimulus with a 10-Hz projected beat rate. But we sought a single overall value for the
intonation of a 2-Hz stimulus. This overall value was obtained by averaging the responses
for the pairs of stimuli 2 Hz vs. 0 Hz, 2 vs. 5, 2 vs. 10, and 2 vs. 25. Table 2 is an example

of one of the paired-comparison matrices created in this way.

Each element is an average over all subjects, where 9.0 means that B is much more
in tune than A and 1.0 means that A is much more in tune than B. The average of a column
is shown at the bottom and represents the overall intonation value for a given projected beat
rate, with 9 being the most in tune and 1 the least. (The responses to pairs containing
identical stimuli—on the diagonal from upper left to lower right—are omitted when

calculating the column means.)

This particular table shows only trials where the two stimuli (A and B) had differing
projected beat rates but the same beat amplitude and the same method of controlling beat

rate. Recall from the description of the trials that no more than one variable would change

BEAT AMPLITUDE: MAXIMUM
METHOD OF CONTROLLING BEAT RATE: RETUNED INTERVAL

B: 0 Hz 2 Hz 5 Hz 10 Hz 25 Hz

A:

0 Hz [4.889] 3.222 3.000 1.333 1.444
2 Hz 6.222 [5.111) 3.444 2.000 1.778
5 Hz 6.889 6.889 [5.111] 2.333 1.444
10 Hz 7.000 7.889 7.444 [4.889] 2.444
25 Hz 7.667 7.889 7.444 6.889 [5.000]
MEANS 6.944 6.472 5.333 3.139 1.778

Table 2. Anexample of a paired-comparison matrix
from Experiment One; based on stimulus pairs with
differing beat rates.
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its value between stimulus A and stimulus B. Similar matrices were created for other
combinations of the stimulus variables. The column means from each of these matrices
were used as the input data for three sets of analyses, grouped according to which variable
changed between stimulus A and stimulus B. For each of the three groups of trials, we shall
first present two different types of diagram displaying the paired-comparison matrix
column means averaged over subjects, followed by the results of some descriptive and

comparative statistical analyses.

2.3 Results

2.3.1 Trials with Changing Projected Beat Rate

We first examine the results for all the trials in which the variable that changed

between stimulus A and stimulus B was projected beat rate.

Graphs of mean responses

The mean 1'esponses,3

averaged across subjects, are shown in the three-dimensional
diagram (Figure 4). Each axis represents one of the independent variables (projected beat
rate, beat amplitude, and method of controlling beat rate). It is immediately evident that the
vertical dimension, representing projected beat rate, has the greatest variation of responses
as well as a fairly regular pattern: the faster the projected beat rate, the more out of tune the

stimulus sounds. By contrast, beat amplitude and method of controlling beat rate appear to

have relatively little effect.

3. I use the term “response” loosely in the discussion of the analysis results of Experiment One to
refer to the corresponding column mean from the paired-comparison matrix, as described in the
previous section (“Data Reduction”).




Chapter 2. Experiment One: Pairs of Perfect Fifths 68

The next diagram (Figure 5) plots the same results in two dimensions, with the mean
response (the judged “goodness” of the intonation, averaged over subjects) along the
vertical axis and the projected beat rate along the horizontal. Four different symbols are
used to represent the four combinations of the other two independent variables (beat
amplitude and method of controlling beat rate). A second-order polynomial curve is fitted

to each of the four conditions.

Especially in this form of graph, the very strong effect of projected beat rate is clear.

For each value of projected beat rate, the four different symbols are clustered fairly close

Beat Amplitude
Maximum Minimum
Pl‘O_]eCted 2 6.625 698.7  Retuned interval
Beat 5 goa7  (sizesin cents)
Rate 4 k
(Hz) : - Method of
25 - Controlling
Beat Rate
Frequency-
shifted partials
(interval is
700 cents)

Fig. 4. Experiment One: Judgments of intonation of fifths, based on trials where the two stimuli had
different beat rates. The “response” in each cell is the average of one column from the corresponding
paired-comparison matrix, averaged over all subjects. 9.0 = maximally in tune, 1.0 = maximally out of
tune. Based only on trials in which the variable that changed between stimulus A and stimulus B was
“projected beat rate.”
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O Maximum Beat Amp, Retuned Interval
O Maximum Beat Amp, Shifted Partials
A Minimum Beat Amp, Retuned Interval
¢ Minimum Beat Amp, Shifted Partials

9 . L " 2 " —

Judged Goodness of Intonation

1
-5

T

5 10 15 20 25 30

O A

Projected Beat Rate (Hz)

Fig. 5. Experiment One. Trials in which “projected beat rate” was the variable
that changed between stimulus A and stimulus B. The other two variables create
four stimulus types, given in the legend. Each is fit with a separate curve showing
the second-order polynomial regression.

together, suggesting that the other two variables are much less significant in this group of

trials.

Examining the curve at the 10-Hz and 25-Hz points, it appears that the inharmonic

stimuli (i.e., those where beat rate was controlled by shifting only the beat partials) are
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somewhat more in tune than the harmonic ones (those where all the partials were shifted).
Further, it appears that the “minimum beat amplitude” form of each of these is slightly more
in tune than the “maximum beat amplitude,” suggesting that beating at these fast rates

contributes to “out-of-tuneness.” (As discussed below, however, the statistical analyses did
not find these differences to be significant.) For zero, two, and five Hz, the relations are less

clear.

Figure 6 shows the same results with each stimulus condition in its own plot, so that
the standard deviation over subjects at each point can be displayed clearly with vertical

error bars.

We should perhaps not be surprised that neither beat amplitude nor method of
controlling beat rate appear very significant on these plots, because these data come from
trials where those two variables stayed the same between stimulus A and stimulus B. One
would expect a subject, in comparing two stimuli, to base the judgment on qualities that
change between the two. However, the effects of the other variables can show up if there is
an interaction between variables—for example, if the difference between two projected
beat rates sounds more extreme when the beating is not deleted. This is one of the purposes

of the ANOVA (analysis of variance) routine.
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Fig. 6. Experiment One, trials in which “projected beat rate” was the changing variable. Each
stimulus condition is plotted separately. Vertical error bars display the standard deviation over

subjects.
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Statistical analyses

The values shown in the diagrams above were subjected to some descriptive and
comparative statistical routines, using the StatView II software package for the Macintosh.

Table 3 summarizes the analysis results.

The first statistic, mean response, shows the average response (on a scale of 1 to 9).
Since this is very close to the midpoint of the scale, 5.0, and since half the trials use the
same stimuli as the other half, but in reverse order, this indicates that there is no order effect.
In other words, it doesn’t matter which stimulus comes first in a trial; subjects don’t tend to

call the first of the two stimuli any more or less out of tune than the second.

Table 3. Analysis results, Experiment One. Trials in which
projected beat rate differed between stimulus A and stimulus B.

Mean Response 4.883

Standard Deviation 1.855

Correlation of Mean Responses to:
Projected Beat Rate -.950
Beat Amplitude .003
Method of Controlling Rate 018

3-way ANOVA on Mean Responses:
Projected Beat Rate F=158.51 (df 4,4), p<.01
Beat Amplitude F=.004 (df 1,4), n.s.
Method of Controlling Rate F=.22 (df 1,4), n.s.
Rate x Beat Amplitude F=1.30 (df 4,4), n.s.
Rate x Method F=2.45 (df 4,4), n.s.

Beat Amplitude x Method F=.53 (df 1,4), n.s.
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The second statistic, standard deviation, indicates the variation of the responses.
There is a fair amount of spread; that is, the mean responses tend to fill out the available
range. Since these are means from a paired-comparison matrix, the actual raw data (the

responses per trial) showed more variance.

The third group of statistics show the correlation of the mean responses to the three
independent variables. (Correlation values can range from —1.0 to 1.0; a value of zero
indicates no correlation, and —1.0 or 1.0 both correspond to perfect correlation, with the
minus sign indicating that one quantity increases as the other decreases.) The mean
responses are very highly correlated to projected beat rate (—.963): the higher the projected
beat rate, the lower the mean response, i.e., the more likely the stimulus is to sound out of
tune. However, the judgments of intonation are not at all correlated to beat amplitude (.006)
or method (.044). (For beat amplitude, “minimum” was represented by the quantity 1 and
“maximum” by 2 in computing the correlation; for method of controlling beat rate, 1

designated “retuned interval” and 2 “shifted partials.”)

The analysis of variance (ANOVA)* supports this conclusion: of the three variables,
only projected beat rate is found to be significant for these trials. (The symbol “p” indicates
the probability that the results could be attributed to chance, which for projected beat rate
is less than one chance in a thousand—highly significant. The symbol “n.s.” stands for “not
significant.”) Further, there is no significant interaction between variables. Recall that we
had observed in the regression plot that at 10 and 25 Hz there seemed to be some effects of

beat amplitude and of method of controlling beat rate. However, when the overall

4. The ANOVA results given do not include a triple interaction term, since it was used as the error
term for the analysis. In this experiment, unlike Experiments Two and Three, there was only one
repeat of a given trial (and in the repeat the presentation order was changed, e.g. from “ABABA...”
to “BABAB...”); thus it was inadvisable to attempt to derive an error term from repeated trials.
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variability of such judgments is taken into account (including the responses to all five
values of projected beat rate), as it is in the analysis of variance, it appears that these

differences could conceivably have occurred by chance.

Although the regression plot suggested that, at projected beat rates of 10 and 25 Hz,
stimuli with the beating partials deleted might be judged more in tune, these differences
turn out to be nonsignificant when considering all five values of projected beat rate, as the
ANOVA routine does. On the same portion of the plot, the stimuli having only the beating
partials shifted appeared to be judged more in tune than stimuli having the interval retuned,

but this cannot be shown to be statistically significant either.

Per-subject results

Figures 7 and 8 show the per-subject results for trials in which projected beat rate
was the variable that changed between stimulus A and stimulus B. The figures are presented
in order of decreasing subject consistency: As in Table 1 (page 64), Subject 1 is the one who
gave the most consistent responses from trial to trial for a given stimulus, Subject 10 the
least consistent. Note that the general shape of the curves for most subjects is quite similar
to those of the data averaged over subjects, as displayed in Figure 5 (page 69). With few
exceptions, subjects rated the stimuli with the 25-Hz projected beat rate as having
intonation values in the range of 1 to 3 (on the scale of 1 to 9). Stimuli with the zero-Hz and

two-Hz rates were rated the highest.

Note that, for stimuli with a zero-Hz projected beat rate, nearly all the subjects judged
the stimuli with shifted partials and a minimum beat amplitude to have worse intonation
than the other types of stimuli. On would expect the “retuned interval” stimuli to sound

more in tune than the inharmonic stimuli at zero Hz, because of its lack of inharmonicity.




Chapter 2. Experiment One: Pairs of Perfect Fifths 75

O Maximum Beat Amp, Retuned Interval
0O Maximum Beat Amp, Shifted Partials
A Minimum Beat Amp, Retuned Interval
¢ Minimum Beat Amp, Shifted Partials

10 9
9 8
= 81 . .
S Subject 1 g 7 Subject 2
z 6 E 6
2 =
& 54 2 5
g g
2 4l » 3
o 3 44
g 3 3
2, L 2
1 - 2]
0 1
-5 ] 5 10 15 20 25 30 -5 0 5 10 15 20 25 30
Projected Beat Rate (Hz) Projected Beat Rate (Hz)
9 ~ 9
8 8 r
. =
§ 71 Subject 3 g7 Subject 4
g g
E 6 Es6
k] -]
g s gs
34 g 4
3 ]
S0 en
23 i
21 2
1 1 +
-5 0 5 10 15 20 25 30 -5 0 5 10 15 20 25 30
Projected Beat Rate (Hz) Projected Beat Rate (Hz)

Fig. 7. Experiment One, results per subject. Trials in which “projected beat rate” was the variable that
changed between stimulus A and stimulus B. (Continued in Figure 8).
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Fig. 8. Experiment One, results per subject (continued from Figure 7). Trials in which “projected beat
rate” was the variable that changed between stimulus A and stimulus B.
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(Note also that the inharmonic stimuli are equal-tempered whereas the “retuned interval”
stimuli are just.) But it is curious that at a zero-Hz projected beat rate, the “maximum beat
amplitude, shifted partials” stimulus would sound more in tune than the “minimum beat
amplitude, shifted partials” stimulus. There should be no beating in either of these, but
perhaps the lower rating given to the “minimum amplitude” version reflects the difference
in timbre caused by the deletion of even partials from the upper tone. Although the “beat
amplitude” variable (which is also correlated with a change in timbre) was not found to be

significant overall, perhaps it is significant at 0 Hz.

The clearest pattern in the graph averaged over subjects (Figure 5 on page 69) is the
fact that the four types of stimuli are rated in the same order for 10 Hz as for 25 Hz,
generating four almost parallel lines between these two projected beat rates. At these
points, the stimuli are rated in the following order, from best intonation to poorest:
“minimum beat amplitude, shifted partials,” “maximum beat amplitude, shifted partials,”
In the graphs for the individual subjects, this ordering is echoed the most closely in the
patterns of Subjects 2 and 6. Subject 8 has a consistent but different ordering of the stimuli

at these points. Subject 3 has a consistent ordering from 5 Hz to 10 Hz.

Subject 1, whose responses were the most consistent (in other words, who had the
greatest correlation between the ABAB... and BABA... presentations of a given stimulus
pair), also appears to have the least effect of stimulus type in his graph. In fact, it is difficult
to distinguish some of the stimuli in his graph because the points coincide so frequently. It
is interesting to note that this subject reported using beat rate as a cue for intonation. This

“would explain the closeness between the “shifted partials” and “retuned interval” types of
stimuli for this subject, but it doesn’t explain the closeness of the minimum and maximum

beat amplitudes.5
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A number of the subjects rate some of the stimuli as being less in tune at the zero-Hz
projected beat rate than at 2 Hz. Subject 7 is remarkable in this respect, in that every one of
the stimuli at zero Hz is rated as worse than any of the 2-Hz stimuli. This behavior suggests
that this subject prefers stimuli with some beating, as in the group of “rich listeners” that
Roberts and Mathews (1984) found. With the exception of this subject’s response to the
zero-Hz stimuli, the general trend is quite clear in the graphs: subjects perceive the
intonation as steadily worsening as the projected beat rate increases. Again, however, it
doesn’t follow that beating is important, since projected beat rate is correlated with either
interval tuning or inharmonicity, depending on the method of controlling beat rate. Since
the ANOVA showed beat amplitude to be nonsignificant, the appropriate interpretation is
that the technique for éontrolling beat rate is itself responsible for the change in subjective

intonation.

2.3.2 Trials with Changing Method of Controlling Beat Rate

We now present the results and analyses for the trials where “method of controlling
beat rate” changed between stimulus A and stimulus B. In each of these trials, one of the

stimuli used the “retuned interval” method and the other used the “shifted partials” method.

Graphs of mean responses

Figure 9 is a three-dimensional diagram of the mean responses. As before, there is
not much left-to-right difference; beat amplitude appears to have little effect on the
intonation. There is an interesting interaction of the other two variables, however. Observe

that the rear columns (those representing the “retuned interval” method of controlling beat

5. Itis likely that Subject 1 also made use of strategies other than beat rate. As described on page
100, subjects found it difficult to hear any beating at all in the “minimum beat amplitude” stimuli.
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Fig. 9. Experiment One: Judgments of intonation of fifths, for trials in which the variable that changed
between stimulus A and stimulus B was “method of controlling beat rate.” 9.0 = B is much more in
tune than A; 1.0 = A is much more in tune than B. The value of a given cell represents stimulus B;
stimulus A uses the opposite method of controlling beat rate.

rate) have the pattern we found in the previous group of trials: the mean responses get lower
as the projected beat rate gets higher. For the forward columns (the “shifted partials”
method), however, the reverse pattern holds: the responses increase as the projected beat
rate increases. These opposite effects are even clearer on the regression plot (Figure 10), in

which the two upper curves are roughly mirror images of the two lower curves.

In order to understand this result, we must recall that the values come from paired-
comparison matrices in which the columns and rows represented degrees of projected beat
rate. In the last set of trials, where projected beat rate was the variable that changed between

A and B, we could use the mean response shown in a given cell in the three-dimensional
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tune than A; 1.0 = A is much more in tune than B. The symbols in the legend represent
stimulus B; stimulus A uses the opposite method of controlling beat rate. (To tell which curve
belongs with each symbol, see the points at 25 Hz.)

diagram as being equivalent to the goodness of intonation of the corresponding stimulus.

However, in these trials, it is the method of controlling beat rate that changes between A

and B. The value shown in any cell of Figure 9 is not an absolute measure of the

corresponding stimulus, but rather indicates the mean response if stimulus B is the

corresponding stimulus and stimulus A has the opposite method of controlling beat rate. As
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an example, take the mean response of 7.111 for the cell with a 25-Hz rate, maximum
amplitude, and the “shifted partials” method of controlling rate. We cannot take this as an
absolute measure of the intonation of this stimulus as compared to, for example, the 4.556
value of the stimulus at the top of the same column. To do so would suggest that the faster-
beating, more inharmonic stimulus sounds more in tune. Instead, the mean response given
in a cell really denotes the intonation of that stimulus, relative to the stimulus with the
opposite method of controlling beat rate. In the current example, the 7.111 means that this
stimulus (25 Hz, maximum amplitude, shifted partials) is judged to be much more in tune
than the stimulus directly behind it in the diagram (25 Hz, maximum amplitude, retuned

interval).

To state this interaction in simple terms: At a beat rate of 0 Hz or thereabouts, it
doesn’t matter much whether one controls the beat rate by retuning the interval or by
making the beating partials inharmonic. At 25 Hz, it matters a great deal; retuning sounds

much worse than making the partials inharmonic.

If a pair of stimuli with the same projected beat rate but different methods of
controlling beat rate are widely separated in judged intonation value, we may conclude that
the method of controlling beat rate is important at that beat rate. In Figure 10 the curves
cross at 2 Hz, indicating that the method of controlling beat rate is not important at this

projected beat rate.

Note that in Figure 10 the two lower curves, which represent the stimuli “maximum
beat amplitude, retuned interval” and “minimum beat amplitude, retuned interval.” have a
trend that is similar to that found in the trials for which beat rate was the variable that

changed between stimulus A and stimulus B. (Compare Figure 5 on page 69.) The trend
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seems to suggest that increasing the projected beat rate by the method of retuning the
interval makes the interval sound more out of tune. Here, however, the appropriate
interpretation is that increasing the rate makes the interval sound more out of tune than it

does when one uses the method of frequency-shifting the potentially beating partials.

Also note in this graph that the curves for opposite methods of controlling beat rate
are most widely separated at 10 Hz, not 25 Hz. The interpretation is that although the
“retuned interval” stimuli sound much more out of tune than the “shifted partials” stimuli
at 10, at 25 Hz the inharmonicity of the “shifted partials” stimuli makes them sound
somewhat out of tune as well, so there is less difference in perceived intonation between the

“shifted partials™ and “retuned interval” stimuli at 25 Hz.

Figure 11 shows the stimulus conditions separately, with the standard deviation for

each stimulus type depicted by error bars.6

6. It is curious that the variability is greatly diminished at 2 Hz in three of the four plots. It is
conceivable that subjects were most consistent at this beat rate because it is the most distinctive.
Studying the relative difference limen for intensity, Riesz (1928) found that subjects were most
sensitive to beating at a rate of about 3 Hz. Similarly, a pilot study I conducted indicated that when
two different beat rates are presented simultaneously, the one closest to 2.5 - 3 Hz dominates. This
effect would only explain the behavior for the “maximum beat amplitude” stimuli, however. A better
explanation is that at 2 Hz the “retuned interval” and “shifted partials” stimuli have the most similar
tuning (698.7 and 700 cents, respectively). Since in these trials one stimulus used the “retuned
interval” method and the other the “shifted partials” method, stimulus A and B would be very similar
at the 2 Hz rate, leading subjects to give them a rating consistently close to 5, “both equally in tune.”
Looking at the graphs, we see that this is indeed the case.
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Fig. 11. Experiment One, trials in which “method of controlling beat rate” was the changing variable.

Each stimulus condition is plotted separately. Vertical error bars display the standard deviation over
subjects.
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Statistical analyses

The results of the statistical analyses for the group of trials where “method of

controlling beat rate” was the changing variable are listed in Table 4.

The mean is similar to the previous group of trials; the standard deviation is

somewhat smaller. (Compare Table 3 on page 72.) The judged goodness of intonation is

correlated to the method of controlling beat rate (+.579). The plus sign signifies that

retuning an interval is more likely to make it sound out of tune than is shifting only the

beating partials.7 It is understandable that the method of controlling beat rate was

Table 4. Analysis results, Experiment One. Trials in which “method of
controlling projected beat rate” differed between stimulus A and stimulus B.

Mean Response
Standard Deviation

Correlation of Mean Responses to:

3-way ANOVA on Mean Responses:

Projected Beat Rate
Beat Amplitude
Method of Controlling Rate

Projected Beat Rate
Beat Amplitude
Method of Controlling Rate

Rate x Beat Amplitude
Rate x Method
Beat Amplitude x Method

4.938
1.463

.001
-.026
579

F=.50 (df 4,4), n.s.
F=.11 (df 1,4), n.s.
F=52.15 (df 1,4), p<.01

F=.58 (df 4,4), n.s.
F=23.77 (df 4,4), p<.01
F=.05 (df 1,4), n.s.

7. In computing the correlation, method (a) was assigned a value of 1 and method (b) a value of 2.
Since a greater value for the response meant the stimulus was judged more in tune, a positive
correlation between “method” and “response” means that method (b) tends to sound more in tune.
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important, since that is the variable that changed between the two stimuli; subjects

apparently made judgments on the basis of the variable that changed.

As in the first group of trials, the mean responses were uncorrelated with beat
amplitude (-.026). It is surprising, however, that projected beat rate receives a similarly low
correlation coefficient (.001). This can best be explained by referring back to the combined
plot (Figure 10 on page 80). As previously explained, the fact that the judgments were
comparisons between the two opposite methods of controlling beat rate results in a mirror-
image sort of graph. The top two curves really are presenting basically the same
information as the bottom two curves—each point represent trials with the same two stimuli
as the corresponding point in the bottom curve, but with stimulus A and stimulus B
switched with each other. However, when the correlation to projected beat rate is computed,
these curves cancel each other out, and the resulting coefficient is very close to zero. If the
mirror forms had been combined, the plot would have borne more resemblance to that of
the first group of trials (Figure 5 on page 69), and the correlation would have been much
larger, especially if the coefficient were computed taking account of the curvilinear nature

of the relation.

Similarly, the analysis of variance (ANOVA) finds only the method of controlling
beat rate to be significant. If the mirror forms had been combined, projected beat rate would
probably also be significant. The ANOVA's finding of a significant interaction between
projected beat rate and method of controlling beat rate is again an artifact of the mirroring

observable in the plot. These problems were solved in Experiment Two.
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Per-subject results

Figures 12 - 13 show the per-subject results for these trials, in which “method of
controlling beat rate” was the variable that changed between stimulus A and stimulus B.
Recall from the discussion on pages 79 - 82 that such graphs do not show absolute judged
intonation. Rather, they show the judged intonation of a stimulus relative to the analogous
stimulus with the opposite method of controlling beat rate. The graphs tend to be
symmetrical around the judged intonation value of 5 Hz because of this property. Typically
a curve will be roughly mirrored by another that is approximately its reflection about the 5-
Hz midpoint line, although the mirroring is less perfect than in the graph of the results

averaged over subject (Figure 10 on page 80).

With the exception of Subject 5, all eight subjects clearly echo the average pattern,
favoring the “shifted partials” stimuli over the “retuned interval” stimuli at projected beat
rates greater than 2 Hz. The patterns at zero Hz and 2 Hz are less clear. Most of the subjects
also echo the averaged data in showing a greater differentiation between the two methods

of controlling beat rate at 10 Hz than at 25 Hz3

8. The individual subjects’ data are integers here, unlike in the first group of trials. The reason is that
each point here actually represents one trial. Since “method of controlling beat rate” has only two
levels, the paired-comparison matrices were 2x2 squares, whereas in the previous group they were
5x35 squares (see page 66). The diagonals of these matrices represent trials in which stimulus A is
the same as stimulus B. As before, these trials were omitted when computing the column totals, thus
each column total was based on only one trial. The only analyses that included trials where A and B
were the same were the calculations of subject reliability (see page 96).
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Fig. 12. Experiment One, results per subject. Trials in which “method of controlling beat rate” was the
variable that changed between stimulus A and stimulus B. (Continued in Figure 13.)
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Fig. 14. Experiment One: Judgments of intonation of fifths, for trials in which beat amplitude was the
variable that changed between stimulus A and stimulus B. 9.0 = B is much more in tune than A; 1.0 =
A is much more in tune than B. The value of a given cell represents stimulus B; stimulus A uses the
opposite method of controlling beat rate.

2.3.3 Trials with Changing Beat Amplitude

The third group of trials has beat amplitude as the variable that changed between
stimulus A and stimulus B. (Note that these groups are separate only for purposes of

analysis; in the experiment, trials from the three groups were intermingled.)

Graphs of mean responses

The three-dimensional diagram is given in Figure 14 (above) and the plot of mean
responses versus projected beat rate in Figure 15. Note that all the values are surprisingly

similar. Whereas in the previous two groups of trials, the variable that changed between
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Fig. 15. Experiment One. Trials in which beat amplitude was the variable that changed between
stimulus A and stimulus B.9.0 = B is much more in tune than A; 1.0 = A is much more in tune
than B. The symbols in the legend represent stimulus B; stimulus A uses the opposite beat
amplitude. (To tell which curve belongs with each symbol, see the points at 25 Hz. Although
curves have been fitted to each set of points, the variability shown in Figure 16 makes it apparent
that one cannot really know whether different functions are represented.)

stimulus A and stimulus B was significant, here it appears that no variable is very

significant.

Figure 16 shows the results by stimulus type, with standard deviations over subjects.

as before.
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Statistical analyses

Table 5 lists the results of the statistical analyses for the group of trials with beat

amplitude as the changing variable.

Once again, the mean is very close to 5.0. As we would expect from having seen the
three-dimensional diagram, the standard deviation is smaller than in the other two groups
of trials. Both the correlation and the ANOVA show that no variable is significant. We shall
consider the implications of the nonsignificance of beat amplitude under the “General

Discussion” below.

Table 5. Analysis results, Experiment One. Trials in which
beat amplitude differed between stimulus A and stimulus B.

Mean Response 4.975

Standard Deviation 778

Correlation of Mean Responses to:
Projected Beat Rate .019
Beat Amplitude 132
Method of Controlling Rate .082

3-way ANOVA on Mean Responses:
Projected Beat Rate F=.07 (df 4,4), n.s.
Beat Amplitude F=.14 (df 1,4), n.s.
Method of Controlling Rate F=.05 (df 1,4), n.s.
Rate x Beat Amplitude F=.15 (df 4,4), n.s.
Rate x Method F=.34 (df 4,4), n.s.

Beat Amplitude x Method F=1.32 (df 1,4), n.s.




Chapter 2. Experiment One: Pairs of Perfect Fifths 93

Per-subject results

Figures 17 and 18 show the individual subjects’ results for this group of trials. Recall
from the discussion of the averaged results that there was little differentiation in judged
intonation between stimuli with maximum beat amplitude and those with minimum beat
amplitude. The per-subject graphs show a wider range of points than does the averaged data
(compare Figure 15 on page 90), where the data all fell in the middle range between 3.5 and
6.5. The fact that the individual subjects’ plots in Figures 17 and 18 scarcely resemble each
other suggests that the averaged data in Figure 15 should not be given too much importance.
It is difficult to discern any meaningful overall pattern by visual inspection of the per-

subject graphs.
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2.3.4 Reliability of Responses

The reliability of the subjects’ responses was tested by examining responses to pairs
of trials in which the stimuli were the same, but not presented in the same order. For this
purpose, it is not necessary to divide the trials into groups based on the variable that
changed between stimulus A and stimulus B. In fact, this analysis also includes the trials—
excluded from the paired-comparison matrices that generated the input to the previous

analyses—where stimulus A and stimulus B are identical.

Order effects

As we saw above, the mean responses are very close to 5.0 for all three groups. This
indicates that the order of presentation has no effect on the response, for if stimulus A
tended to be heard as more in tune, the mean would be smaller than 5, and if B were heard

as more in tune, it would be larger than 5.

Consistency of responses

Whether or not there is an order effect, one can test for subjects’ consistency by
finding the correlation of responses to the ABAB... presentation with those for BABA...
(The forward and reverse forms of a trial were used to measure consistency, since exact
repeats were unavailable in this experiment.) As shown in Table 6, the correlation over all
the trials in the experiment is —0.729. One subject performed much more inconsistently

than the others (1.95 standard deviations below the mean, at about the 2.5% confidence
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level). This subject was therefore omitted from all the analyses, since his results were not

representative of the group of trained musicians under study.’

Table 7 shows correlations, per subject and per projected beat rate, between (1)
responses to trials presented in the order “ABAB...” and (2) responses to the corresponding

trials having the same stimuli but presented as “BABA...”. Only trials in which the

Table 6. Experiment One. Correlation of responses to “ABAB...”
presentation with responses to “BABA...” presentation.

Subject Correlation (r) Z-score
1 -0.880 1.376
2 -0.865 1.313
3 -0.792 1.074
4 -0.774 1.029
5 -0.762 1.000
6 -0.700 0.867
7 —0.698 0.863
8 -0.687 0.842
9 —0.409 0.435
Mean -0.729 0.978

Mean z-score: 0.978
Std. Dev. of z-scores: 0.279

#9’s score is 1.95 standard deviations below the mean z-score.

9. z-score values for this and subsequent tables taken from Table D, p. 388 in McCall (1970),
Fundamental Statistics for Behavioral Sciences, 4th ed. Increment for r in table is .005; intermediary
values above computed by linear interpolation.
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projected beat rate did not change between A and B were included. This comprises exactly

half of the trials in the experiment.

We find that subjects are somewhat more consistent when the projected beat rate is
higher. This makes sense, for at the higher beat rates, there is more likely a noticeable
difference between the two beat amplitudes or the two methods of controlling beat rate. The
grand mean correlation for these trials is —0.494; by comparison, the previously found
correlation for all the trials in the experiment was —0.729. This means that the correlation
for the trials in which projected beat rate does change is —0.965. Again, projected beat rate
seems to be a much more important variable than beat amplitude or method of controlling
beat rate, since subjects’ responses are much more consistent across trials that are identical
(except for order of presentation) when projected beat rate is the variable that changes

between the two stimuli.

Table 7. Experiment One. Correlation of Responses to “ABAB...” Presentation
with Responses to “BABA...” Presentation, per Projected Beat Rate.

Rate: 0 2 5 10 25
Subject:
1 -0.533 -0.979 -0.036 -0.834 -0.866
2 -0.905 0.000 -0.561 -0.866 -0.829
3 -0.697 -0.788 -0.701 -0.980 -0.629
4 -0.696 -0.606 -0.269 -0.835 -0.680
5 -0.120 0.048 0.104 -0.324 0.000
6 0.709 -0.391 -0.927 -0.261 -0.087
7 -0.856 -0.660 -0.906 -0.127 -0.671
8 -0.398 0.875 -0.830 -0.668 -0.733
9 -0.577 -0.585 -0.454 -0.237 -0.857
MEAN -0.453 -0.343 -0.509 -0.570 -0.595

GRAND MEAN: -0.494
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2.4 General Discussion of the Results of Experiment One

For purposes of comparison, we again present the results of the statistical analyses,
combining the tables for each of the three groups into one table (Table 8). We can be more
confident about the results in the first column than those in the second and third, because as
was detailed above under “Consistency of responses,” subjects were much more consistent
in their responses to trials in which projected beat rate changed between stimulus A and
stimulus B (column 1) than trials in which beat amplitude (column 2) or method of

controlling beat rate (column 3) changed.

Table 8. Analysis results, Experiment One. Summary of
Table 3, Table 4, and Table 5.

Variable that changed between
stimulus A and stimulus B:
Rate Beat Amp Method

Mean Response 4.883 4975 4938
Standard Deviation 1.855 778 1.463
Correlation of Mean Responses to:

Projected Beat Rate -.950 019 .001

Beat Amplitude .003 132 -.026

Method of Controlling Rate .018 .082 .579
3-way ANOVA on Mean Responses:

Projected Beat Rate p<.01 n.s. ns.

Beat Amplitude n.s. n.s. n.s.

Method of Controlling Rate n.s. n.s. p<.01

Rate x Beat Amplitude n.s. n.s. n.s.

Rate x Method n.s. n.s. p<.01

Beat Amplitude x Method  n.s. n.s. n.s.
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The correlations and ANOVAs show that projected beat rate is the primary variable
influencing judgments of intonation. The greatest variability in responses, as shown by the
standard deviations, occurs for trials in which projected beat rate changes. This is not
unexpected; we might predict the most important variable to cause the greatest contrasts in

the perceived intonation.

The most striking feature of the correlations and ANOVAs is the discrepancy between
columns—the results differ depending on which variable changes between stimulus A and
stimulus B. Subjects appear to respond mainly on the basis of the changing variable, which
makes sense, since their task is to perform a relative judgment (comparing two stimuli)

rather than an absolute judgment on a single stimulus.

The most surprising result, given the previous literature on this topic, is that beat
amplitude appears to be nonsignificant in all three groups of trials, even the group where
beat amplitude was the changing variable. One would expect a spectrum with all 16 partials,
some of which beat, to sound less in tune than the corresponding spectrum with the beating
partials deleted. One possible hypothesis for why deletion of the beating partials didn’t
improve the perceived intonation is that the deletion had a negative side effect. For example,
the deletion creates gaps in the spectrum of one of the tones, which conceivably could make
its timbre sound less pleasing. However, if this were the case, one would expect the zero-
amplitude, zero-Hz stimulus to sound less in tune than the full-amplitude, zero-Hz

stimulus, which was not borne out by the responses.

Another explanation is that other mechanisms (such as combination tones) maintain
the beating even when the partials are deleted. To check this, an informal study was run in

which three subjects listened carefully to the stimuli with deleted partials and attempted to
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tap out or sing the rhythm of any periodic phenomenon they heard.!? Only one reported
hearing any temporal variation at all, and he described it as being much more subtle than
the beating in the stimuli with full-amplitude beats. The rhythms he produced in response
to these minimum-amplitude stimuli did not reliably match their “projected beat rates.” By
contrast, all three subjects easily identified the beat rates in stimuli with full-amplitude
beats. This result conforms with the literature, which reports such secondary forms of
beating as being much weaker than the beats of nearly coinciding partials. It is therefore
unlikely that alternate sources of beating, such as combination tones, can explain why
subjects in Experiment One did not rate the maximally beating stimuli as more out of tune

than the minimally beating ones.

It is also possible that beat amplitude would have been significant had there been
more values of projected beat rate in the vicinity of 10 to 25 Hz. Some of the plots gave the
impression that, in this region, deleting the beating partials tended to improve the perceived

intonation.

Although it may seem paradoxical that projected beat rate is significant but beat
amplitude is not, this seeming contradiction can be explained by the fact that the variable
“projected beat rate” doesn’t necessarily refer to real beating. Rather, it refers to some
physical change that was made in order to potentially affect the anticipated perceived beat
rate by a certain amount. This physical change is either a mistuning of the interval or a
frequency-shifting of certain partials. In the case where beating partials are deleted, we
expect “projected beat rate” to describe only the amount of mistuning or frequency-shifting,

not an actual beat rate. This is why I refer to the variable as “projected beat rate” rather than

10. All three subjects had a great deal of musical training and also participated in at least one of the
three main experiments.
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“beat rate,” to emphasize the fact that it describes potential beating, not necessarily actual
beating. Since projected beat rate has about as strong an effect when the beat amplitude is
zero as when it is maximum, one can hypothesize that the importance of projected beat rate
comes not from beating but from the other factors that covary with projected beat rate—

interval mistuning on the one hand and inharmonicity on the other.!!

The high significance of “method of controlling beat rate,” in the trials where method
was the variable that changed within a trial, means that the two techniques for manipulating
beat rate are not equivalent. As could be seen from the regression plot for these trials,
controlling the beat rate by mistuning the interval tends to make it sound more out of tune

than does shifting the beating partials to inharmonic positions.

Summary: Conclusions from Experiment One

Increasing the projected beat rate tends to make a stimulus more out of tune, as
expected. Increasing the beat rate by shifting the beating partials of one note to inharmonic
positions appears to introduce less “out-of-tuneness” than does moving all partials equally
(i.e., retuning the interval). Projected beat rate is a very strong cue for intonation, since
subjects are very consistent when projected beat rate changes between A and B, but less so
when another variable changes. Although projected beat rate is highly significant, changing
the beat amplitude did not have a significant effect in this experiment. This suggests that the

‘effect of projected beat rate derives largely from the covarying interval mistuning or
inharmonicity, rather than from beating partials. Thus, in terms of the factors which we
originally set out to investigate—interval tuning versus “real” (rather than “projected”) beat

rate—we can tentatively conclude that interval tuning is a much more important cue for

11. Another factor might be a shift of periodicity pitch in the “shifted partials” stimuli, but this
phenomenon would be less important than the perceived inharmonicity, as discussed on page 113.
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intonation than is beat rate. However, let us first examine the results of the other two

experiments.
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Experiment Two: Single
Fifths

In Experiment One, subjects had judged the relative intonation of a pair of stimuli.
Each stimulus in the pair was a perfect fifth. The two stimuli were identical except for one
of three variables (projected beat rate, beat amplitude, or method of controlling beat rate)

whose value might be different between stimulus A and stimulus B.

The results of Experiment One indicated that projected beat rate was highly
significant for intonation, but that beat amplitude had no effect. This seeming paradox could
be explained by the interval mistuning and inharmonicity that covaried with projected beat
rate. Even so, the nonsignificance of beating contradicts the findings of some previous
researchers, such as Vos (1986). In order to verify that these results were not some sort of
artifact of the experimental design—for example, a result of the use of paired comparisons
rather than single stimuli—a second experiment was run in which each trial consisted of a

single stimulus.
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3.1 Method

3.1.1 Stimuli and Apparatus

The stimuli and apparatus were identical to those of Experiment One, but the stimuli
were presented one per trial, rather than in A/B pairs. See the description of Experiment
One for details (pages 60 and 62). The user interface to the computer program presenting

the stimuli was accordingly modified (see “Procedure” below.)

3.1.2 Trials

There were 20 unique stimuli and 160 trials. Each stimulus therefore occurred eight
times in the experiment. The order of the stimuli was randomized within each of the eight
groups of 20 stimuli. Before doing the experiment itself, each subject did a “trial run”

consisting of 40 trials, with each stimulus occurring twice.

3.1.3 Subjects

There were 10 subjects, who had an average of 19.5 years of musical experience, and
all of whom were students in a graduate course in computer music. None of the subjects
had been a subject in Experiment One. Details about the subjects, who are ordered by the
consistency of their responses, are given in Table 9 on pages 106 and 107.! An eleventh
subject also did the experiment, but his results were omitted from the analysis because he
was significantly more inconsistent in his responses than the others (see Table 11 on page

116). The subjects were volunteers.

1. Most of the subjects were male, except where noted in the table. The subjects’ sex is reported in
light of O’Keeffe’s (1975) finding of sex differences in intonation judgments. (See page 51 of this
dissertation.)
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Table 9. Subjects in Experiment Two.

Subject| Consis-| Age | Years | Musical Years of |Highest | Experi-| Years | Ever Comments
tency of activity: musical music | ence of before
ratin musical| Instruments | education |degree | with study |beena
Oto1l experi- | studied for LTCTE non- in  |subject
ence | more than stan- |psycho-| ina
3 years ejon dard | acous- |psycho
(including | S Y |S tunings | tics |acous-
voice); strjpe ? tic
Composition | © | S | I experi-
nie b ment?
s |s |1
e
1 892 | 26 20 Organ, piano; | 15 |4 | 15| Diplo Yes 2 Yes | Experience with piano
composition ma tuning
2 873 | 22 10 Piano; 10{8 |8 | BM, No 1/4 No | Nearly absolute pitch;
composition B.A. female
3 872 35 25 Trumpets 16| 8 |16 { D.Mus.{ No 172 No
4 872 | 26 20 Piano; 10|52 | BM, | Yes 1 No Poss. irregularity with
composition B.M. hearing in left ear;
composing piece in
nonstandard tuning
5 856 | 27 15 Saxophone; (4 | 5 {3 | BM. No 1 No
composition
6 .842 | 20 10 Voice 711]0 | None No 0 No
7 840 | 24 8 Piano; 810]|0]| BA. Yes 0 No | Microtonal composer;
composition experience with non-
Western tunings
8 .839 | 40 37 Piano; n/aj n/a n/a| Ph.D. No 0 No Absolute pitch;
composition female
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Table 9, continued. Subjects in Experiment Two.

Subject| Consis-| Age | Years | Musical Years of |Highest | Experi- | Years | Ever Comments
tency of activity: musical music | ence of before
ratin musical| Instruments | education |degree | with study |been a
Oto1 experi- | studied for LTCTE non- in |subject
ence | more than stan- |[psycho-| ina
3 years ejo|n dard | acous- |psycho-
(including | S |V | S tunings | tics |acous-
voice); srpe ? tic
Composition | ¢ | 5 | I experi-
nfelb ment?
s |s |1
e
9 .833 | 35 25 Violin n/aj 5 |n/aj M.A. No 0 No Experience with
Chinese music
10 .806 | 36 25 Piano 15/15(2 | MA. No 2 Yes
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3.1.4 Procedure

The task was to judge how in tune the single stimulus was. As in Experiment One,
the possible responses ranged from 1 t0 9. Subjects were asked to judge the intonation with
respect to an ideal perfect fifth, so that no stimulus would be judged as a somewhat out-of-
tune tritone, for example.The trials were presented by a computer program with a user
interface very similar to the one illustrated for Experiment One (Figure 3 on page 65). The
only functional differences were: (1) the display of the current stimulus label (A or B) was
now omitted, since each trial consisted of only one stimulus; (2) the “Stop” button was
omitted, since the stimulus was only played once (although the subject could repeat the
playback by clicking the “Play again” button); and (3) the legend below the response
buttons now read “Very out of tune” (under button 1), “Somewhat out of tune” (under

button 5), and “Exactly in tune” (under button 9).

3.2 Results

3.2.1 Graphs of Mean Responses

The raw responses were averaged over subjects and over the eight repeats of each
stimulus. These mean responses are displayed in the three-dimensional diagram of Figure
19. We can see that the pattern is very similar to that of the group of trials in Experiment
One where the changing variable was projected beat rate (Figure 4 on page 68). The
perceived intonation worsens as projected beat rate increases, and there appears to be little

effect of the other two variables (beat amplitude and method of controlling beat rate). The
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Beat Amplitude
Maximum Minimum
. 0 ] 7020
Projected 2 6987  Retuned interval
Beat 5 693.7 (sizes in cents)
Ra
3.737
(Hz) 10 i ~ Method of
25 © Controlling
Beat Rate
Frequency-
shifted partials
(interval is
700 cents)

Fig. 19. Experiment Two: Judgments of intonation of fifths. The response in each cell is the
average over 10 subjects and 8 trials. 9.0 = exactly in tune, 1.0 = very out of tune.

graph of mean response versus projected beat rate (Figure 20), is also very similar to the

analogous graph in Experiment One (Figure 5 on page 69).

Figure 21 shows the same data as Figure 20, but with separate plots for each of the
four stimulus conditions. The vertical bars display the standard deviation over subjects for

each stimulus.
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O Maximum Beat Amp, Retuned Interval
0O Maximum Beat Amp, Shifted Partials
A Minimum Beat Amp, Retuned Interval
<© Minimum Beat Amp, Shifted Partials

9 " i " o

Judged Goodness of Intonation

1 v T v v N v
-5 0 5 10 15 20 25 30

Projected Beat Rate (Hz)

Fig. 20. Experiment Two: Judgments of intonation of fifths. Each of the four
combinations of “beat amplitude” and “method of controlling beat rate” is
fitted with a second-order polynomial regression curve. Each point is the
average of 80 raw data points (10 subjects and 8 trials).
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Judged Goodness of Intonation

Judged Goodness of Intonation

9

81 Maximum beat
amplitude, shifted

74 partials

64

5.

44

3.

2.

1 v v r v v
S5 0 5 10 15 20 28 30
Projected Beat Rate (Hz)

9 o

84 ..
Minimum beat
amplitude, shifted

7 partials

61

5.

41

3.

2.

1 —

S 0 5 10 15 20 25 30

Projected Beat Rate (Hz)

Fig. 21. Experiment Two. Same data as Figure 20, but each stimulus condition is plotted
separately. Vertical error bars display the standard deviation over subjects for each stimulus.
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3.2.2 Statistical Analyses

The mean responses were run through the same descriptive and comparative

statistical routines as in Experiment One. The main results are given Table 10.

The most interesting result is that, as in Experiment One, the deletion of beating
partials didn’t tend to make the stimuli sound any more in tune. The implication is that
beating, per se, is unimportant for the perceived intonation of these stimuli. Neither of two
alternate explanations—the possibility of a negatively perceived change in timbre due to the
deletion of partials, or a possible persistence of other forms of beating such as beating

combination tones—seems adequate to explain this result.

Table 10. Analysis results, Experiment Two.

Mean Response 5.542

Standard Deviation 2227

Correlation of Mean Responses to:
Projected Beat Rate -.937
Beat Amplitude .04
Method of Controlling Rate .196

3-way ANOVA on Mean Responses:
Projected Beat Rate F=21.22 (df 4,1400), p<.01
Beat Amplitude F=.15 (df 1,1400), n.s.
Method of Controlling Rate F=3.55 (df 1,1400), n.s.
Rate x Beat Amplitude F=.21 (df 4,1400), n.s.
Rate x Method F=.64 (df 4,1400), n.s.
Beat Amplitude x Method F=.24 (df 1,1400), n.s.

Rate x Beat Amplitude x Method  F=.06 (df 4,1400), n.s.
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The conclusion, then, is that beating is unimportant for perceived intonation, at least
for these stimuli. Clearly, “projected beat rate” is important, which means simply that the
interval sounds more out of tune when either the interval is mistuned or inharmonicity is

increased.

Neither is there much effect of the method of controlling projected beat rate. Recall
that the method is either (a) mistuning the entire interval or (b) frequency-shifting only
certain partials. The positive correlation (.196) shown in Table 10 seems to indicate that
mistuning the interval tends to make it sound slightly more out of tune than does
introducing the inharmonicity needed to achieve the same projected beat rate.2 If this were
true, it would mean that for a given projected beat rate, shifting only a few partials
introduces less “out-of-tuneness,” in spite of the fact that it also introduces inharmonicity.
However, “method of controlling beat rate” doesn’t show up in the ANOVA averaged over
subjects as being significant at the .05 confidence level, so the correlation of .196 (which is

a relatively low correlation) can probably just be attributed to chance 3

Shifted periodicity pitch in inharmonic stimuli

It is possible that some of the effect I have been attributing to inharmonicity is instead
due to a change in the periodicity pitch caused by the shifted partials. However, this
potential contributor seems insufficient to explain the magnitude of the effect. To achieve
beat rates of 0, 2, 5, 10, and 25 Hz, the third partial of the lower note and its multiples (6,
9, 12, 15) were equally shifted up by -2.0, 1.3, 6.3, 14.5, and 38.9 cents, respectively. Recall

from the discussion on page 46 that Moore, Glasberg, and Peters (1985) found that only the

2. See the footnote on page 84 regarding the meaning of the direction of correlation.
3. It does appear, on the other hand, that some of the individual subjects judged the two methods of
controlling beat rate differently, as will be discussed below.
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first six harmonics affect the pitch, and a single partial shifts the pitch by about one sixth of
the partial’s frequency shift. If we assume an additive relation, our stimuli would have a
pitch shift of about one third of each partial’s frequency shift, since there are two effective
partials (the third and the sixth). This means that in the worst case (the 25 Hz projected beat
rate) the perceived size of the fifth might change by about 13 cents—which is somewhat
less than the JND for frequency ratio reported in the literature (discussed on page 39). The
average shift would be about 4 cents. Note that the shift in cents of the shifted partials is the
same as the shift of the entire tone in the “retuned interval” stimuli with the corresponding
projected beat rates (see page 61). Thus if periodicity pitch shift were the major factor in
the intonation of the “shifted partials™ stimuli, we might expect them to sound only about
one third as out of tune as the “retuned interval” stimuli at the corresponding projected beat
rates. But since the ANOVA did not find “method of controlling beat rate” to be significant,
it seems that the inharmonic stimuli are heard as being approximately as out of tune as the
“retuned interval” stimuli. This discrepancy indicates that some factor other than pitch shift
is dominant, pointing to the inharmonicity itself. Some of the subjects in fact reported
hearing inharmonicity in the stimuli, but the inharmonicity could also have affected the

judgments of any subjects who may not have recognized it as such.

The potential shift of periodicity pitch could have been reduced with an alternate
design that permitted different partials to be shifted in opposite directions, in an attempt to
cancel each other out and yield a net periodicity pitch equal to the fundamental. This
approach was not taken for two reasons. First, it would result in a set of simultaneous beat
rates that would not necessarily be integrally related. Not only would these differ from the
“harmonic series” of beat rates in the “retuned interval” stimuli, but the overall perceived

beat rate might be ambiguous, making it difficult to classify such stimuli according to
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projected beat rate. Secondly, Moore, Glasberg, and Peters (1985) found that the exact
contribution of each partial differed widely across individuals, so there is no guarantee that

periodicity pitch shifts could be eliminated with such a strategy.

It should be noted that even if shifted periodicity pitch accounted for some of the
effect that I have attributed to perceptual inharmonicity, this would not take away from the
finding that beat amplitude was nonsignificant, a finding which applied to strictly harmonic

stimuli as well.

3.2.3 Reliability of Responses

The reliability of the subjects’ responses was tested by examining responses to trials
containing the same stimulus. This was quantified by arranging the data in 8 columns of 20
rows, where each row corresponded to one stimulus and each column to a different group
of trials. (Thus, the first columin contained responses to the first 20 trials, the second column
contained responses to trials 21 - 40, etc.) A correlation matrix was computed based on this

data, and the mean correlation computed for each subject.4

Overall, the subjects were very consistent. (See Table 11.) However, subject 11, who
had the least musical training, was significantly more inconsistent, and therefore his results
were excluded from the analysis (as had been done for Subject 9 in Experiment One). The
mean correlation over subjects was 0.843 (or 0.853, excluding #11°s data). By comparison,
the mean correlation in Experiment One was -0.729 In Experiment One, the correlations

were computed between only two trials per stimulus pair, and the two trials had stimulus A

4. The diagonals of the correlation matrices (containing correlations of a column to itself, hence
scores of 1.0) were omitted when computing the mean correlation.
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Subject Correlation (r) Z-score
1 .892 1.432
2 .873 1.346
3 872 1.341
4 872 1.341
5 856 1.278
6 842 1.228
7 .840 1.221
8 .839 1.218
9 .833 1.198
10 806 1.116
11 749 971
Mean 0.843 1.245

Mean z-score: 1.245

Std. Dev. of z-scores: 0.127

#11’s score is 2.158 standard deviations below
the mean z-score.

Table 11. Experiment Two. Subject consistency:
correlation between repeated trials.

and B presented in reverse order. Experiment Two, with its 8 trials per stimulus, provides a

more stable check on the subjects’ reliability.

5. All that need concern us here is the absolute value of the correlations. The correlation value in
Experiment One is negative simply because stimulus A and stimulus B were switched in the two
trials considered to be “repeats.” The response scale compared the two stimuli and thus was inverted
depending on which of the two stimuli was presented first. In Experiment Two the trials contained
only one stimulus, and so the response scale had the identical meaning in the repeated trials, which
in this case really were exact repeats.

i O G .
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3.2.4 Per-Subject Results

Figures 22 - 24 display the per-subject results for Experiment 2. Each data point is
the average of eight trials for that stimulus. As before, the figures are presented in order of
decreasing subject consistency: Subject 1 is the one who gave the most consistent responses

from trial to trial for a given stimulus, Subject 10 the least consistent.

The general pattern of results is similar to Experiment One: intonation is judged to
be poorer as the projected beat rate increases, with a fairly consistent ordering by stimulus
type at 10 and 25 Hz. Most subjects agree with the ordering of the stimuli seen in the
average over subjects (Figure 20 on page 110). That is, for the points at 10 and 25 Hz, and
to a lesser extent for the point at 5 Hz, most subjects’ curves appear for the most part in the
same order from top to bottom as the curve for the data averaged over subjects—namely,
the top curve (best intonation) is “minimum beat amplitude, shifted partials,” followed by
“maximum beat amp, shifted partials,” then “minimurn beat amplitude, retuned interval,”
and finally “maximum beat amplitude, retuned interval.” In other words, subjects clearly
preferred the inharmonicity engendered by the “shifted partials” method of controlling beat
rate to the pitch mistuning that accompanies the “retuned interval” method. Subjects 1, 2,
and 6, however, rated “maximum beat amplitude, shifted partials” as sounding more in tune
than “minimum beat amplitude, shifted partials.” A few of the subjects rate the “maximum
beat amplitude, retuned interval” stimuli as worse than “minimum beat amplitude, retuned
interval.” This would be the expected pattern if beating were detrimental to intonation, but
the averaged data shows the reverse order (in contrast with the average from Experiment 1).

However, the differences here are not large.
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Fig. 22, Experiment Two, results per subject. (Continued in Figure 23.)
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Fig. 23. Experiment Two, results per subject. (Continued from Figure 22 and continued in Figure 24.)




Chapter 3. Experiment Two: Single Fifths 120

O Maximum Beat Amp, Retuned Interval
0O Maximum Beat Amp, Shifted Partials
A Minimum Beat Amp, Retuned Interval
© Minimum Beat Amp, Shifted Partials

9 9
8 Subject9  + 8 Subject 10
7 7
g £
gs- g 6
= E
= 51 r =5
w2
2
%4 F é 4
23| 3
% 3
221 32 L
1 1
o . - ’ .
-5 0 5 10 15 20 25 30 -5 0 5 10 15 20 25 30
Projected Beat Rate (Hz) Projected Beat Rate (Hz)

Fig. 24. Experiment Two, results per subject. (Continued from Figure 23.)
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At all rates, the pattern of Subject 9's data is close to that of the group average. A few
of the subjects judged the stimuli at zero Hz to be somewhat more out of tune than the
corresponding stimuli at 2 Hz, again bringing to mind the “rich listener” interpretation of
Roberts and Mathews (1984); however, none exhibits the extreme behavior in this regard

of Subject 7 in Experiment 1.

Subject 8 has absolute pitch. She seems to perceive the “shifted partials” stimuli as
somewhat more in tune than the other subjects do, suggesting she pays more attention to
pitch in judging intonation (since the inharmonic stimuli all have the standard equal-
tempered tuning). Subject 2, who has “close to perfect pitch,” also shows this tendency.
However, both subjects rate the 25-Hz “shifted partials” stimulus with maximum beat
amplitude as quite out of tune, similarly to the other subjects, suggesting that the fast
beating of this stimulus, perhaps added to its inharmonicity, overrides its fundamental

frequency ratio as a determinant of perceived intonation.

3.3 Comparison with Results of Experiment One

The results of Experiment One were somewhat unclear, since the data was divided
into three groups of trials, depending on which of the three main variables changed between
the two stimuli in each trial. In Experiment One, projected beat rate was significant
(p < .01) for trials in which the projected beat rate changed between stimulus A and
stimulus B, but not significant in trials where another variable changed. Similarly, the
method of controlling rate was significant (p < .01) for trials in which the method changed

between the two stimuli, but not in other trials.
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In Experiment Two, the ambiguity caused by the pairing of stimuli is gone. We see
that projected beat rate is again the strongest factor, while “method of controlling beat rate”
is much less important, and beat amplitude is completely nonsignificant. In other words,
these results indicate that increasing either the mistuning or the inharmonicity of a perfect
fifth tends to make it sound increasingly out of tune. While it appears that mistuning the
interval might have a slightly more detrimental effect on the perceived goodness of
intonation than does increasing the inharmonicity (when both are measured in terms of their
effect on projected beat rate), the differences could just be due to chance. The differences
in judgments occasioned by changing from minimum to maximum beat amplitude are no
greater than the inherent variability of the judgments. Thus it would seem that the effect of
“projected beat rate” cannot be attributed to beating itself, but to the changes in interval

tuning or inharmonicity that accompany any changes in “projected beat rate.”

The results of this experiment clearly reinforce those of Experiment One, validating
the use of the paired-comparison technique in the earlier experiment’s design, and

supporting the conclusions we made on page 102.
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Experiment Three: Major
Thirds

Experiment Two confirmed the results of Experiment One. Both experiments showed
that beating per se was not important for the perception of the intonation of the stimuli.
However, both experiments used the same interval: the perfect fifth. To help generalize
these results, it was desirable to study another musical interval for comparison. Since in
tuning theory perfect fifths and major thirds are often considered the most important
building blocks of musical scales,l and since these are the two intervals that Vos (1986)

used, an additional experiment was run using major thirds.

1. Of course, octaves are also extremely important, but most tuning theory has considered the 2:1
octave a virtually inviolable given. There are interesting exceptions: for example, Kolinski (1959)
proposed an equal-tempered tuning with the octave slightly stretched in order to make the perfect
fifth just, Wyshnegradsky (1972) described “non-octavian” microtonal scales, and John Pierce has
explored a scale based on the idea that the 3:1 ratio can replace the octave as the unit of transposition
under which pitch class is preserved (Mathews and Pierce [1989]). The practice of piano tuning also
makes frequent use of slightly stretched scales, constructed empirically rather than theoretically.
Several psychological studies show evidence that the subjective melodic octave is slightly larger
than a 2:1 ratio (Burns and Ward [1982]), in contradiction to the postulates of most tuning theory,
for which harmonic relations are central.

Besides historical precedent, another reason I did not study the octave is the difficulty of creating
stimuli analogous to those of the other experiments, since in an octave all the harmonics of the upper
tone beat with harmonics of the lower.
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4.1 Method

4.1.1 Stimuli

The stimuli were similar to those of the previous experiments, except that the
intervals were major thirds instead of perfect fifths. As before, there were two simultaneous
notes, each consisting of 16 equal-amplitude partials, with certain partials deleted in some
of the conditions. The temporal characteristics (amplitude envelope and duration) were
identical to the previous experiments. The upper note was now A4 (440 Hz) and the lower

note, which could be retuned, was again approximately F4. A complete specification of the

stimuli is given in the Appendix.

Constants

Harmonic musical interval (two simultaneous notes)

Pitch of upper note: A4 (440 Hz)

Pitch of lower note: approximately F4 (could be retuned; see variables below)

Time-invariant frequency spectrum

Flat frequency spectrum (0 dB/octave rolloff)

16 partials per note (1st 16 of harmonic series, though some may be deleted or made
inharmonic in some stimuli)

Duration: 1.5 seconds

Trapezoidal amplitude envelope

Attack portion of amplitude envelope: .05 seconds

Decay portion of amplitude envelope: .5 seconds

Beginning phase of all partials is 0.0 (not randomized phase), sine phase

Variables
(1) Beat amplitude (2 levels):

(a) maximum (beating partials have equal amplitude)2

2. In certain cases, a high partial of the upper tone was deleted, in order to remove a beat rate that
wasn’t a multiple of the projected beat rate. See the Appendix for details.
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(b) minimum (partial of upper note deleted, for each beating pair. See the
stimulus tables in the Appendix for details.)

(2) Projected beat rate (5 levels): 0,2, 5, 10,25 Hz

Note that this variable is present even when beat amplitude is zero. This is
because we want to test other effects of the methods used to control beat rate.

Also, a sixth level of —13.9 Hz is added for Method of Controlling Beat Rate
(a), in order to obtain an equal-tempered third for comparison with the equal-
tempered third used in Method of Controlling Beat Rate (b). Its projected beat
rate is given a minus sign to indicate that its direction of mistuning from the just
third is opposite to the direction used for the stimuli with rates of 2 Hz and
larger.

(3) Method of controlling beat rate (2 levels):

(a) Retuned interval

The entire lower tone (F4) is transposed (i.e., all its partials are shifted an
equal amount in log frequency). This method preserves harmonicity but changes
the interval tuning. The projected beat rates of —13.9, 0, 2, 5, 10, and 25 Hz yield
intervals of 400, 386.3, 384.3, 381.4, 376.5, and 361.9 cents, respectively.

(b) Frequency-shifted partials
The partials in the lower tone that beat with partials of the upper tone (or that
would beat if the partials of upper tone were not deleted) are shifted in
frequency. This method introduces inharmonicity but preserves the fundamental
frequency ratio.

(4) Tuning (2 levels, for Method of Controlling Beat Rate (b) only):

(1) Just intonation = 386.3 cents. F4 = 352.000 Hz.
(2) Equal temperament = 400 cents. F4 = 349.228 Hz.

For Method of Controlling Beat Rate (a), tuning is not an independent
variable.
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Note that we have introduced a new variable, tuning, that applies only to the stimuli
where the method of controlling beat rate was “shifted partials.” This is because the just and
equal-tempered thirds are noticeably different in size (14 cents’ difference), making it
difficult to determine which of these two tunings should be used for the stimuli in which
tuning does not change with beat rate (namely, the “shifted partials” stimuli). By including
both tunings, we can avoid making any assumptions about which tuning would be
considered the standard. This also enables us to reach direct conclusions about subjects’
preference for just intonation versus equal temperament, independent of beating and

inharmonicity.

In Experiments One and Two, we had no “tuning” variable for the “shifted partials”
stimuli; only the equal-tempered interval was used. That was because the difference in size
between the equal-tempered and just perfect fifths is very small—only two cents, which is
about an order of magnitude smaller than the JND (just noticeable difference) for frequency
ratio.3 When musicians can discriminate between just and equal-tempered fifths, they no
doubt use other cues such as beating, rather than the actual size of the interval. (If such a
statement seems contradictory in a study whose primarily result downplays the importance
of beating, consider that we addressed only intonation judgments, not discrimination
between beating and non-beating stimuli nor identification of just intonation versus equal
temperament. But it seems likely that with stimuli such as ours, in which beat rate is made
independent of tuning, subjects would find it more difficult to identify whether a stimulus
was just or equal-tempered. This prediction is supported by Vos’s (1982) finding that

discrimination thresholds for tuning are determined primarily by beat rate.)

3. See the discussion of ratio JND’s on page 39.
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4.1.2 Experimental Design

There were 30 unique stimuli and 120 trials. Each stimulus therefore occurred four
times in the course of the experiment. The order of the stimuli was randomized within each
of the four groups of 30 stimuli. Before doing the experiment itself, each subject did a “trial

run” consisting of 60 trials, with each stimulus occurring twice.

Note that although there are six levels of projected beat rate for the condition where
the method of controlling beat rate was “retuned interval,” there are still just 5 projected
beat rates x 2 beat amplitudes x 3 “methods” = 30 unique stimuli. This is because the
stimulus with a zero-Hz projected beat rate and the method “retuned interval” is actually
the same as the stimulus with a zero-Hz projected beat rate and the method “frequency-
shifted partials with just intonation tuning.” Since these conditions use the same stimulus,
the additional four trials were omitted, and the same judgments were used for both
conditions in the analyses. This explains why the results at zero Hz are identical for the
methods “retuned interval” and “frequency-shifted partials with just intonation tuning” (see
Figure 25 on page 131). Similarly, there are cells in the figure for —13.9 Hz and the method
“frequency-shifted partials with equal-tempered tuning,” but these are just the same trials
as the “retuned interval” method at —13.9Hz. In both cases, the numbers are shown in

parentheses in Figure 25, to indicate the redundancy.

4.1.3 Apparatus

The apparatus was identical to Experiment Two’s, including the computer program’s
user interface. (See page 62 and page 105 for the apparatus of Experiment One and Two,

respectively.)
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Table 12. Subjects in Experiment Three.

Subject] Consis-| Age | Years | Musical Years of | Highest | Experi- | Years | Ever Comments
tency of activity: musical music | ence of before
ratin musical| Instruments | education |degree | with study |beena
Otol experi- | studied for LTCIE non- in [subject
ence | more than stan- |psycho-| ina
3 years elogn dard | acous- |psycho
(including | S [ Y |8 tunings | tics |acous-
voice); sfrje ? tic
Composition | ¢ | S | M experi-
nife|b ment?
s|s |l
e
1 790 | 31 26 Piano, voice; (3012 8 | MFA.[ Yes 172 | Yes |Has composed some
composition microtonal music
2 747 135 26 Trombone, [10[17 (26| B.A. Yes 1 Yes | Some experience with
voice, piano gamelan & 1/4-tones
3 676 {36 | 20 Piano,re-hu; | 8 | 8 | 4 | M.A. No 0 No | Re-huis a Chinese
composition stringed instrument
4 619 | 18 11 |Violin, voice 11| 8 | 8 | None No 0 Yes | Absolute pitch; female
5 557 | 35 10 Piano; 10110 0 | MM. No 0 Yes Some listening to
composition 1/4-tone music
6 466 | 41 15 Piano; 1217 ({3 MA. Yes 0 Yes Gamelan; composing
composition w. alternate tunings;
female
7 458 | 29 7 Recorder, |2 | 1 |13 | None Yes 0 No | Pythagorean tuning in
brass insts. early music; female
8 439 | 38 26  |(Guitar,piano | 8 | 8 | 15| M.A. No 1 Yes Harpsichord tuning
9 396 | 20 3 [Guitar] 1 |1/2] O | None No 12 Yes
10 381 29 9 Clarinet 410} 0 ] None No 2 Yes Possible tinnitis

continued below
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Table 12 (continued). Subjects in Experiment Three.

Subject] Consis-| Age | Years | Musical Years of |Highest | Experi- | Years | Ever Comments
tency of activity: musical music | ence of before
ratin musical| Instruments | education |degree | with study |beena
Oto1l experi- | studied for LTCIE non- in subject
ence | more than stan- |psycho-| ina
3 years efo|nm dard | acous- |psycho-
(including | S | Y [S tunings | tics |acous-
voice); s|rjle ? tic
Composition [ © | S | M experi-
nfe|b ment?
s |s |1
e
11 346 | 26 20 Piano; 10512 | BM,, | Yes 1 No Poss. irregularity with
composition B.M. hearing in left ear;
composing piece in
nonstandard tuning
12 341 | 36 25 Piano 1511512 | MA. No 2 Yes
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4.1.4 Subjects

There were twelve subjects, who had an average of 16.5 years of musical experience.
Table 12 (pages 128 and 129) gives details on the subjects, who are ordered by the

consistency of their responses.* All the subjects were volunteers.

Subject 1 had been a subject in Experiment One. (He is called Subject 6 in the chapter
describing that experiment.) Subjects 11 and 12 had been subjects in Experiment Two (in

the description of which they are Subjects 4 and 10, respectively).

4.2 Results

4.2.1 Graphs of Mean Responses

Figure 25 shows the responses to the stimuli, averaged over subjects and over

repeated trials.

Immediately evident from this diagram is the homogeneity of responses along the
different dimensions. Almost all the stimuli have mean responses in the neighborhood of 5
to 7. It is only the stimuli with the “retuned interval” method of controlling beat rate that
show a strong pattern of decreasing “in-tune-ness” with increasing projected beat rate.
Since there appears to be little effect of projected beat rate for the “shifted partials” method
of controlling rate, inharmonicity may not be a strong factor for the perceived intonation of

the major third stimuli. And as in the other experiments, beat amplitude—the horizontal

4. The subjects were male, except where noted in the table. (See page 105, footnote 1.)
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Beat Amplitude
Maximum Minimum
-13.9 5854

Projected ©
Bowr 2
h s
po

Retuned interval
1 3814 (sizes in cents)

10
25

Frequency-shifted
partials,

just intonation

(386.3 cents)

. Frequency-
iy 6812 | shifted

6.062 | partials,

2
0

Fig. 25. Experiment Three: Judgments of intonation of major thirds. The response in each
cell is the average over 12 subjects and 4 trials. 9.0 = exactly in tune, 1.0 = very out of tune.
The cells at 0 Hz with the “retuned interval” method refer to the same trials as those at 0 Hz
with the method “frequency-shifted partials, just intonation,” since these stimuli can be
interpreted either way. (No shifting is necessary to achieve a zero-Hz beat rate for a just
interval.) Similarly, the cells at -13.9 Hz with the method “frequency-shifted partials, equal
temperament” are the same as those at -13.9 Hz with the method “retuned interval.”

dimension in the figure—appears to have very little effect. Each column on the left is

similar to its neighbor on the right.

6.854 ] temperament
: > (400 cents)
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It can be seen in Figure 25 that it makes sense to use a minus sign for the projected
beat rate of —13.9 Hz. First, this preserves the correct order of the resultant interval sizes in
cents (shown on the right-hand side of the columns labeled “retuned interval”). If we had
instead used +13.9 and kept the projected beat rates in order, the 400-cent interval would
come between 376.5 and 361.9. Second, and more important, the subjects’ responses
clearly show that the perceptual ordering is the one with —13.9. It makes little sense to
imagine any perceptual difference between a positive and negative beat rate, however. If
beat rate were the dominant criterion for intonation, we would expect the responses for the
-13.9 Hz interval to be in the neighborhood of the 10-Hz one. That they are instead in the
neighborhood of the zero-Hz tone is further evidence that interval tuning is the dominant
factor for the perception of these stimuli, since the pattern of judgments ﬁts the ordering

according to interval tuning, and not according to the absolute value of the beat rate.

The plot of mean response versus projected beat rate (Figure 26 on page 133) is also
interesting. Here it is immediately evident that the stimuli with the “retuned interval”
method of controlling beat rate are judged differently from those with the “shifted partials”
method. The former follow the diagonal pattern that was seen in the graphs of the perfect
fifth experiments, whereas the latter are essentially horizontal, indicating no effect of
projected beat rate. As described under “Experimental Design” on page 127, the two
stimuli at —13.9 Hz are the equal-tempered intervals with harmonic partials, which can be
interpreted either as “retuned intervals” or as “shifted partials, equal temperament” (where
the partials are shifted zero cents to achieve the —13.9 Hz projected beat rate). Note that
these two values fall on the diagonal connecting the stimuli with the “retuned interval”
method, but they also can be grouped horizontally with the stimuli having the “shifted

partials” method. Since they have about the same judged goodness of intonation as the other
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O Maximum Beat Amp, Retuned Interval
V Max Beat Amp, Shifted Partials (Just)
0O Max Beat Amp, Shifted Partials (ET)
® Minimum Beat Amp, Retuned Interval
¥ Min Beat Amp, Shifted Partials (Just)
8 Min Beat Amp, Shifted Partials (ET)

9
84
g
% 74 ]
]
2
S6 |
=) O
%
o 51
S
o]
2 o
&}
3
80
=)
3
I

-15 -10 -5 0 5 10 15 20 25 30
Projected Beat Rate (Hz)

Fig. 26. Experiment Three: Judgments of intonation of major thirds. The various combinations of
beat amplitude, method of controlling beat rate, and tuning are fitted with second-order polynomial
regression curves. Each point is the average of 48 raw data points (12 subjects and 4 trials). To tell
which curve belongs with each symbol, see the points at 25 Hz.There are four symbols at—13.9 Hz:
a white circle superimposed upon a white square, and a black circle superimposed upon a black
square (the black circle is indistinguishable). The circles and squares coincide here because there
were really only two stimuli at —13.9 Hz, but they could each be interpreted two ways. (See the text.)

equal-tempered stimuli, this is further evidence that interval tuning is the dominant factor

in intonation for major thirds, just as it was found to be for fifths.

Figures 27 and 28 on pages 134 and 135 show the results separated by stimulus

condition, with vertical error bars depicting the standard deviation over subjects.
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Fig. 27. Experiment Three. Same data as Figure 26, but each stimulus condition is plotted
separately. Vertical error bars display the standard deviation over subjects for each stimulus. Stimuli
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with maximum beat amplitude. (Continued in Figure 28).
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Fig. 28. Experiment Three. Continuation from Figure 27 of graphs with error bars showing
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standard deviation over subjects. Stimuli with minimum beat amplitude.
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Mean Response 5518
Standard Deviation 1.346
Correlation of Mean Responses to:
Projected Beat Rate -.545
Beat Amplitude -.01
Method of Controlling Rate 591

Table 13. Analysis results, Experiment Three. Descriptive statistics. “Method of Controlling
Rate” here is considered to have 3 values: “retuned interval,” “shifted partials, just intonation
tuning,” and “shifted partials, equal temperament tuning.”

4.2.2 Statistical Analyses

Table 13 shows some of the analytical results. The average response is slightly higher
than it was for perfect fifths, suggesting that subjects are less particular about the intonation
of major thirds. One might advance the alternate explanation that, for a given beat rate, the
major thirds were mistuned less—or their partials frequency-shifted less—in terms of cents
than were the fifths, since the beating partials are higher in frequency for the major third
and thus a smaller mistuning (or frequency shift) is required to yield a given beat rate.
However, the overall range of tunings was about the same, since the thirds included the
extra equal-tempered stimuli, with a beat rate of —13.9 Hz. The thirds thus had a range of

38.1 cents in comparison to the fifths’ 40.9 cents.?

5. Note that the range in terms of beat rate was also the same—if one considers perceptually
meaningful beat rate, since —13.9 Hz would be heard as 13.9, making the range of the thirds and the
fifths both 0 - 25 Hz. We have more to say about the amount of frequency shift relative to fifths on
page 149.
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The mean responses were about equally correlated to “projected beat rate” and
“method of controlling rate,” and completely uncorrelated to beat amplitude. Notice that the
correlation of responses to projected beat rate is rather lower than it was for perfect fifths,
and the correlation of responses to method of controlling beat rate is higher. (The values for
fifths in Experiment Two were —.937 and .196, respectively). This reflects the horizontal
nature of the regression curves for the inharmonic stimuli on the one hand, and the greater

separation between the curves for the inharmonic and the harmonic stimuli on the other.®

The analysis of variance routine was run on three separate groups of trials, because
of the asymmetry introduced by the two different values of interval tuning (just intonation
and equal temperament) for the stimuli with the “shifted partials” method of controlling
beat rate. Also, the stimuli with the —13.9-Hz projected beat rate were omitted from the

ANOVAs. Table 14 (page 138) displays the results.

Surprisingly, there is only one significant variable: method of controlling beat rate,
for the analysis of the “retuned interval” method versus the “shifted partials” method with
equal-tempered tuning. These correspond to the highest and lowest pairs of curves on the
regression plots. Given the plots, it is somewhat surprising that, according to the ANOVA
results, there is no significant interaction between rate and method—i.e., the pattern of
changing judgments of intonation with changing projected beat rate is not reliably different
for the different methods of controlling beat rate. We might also have expected the
inharmonic stimuli tuned in just intonation to be significantly different from the harmonic
stimuli (i.e., those with the “retuned interval” method of controlling beat rate). The lack of

significance in these cases may have to do with the overlap of the curves at the lower

6. See the footnote on page 84 regarding the method of computing correlation.
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Table 14. Analysis results, Experiment Three. Analyses of variance (ANOVAs).

Retuned Interval vs. Shifted Partials, Just Intonation:

Projected Beat Rate F=2.127 (df 4,720), n.s.
Beat Amplitude F=.203 (df 1,720), n.s.
Method of Controlling Rate F=3.270 (df 1,720), n.s.
Rate x Beat Amplitude F=.069 (df 4,720), n.s.
Rate x Method F=.932 (df 4,720), n.s.
Beat Amplitude x Method F=.001 (df 1,720), n.s.

Rate x Beat Amplitude x Method = F=.079 (df 4,720), n.s.

Retuned Interval vs. Shifted Partials, Equal Temperament:

Projected Beat Rate F=1.814 (df 4,720), n.s.
Beat Amplitude F=.004 (df 1,720), n.s.
Method of Controlling Rate F=9.037 (df 1,720), p<.01
Rate x Beat Amplitude F=.127 (df 4,720), n.s.
Rate x Method F=.978 (df 4,720), n.s.
Beat Amplitude x Method F=.114 (df 1,720), n.s.

Rate x Beat Amplitude x Method F=.034 (df 4,720), n.s.

Shifted Partials; Just Intonation vs. Equal Temperament:

Projected Beat Rate F=.244 (df 4,720), n.s.
Beat Amplitude F=.009 (df 1,720), n.s.
Method of Controlling Rate F=1.575 (df 1,720), n.s.
Rate x Beat Amplitude F=.049 (df 4,720), n.s.
Rate x Method F=.036 (df 4,720), n.s.
Beat Amplitude x Method F=.132 (df 1,720), n.s.

Rate x Beat Amplitude x Method F=.029 (df 4,720), n.s.
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projected beat rates, and also with the greater error term, i.e., less consistency, for major

thirds (as discussed below).

4.2.3 Reliability of Responses

Table 15 (on page 140) shows the correlations between repeated trials of the same
stimulus, averaged across stimuli. The average correlation across all stimuli and all subjects
was 0.518. This is quite a bit lower than with perfect fifths; the correlations in Experiment
One and Two were .729 and .843 respectively.7 In other words, subjects judge the
intonation of major thirds less reliably than that of perfect fifths. This may be related to the
fact that equal-tempered thirds differ significantly from just thirds, making it harder to
imagine an unambiguous reference point, whereas the just and equal-tempered fifths are
very close. This result is not particularly surprising, since not only much of the tuning
theory literature, but also previous psychoacoustic research, has indicated that listeners are
more sensitive to mistuning of the fifth than of the third. The range of the correlations is
also much iarger than for fifths; some subjects judged the thirds more consistently than

others did.

Each correlation score is the mean of that subject’s correlation matrix, where the
columns of the data input to the correlation routine were that subject’s responses to the 4

different repeats of the 30 stimuli. (The input data had 4 columns and 30 rows.) The

7. Note that the correlation was computed on the basis of two repeated trials per stimulus in
Experiment One as opposed to eight in Experiment Two and four in Experiment Three. (Actually,
in Experiment One it was two trials per pair of stimuli, since a trial consisted of two stimuli in
alternation. The two “repeated trials” were slightly different in that one presented the stimuli as
“ABAB...” and the other as “BABA....” Thus the correlation value there was actually —.729 rather
than .729, since the response scale compared the two stimuli and thus was inverted depending on
which of the two stimuli was presented first.)




Chapter 4. Experiment Three: Major Thirds 140

Subject Correlation (r) Z-score
1 790 1.071
2 747 .966
3 676 .822
4 619 723
5 557 629
6 466 .505
7 458 495
8 439 471
9 396 419
10 381 401
11 346 361
Mean 0.518 0.602

Mean z-score: 0.602

Std. Dev. of z-scores: 0.243

2 standard deviations below the mean z: .116
2 standard deviations above the mean z: 1.088

Table 15. Experiment Three. Subject consistency:
correlation between repeated trials. All subjects are
within 2 standard deviations of the mean z-score.

diagonals of the correlation matrices (containing correlations of a column to itself, hence

scores of 1.0) were omitted when computing the mean correlation.

4.2.4 Per-Subject Results

The per-subject results for Experiment Three are shown in Figures 29 - 31 (pages
142 - 144). Each data point is the average of four trials for that stimulus. (Recall from

page 127 that there are four cases where a given stimulus is considered part of two different
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“curves.” As seen more clearly in the three-dimensional diagram [Figure 25 on page 131],
at ~13.9 Hz the “retuned interval” and “shifted partials, equal-tempered” curves share the
same stimuli, as do the “retuned interval” and “shifted partials, just intonation” curves at

zero Hz.) Again, the figures are presented in order of decreasing subject consistency. See
Table 12 on page 128 for the consistency ratings and details about each subject’s musical

experience.

Inspecting the plots, we notice that for the “retuned interval” stimuli, all subjects
exhibit the same trend observed in the averaged results (Figure 26 on page 133), as well as
in the results of the previous two experiments: intonation is judged progressively poorer as
the projected beat rate increases to 25 Hz. Many but not all subjects also show this effect
to some extent for the intervals with shifted partials (whether just or equal-tempered), but

the range of responses is much more limited than for the retuned intervals.

Subject 8 is unusual in that he employed a rather limited extent from the range of
possible responses, giving the most out-of-tune stimulus an average rating of only 4.5.
(Recall that the range was 1 t0 9, and a rating of 5 was labelled “somewhat out of tune.”)
This subject’s average rating was the highest, 7.21, just about halfway between exactly in
tune (9) and somewhat out of tune (5). He also used less of the range than any of the others,
with a standard deviation of .90. Most of the subjects made use of the available range from

1 to 9, but this subject judged nearly all the stimuli to be at least somewhat in tune.

Preference for tuning system

It is interesting to examine the individual data for indications of preference between
just intonation and equal temperament. Recall that in the averaged data (see Figure 25 on

page 131), the equal-tempered thirds are rated higher in every case than the corresponding
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Fig. 29. Experiment Three, results per subject. (Continued in Figure 30.)
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Fig. 30. Experiment Three, results per subject. (Continued from Figure 29 and continued in Figure 31.)
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Fig. 31. Experiment Three, results per subject. (Continued from Figure 30.)
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just stimuli, although the ANOVA for shifted partials (just intonation versus equal
temperament) did not show this difference to be significant (Table 14 on page 138). The
plots of Subjects 3 and 8 make it appear that they prefer just thirds. Subject 3 judged the
stimuli at -13.9 Hz, which are equal-tempered, to be more out of tune than did the other

subjects, making his curves more arch-shaped than the others’.

Subjects 5, 6 and 7 don’t display much visible difference between the two tunings in
their plots. Subjects 1, 2, 9, and 10 have a visibly greater than average separation between
the two pairs of “shifted partials” curves, suggesting a greater preference for equal-

tempered thirds.

Subjects 1, 6, and 11 have composed music in nonstandard tunings. Subjects 1 and
11’s response patterns are similar to the average, although subject 1 has a greater than
average preference for equal temperament over just intonation. Subject 6, however, shows
no clear pattern suggesting a preference for just intonation or equal temperament. Unlike
Subject 1, Subject 6 works primarily with just intervals in her music with nonstandard
tunings, which probably accounts for the fact that she judges the just thirds to be no less in
tune than the equal-tempered ones. Her response to the equal-tempered thirds with the
-13.9 Hz projected beat rate (which correspond to the “normal” equal-tempered third,

having no inharmonicity) is lower than average.

It must be remembered that these data represent only one interval of the tuning
system, presented in isolation, so caution is advised in drawing conclusions about an
individual’s preference for an entire tuning system. However, the major third is a very
important interval in differentiating just intonation from equal temperament, since there is

14 cents’ difference between the two tunings, while for perfect fifths and fourths the




Chapter 4. Experiment Three: Major Thirds 146

difference between the two tunings is only 2 cents. (With the exception of the minor third,
which has a 16-cent difference, all other harmonic intervals are less frequent in traditional
music. For our purposes, the inversions of both thirds, namely the minor and major sixths,
can be considered equivalent to the corresponding thirds. Because they are inversions of the
thirds, they have the same differences between the two tunings as the respective thirds.)

Thus individuals’ judgments of major thirds are likely to be very influential in determining

their preference for just intonation vis-a-vis equal temperament.

Beat amplitude

In the data averaged over subjects (Figure 26 on page 133), the curves for the two beat
amplitudes are not greatly separated for a given “method.” In the individual plots, though,
it seems that where a subject has a clear separation of the two curves, it is usually the one
with minimum beat amplitude that is higher, suggesting that the subject prefers minimally
beating intervals for those particular stimuli. For example, subjects 2 and 10 have rated the
minimally beating equal-tempered stimuli in the range from 5 to 25 Hz as more in tune than
the maximally beating ones, and subject 8 has a similar response to the corresponding just
stimuli. In this regard it is interesting to note the responses of subjects 7 and 9. Subject
9 is unique in that the two highest curves never cross—every single equal-tempered
stimulus is rated (on the average) to be more in tune when it has a minimum beat amplitude.
This is in accordance with what one might expect from the literature, if there is to be a
difference at all. However, this same subject shows exactly the opposite pattern with the just
intervals! Here, the upper curve is the one with maximal beating, and again every point on
the upper curve is higher than the corresponding point on the lower curve, with the

exception of the point at 5 Hz, where they coincide.
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Subject 7 also shows this sort of unexpected pattern for the just intervals: all points
in the curve for the maximally beating just stimuli lie above the corresponding points with
minimum beat amplitude, and the separation of the two curves is even greater than Subject
9’s. We may speculate on why a subject would seem to prefer beating in just intervals. If
a subject is accustomed to equal temperament, with its beating thirds, he or she might find
that beating in a just interval makes it more similar to the familiar equal-tempered third, and
thus rate it higher than the corresponding stimulus with minimum beat amplitude. Subject
7 is accustomed to Pythagorean intonation from her performance of early music, and
Pythagorean thirds beat even faster than equal-tempered thirds. So for this subject, the
beats might be effective in rendering just thirds, and even equal-tempered thirds, more
acceptable. Note that this subject also rates the beating equal-tempered thirds higher than
the equal-tempered thirds having minimum beat amplitude, with two exceptions. (All of
this speculation is unsupported by analyses showing the differences to be significant, of
course. Also, the patterns we observe visually tend to be limited to the 5 - 25 Hz range, and
don’t occur for all the stimuli.) For the retuned intervals, Subject 7’s curves for minimum
and maximum beat amplitude have more overlap. Since these intervals are tempered in the
direction away from the Pythagorean third—increasingly smaller than equal-tempered as
the projected beat rate increases—one would expect this subject to hear them as having

poor intonation, just as the other subjects do.

Absolute pitch

Subject 4 has absolute pitch. However, her responses are not unusual; to the contrary,
they are perhaps the closest of any subject’s to the responses averaged over subjects.
(Compare her graph [page 142] with the plot of the average responses on page 133.)

Recall that the two subjects in Experiment Two with absolute pitch showed some tendency
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to rate the “shifted partials” stimuli (which were equal-tempered) as more in tune than did
the other subjects, at least at the higher projected beat rates. (See page 121.) We supposed
that this suggests that the subjects with absolute pitch tended to use pitch relations (rather
than secondary cues such as inharmonicity) to evaluate the intonation. In this experiment,
however, subjects in general didn’t show much effect of projected beat rate for the “shifted
partials” stimuli (as illustrated by the flatness of the curves for both equal temperament and

just intonation), so Subject 4 does not stand out.

We probably do not have enough data from these experiments to generalize about the
performance of subjects with absolute pitch, but there is no evidence here that their
performance in judging intonation is exceptional. Subject 4 in Experiment Three had a
consistency rating that was only 0.5 standard deviations above the mean z-score, whereas
Subject 1 (who does not have absolute pitch) had the highest consistency, nearly two
standard deviations above the mean z-score. Similarly, in Experiment Two, the two subjects
with absolute pitch had z-scores 0.8 standard deviations above the mean and 0.2 below the
mean, respectively. By comparison, the subject with the highest consistency in Experiment
Two did not have absolute pitch and his z-score was 1.5 standard deviations above the

mean.

4.3 Comparison of Results of Experiment Three with the Other
Experiments

The results of Experiment Three are somewhat different from those of the previous
two experiments. The pattern of increasing “out-of-tuneness” with increasing projected

beat rate, found in both Experiment One and Experiment Two, is duplicated in Experiment
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Three only for the stimuli with the “retuned interval” method of controlling beat rate. For
stimuli with the “shifted partials” method, projected beat rate has little effect. The latter

phenomenon apparently contributes to the lack of an overall significant effect for projected
beat rate, as measured by the three ANOVAs. However, it does probably contribute to the
significance of the “method of controlling beat rate,” since the patterns are so different for
“retuned interval” and “shifted partials.” In Experiment Two, the difference was no greater

than might have happened by chance variation alone 3

The divergent patterns for the harmonic and inharmonic stimuli (that is, the “retuned
interval” and “shifted partials” stimuli, respectively) can be explained by examining which
partials are frequency-shifted. In the perfect fifth étimuli, the third partial of the lower tone
and its multiples (6, 9, 12 and 15) were candidates for frequency shifting. In the major third
stimuli, by contrast, the candidate partials were multiples of the fifth partial of the lower
tone. Thus there were fewer of them-—only three in the group of 16 partials. So if the
amount of shift were equal, the overall inharmonicity would be less than with perfect fifths,
lessening the contribution of inharmonicity to any potential effect of projected beat rate

among the stimuli with the “shifted partials” method of controlling beat rate.

There is an additional reason why the inharmonic major thirds were not judged to be
as out of tune as the corresponding perfect fifths. Not only are the inharmonic partials fewer,
but their amount of shift is less. Recall from page 113 that for the fifths, the partials were
shifted -2.0, 1.3, 6.3, 14.5, and 38.9 cents for the projected beat rates of 0, 2, 5, 10, and 25

Hz, respectively. The average shift of these stimuli is 12.6 cents (taking the absolute values

8. Recall that in Experiment One, a significant difference for this variable was found only for the
trials in which “method of controlling beat rate” changed between stimulus A and stimulus B. As
mentioned earlier, the analyses of these trials was problematic and thus should be given less weight.
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of each shift). The inharmonic major thirds in just intonation were shifted somewhat less:
2.1, 4.8,9.7, and 24.4 cents, for 2, 5, 10, and 25 Hz, with an average of 10.3 cents. The
equal-tempered thirds were shifted 13.7, 11.7, 8.8, 3.8, and ~11.1 cents, for the
corresponding rates of 0, 2, 5, 10, and 25 Hz. The average shift here is 9.8 cents, so as a
group, the major thirds had an average shift of about 10 cents. Combining this fact with the
smaller number of shifted partials (three, versus five for the fifths), the total inharmonicity
of the thirds is about 75% that of the fifths, if we simply multiply these numbers. (These
calculations exclude the stimuli that can be considered members of both the “shifted
partials” and the “retuned interval” categories—namely, the just third with the zero-Hz
projected beat rate, and the equal-tempered third with the —13.9-Hz rate. Including them,

the relative inharmonicity would be only 40%.).

In terms of potential shift of periodicity pitch, the thirds also have an advantage. Since
only the first six partials are said to affect periodicity pitch (Moore, Glasberg and Peters
[1985]), the major third has only one inharmonic partial affecting pitch, whereas the fifth
has two. If we accept the approximation that the pitch is shifted by one-sixth of the partial’s
frequency shift, the maximum periodicity pitch shift in the “shifted partials” thirds is 4.1
cents for the just third at the 25 Hz rate, and the average pitch shift is only 1.4 cents

(compared to 4.2 cents for the fifths).

Notice that with the equal-tempered thirds, the inharmonicity decreases as beat rate
increases (the shiftis 13.7, 11.7, 8.8, 3.8, and -11.1 cents for the five rates from 0 to 25 Hz).
This is because the natural, unshifted equal-tempered third beats fairly rapidly compared to
either the just third or the equal-tempered fifth; thus more inharmonicity is required to
achieve a projected beat rate of zero Hz, and decreasing the inharmonicity increases the

rate. The reversed direction was a consequence of the shifting algorithm, given in the

I
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Appendix, and has the virtue of minimizing inharmonicity for these stimuli. It also
probably weakens the correlation between judged goodness of intonation and projected

beat rate in the analytical results.

The harmonic stimuli, by contrast, were severely mistuned for the higher values of
projected beat rate, just as they had been for perfect fifths. (In fact the ranges of mistuning
from equal temperament are similar—for the extreme mistuning of 25 Hz, the retuned
perfect fifth had a value of 661 cents and the retuned major third had a value of 362 cents,
placing each about 40 cents below the equal-tempered interval.) Thus the stimuli with the
“retuned interval” method of controlling beat rate would be strongly affected by projected
beat rate, for both fifths and thirds.

Where the results of Experiment Three unequivocally support those of the earlier two
experiments is in the nonsignificance of beat amplitude. Again, it made virtually no
difference in judgments of mistuning whether the beating partials were present or not. Since
this is probably the most interesting result of the present research, in light of earlier studies
which it seems to contradict, the consistency across the two intervals is a welcome

strengthening of the result.
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Chapter

Conclusions

This final chapter presents the overall conclusions of this research, and suggests
directions for future work. First, however, a comparison of the present results with those of
Vos (1986) will be instructive, since the present study is more closely related to that work
than to any of the other literature. (Review Chapter 1, page 30 for a summary of Vos’s

study.)

5.1 Comparison with Results of Vos (1986)

5.1.1 Experiments with Perfect Fifths

We first examine Vos’s results in terms of the tempering of the interval in cents.
Figure 32 shows the results of the experiment in which subjects rated the “subjective
purity” of perfect fifths; these data were obtained by visual inspection of Figures 2a, 2b, 4a
and 4b of Vos (1984). In Vos’s figures, negative values on the x-axis represent intervals
smaller than the just version, and positive values represent intervals larger than just. (This

is true of Vos’s plots whether the x-axis measures tempering in cents or beat rate in Hz.)
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Note that Vos used more values for interval tuning than the present study, and included an
equal number of temperings on each side of the just interval.! Figure 32 exhibits a clear

separation between the upper and lower curves, showing that the removal of beating (by the
use of odd-numbered partials) increased the subjective purity. Vos’s analyses demonstrate

that the difference between these curves is statistically significant.

In order to better compare Vos’s results to the present results, we next plot the same
results in terms of projected beat rate rather than tempering in cents (Figure 33)2, Although
Vos studied fifths that were both larger and smaller than the just fifth, here we show only
the negative temperings (i.e., tunings of the fifth equal to or smaller than the just fifth) from
Figure 32, since the present study only used negative temperings. Note that although my
stimuli were tempered in the direction smaller than the just interval® (with the exception of
the equal-tempered third), I normally referred to the projected beat rates as positive, since
from a perceptual point of view, negative beat rates are meaningless. This posed no
problem, since almost all my stimuli were tempered in the same direction from the just
interval. However, since Vos used both negative and positive temperings, for purposes of
comparison we need to flip the orientation of his graph such that a positive beat rate

corresponds to a negative tempering in cents and vice versa.t

1. Vos’s subjects actually rated the subjective purity of intervals on a scale from 1 to 10; I have
transformed the values to a range of 1 to 9 for purposes of comparison with my data. One reason I
had chosen an odd number of possible responses for my experiments was to have an exact midpoint,
corresponding to the value 5.

2. Vos also plotted his results in terms of beat rate; see his Figures 4 and 5, for example. Unlike the
present study, the stimulus variable was tempering in cents (0, £2, 4, 6, 18, 10, £15, +20, 25,
135, and £50 cents), and the fundamental frequencies were varied such that the midpoint of the
interval was any of ten frequencies symmetrically surrounding 370 Hz. This means that stimuli with
a given tempering in cents actually had differing beat rates. However, the variation is not large, so
Vos’s change of x-axis variable seems justifiable, and a given point on the x-axis can be interpreted
as the mean beat rate for that group of stimuli (or very close to it).

3. They were made smaller than just in order that the direction of increasing beat rate be the same as
the direction away from the standard versions of the major third, including the just, equal-tempered
and Pythagorean versions.
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Figure 34 recapitulates the main results of Experiment 2 of the present study. Note
the similarity of the lower two curves—corresponding to the stimuli where the interval was
retuned—to the lower of Vos’s curves in Figure 33. Since Vos’s stimuli also had retuned
intervals rather than shifted partials, this similarity makes sense. Figure 35 is a
superposition of the data in Figure 33 and Figure 34, and shows just how closely the curves
for the retuned intervals match between the two studies. Note, however, that in Figure 34
the two bottom curves are almost identical, showing the lack of a significant difference
between the stimuli with maximally beating partials and those in which the beating was
minimized. In contrast, in Figure 33 one can see that the two curves are clearly separated—
in Vos’s study beating made a difference. After examining the plots for major thirds, we
shall discuss possible explanations for the differences between the results of the two

studies.

5.1.2 Experiments with Major Thirds

The data for major thirds in the two studies are illustrated in Figure 36 through Figure
39. Figure 36 shows Vos’s data, plotted with tempering in cents on the x-axis. Again, note
the increase in subjective purity when beating is removed. Figure 37 recapitulates the
results from Experiment 3 of the present study. (As before, positive beat rates in this study
correspond to intervals smaller than just, which is the opposite orientation from Vos’s.)
Figure 38 superimposes the data from the two studies for negative projected beat rates

(according to the convention used in this study), corresponding to thirds equal to or larger

4. Vos himself kept the orientation consistent when translating from cents to beat rate.

5. The regression for the left-hand side of the plot includes the points at 50 cents. Vos eliminated
the points post hoc from his regression computation, since the interval here is closer to a just minor
third than to a just major third. The rise in the curve suggests that indeed subjects were hearing it as
a sharp minor third. Vos does not mention whether the instructions indicated that the stimuli were
mistuned major thirds and to be judged as such.
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than the just third—in other words, the right side of Figure 36 and the left side of Figure 37.
Figure 39 shows the superimposition for positive projected beat rates (which, for the
retuned intervals, corresponds to negatively tempered thirds—but not for my stimuli with

shifted partials, which were always just or equal-tempered.)
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5.1.3 Discussion: Comparison with Vos’s Results

Some of the data exhibit a very good agreement between the present study and Vos

(1986), particularly in the judged intonation of fifths with traditional beating (the “retuned

interval, maximum beat amplitude” sort of stimulus). However, a major difference between

the two studies is that Vos’s data show an effect of beating for both major thirds and perfect

fifths, while mine do not. We can speculate about the reasons for this contradiction. First it
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should be noted that the stimuli in the two studies did not have identical spectra (even
leaving aside my stimuli with shifted partials). Vos used a 6dB/octave rolloff, while the
stimuli in the present study had equal-amplitude partials. In Vos’s experiments the lower
tone had the first 20 harmonics of the harmonic series, and the upper had either the first 20
harmonics or the first 10 odd harmonics. In my experiments, on the other hand, the lower
tone had the first 16 harmonics, and the upper tone had either the first 16, or the first 16
minus whichever partials happened to be part of a beating pair.6 Whereas Vos's stimuli with
minimal beating had all the even partials deleted, I only deleted partials that actually were
in a beating pair. In the case of the fifths, this turns out to include all the even partials
through the tenth, except in the case of the retuned interval with the more extreme
mistunings. For thirds, however, typically only every other even partial was deleted. It is
conceivable that the greater number of deleted partials in Vos’s study could account for
some of the difference between the two studies, but the difference in the spectral envelopes

is probably more important.

Secondly, there may be a subtle linguistic difference in the tasks. Vos asked his
subjects to evaluate the purity of the stimuli, while in the present study the subjects were
asked to judge how in tune they were. In Dutch the word for “pure” has some of the
connotations of “pure” in English, but it also is the word used to mean “in tune.”’ In
English, “pure” can mean “in tune,” but the term “in tune” is used much more commonly
for this purpose, and is relatively free of other connotations. One might wonder whether
subjects asked for judgments of “purity” would be more likely to respond to differences of
timbre (caused for example by the removal of partials) and roughness (such as that caused

by beating) than would subjects asked to judge how “in tune” an interval was. The latter

6. See the Appendix for a fuller description of my stimuli.
7. Rudolf Rasch, personal communication (1990).
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group of subjects would probably be more likely to respond to the pitch relation. A timbre
can certainly be evaluated as more or less “pure,” but the notion of an “in-tune” timbre is

peculiar.

A third possibility is that the presence in my experiments of stimuli in which beat rate
was uncorrelated with interval tuning—namely, the stimuli with inharmonic partials—
served to discourage the use of beat rate as a cue for judging intonation. If so, the subjects

might or might not have been conscious of their suppression of this cue.

A fourth difference in the experiments—and perhaps the most important—is that Vos
varied the fundamental frequency independently of the interval tuning, so that both tones’
fundamental frequencies changed from stimulus to stimulus. (Recall that in the present
study only the lower note’s fundamental frequency varied, as determined by the desired
interval tuning; the upper note’s frequency was kept constant.) The midpoint of Vos’s
intervals varied plus or minus a whole step in increments of a quarter-tone; this fact
combined with the many possible sizes of the intervals means that the lower and upper
notes each moved to many different frequencies, and typically the distance by which they
moved from one stimulus to the next would be a nonstandard interval. In a pilot study in
which subjects were asked to estimate the exact size of an interval, I found that subjects’
performance was better when the lower tone’s frequency was kept constant than when the
frequency of both tones was changed by microtonal amounts. This is not surprising; it is
much easier to evaluate pitch relations in the context of a stable reference pitch. (We shall
leave aside the question of whether this is a cause or an effect of tonal music.) So it is likely
that it was easier for subjects to evaluate the intonation in terms of pitch relations in my
experiments; and it is possible that when the pitch relations are more confusing, as in Vos’s

study, subjects are more easily swayed by other factors such as spectrum and beating. This
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is not necessarily a criticism of Vos’s method; for it can be argued that a constant pitch
reference, as in my experiments, allows subjects to make judgments on the basis of the
changing pitch of the lower tone rather than according to the tuning of the interval. In other
words, they might be using frequency discrimination more than frequency ratio
discrimination. It seems that arguments can made for either approach. We cannot rule out
the possibility that the subjects in the present study preferred equal-tempered thirds simply
because the lower note was always flatter than that of the other thirds. However, this
condition may be more relevant to real musical situations, in which one typically has a
stable pitch reference. (Even for atonal music, a trained musician remembers the pitches of
the chromatic scale.) So if equal-tempered thirds are preferred to just thirds simply because
the lower note is flatter, this is still useful information. In any event, pitch height cannot be
the only factor; although intervals larger than the equal-tempered third were not tested,
clearly after some amount of increased mistuning a large major third would be judged to be

worse than the equal-tempered third.

To sum up this comparison between the present results and those of Vos (1986):
although there is a very good match in the judged intonation of mistuned fifths, and a
reasonably good match for mistuned thirds, Vos found beating to be important for both
thirds and fifths, while the present study does not. Differences in the stimuli’s spectra and
in the stimulus presentation (fixed versus variable pitch of the upper note) seem likely to
have contributed to this discrepancy. The difference in the tasks (judging “purity” versus
judging how “in tune” the stimuli were) might have had some effect. It is also possible that
the presence among my stimuli of rapidly beating but ostensibly in-tune intervals
confounded any strategy that attempted to use beating as a cue for intonation. Only in this

study was beat rate independent of the interval’s fundamental frequency ratio.
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5.2 General Conclusions And Discussion

The primary result of this research is the finding that, for these stimuli, beating
partials appear to be unimportant for perceived intonation. The dominant factor is the
tuning of the interval, in other words, the pitch relation of the two notes. Since it is unlikely
that beats would be more audible in real musical situations than under these laboratory
conditions, these results suggest that the perception of intonation in music is dependent on
the actual interval tuning rather than the concomitant beat rate. This conclusion does not
disprove Helmholtz’ theory that beating partials were responsible for the historical origin
of the consonances and dissonances in music, but it indicates that such factors are not
necessarily paramount for contemporary listeners. Subjects apparently made reference to
learned interval sizes instead of relying on acoustic cues such as beating, indicating that

cognitive processes play a crucial role in intonation judgments.

A secondary finding is that inharmonicity can have a strong effect on perceived
intonation, since in the perfect fifth stimuli the inharmonic partials apparently created a
percept of “out-of-tuneness,” even when the beating partials were deleted. This effect was

almost as strong as the corresponding interval mistuning for the same projected beat rate.

Finally, we noted that major thirds appear to be more ambiguous than perfect fifths,
in that subjects are less consistent in judging them, and the effects of inharmonicity and
interval mistuning are weaker. This is in line with much of what is reported in the literature

about the relative sensitivity to mistuning of major thirds and perfect fifths.

It is particularly interesting that beat amplitude was nonsignificant in these

experiments, in contrast to the results of other researchers, notably Vos (1986). As noted
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above, the discrepancy might be explained by differences in the stimulus, the presentation,
and the task. Also, it should be noted that only in the present research has beat rate been

controlled independently of interval tuning.

Common sense could be invoked to support the finding that beats are not very
important, for when we listen to music we are normally unaware of beating partials.
Usually when we hear something that sounds out of tune, we are more likely to notice a
mistuned pitch than any beating. If beating partials really are unimportant, and interval
tuning is the primary determinant of intonation, this supports the notion of a cultural basis
for musical scales, as opposed to the acoustical basis set forth by Helmholtz and others. It
suggests that acoustical phenomena such as beats are not terribly worrisome, and that we
can perhaps be accustomed to any interval given enough exposure. This idea is a double-
edged sword for composers interested in experimenting with nonstandard tunings. On the
one hand, anything is possible; on the other, the potential acoustical foundations for a new
tuning system are weaker. Certainly many composers of microtonal music or music with
other nonstandard tunings have cited acoustical principles as a justification for their efforts.
If the principles are not very relevant perceptually, it behooves these composers to do what
great composers have always done and follow the dictates of their aural imagination,

unfettered by scientific theoretical systems.

5.3 Suggestions for Future Research

There are a number of basic psychoacoustic studies related to intonation which still

need to be conducted. For example, a thorough study of frequency ratio JNDs among
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musicians and nonmusicians would be very useful. Such a study should include the
standard chromatic intervals as well as nonstandard intervals (such as those of the quarter-
tone scale). For musical relevance, the stimuli should be complex tones instead of (or in
addition to) sinusoids. Another example is the study of the pitch of inharmonic sounds, still
in its infancy. Extensive data on the precise pitch of slightly inharmonic sounds would have
shed further light on the stimuli used in this study. We have mentioned the work of Moore,
Glasberg and Peters (1985), but that study is just the start of what needs to be accomplished
before one can predict the perceived pitch of arbitrary sets of inharmonically related

frequencies.

Over the years there have been quite a few experiments based on adjustments of
musical intervals, but it appears that none of these has tested beating. It would be interesting
to see how removal of beating harmonics affects interval adjustment. There also seems to
have been no work done on estimation of the exact sizes of intervals. In the latter sort of
experiment, the subjects would probably have to be musicians, and they would report the
size of various arbitrary frequency ratios by marking points along a line having tick marks
labeled with the chromatic intervals. In a small pilot study with such a task, I found some
evidence for categorical perception effects: there was some tendency by subjects to hear
nonstandard intervals as being closer to the nearest standard interval than they really were,
until the interval approached a quarter-tone (the category boundary), around which point
the judgments were more accurate. Mirroring effects were also found: a subject might
correctly identify the approximate amount of mistuning, but err in the direction of
mistuning (mistaking sharp for flat and vice versa).8 I also created a computer program for

carrying out such a task using an adaptive paradigm, and found that I could begin to identify

8. None of these data were subjected to statistical analysis, however.
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nonstandard intervals to a greater accuracy than one might be led to expect from the
psychoacoustic literature. Such a tool could be used as an ear-training aid in music
education. The extension of traditional ear-training to the microtonal case could be useful
not only for experimental music, but also as a means of sharpening intonational sensitivity

among performers of traditional music.

In the course of discussing the present experiments, we have mentioned several
alternative experimental approaches that were rejected, but any of which might have made
an interesting supplementary study. For example, the net inharmonicity could have been
reduced, at the expense of the natural “harmonic series” of beat rates (see the footnote on
page 58). Likewise, the net periodicity pitch shift could probably have been reduced by
allowing simultaneous beat rates that were not multiples of the lowest beating pair’s beat
rates (see page page 114). These options were rejected since the central phenomenon of
interest for this study was beating, and these alternative stimuli would have had ambiguous

or unnaturally emphasized beat rates.

Another variation on the experimental design, mentioned above, would have been to
make both pitches of the interval variable in frequency, as in Vos (1986); this approach was
rejected since the pitch relations would have become more complicated and alien, making
musical judgment more difficult and rendering the task less similar to judging intonation in
a musical context. As mentioned on page 159, however, there are advantages to both

approaches.

An objection could be raised that in the present study, and others like it, not all
interaction of partials within a critical bandwidth was eliminated. Partials separated by

more than 50 Hz were not deleted in this study. Even within a single tone, the higher
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harmonics are within a critical bandwidth of their neighbors. One might wonder whether
these pairs of partials increase the total roughness of the stimulus, thereby helping to

disguise the beating between tones. Perhaps beating would be more significant if the only
pairs of partials within a critical band were the beating pairs, or if the potential roughness

was reduced by attenuating the higher partials. Such stimuli deserve further study.9

Rather than frequency-shift the beating partials to decouple beat rate from interval
tuning, one could replace the beating pair with an amplitude-modulated tone whose
modulation rate was equal to the pair’s beat rate (i.e., their frequency separation in Hz), and
whose frequency was the mean of the pair’s.lo Amplitude modulation (AM) has a
somewhat different envelope shape from that of beating pairs; in the one case the envelope
is a rectified sine wave, and in the other, a normal sine wave.!! Another reason I chose
frequency-shifted partials in place of amplitude modulation is that the former technique
allows more convenient manipulation of beating in the case where the partials are of
unequal, time-varying amplitude. As it turned out, the stimuli of the present study did have
only equal-amplitude partials, but I had envisioned an extension of the study to the case of

natural instrument sounds, in which the partials’ amplitudes are not only different, but time-

9. This problem has been implicitly treated in predictions of dissonance based on Plomp and Leveit’s
model. Vos (1986), for example, has a graph showing predicted dissonance for different numbers
of equal-amplitude partials, including n=1 through 6, and n=5, 10, 15, and 20. The overall predicted
dissonance does increase as the number of partials increases. However, even at n=15 and n=20, the
consonance peaks are still very prominent around the 3:2 and 5:4 ratios, indicating that the beating
partials are still important when comparing stimuli that have the same number of partials.

The musical relevance of these predictions is brought into question by observing the drastic effect
of the number of partials. For example, a perfect fifth with 15 partials appears on these graphs to be
more dissonant than a minor second with five partials.

10. I'studied such an approach at IRCAM in 1987, where I used phase-vocoder analyses of recorded
instrumental tones as a basis for resyntheses with dynamic control over the amplitudes of various
partials. With extreme amplitude modulation, even a single note could sound out of tune. One of the
sounds synthesized was a piano tone; the extreme modulation sounded like an exaggerated version
of the beating when the three strings of a single piano note are mistuned from each other.

11. AM also lacks the subtle pitch shift in slow beats studied by Feth (see page 22).
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varying in a complex way. With frequency-shifting, one simply retains the original
amplitude functions regardless of the separation of the two partials, but to model the beating
accurately with amplitude modulation, one must use a complicated modulation function
that changes with beat rate. (Often, natural instruments also have time-varying frequency,
but it is not always as critical for realism as the amplitude variations. Adding frequency
variations further complicates the design when intonation is being studied.) Such an
extension of the current study to synthesized instrument sounds would be musically
interesting. My expectation is that beating would be even less important in such stimuli,
since the higher partials would typically be attenuated, the beating partials would have

unequal amplitudes, and other temporal variations might help disguise the beating.

Besides extending the stimuli in terms of timbre, augmenting them with more
musical intervals would be useful. Most other intervals have fewer beating pairs than do
perfect fifths and major thirds, but the perfect fourth lies between the fifth and the third in
terms of the number of its beating partials. However, all the chromatic intervals within the

octave could profitably be examined.

In the review of the literature in Chapter 1, we touched briefly upon the question of
musical context. It seems likely that psychoacoustical phenomena such as beating would
receive even less attention in a musical context, where cognitive factors are probably of
increased importance, than they do in isolated intervals. If the results of the present study
had shown beating to be important, a subsequent study using musical passages would
logically have been the next test of the musical relevance of those results. There are a great
many interesting complications that arise when considering intonation in musical
passages—for example, the relative weight of melodic intervals vis-a-vis harmonic

intervals, the importance of tonal relations (as in the example cited earlier of a perfect fifth
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F#-C# embedded in a cadential passage in the key of C), and so on. Questions about

intonation in musical passages could certainly fuel many dissertations.
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Appendix: Specification of Stimuli

The tables beginning on page 173 specify the frequencies present in all the stimuli used in
the three experiments. These tables are necessary for a full description of the stimuli, since
a computer algorithm determined which partials would be frequency-shifted or deleted, and
the precise pattern of these modifications cannot be succinctly expressed. First the
algorithm is discussed, and then a summary of the patterns in the tables is given.

A.1 Algorithm for Frequency-shifting or Deleting Partials

The algorithm1 considered any pair of partials to be potentially beating if their frequency
separation was less than 50 Hz and their frequency ratio was less than 1.2. (These are
reasonable figures, since 50 Hz is too fast to hear as beats, and the ratio 1.2 is larger than a
critical bandwidth for the range of frequencies in question.) If the stimulus was to have a
beat amplitude of “minimum,” the partial of the upper note was deleted. If the technique for
controlling beat rate was “frequency-shifted partials” rather than “interval tuning,” the
partial of the lower note was shifted to the position that resulted in the correct beat rate. In
addition, if the pair of beating partials were not multiples of the lowest beating pair, the
upper partial was deleted. This was to ensure that the beat rates of all the pairs of beating
partials were multiples of the projected beat rate, since that is the simple case that has been
shown in the literature to yield an overall perceived beat rate equal to the beat rate of the
lowest beating pair (Vos 1984).

1. For clarity, the algorithm is given below as “pseudocode.” The original code was written in Pla,
a compositional language developed at Stanford (Schottstaedt 1983).
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A.1.1 Part One (Algorithm to find all beating partials and process appropriately)

FOR the 1st through the 16th partial of the lower note
BEGIN “lower note loop”
FOR the 1st through the 16th partial of the upper note

BEGIN *“‘upper note loop”

IF the frequency separation between the upper note’s partial and the lower
note’s partial is less than 50 Hz and the frequency ratio of the two partials
is less than 1.2
THEN BEGIN “this pair beats”

We found a pair of beating partials. If it’s the first pair we’ve found,
remember the harmonic number of the lower note (call it “a”).

If the desired beat amplitude is “minimum,” delete the partial of the upper
note.

If the method of controlling beat rate is “frequency-shifted partials,” move
the partial of the lower note as follows:
The new beat rate (call it “x”) of this pair of partials will be the projected
overall beat rate times i/a, where “i” is the harmonic number of the lower
note’s partial and “a” is the harmonic number of the lowest beating
partial in the lower note. Move the lower note’s partial to be x Hz higher
or lower than the upper note’s partial (lower if it already was lower,
higher if it was already higher or equal).

END “this pair beats”

If this pair doesn’t beat, but we’ve already found a partial of the upper note that
beats with this partial of the lower note, we don’t need to check any higher
partials of the upper note, so continue to the next partial of the lower note.

END “upper note loop”

END “lower note loop”

A.1.2 Part Two (Find anomalous beat rates; done by hand)

Inspect for pairs of beating partials, found by the algorithm above, whose beat rates aren’t
multiples of the overall projected beat rate. In each such case, delete the partial of the upper
note. See “Descriptive Summary of Stimulus Tables,” below, for a list of these anomalous
cases and a specification of which partials were deleted. There was only one anomalous
case among the fifths, and five cases among the thirds. In a few instances, this subsequent
deletion of the upper tone’s partial from the anomalous pair meant that the partial of the
lower tone had in effect been frequency-shifted unnecessarily.
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A.2 Descriptive Summary of the Tables

A.2.1 Format of the Tables

Each stimulus is identified by the values of the main variables: Projected Beat Rate, Method
of Controlling Beat Rate, and (for the major thirds with shifted partials) Tuning. (The Beat
Amplitude variable is not listed, because each table applies to both the “maximum beat
amplitude” and the “minimum beat amplitude” stimuli.) Then the “interesting” component
frequencies are listed in ascending order. To save space, not all the harmonics are shown in
these tables. The omitted harmonics can be easily calculated by the reader; in every case
they are strictly harmonic and are not members of a beating pair. Recall that every stimulus
used the first sixteen harmonics, except for those of these sixteen that were deleted. Any
partial that is shifted to an inharmonic position is shown, as are any pair of harmonics that
beat (or that would beat if the harmonic of the upper tone were not deleted), as well as any
pair of partials that are integer multiples of the lowest beating pair. The fundamental
frequencies are also shown in each case.

The following format is used in the tables:

LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (HZ) PARTIAL # BEAT RATE

1.000 357.000

‘ 440.000 1.000

1760.000 4.000

5.000 1785.000 25.000

11.000 3927.000

{3960.000] [9.000]

Five columns are given: two for the partial number and frequency of each partial in the
lower note, two analogous columns for the upper note, and a fifth column for the beat rate.
The beat rate is given following any partial that is within 50 Hz of the preceding partial in
the other tone. Observe that for the upper note, the “freq” column comes before the “partial
#’ column, in order to make it easier to compare the frequencies in Hz of neighboring
partials (for instance, 1760.000 and 1785.000 above).

For stimuli that have partials deleted in order to eliminate beating, the frequencies are the
same, except that for every beating pair (including those where the beat rate is zero), the
partial of the upper note is deleted. Also, as noted under “Part Two” of the algorithm, there
were some cases where partials were deleted even in the stimuli with maximum beat
amplitude. In the tables these anomalous cases are indicated by putting the deleted partial
in brackets.
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Although the tables are the final authority on the composition of the stimuli, the following
paragraphs will be helpful as a summary.

A.2.2 Summary of Tables for Fifths

The first group of tables list the stimuli for the first two experiments, which used perfect
fifths. These tables are ordered as follows:

(1) Method of Controlling Beat Rate: shifted partials; Projected beat rate: 0, 2, 5, 10, 25 Hz
(2) Method of Controlling Beat Rate: retuned interval; Projected beat rate: 0, 2, 5, 10, 25 Hz

Beat rates

In no case do the stimuli that were intended to have minimum beat amplitude have any
conventional beating. (For the present purposes, beating is considered to occur when any
two partials have a frequency ratio less than 1.2 and a frequency difference less than 50 Hz.)

The stimuli with maximum amplitude (i.e., those with no deleted partials) all fall into the
expected pattern, namely, that the only beating partials are multiples of the third partial of
the lower tone and the second partial of the upper tone. Thus, the beat rates all form a
harmonic series whose fundamental is the beat rate of the lowest beating pair. There is one
exception:

The stimulus with a projected beat rate of 25 Hz and the “Retuned interval” method has,
in addition to the beating of the third and second partials, a beat rate of 41.080 between the
16th partials of the lower tone and the 11th of the higher. This is the only stimulus in all the
experiments that has beating at a rate that isn’t a multiple of the projected beat rate. This
was an oversight; human error was responsible, rather than computer error, since this task
was done by hand, as described under “Part Two” of the algorithm given above. However,
this single anomaly doesn’t seem very problematic, since (1) its beat rate is so high, (2) the
overall projected beat rate of the stimulus is the highest possible (25 Hz), and (3) these
partials are very high, and the literature indicates that only the lowest partials affect the
perceived beat rate. It’s unlikely that a separation of 41 Hz between these very high partials
would affect the overall projected rate of 25 Hz. Even 25 Hz itself is probably too fast to
perceive the individual beats.

Deletion of partials

The stimuli with “Beat Amplitude: maximum” all have sixteen equal-amplitude partials.
The stimuli with “Beat Amplitude: minimum” all have partials #2, 4, 6, 8, and 10 deleted,
with the following two exceptions among the stimuli with the “Retuned interval” method:

The stimulus with a projected beat rate of 10 Hz has partials 2, 4, 6, and 8 deleted, but not
10 (because the frequency separation is 50 Hz).
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The stimulus with a projected beat rate of 25 Hz has partials 2 and 11 deleted, but not 4, 6,
8, or 10 (because the frequency separation is 50 Hz or greater). The 11th partial was deleted
because it was 41.080 Hz away from the 16th partial of the lower note.

A.2.3 Summary of Tables for Thirds

The major third stimuli are listed in the second group of tables, ordered as follows:

(1) Method of Controlling Beat Rate: shifted partials; Tuning: just intonation; Projected
beat rate: 0, 2, 5, 10, 25 Hz

(2) Method of Controlling Beat Rate: shifted partials; Tuning: equal temperament;
Projected beat rate: 0, 2, 5, 10, 25 Hz

(3) Method of Controlling Beat Rate: Retuned interval; Projected beat rate: —13.9, 2, 5, 10,
25Hz

Beat rates

As with the fifths, the stimuli with minimum beat amplitude (i.e., with beating partials
deleted) never have any beating (as defined above).

The expected pattern for the stimuli with maximum amplitude is that the fourth partial of
the upper note will beat with the fifth partial of the lower note, and similarly for the
multiples of these partials. This was true for all the major third stimuli. However, there were
additional pairs of partials that would have beat had corrective measures not been taken. To
ensure that all the beat rates of the upper partials formed a harmonic series upon the beat
rate of the third and second partials, certain partials had to be deleted in some of the stimuli.
(Recall from the discussion above that among the fifths, there was only one stimulus with
an anomalous beating pair, and that in that case no corrective measure was taken since the
beat rate was so fast.)

The anomalous cases are listed below. In every case but the last, the interval tuning was
equal temperament and the partial that had to be deleted was the 11th partial of the upper
note, which beat with the 14th partial of the lower note.

Stimuli with Beat Amplitude: maximum; Method of Controlling Beat Rate: shifted partials;
Tuning: equal temperament; Projected beat rate: 0, 2, 5, 10 Hz.

The corresponding problematic rates (had the 11th partial not been deleted) were:
0, 5.6, 14.0, and 28 Hz, respectively.

Stimulus with Beat Amplitude: maximum; Method of Controlling Beat Rate: retuned
interval; Projected beat rate: ~13.9 Hz (which yields an equal-tempered third)

Problematic rate (had the 11th partial not been deleted): 49.195 Hz.
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Stimulus with Beat Amplitude: maximum; Method of Controlling Beat Rate: retuned
interval; Projected beat rate: 25 Hz

Partials that had to be deleted: 9th and 13th of upper note (A). The 9th partial of A
would have beat with the 11th partial of F at 33 Hz. The 3th partial of A would have beat
with the 16th partial of F at 8 Hz.

Deletion of partials

As just mentioned, some partials had to be deleted among the stimuli with maximum beat
amplitude. For the stimuli with minimum beat amplitude, we would expect the fourth,
eighth, and twelfth partials of the upper tone to be deleted. In fact, the eighth and twelfth
partials did not get deleted in the case with a retuned interval and a 25 Hz projected rate,
because in this case they were 50 Hz or more away from the nearest partials. In addition,
the same partials were deleted as in the anomalous cases just discussed under Beat rate. The
last of these cases (maximum beat amplitude, retuned interval, 25 Hz projected rate) also
had the 11th partial deleted.

A.3 Stimulus Tables

A.3.1 Perfect Fifths

Projected Beat Rate: 0 Hz
Method of Controlling Beat Rate: shifted partials

LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (HZ) PARTIAL # BEAT RATE
1.000 349.230
523.240 1.000
2.997 1046.480
1046.480 2.000 .000
5.993 2092.960
2092.960 4.000 .000
3139.440 6.000
8.990 3139.440 .000
11.986 4185.920
4185.920 8.000 .000
14.983 5232.400

5232.400 10.000 .000




Appendix: Specification of Stimuli 174

Projected Beat Rate: 2 Hz
Method of Controlling Beat Rate: shifted partials

LOWER NOTE UPPER NOTE
PARTIAL # FREQ (H2Z) FREQ (HZ) PARTIAL # BEAT RATE

1.000 349.230
523.240 1.000
1046.480 2.000

3.002 1048.480 2.000
2092.960 4.000

6.005 2096.960 4.000
3139.440 6.000

9.007 3145.440 6.000
4185.920 8.000

12.009 4193.920 8.000
5232.400 10.000

15.011 5242.400 10.000

Projected Beat Rate: 5 Hz
Method of Controlling Beat Rate: shifted partials

LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (H2) PARTIAL # BEAT RATE
1.000 349.230
523.240 1.000
1046.480 2.000
3.011 1051.480 ‘ 5.000
2092.960 4.000
6.022 2102.960 10.000
3139.440 6.000
9.033 3154.440 15.000
4185.920 8.000
12.043 4205.920 20.000
5232.400 10.000
15.054 5257.400 25.000

Projected Beat Rate: 10 Hz
Method of Controlling Beat Rate: shifted partials

LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (HZ) PARTIAL # BEAT RATE
1.000 349.230
523.240 1.000
1046.480 2.000
3.025 1056.480 10.000
2092.960 4.000
6.050 2112.960 20.000
3139.440 6.000
9.076 3169.440 30.000
4185.920 8.000
12.101 4225.920 40.000
5232.400 10.000

15.126 5282.400
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Projected Beat Rate: 25 Hz
Method of Controlling Beat Rate: shifted partials

LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (H2) PARTIAL # BEAT RATE

1.000 349.230
523.240 1.000
1046.480 2.000

3.068 1071.480 25.000
2092.960 4.000

6.136 2142.960
3139.440 6.000

9.204 3214.440
4185.920 8.000

12.272 4285.920
5232.400 10.000

15.341 5357.400

Projected Beat Rate: 0 Hz
Method of Controlling Beat Rate: Retuned interval

LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (HZ) PARTIAL # BEAT RATE
1.000 348.827
523.240 1.000
1046.480 2.000
3.000 1046.481 .001
2092.960 4.000
6.000 2092.962 .002
3139.440 6.000
9.000 3139.443 .003
’ 4185.920 8.000
12.000 4185.924 .004
5232.400 10.000
15.000 5232.405 .005
Projected Beat Rate: 2 Hz
Method of Controlling Beat Rate: Retuned interval
LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (HZ) PARTIAL # BEAT RATE
1.000 349.493
523.240 1.000
1046.480 2.000
3.000 1048.479 1.999
2092.960 4.000
6.000 2096.958 3.998
3139.440 6.000
9.000 3145.437 5.997
4185.920 8.000
12.000 4193.916 7.996
5232.400 10.000

15.000 5242.395 9.995
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Projected Beat Rate: 5 Hz
Method of Controlling Beat Rate: Retuned interval

LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (HZ) PARTIAL # BEAT RATE

1.000 350.493
523.240 1.000
1046.480 2.000

3.000 1051.479 4.999
2092.960 4.000

6.000 2102.958 9.998
3139.440 6.000

9.000 3154.437 14.997
4185.920 8.000

12.000 4205.916 19.996
5232.400 10.000

15.000 5257.395 24.995

Projected Beat Rate: 10 Hz
Method of Controlling Beat Rate: Retuned interval

LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (HZ) PARTIAL # BEAT RATE

1.000 352.160
523.240 1.000
1046.480 2.000

3.000 1056.480 10.000
2092.960 4.000

6.000 2112.960 20.000
3139.440 6.000

9.000 3169.440 30.000
4185.920 8.000

12.000 4225.920 40.000
5232.400 10.000

15.000 5282.400
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Projected Beat Rate:

Method of Controlling Beat Rate:

25 Hz

Retuned interval

LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (HZ) PARTIAL # BEAT RATE
1.000 357.160
523.240 1.000
1046.480 2.000
3.000 1071.480 25.000
2092.960 4.000
6.000 2142.960
3139.440 6.000
9.000 3214.440
4185.920 8.000
12.000 4285.920
5232.400 10.000
15.000 5357.400
16.000 5714.560
5755.640 11.000 41.080
A.3.2 Major Thirds
Projected Beat Rate: 0 Hz
Method of Controlling Beat Rate: shifted partials
Tuning = just intonation
LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (HZ) PARTIAL # BEAT RATE
1.000 352.000
440.000 1.000
5.000 1760.000
1760.000 4.000 000
10.000 3520.000
3520.000 8.000 .000
15.000 5280.000
5280.000 12.000 .000
Projected Beat Rate: 2 Hz
Method of Controlling Beat Rate: shifted partials
Tuning = just intonation
LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (HZ) PARTIAL # BEAT RATE
1.000 352.000
440.000 1.000
1760.000 4.000
5.006 1762.000 2.000
3520.000 8.000
10.011 3524.000 4.000
5280.000 12.000
15.017 5286.000 6.000
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Projected Beat Rate: 5 Hz

Method of Controlling Beat Rate:

Tuning = just intonation

shifted partials

LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (HZ) PARTIAL # BEAT RATE
1.000 352.000
440.000 1.000
1760.000 4.000
5.014 1765.000 5.000
3520.000 8.000
10.028 3530.000 10.000
5280.000 12.000
15.043 5295.000 15.000
Projected Beat Rate: 10 Hz
Method of Controlling Beat Rate: shifted partials
Tuning = just intonation
LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (HZ) PARTIAL # BEAT RATE
1.000 352.000
440.000 1.000
1760.000 4.000
5.028 1770.000 10.000
3520.000 8.000
10.057 3540.000 20.000
5280.000 12.000
15.085 5310.000 30.000
Projected Beat Rate: 25 Hz
Method of Controlling Beat Rate: shifted partials
Tuning = just intonation
LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (HZ) PARTIAL # BEAT RATE
1.000 352.000
440.000 1.000
1760.000 4.000
5.071 1785.000 25.000
3520.000 8.000
10.142 3570.000
5280.000 12.000

15.213 5355.000
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Projected Beat Rate: 0 Hz
Method of Controlling Beat Rate:
Tuning = equal temperament

shifted partials

LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (HZ) PARTIAL # BEAT RATE
1.000 349.228
440.000 1.000
5.040 1760.000
1760.000 4.000 .000
10.079 3520.000
3520.000 8.000 .000
[4840.000] [11.000]
13.859 4840.000
5280.000 12.000
15.119 5280.000 .000
Projected Beat Rate: 2 Hz
Method of Controlling Beat Rate: shifted partials
Tuning = equal temperament
LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (HZ) PARTIAL # BEAT RATE
1.000 349.228
440.000 1.000
5.034 1758.000
1760.000 4.000 2.000
10.068 3516.000
3520.000 8.000 4.000
[4840.000] {11.000]
13.875 4845.600
15.102 5274.000
5280.000 12.000 6.000
Projected Beat Rate: S Hz
Method of Controlling Beat Rate: shifted partials
Tuning = equal temperament
LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (HZ) PARTIAL # BEAT RATE
1.000 349.228
440.000 1.000
5.025 1755.000
1760.000 4.000 5.000
6.000 2095.369
10.051 3510.000
3520.000 8.000 10.000
{4840.000] {11.000]
13.899 4854.000
15.076 5265.000
5280.000 12.000 15.000
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Projected Beat Rate:
Method of Controlling Beat Rate:

10 Hz

shifted partials

Tuning = equal temperament
LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (HZ) PARTIAL # BEAT RATE
1.000 349.228
440.000 1.000
5.011 1750.000
1760.000 4.000 10.000
10.022 3500.000
3520.000 8.000 20.000
[4840.000] {11.000]
13.939 4868.000
15.033 5250.000
5280.000 12.000 30.000
Projected Beat Rate: 25 Hz
Method of Controlling Beat Rate: shifted partials
Tuning = equal temperament
LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (HZ) PARTIAL # BEAT RATE
1.000 349.228
440.000 1.000
4.968 1735.000
1760.000 4.000 25.000
9.936 3470.000
3520.000 8.000
4840.000 11.000
14.060 4910.000
14.904 5205.000
5280.000 12.000
Projected Beat Rate: -13.9 Hz
Method of Controlling Beat Rate: Retuned interval
LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (HZ) PARTIAL # BEAT RATE
1.000 349.228
440.000 1.000
5.000 1746.141
1760.000 4.000 13.859
10.000 3492.282
3520.000 8.000 27.718
[4840.000] {11.000]
14.000 4889.195
15.000 5238.424
5280.000 12.000 41.576
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Projected Beat Rate: 2 Hz

Method of Controlling Beat Rate: Retuned interval

LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (HZ) PARTIAL ‘# BEAT RATE
1.000 352.400
440.000 1.000
1760.000 4.000
5.000 1762.000 2.000
3520.000 8.000
10.000 3524.000 4.000
5280.000 12.000
15.000 5286.000 6.000
Projected Beat Rate: 5 Hz
Method of Controlling Beat Rate: Retuned interval
LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (HZ) PARTIAL BEAT RATE
1.000 353.000
440.000 1.000
1760.000 4.000
5.000 1765.000 5.000
3520.000 8.000
10.000 3530.000 10.000
5280.000 12.000
15.000 5295.000 15.000
Projected Beat Rate: 10 Hz
Method of Controlling Beat Rate: Retuned interval
LOWER NOTE UPPER NOTE
PARTIAL # FREQ (HZ) FREQ (HZ) PARTIAL BEAT RATE
1.000 354.000
440.000 1.000
1760.000 4.000
5.000 1770.000 10.000
3520.000 8.000
10.000 3540.000 20.000
5280.000 12.000
15.000 5310.000 30.000
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Projected

Method of Controlling Beat Rate: Retuned interval

PARTIAL #

1.000

5.000
10.000
11.000

15.000
16.000

Beat Rate: 25 Hz

LOWER NOTE

FREQ (HZ)

357.000

1785.

3570.
.000

3927

5355.
5712.

000

000

000
000

UPPER NOTE
FREQ (HZ) PARTIAL #
440.000 1.000
1760.000 4.000
3520.000 8.000
[3960.000] [9.000]
5280.000 12.000
{5720.000] [13.000]

BEAT RATE

25.000
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