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IDENTIFICATION OF CONTROL PARAMETERS IN AN ARTICULATORY VOCAL
TRACT MODEL, WITH APPLICATIONS TO THE SYNTHESIS OF SINGING

Perry Raymond Cook, Stanford University, 1991

The synthesis of singing is investigated using an articulatory model which simulates the
human vocal tract as a network of digital filter simulations of acoustic tubes. Methods for
identifying the vocal tract shape parameters are presented, and a new method of adaptively
tracking vocal tract shape from features of an input speech signal is defined and demon-
strated. Methods of modeling the glottal source are discussed, and identification of the

glottal source waveform using non-invasive deconvolution techniques is discussed.

The identification and control of glottal source control parameters is investigated. Studies
were conducted using four highly trained singers, with additional results from an additional
eight trained singers. Standard methods of pitch detection are summarized, and a new
method of pitch detection is presented. The behavior of low and high frequency components
of the vocal pitch deviation control signal under various phonation conditions is investigated.
Noise generation mechanisms in the vocal tract are discussed, and the generation of noise at
or near the glottal source is investigated theoretically and experimentally. A fluid dynamic
analysis of flow-induced noise generation in the glottal folds is conducted, and the results
indicate that noise bursts could occur in the glottal source for frequencies below 200 Hz.
Methods of extracting the periodic and non-periodic components of quasi-periodic signals
are discussed, and new extraction, quantification, and visualization methods are presented.
The pulsed-noise behavior which was hypothesized from the analytical results was verified
by the experimental data, most clearly in low bass-singer tones. Other aperiodicities such

as subharmonics are also investigated experimentally.

The synthesis model and user interface features of two computer programs which were
written for singing synthesis are described. One program controls a Digital Signal Processor
(DSP) chip in real time to synthesize the singing voice. The other program is a text-driven

software synthesis system.
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Preface

The research documented in this dissertation was conducted to construct a singing synthesis
system which provides physical parameterization over the articulatory features of the speech
organ, and to provide rules for perturbation of the voice source which yield more natural

synthesis of the singing voice.

The synthesis of singing has been investigated from within the frameworks of most audio
synthesis techniques and methods. Primitive speech systems use time domain methods,
such as playback of digitally recorded phonemes or words, but such systems are generally
inappropriate for the flexible synthesis of music. Other systems are based on the final
spectrum. Still others, specifically source/filter systems such as linear predictive coding, are
more closely related to the physics of the vocal tract and include parameters for controlling
formants or other spectral features directly. The mapping of such non-physical or pseudo-
physical systems onto the actual physical components of the vocal mechanism is usually
not sufficient to allow direct synthesis (rather than by analysis of recordings) based on
notions from vocal pedagogy and speech physiology such as tongue position and glottal
effort. Toward the goal of creating a system which is controlled from intuitive physical
descriptions, a model of the vocal tract filter was developed which simulates the human
vocal tract as a network of connected digital filters. The digital filters simulate the solutions
of wave equations inside acoustic tubes, and thus provide control based on the shape of the

simulated vocal tract.

Perturbations in the source signal are the primary focus of the experimental research pre-
sented in this dissertation. The research was motivated by a profound realization which
comes quickly to new students of computer music. This realization is that computers most

easily make irritating and boring sounds; sounds which play perfectly periodic waveforms

vii




with perfect fidelity. Sounds of this type are offensive to the human ear, specifically they
are the types of sounds which cause humans to decide that machine-produced music and
speech is unacceptable. One of the principal reasons for the laughable quality of speech
synthesis in airport trains and soft-drink machines is the lack of natural deviations in the
signal. Such systems sound like machines imitating speech. A few simple rules for perturb-
ing the instantaneous frequency of the glottal source, and for applying additive noise to the
glottal source make a profound difference in the quality of the synthesis of the speaking and
singing voice. By applying these rules for source perturbation to a voice synthesis model,

more natural speech and singing synthesis is achieved.
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Chapter 1
Synthesis of the Singing Voice

When embarking on research of the singing voice, the first question that the researcher must
consider is, “Is singing significantly different from speech?” Since singers are humans who
have trained their vocal mechanism to emit specialized sounds, it is common to view singing
as a special case of speech. There are profound differences between speech and singing, and
some of the differences motivate the notion that singing and speech are different areas
of investigation. Certainly there are different priorities in the synthesis of singing and
speech; that intelligibility is the principle goal in speech and speech synthesis, and quality
is the principle goal in singing and singing synthesis (often compromising intelligibility).
To motivate the notion of the research of singing not merely as a special case of speech
research, but as a study of quite different phenomena, a brief list of differences between

singing and speech follows:

e Voiced/Unvoiced Ratio - The time ratio of voiced/unvoiced/silent phonation is
roughly 60%/25%/15% in speech, compared to the nearly continuous 95% voiced
time of singing [128].

e Singer’s Vibrato - Intentionally introduced deviation in the voice pitch. Section
refVibratoSection deals extensively with this topic, as well as unintentional pitch

deviations.

e Singer’s Formant - Acoustical phenonenon brought about by grouping the third,

fourth, and sometimes fifth formants together for increased resonance [20][5]. The
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singer’s formant would be less evident if the glottal source of the singer did not have
such a rich spectral content in this range [16]. Solo singers use the singing formant

to be heard, particularly above instruments.

e Singer’s Vowel Modification - Intentional and unintentional practices of mutating
the vowel sound as a function of pitch for comfort, projection, and/or intelligibility
[1][24][12]). Some modification in the sound is an artifact of wider harmonic spac-
ing under the vocal tract filter spectrum envelope, rather than a spectral envelope
change [22].

e Nasal Airway Use - For western BelCanto singing, the pathway through the nose is
not used as often as it is in speech[18] [23]. This is caused partly by arching the
soft palate (velum) to aquire the ‘singer’s resonance’. It is also a defense mechanism

allowing the singer to sound much the same with or without a cold.

e Average Pitch and Range of Pitch - The average speaking pitch is different from
the average singing pitch. The comfortable speaking pitch is often different than
the comfortable singing pitch. The range of speaking is determined by the speaker’s
comfort and emotional state. The singer’s range is first determined by physiology
and training. While performing a particular musical piece, the range is determined

by the composer.

e  Average Volume and Range - The average level of the speaking voice is softer than
the average level of the singing voice. The dynamic range of singing is greater than
that of typical speech. Greater flow rates and greater excursions of the vocal folds
imply that the singing system is likely to operate in higher orders of non-linearity
[128].

e Singer Vocal Training - The singer exercises his/her vocal folds regularly in different
regimes, thus differences exist between the source signals of singers and non-singers.
When asked to phonate loudly, untrained singers (and speakers of loud or angry
speech) move toward a pressed (efficient but squeaky) mode of phonation. Trained
singers show no such tendency, yielding a more consistent timbre across a wide

dynamic range [70].

e Neurology - Some classic studies on head injury document cases of people who are




CHAPTER 1. SYNTHESIS OF THE SINGING VOICE 3

unable to speak, but still sing perfectly and are even able to learn and perform new
songs. These and other studies point up the likelihood of completely different areas
of the brain controlling speech and singing [169].

e Statutory - It is unclear at the present time whether singing is protected under the
First Amendment to the Constitution of the United States of America. This part of
the Bill of Rights protects free speech, but some recent interpretations have tended

toward defining certain artistic performances as non-speech.

The synthesis of the singing voice has been investigated in the past using various techniques.
The simplest methods of generating vocal sounds involve the playback of entire words or
stored waveforms. Such systems can produce intelligible speech, but do not provide the
flexibility of pitch and timbral control required for the synthesis of singing. The techniques
used successfully for singing synthesis are divided into two broad categories; spectral models
and source/filter models. A typical spectral model is a Fourier analysis/resynthesis system,
involving the identification and synthesis of important features in the frequency spectrum of
the vocal signal. A source/filter model considers the fact that the vocal tract is a resonant
system driven by various sound sources, such as glottal pulses or noise, and provides control

over the source and filter elements.

1.1 The Fourier Model of Speech and Singing

The Fourier model is capable of identity resynthesis if analysis is performed by frequency
transformation and resynthesis is performed by inverse transformation of all frequency com-
ponents without modification. However, the task of speech analysis/resynthesis is usually
undertaken to either decrease the data required to represent the signal, or to gain some
type of flexible control over the synthesis process. Systems for the synthesis of singing
almost always fall into the latter category, using the flexible control features to shape
the sound musically or provide some type of special effect. Using the Fourier model, a
signal is analyzed using Short Time Fourier Analysis (STFA), the spectrum can be modi-
fied, and an inverse transform is performed on the modified spectrum yielding a modified
time-domain signal [26][27]. The phase vocoder is a frequency-representation based analy-

sis/modification/resynthesis system which has experienced popularity as a music synthesis
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technique [31](30][35]. Typical speech and music synthesis applications taking advantage of
parametric control over the model involve time compression/expansion, pitch shifting, and
cross-synthesis [37][160].

In some spectrally based analysis/resynthesis systems, a decision is made as to whether
the analyzed voice signal is periodic or noisy, i.e. voiced or unvoiced. If the signal is
periodic, the harmonic sinusoidal peaks are located, and the signal is resynthesized using
sinusoidal generators at the appropriate frequencies, amplitudes, and phases. Techniques
for economically generating sets of harmonics can be exploited for synthesis [29]. If the
signal is noisy, as in the case of a consonant, resynthesis is accomplished by passing white
noise through a filter designed to match the spectral shape of the analyzed consonant.
Alternatively, inverse transformation of a spectrum exhibiting the magnitude response of
the noise signal being modeled, and random phase components in each resynthesis block,
yields a noise signal appropriate for modeling consonants. The deterministic plus residual
model [160] provides flexible control over the resynthesis process. Spectral envelopes can be
extracted from the harmonics and modified before resynthesis, allowing simple resynthesis,

independent pitch shifting and time shifting without spectral distortion, or cross-synthesis.

1.2 Formant Based Models

In identifying dissimilar sounds such as vowels, the ear is most sensitive to peaks in the signal
spectrum [167][176]){172]. Resonant peaks in the spectrum are called formants, typically
indexed as Fy, Fy, -, F,, in ascending order of frequency. Figure 1.1 shows a typical voice
spectrum. Some source/filter systems allow direct control over the formants, thus providing
a parameterization well suited to the perceptual features most important the human ear.
A popular speech synthesis system using such controls is the Klatt synthesizer [33], which
allows control over parallel or cascade arrangements of resonant filters. The frequency
modulation voice synthesis method of Chowning [29][28] uses a sinusoidal carrier for each
formant, and a single sinusoid modulating all carriers at the desired fundamental frequency.
As long as the carrier frequencies are selected to be integer multiples of the fundamental
frequency, the side bands surrounding each carrier fuse into a single harmonic spectrum
exhibiting peaks near the desired formant locations. A successful formant based system

for voice synthesis is VOSIM (VOcal SIMulation), which resulted from research into the
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minimum data representation of speech phonemes [32]. VOSIM combines sin? pulses to
directly manipulate formant regions in the spectrum. A method similar to VOSIM is the
FOrmant wave Function (FOF) system of Rodet [40]. The FOF system performs parallel
synthesis in the time domain of functions which transform to formant spectral regions in the
frequency domain. Both analysis/synthesis systems and synthesis by rule [41] [59] systems

have been constructed using FOF's.

Formants Vowel /i/

@dB 4f”””fﬂfn// b\

Vocal Tract
Transfey Function

2508Hz 5880Hz

Figure 1.1: Spectrum of vocal utterance of the vowel /i/ (beet). The smooth line on the
lower spectrum is of the vocal tract transfer function. The resonant peaks of this curve are
called formants.

1.3 Source/Filter Models

Source/filter models of the vocal system take into account the acoustic mechanisms which
produce the speech signal. In voiced phonation, the glottal folds open and close roughly
periodically, producing a pulsed excitation. The acoustic tube of the oropharynx and the
various chambers of the naso-pharynx form a resonant system which filters the glottal pulse,
shaping the spectrum of the final output sound. Figure 1.2 shows a midsagittal cross-section
of the human head, with the acoustically important features labled. Figure 1.3 shows time
and frequency domain plots of a typical glottal waveform, the filter function of the vocal

tract, and the resulting output speech waveform and spectrum.
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nhasopharynx
oropharynx

hard palate
soft palate

epiglottis

larynx

vocal folds

Figure 1.2: A cross-section of the human head, with the acoustically important features
labled.

1.3.1 Linear Predictive Coding (LPC)

A highly successful model used for speech and singing synthesis is Linear Predictive Coding
(LPC) [56][44][42][45]). This method arises from the mathematical technique of linear least
squares estimation, but yields a synthesis system quite closely matched to the physics of
the vocal mechanism. In LPC, the sampled periodic speech wave is predicted as a linear

combination of past samples:

N

#(n) =) z(n —1i)c() (1.1)

i=1

The coefficients ¢(z) from Equation 1.1 are assumed to implement the least squares single

step-ahead predictor over the data set, and thus solve the set of linear equations:

Rc=r (1.2)
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Glottal Waveform

adB
-26dB
-40dB Glottal Soectrum
2506Hz 5008Hz
\/\)\/\J\/\J\/\’\/\/W Output Waveform
adB

Vowel /i/

OutputSpectrum

Vocal Tract
Transfey Function

250BHz 5000Hz

Figure 1.3: Waveforms and spectra of glottal source and vocal tract output for the vowel
/i/ (beet). The smooth line on the lower spectrum is the vocal tract transfer function.

where
z(n)z(n) z(n)z(n+1) . z(n)z(n+ N —1)
z(n+ 1)z(n) z(n+ 1l)z(n+1) - z(n+1)z(n+ N - 1)
R=E, z(n+2)z(n) z(n+ 2)z(n+1) oo z(n+2)z(n+ N -1)
| z(n+ N -1z(n) z(n+N-1Dz(n+1) -+ z(n+N-1)z(n+ N -1) |

(1.3)

is the covariance matrix, with E,, denoting the expectation operator over the time variable

n, assuming stationarity of z. The single sample delayed covariance vector, r, is given by:
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[ z(n)z(n+1) |
z(n)z(n+2)
r=FE,| z(n)z(n+3) (1.4)

| z(n)z(n+ N) |

If the matrix R is invertible, the predictor coefficient vector c is given by:

c=R1r (1.5)

A signal may be processed in blocks of length M, using the samples of each block to
estimate R and r, This yields a set of predictor coefficients for each block of the signal.
Other methods of identifying the predictor coefficients employ adaptive algorithms [163][164]
and economical methods of estimating the covariance matrix and vector [143][150]. The
implementation of a filter using the predictor coefficients c yields an all-pole recursive digital

filter of order N. The filter is driven with the predictor error signal e,

e(n) = &(n) — z(n) (1.6)

to yield an identity resynthesis. Such a synthesis model is called Residual Excited LPC
(RELP). RELP does nothing to reduce the data required to represent the signal, nor does
this method provide flexible control for resynthesis with modifications. Figure 1.4 shows the
waveform and the spectrum of the vowel /a/ (father). The smooth curve on the spectrum
is the response of the LPC filter. The residual signal and spectrum is shown. The spectrum
of the residual is whitened, or flattened, compared with the spectrum of the original vowel,

because the spectral color is coded into the filter in forming the predictor coefficients.

Noting that the error signal corresponding to periodic speech is dominated by a periodic
impulse train, the input to the recursive filter is often replaced by a simple impulse train
of the same frequency as the residual pulses. This frequency is commonly called Fy. In the
case of unvoiced speech, the LPC analysis yields a least squares fit to the power spectral
density of the output signal, and the input to the synthesis filter is white noise.

In both cases, the model of the vocal system is that of a source with a flat spectrum
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Vaveform of Male Vowel /a/ (father)

BB LPC Filter
268
~40dB-
Spec':rw AMM[\A
2580Hz 5000Hz
LPC Residual Signal .l Spectrun

° gna -200B-
“‘N‘Mvv—‘ﬁfv'*bwv““ﬂ'\'ﬂw*‘&'ﬂ'* -40dB

2500Hz 5888Hz

Figure 1.4: Waveforms and spectra of the male vowel /a/ (as in father) and the residual
signal from Linear Prediction. The smooth line on the vowel spectrum is the LPC filter
response.

corresponding to the glottis or turbulent noise source, and a resonant filter corresponding
to the acoustics of the vocal tract. As described, LPC is an analysis/resynthesis system,
but does provide flexible control over time and pitch during resynthesis. Factorization of
the all-pole LPC filter into complex resonances allows the identification and independent

control of formants.

1.3.2 More Physically Based Source Filter Models

The behavior of the vocal tract resonance filter, driven by the weakly coupled glottal source
is only partially captured by LPC and some formant-based source-filter models. The map-
ping of non-physical or pseudo-physical systems onto the actual physical components of the
vocal mechanism is usually not sufficient to allow direct synthesis (rather than by analysis
of recordings) based on notions arising from vocal pedagogy and speech physiology such
as tongue position and glottal effort. More physical models of the vocal tract are possible
[55][54], and can be controlled by intuitively natural physical parameters [58][47].

One theory of speech perception, commonly called the motor theory [173], proposes that
the human speech perception mechanism includes an articulatory component. This theory
contends that humans track likely vocal tract shape trajectories matching trajectories which

would produce the speech sounds being heard. Opponents of this theory cite case studies
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of subjects who, for physiological reasons, never aquired speech production, but could un-
derstand speech. Motor theory proponents argue that the motor mechanism might be more
fundamental than the learned speech of a particular society, or that the motor component
is only one of many parallel systems performing analysis on the speech signal [175]. Mo-
tor theory proponents further argue that if one component is impaired the others adjust
to improve performance. The possibility of an articulatory component within the human
speech perception mechanism, combined with the desire for more intuitive parameters for
controlling synthesis, motivates the use of a more physically based articulatory synthesis
model. In the remaining sections of this chapter, a digital filter simulation of the vocal tract
filters will be derived from a shape description of the oropharyngeal and nasopharyngeal
pathways. The relationship between this model and LPC will be shown. Models of the

sources which excite the vocal tract filters will be discussed.

1.4 Derivation of a Digital Simulation of the Acoustic Tube

The WaveGuide Filter (WGF) development of one-dimensional wave propagation in wave
guides (in the case of the vocal tract, tubes containing air) provides the framework for
controlling the vocal tract filter directly from physical measurements [63][64]. The vocal
tract tube is treated as a system of transmission lines [14], yielding closed-form mathematical
solutions to the wave equation. The wave equation solutions are easily simulated using

digital filters. Given the equations expressing conservation of momentum and mass:

o) ap;;c,t) _ _ané(;:,t)

1.7)

0U(z,t) _  a(z)0P(z,t)
or 2 ot

(1.8)

where a(z) is the cross-sectional area of the tube at position z, p is the density of air,
P(z,t) is the pressure at point z at time ¢, ¢ is the velocity of sound in air, and U(z,?) is

the volume velocity past point z at time ¢, Webster’s horn equation can be derived:
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0 [1 UGz 1 3%U (z,1)
0z la(z) Oz " cla(z) Ot2

(1.9)

When a(z) is constant within a section m of the tube, that is, a,,(z) = ay,, then Webster’s

horn equation reduces to the wave equation within each section:

02U (z,1) _ _1_82Um(:c, t)

oz2 2 o2 (1.10)
The equivalent pressure expression is:
%P, (z,t) 1 %P, (z,t) 1
9z2 & ot (1.11)

The solution of Equation 1.11 can be expressed as a decomposition of left and right-going

traveling pressure waves,

Pn(z,t) = P} (t - -ﬁ—) + Py (t + -:—) 1.12)

where P} and P,; are the right and left-going pressure wave components, respectively. This

yields an expression of the wave equation in right and left going traveling pressure waves:

%Py, (z,t) 1 82 + T _ T
To relate pressure to velocity directly, the expression

oz oz Oz Oz (1.14)

am

[aP,’g N aP,;] _ e [6U;,'; N aU,;]
can be derived. Define the characteristic impedance of the mth tube section, R,,, as:

R,

ﬁ
= (1.15)

By integrating both sides and ignoring any constant terms as acoustically unimportant D.C.

components, the expressions
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[P + Pn] = Rm [Uf, = Uy (1.16)
P} = R,U} (1.17)
P, =-R,U; (1.18)

can be derived to relate pressure to velocity in each section. Whenever two sections of differ-
ing characteristic impedance meet, the boundary conditions to be satisfied are conservation
of mass (mass flow, and thus volumetric flow assuming incompressibility, is conserved) and
conservation of momentum (pressure is continuous at the junction). These two conditions

yield the junction scattering relations:

_ _Ry—Ry_, ( R2—-R1) _

Pr=—"2""pPr4(1—-—==""~)P. .

' " Ro+R ! Ro+Ry) 2 (1.19)
RQ—'Rl) R2-—R1 _

+ _ } Bkt 3 Lt St

Py (1 Ry+Ry/) 1 R2+R,P2 (1.20)

By defining the junction scattering coefficient of the interface between the mth and m+ 1th

sections, k,, as:

km = H (1.21)
the scattering relations for pressure and velocity can be written as:
Pr =knPt + (1= knm)P,,, (1.22)
Prii=Q+k)PE—knP,,, (1.23)
Up = kUt + (14 k) Uppyy (1.24)
Ut =0 =kn)U} = knlUs g (1.25)

For representation of a tube by a digital filter, the tube is divided into a number of sections,

each of the same length determined by the sampling rate, Fg and the speed of sound, c:
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Section Length = = (1.26)
Fs

This yields a uniform time delay through each section of the tube, equal to the time required
for sound waves to propagate through each section. Figure 1.5 shows a smooth acoustic
tube, a sampled version of the same tube, the digital filter simulation of the acoustic tube,
and the scattering junction connecting adjacent tube sections. The scattering junction is
known as the Kelly-Lochbaum junction [54], and can be manipulated algebraically to yield a
one-multiply, three-addition structure. The ladder filter structure of Figure 1.5 is discussed
and analyzed by Gray [152].

Hy(2)

H (z)

Figure 1.5: A smooth acoustic tube, the sampled version, the digital filter simulation, and
the scattering junction connecting adjacent tube sections.

Since the characteristic impedance of each tube section is a function of the cross-sectional
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area of a section, and thus the radius, the junction scattering coeflicients are computed en-
tirely from the physical tract section measurements. Block Hz(Z) in Figure 1.5 represents
the transmission and reflection characteristics of the glottis. The reflection characteristic
of the glottis can simply be modeled as a constant positive reflection coefficient (< 1) , or
more elaborately as a time varying filter. Hf(Z) represents the reflection and transmission
characteristics of the lip, which vary with the configuration of the vocal tract. The trans-
mission and reflection functions should be complimentary, that is, in a lossless system, any
energy not reflected at the lips is transmitted. A simple model of the lip reflection filter is
a low-order low-pass filter, representing the loading of the end of the tube with a piston of
air [14]. The cutoff frequency is linearly related to the diameter of the tube end.

Some Vowel Spectrum Examples

As an example of an acoustic tube vocal tract simulation by a digital filter, take an acoustic
tube of nine sections. This is consistent with the length of a small female vocal tract of 14 cm.
length, sampled at 22.05 kHz. sampling rate. Figure 1.6 shows three vowel configurations,
with the smoothed shape of the vocal tract displayed in a cross-section of a human head, the
corresponding log-magnitude frequency response of the acoustic tube, and the frequencies

of the first three formants.

1.4.1 Propagating Pressure and Velocity

Other derivations, such as the one by Bonder [46], solve the acoustic tube wave equations
using the independent variables of pressure and volume velocity. Both variables are prop-
agated in the right-going direction. These formulations yield a transmission matrix model

for computing wave propagation, where the pressure and velocity in adjacent sections of

| o B P;
_[%_ b [U] .27

where, from the boundary conditions for a uniform tube, the transmission coefficients are:

the tube are related by:

P4
Uic1
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fa/ (father)
F1 = 755 Hz.
F2 = 1396 Hz.

F3 = 3394 Hz.

/i’ (beet)
FL = 366 Hz.
F2 = 2339 Hz.

F3 = 3265 Hz.

/u’ (boot)

FL = 633 Hz.
F2 = 3329 Hz.
F3 = 4678 Hz.

Figure 1.6: Three vocal tract configurations, with the log-magnitude frequency response of
the corresponding digital filter, and the frequencies of the first three formant peaks.

o= cos(%l) (1.28)
B = if’fsz‘n(fc—l) (1.29)
B = iism(ﬁ’c—l) (1.30)

5= cos(%l) (1.31)

where [ is the length of each tube section as given in Equation 1.26. It is easily shown
that the transmission matrix made up from these coefficients always has a determinant of
1. This expresses the fact that in a lossless acoustic tube, power, the product of pressure
and velocity, is conserved across each junction. The scattering matrix is simply a rotation
matrix which exchanges energy between the orthogonal variables of pressure and velocity.

The relation from input to output of a tube of n cylindrical segments has the form:
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(1.32)

A B] lp] s

where
4 B = | @ Bi
[C D:l _i=1—[1[’7i 5.‘] (1.34)

By assuming that there is no pressure emmission from the rightmost (lip) end of the tube

(P, = 0), the relations of volume velocity from input to output are:

Uy = DU, (1.35)
U _ 1
o=~ D (1.36)

So the complex roots of D are the resonant frequencies (poles, formants) of the acoustic

tube whose transmission characteristics are described by:

A B

J (1.37)

1.4.2 Power Normalized Form of Waveguide Structure

The decomposition of waves into left and right-going components can be performed on
power waves. This representation also results in a ladder filter structure, with somewhat
different scattering coefficient relationships. Power is computed as the product of pressure

and velocity:

P = PU (1.38)
Pt =ptyt (1.39)
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P-=PU" (1.40)

If root-power is propagated, denoted by 75, the junction scattering relations of Equation

1.19 and 1.20 are transformed using the relationship for root-power:

Pt = (1.41)

ST

yielding:

(1- k)\/f;:; =V1-k? (1.42)

With a trigonometric substitution of

k = sin(8) (1.43)

the root-power form of the scattering junction equations can be derived:

Ps
Py

The rotation matrix nature of the scattering equations is obvious, and indicates the lossless-

(1.44)

_ cos(d) —sin(9) 'lsf'
sin(6) cos(h) Py

ness of the scattering operation. Figure 1.7 shows the scattering junction associated with

equation 1.44.

Figure 1.7: Root-power scattering junction. This form corresponds to the application of a
rotation matrix applied to left and right-going root-power waves.
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1.4.3 Relation of WaveGuide Acoustic Tube to LPC

If the appropriate restrictions are placed on the boundary conditions at the lip and glottis
ends of the tube, the structure of the one-dimensional single acoustic tube filter can be
manipulated to yield an all-pole response. This structure directly relates to the structure
of the canonical Linear Predictive Coder (LPC) realization filter discussed in Section 1.3.1.
Figure 1.8 shows the graphical manipulations of “pushing through” delay elements to yield
a canonical all-pole filter block diagram. Assuming that the reflection conditions at the lips
and glottis are simple (constants for example), the transfer function contains polynomials in
Z~2, This motivates the replacement of Z~2 by Z~1, effectively halving the sampling rate
of the filter. After all of these manipulations have been performed, a filter more efficient
than the waveguide ladder filter is realized, but the filter topology is no longer physically
based. That is, the direct propagation of wave variables is no longer inherent in the filter
operation, and thus the left and right-going wave variables are made difficult to aquire for
analysis or further derivations. The phase delay characteristics of the filter are changed in
the reduction process if caution is not exercised in defining the input and output points. In
fact, it is impossible to make the reduced filter realized at one-half sampling rate of Figure
1.8 exhibit the exact same phase delay as the original filter, because a delay of 1.5 samples

is required in the numerator of the transfer function at the reduced sampling rate.

If the conditions at the lips and glottis are modeled more realistically, such as a sophisticated
filter at the lips and a time varying or non-linear reflection coefficient at the glottis, the
transfer function manipulations shown in Figure 1.8 are not guaranteed to be valid, and the

reduction of the acoustic tube filter to an all-pole filter is not possible.

1.4.4 Multiple Waveguides and N-way junctions

The boundary conditions of pressure continuity and flow conservation determine the re-
lationship between pressure and volume velocity at the junction of any number of tubes.
Given a junction where n tubes meet, there are n incoming waves whose values are known,
and n outgoing waves to be calculated. Denote the incoming pressure and velocity waves
in tube i as P and U, and the outgoing waves in tube i as P, and U;". Pressure and

velocity are related according to Equations 1.17 and 1.18. The boundary conditions are:
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/ Graph
Reduction

X Y X Y
Convert to1/2
Sampling Rate
(-~ - ) —=>)

(x:k1 k2+ kzb-kla

|3 = k‘b'kaa - abk, kz

Y =abkZky2
Figure 1.8: A ladder filter realization of an acoustic tube, and an equivalent digital filter
realization. The arrows on the ladder filter show how to “push through” single delay
elements to combine them into lumped delay elements. Note that the wave propagation
nature of the ladder filter is lost in reducing the filter topology. To approximate the phase

delay of the original filter most closely, the output of the reduced filter is taken from the
lower (dashed) output.

P1=P2=P3="'=Pn=PJ (1.45)
U1+Us+Us+--+U,=0 (146)

where P; is the junction pressure. Define the characteristic admittance of the iy, tube

section as the inverse of its characteristic impedance:

1 a;
L= R~ o (1.47)

It can be shown that:
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n
22 I‘.'P{*'
Py=-=L (1.48)
ST
=1
=S P (1.49)
i=1
where
o; = fr‘ €[0,2] (1.50)

PRY
i=1
Since P; = Py and P; = P + P; for all i, the reflected pressure in any tube is simply the

difference between the incoming pressure from that tube and the junction pressure.

PT =P;-PF (1.51)

The reflected volume velocity is given by the product of the characteristic impedance of the

tube and the reflected pressure.

1.4.5 The Nasal Tract and Junction

The bifurcation that exists at the velum in the vocal tract can be modeled as a three-way
junction. At the velum location, some of the wave energy coming from the glottis might be
diverted into the nasal airway, some may continue on to the lips, and the rest will reflect
back toward the glottis. A dual acoustic tube model with one three-way scattering junction
is shown in Figure 1.9. Figure 1.10 shows the vocal/nasal tract configurations and transfer
functions of three nasal vowels. Hy(Z) is the reflection/transmission filter for the nose,
which is fixed under normal speech and singing conditions. The reflection function at the

nostrils is well modeled by a fixed cutoff low-pass filter.

At sufficiently high sampling rates, extra tubes can be used to model the space below the
tongue [55]. More elaborate models of the tongue have been proposed and tested [52], but

fall outside of the waveguide acoustic tube model of the vocal tract.
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Figure 1.9: The waveguide digital filter block diagram of a system comprised of two acoustic
tubes, joined with a three-way scattering junction. This is a filter structure which models
the oral and nasal airways of the vocal tract.

1.4.6 Transcutaneous Throat Radiation

A small but significant amount of acoustic energy is radiated from the vocal mechanism
through the throat wall. This is especially important in cases of voiced plosives and other
times when all other paths out of the vocal tract are closed. Figure 1.11 shows the amplitude
envelope of one utterance of a voiced plosive, and the average spectrum of the radiation
from the throat of a male speaker during the closed portion of a number of voiced plosives.
The microphone was placed six inches from the lips, and the speaker uttered the sounds;
”Bee, Dee, Gee, Boo, Doo, Goo, Baa, Daa, Gaa”. Spectra were calculated for the closed
portions of all nine utterances, then averaged. The average power of the closed portions of
the utterances was -13.9 dB referenced to the average power of the open vowel portion of
the utterances. The spectrum shows a low-passed response, and suggests that the throat
radiation is modeled to a good approximation by a low-order recursive low-pass filter. To
account for phase delay effects, a delay line is added to simulate the sound path length from
the throat to the point in space where the mixed vocal sound is desired. Figure 1.12 shows
the digital filter realization of the vocal tract, including the three-way scattering junction at
the velum, and the low-pass filter and delay line which model radiation through the throat
wall.
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/m/ (mat)

/né (sing)

Figure 1.10: Vocal tract shapes and the corresponding log-magnitude transfer functions for
three nasal vowels.

1.5 The Periodic Glottal Source

1.5.1 Synthesis Models of the Glottal Waveform
Impulse and Multi-Pulse LPC

Linear Predictive Coding (LPC) was discussed in Section 1.3.1. In such systems, the output
signal is modeled as a linear combination of a number of previous samples, and a linear
predictor is designed. Since any component of the signal which is linearly predictable is
modeled by the filter, the predictor residual exhibits a white (flat) spectrum. The filter
source is modeled as having a flat spectrum, and two sources which satisfy this spectral
description are impulses and white noise. The predictor filter contains the desired spectral
properties of the output wave. Atal, Chang, Mathews, and Tukey [66] showed that there
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Avg. Spectrum of 9 Closed
Portions of Voiced Plosives
Phonation Frequencies #1068 Hz.

N
508 1008 1508 2000 Hz.

Figure 1.11: One utterance containing a voiced plosive, and the average spectrum of 9
closed voiced portions of the utterances "Bee, Dee, Gee, Boo, Doo, Goo, Baa, Daa, Gaa”.

Ho(z)

Ho(2)

Figure 1.12: A digital realization of the vocal tract, showing waveguides for the oral and
nasal passages, the three-way scattering junction at the velum, and the low-pass filter and
delay line which model radiation through the throat wall.

are many combinations of sources and filters which exhibit the same output spectrum. A
source/filter model using a white excitation source simplifies the filter solution. The model
of the source as either a periodic impulse train or white noise fits well within a model of
speech in which the signal is considered to be either voiced (periodic) or unvoiced (noise-like)

within a certain analysis frame.

A common complaint about the quality of LPC speech/singing systems is that the synthesis
sounds ’buzzy’. The buzziness is especially evident in the time varying case, and results
from the impulsive quality of the excitation function and the rapid switches from voiced

to unvoiced excitation modes. Many sounds produced by the vocal mechanism are both
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pitched and noisy, such as the voiced fricative /z/ (as in zoo). As shown in Section 1.4.3,
the acoustic tube filter model can be used to implement the all-pole filters yielded by LPC
analysis. The “vocal tract shapes” directly corresponding to LPC analysis, however, are
somewhat unnatural, specifically because of the white-spectrum nature of the LPC source
and the fact that the filter is responsible for all spectral coloration. Another problem with
the synthesis of speech/singing by exciting an all-pole filter with parametric impulses or
noise is that the determination of whether the sound is unvoiced or voiced must be made,

and in the latter case the frequency of phonation (Fp) must be determined.

In the human vocal system the source is a pulsatile signal generated by the opening and
closing of the vocal folds. The folds open quite slowly as pushed open by the subglottal
pressure, and are rapidly “sucked” closed by the Bernoulli effect [87] resulting from air
flow. This generates a quasi-periodic voice source with a spectrum which rolls off roughly
exponentially with frequency. The filter, which is controlled by the shape of the vocal tract,
does not contain all of the spectral information of the final output signal, but rather the

spectral features are distributed between the source and the filter.

To improve the representation of the source, LPC with multi-pulse excitation has been
investigated [43][61]. In multipulse LPC, a few non-zero samples represent the residual
signal of Equation 1.6. Typically the number of residual samples is reduced by a factor of
8 to 10. In normal voiced speech, this yields a source signal which exhibits several pulses
around the glottal closure epoch, and a few pulses elsewhere in the period. Multipulse LPC
automatically models the voiced/unvoiced/mixed nature of actual speech, and also models

the noise present in voiced speech.

LPC and its variants are principally analysis/resynthesis (speech coding) systems, and as
such must yield unique solutions in applications involving automatic speech coding and
resynthesis. For research in the synthesis of singing, or the synthesis of singing for compo-
sitional purposes, the model parameters should not necessarily depend on analysis of sung
tones or performances. In such a system, synthesis by direct control of the model parame-
ters is desired, and constraints of mathematical uniqueness are less important. In Sections
1.4.6 through 1.4, digital models of the vocal tract filters were developed from the principles
of physics. The next sections discuss and develop physically motivated models of periodic

excitation sources and noise sources in the vocal mechanism.
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Time Domain Wave-Shape of Parametric Glottal Pulses

Rosenberg [79] investigated the perceptual aspects of the replacement of the glottal wave-
form with an abstract (parametric) glottal pulse. He found that simple polynomial or
trigonometric functions can be used to build glottal excitation functions without signifi-
cant perceptual degradation of the speech signal. In investigating the parameters of glottal

opening and closing times, Rosenberg discovered three things of importance:

® There is a large tolerance for different combinations of relative opening and closing

times.
e  Very small opening or closing times are not favored perceptually.

e Opening times which are equal to or less than the closing time are not ranked

favorably.

These experiments suggest minimum requirements for parametric glottal pulse control; a

fixed opening shape is allowed, but control over closing time is necessary.

Sundberg and Gauffin [83] studied flow glottograms (the waveform of the airflow through
the glottal folds), and determined that there are two acoustically important features of the
glottogram. Those two features are the amplitude and the closing rate. They mapped
these two features onto more subjective descriptions of vocal quality. They denote vocal
quality as ranging from pressed, in which efficient use of the air through the vocal folds is
realized by a high tension between the folds themselves, through normal, flow, breathy, to
whisper, in which the tension between the folds is so low as to allow the passage of some air
through the folds without complete interruption. The researchers found that control along
the dimension of breathy to pressed phonation is related to amplitude, and loudness (or
vocal effort) is related to the closing rate of the glottis. These simple controls allow great
flexibility of control over the intuitive vocal notions of effort, emotion, mode of phonation,

musical dynamics, and pitch range.

Work by Cummings and Clements [68] studied glottal waveshape under differing voice stress
conditions. The researchers chose six parameters to describe the glottal waveform; opening
slope, opening duration, top duration, closing slope, closing duration and closed duration.

Eleven speech conditions were investigated; angry, 50 %, clear, 70 %, fast, loud, Lombard,
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normal, question, slow, and soft. The results showed a sufficiently different profile based on
the six parameters to allow identification of each of the ten speech styles. Except for the
questioning speech condition, the closed duration was roughly constant. Closing slope and
duration exhibited wide variation, and opening slope only deviated significantly in the loud

speech case.

Such work suggests a parametrically controlled time domain description of glottal waveshape
as a source for the source/filter model of the vocal mechanism. The glottal pulse can be
pre-synthesized from the parameters and stored in a wavetable. If multiple wavetables are
stored, interpolation between wavetables simulates variations in the source. Wavetables are
discussed in Section 1.5.1. A simple parametric glottal pulse consists of a raised cosine until
the specified closing edge start point, then a line segment from the cosine curve down to
zero at the closing edge end point, then zero for the remainder of the period. The control
of closing edge beginning and ending points provides the minimal parametric glottal pulse,
with fixed opening slope and time, and controls affecting closing slope and time. If glottal
closure beginning and ending points (e; and e2, respectively) are specified as a fraction
of the period of the raised cosine, the form for the frequency-normalized continuous-time

parametric glottal pulse is:

0.5 — 0.5cos(2nt) t<e
— 0—=U.
z(t) = { —L5=0bcoslrer) ?eff’:])zn' (t—e2) e1<t<Ler (1.52)
0.0 t> e
Where
00<e1<ea<1.0 (1.53)

To control the bandwidth of the pulse to prevent aliasing, to compress the representation
(a few numbers representing magnitudes and phases vs. the sampled data representation of
the wavetable), and to provide some spectral parameterization for further processing, the
specified pulse can be converted into Fourier series coefficients. A continuous time periodic

function can be decomposed into a sum of sinusoids [146],

[e.+]
z(t) = Co + ZAncos(ZrFo'n,t) + By sin(2n Fynt) (1.54)

n=1
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Where Fj is the fundamental frequency, which is the inverse of the fundamental period Tj.

The Fourier series coefficients are computed over one period of the periodic wave, and are
defined by:

1 (To
Co=— / o(t)dt (1.55)
To Ji=0
2 [To
A, = —/ z(t)cos(2m Fynt)dt (1.56)
TO t=0
2 (To
B, =~ / 2(t)sin(2r Font)dt (1.57)
Ty Ji=0

In the case of the parametric glottal pulse, the integrals are divided into the cosine portion
and the line segment portion. The normalization of the glottal wave to a period (and thus
frequency) of 1 simplifies Equations 1.54 through 1.57. If e; = eo, corresponding to an
instantaneous glottal closure, only the coefficients corresponding to the cosine portion are

computed.

Co = /, :x(t)dt (1.58)

Ap = 2/e;z(t)cos(2wnt)dt (1.59)
t=

B, = 2/e;z(t)sin(27rnt)dt (1.60)
t=

From linearity of the Fourier Series, if the sloping line segment portion is needed (el # €2),
the Fourier coefficients can be computed for the line segment alone, and the resultant
coefficients added to the raised cosine coefficients obtained in Equations 1.58 through 1.60

to arrive at the total coeflicient value.

€
Celosure _ / ' 2(@)dt (1.61)
t=e;
Adosure — o ’ z(t)cos(2nnt)dt (1.62)
t=el
€2
Blosure — 9 z(t)cos(2wnt)dt (1.63)

t=ey

CO = Cgosine + Cglosure (1.64)
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A, =A$losine+A;lasu7‘e (1.65)
B, = B'z‘:losine + B;IOM"‘G (166)

The final closed form for computing the Fourier coefficients for the simple parametric glottal

pulse is:

e _ sin(2we1) e1 = ep
Co = _:L ain(‘g;el) (1—cos(2re;))(e2—e1) (1'67)
2 T 1 e1 < e
( si'n(22:e1) _ ain(s‘l;rel) _ % n=16 = e
sin(27e1) _ sin(dmer) _ a4
" (re1) (eos(2rey)—cos(2es)
1—cos(2re cos(2me1 )—cos(2xeq . .
] | )2" 12L( . 213(e2_el) l—2s'm(27rel)) n=1e < e (1.68)
n = 1 [ sin(2xne in((n—1)2we sin((n+1)x2xe _ :
ﬁ( n L= 2(n-1) - 2(n+1) l) n>1le =ep
1 (sin(27ne;) _ sin((n—1)27e;) _ sin((n+1)*21re;) +
2% n 2(n—1) 2(n+1)
- —cos(2 .
{ (1 m,szﬂa)) (c‘ﬂ2g';%l(;2‘f:f)"@ - sm(21rne1)) n>1le <ep

( 3+cos(4re cos(2xe
(d4mer) _ (2” 1) n=1e =e2

87
3+co§Sr41re1) _ coa(22;rﬂ) + cos(21rel)+
(1—,:0@431)) (sin(27re1)—sin(27reg)
27

B, =/ 2n(ez—e1) n=1e <ey (1.69)
n = 51; 1—co.s£127rne1) + cos((n2z:)_211r)el)—l + cos((n2-£—'}.)‘-211r)e1)—l) n>1e =es .
'21_,,- (l—wa(n21rnm + cos((n2.z11)_211r)el)—1 + coa!!n-;lnlijrl*c] !—1!) +
L (1—60152«611) (sm(21r21;e1:()e—28_4g"@ + cos(27rnel)) n>1le <ey

Once the Fourier coeflicients are computed, the waveform of a single cycle may be synthe-
sized digitally by sampling the Fourier Series formula of Equation 1.54 at the appropriate
sampling rate. Other features of the parametric glottal pulse can be added to the Fourier
series representation, yielding closed form relations between the time-domain parameters

and the spectrum of the resultant glottal pulse.

With a representation of the glottal time domain wave as a set of frequency domain sinu-
soidal components, modification of the glottal source in the frequency domain is simple.
Bloothooft and Plomp [4] applied multidimensional scaling to singer voices to determine
sets of spectral basis vectors (power spectra in % octave bands) which described well the
spectral differences between singers, the change in spectrum with pitch, and the spectral

change with intensity. The spectral regions where these basis vectors are large are the
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principal regions modified by the singer, and the regions which differ between individual
singers. Manual or rule-based controls for modifying the parametric Fourier coefficients in

specific regions could be developed and applied for natural synthesis-by-rule.

Selection of Wavetable Size and Number of Harmonics for Synthesis

For reasons of economy, wavetables are often employed for synthesis of periodic waveforms
[155]. To minimize quantization effects, the wavetable is synthesized using the entire dy-
namic range available, and the gain control is applied multiplicatively to the output of
the wave table during resynthesis. If one period of the wave is stored in the wavetable,
the wavetable length is N, the increment step through the wavetable is § (a floating point
number), the desired fundamental frequency is Fy, and the sampling frequency is Fg, the

increment is given by:

§= 20 (1.70)

yielding an output wave z(n) whose nth sample is the element from the table whose location

is:

né —mN (1.71)

where m is the greatest integer yielding a non-negative result in Equation 1.71.

The selection of the wavetable size is driven by memory and distortion considerations. A
wavetable that is too small contains a coarse sampling of the waveform, and results in
aliasing and quantization errors. Aliasing occurs if the highest frequency harmonic is not
sampled at a rate which is above the Nyquist frequency (at least twice the frequency of
the harmonic). This is determined by wavetable length, sampling frequency, and playback
frequency. If one period of the waveform is stored in the wavetable, the aliasing constraint

yields a minimum wavetable length given a desired maximum number of harmonics:

N > 2 x Maximum Number of Harmonics (1.72)
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The maximum frequency and sampling frequency determines the maximum number of har-

monics:

Fy

Maximum Number of Harmonics < ——m8M8M™M
Fy Maximum

(1.73)
These guidelines assume ideal interpolation [159][162] of fractional-time samples from the
wavetable. Interpolation is sometimes not done in wavetable lookup. This corresponds to
the zero-order (rectangular interpolation function) condition of digital signal reconstruction,
which implies that the replicated spectrum of the wavetable signal is multiplied by a sinc
function in the frequency domain, yielding a peak error of -13 dB in the spectrum of the
reconstructed signal for a wavetable which satisfies Equation 1.72 with equality. If linear
interpolation is performed, the spectrum of the non-interpolated signal is multiplied by the
transform of a triangular window, yielding a spectrum with a maximum error of -26 dB.
Higher order interpolation schemes, corresponding to higher order interpolation windows,
yield smaller errors. By oversampling the wavetable, the error is decreased 6 dB for each
doubling of the wavetable size. Thus 96 dB of signal to noise ratio is achieved with linear
interpolation of a single sinusoid stored in a table of length 4096, or no interpolation of
a sine stored in a table of length 65,536. Figure 1.13 shows the spectra of low frequency
synthesized waveforms using non-interpolated sinusoid tables of length four and eight, and

a linearly interpolated table of length four.

1 4 Point Taeble 8 Point Table 4 Point
0 0. 0 Interpolated
0 0. 1]
0 0. 0
0 0. 0

Figure 1.13: Power spectra of low frequency synthesized waveforms using non-interpolated
single sinusoid tables of length four and eight, and a linearly interpolated table of length
four. The main lobe is the desired sinusoidal component, and the other lobes are distortion
components.
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1.5.2 Physical Models of the Vocal Folds

One model of the output of the vocal folds involves placing a source of constant pressure or
velocity at the input to the vocal tract model, and modulating the opening at the glottal
end of the vocal tract tube [57]. The glottal aperture is opened and closed according to a
specific waveshape, generated by using the wavetable techniques discussed in the previous
section. This model is slightly more physical than simple waveform synthesis, and yields

some of the source/filter interactions observed in the vocal mechanism.

A highly physical model of the vocal folds can be constructed using masses and springs.
Such models have been proposed by Ishizaka and Flanagan [73], Titze [84](85], Kacprowski
[74], and others. The parameters of mass values, spring constants, and breath pressure are
used to control the model. The differential equations governing such systems are solved
in discrete time to yield a glottal waveform. The waveguide ladder filter realization of the
vocal tract, because of the phase delay characteristics and bidirectional wave propagation
form, allows coupling of a mass-spring oscillator in a physically meaningful way. The effects
of the Bernoulli force and other physical phenomena can be included into the model for a
highly accurate simulation. There are two practical problems with using this type of model

for sound synthesis, however.

The first problem of a physically based mass-spring model is that of parameterization and
control. Once the model has been constructed, the parameters are values of spring constants,
masses, glottal breath pressure, and air flow. While many people are mildly familiar with
control of the glottis via breath pressure and flow, they certainly are not consciously familiar
with control of the vocal source via the individual masses and springs. Singers, composers,
students of speech, and other potential users of articulatory vocal simulation systems view
glottal control more in the domains of effort, emotion, and the resultant spectrum. Much
of fine instantaneous glottal control is completely involuntary [25]. This implies that much
of the control stream of parameter changes going to the model must be generated by yet
another model, possibly involving some abstract control matrix to map a set of m parameters
onto n controls [144], or a physiological model involving more muscles (masses and springs)
and some model of neurological feedback at two levels [25][166][181]. Once this model was
in place, meaningful parameters could be used to control it, but the model would grow to

prohibitive computational size.
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The second problem of using a mass-spring coupled oscillator model of the vocal folds is
that of computational burden versus sound quality. One of the more successful mass-spring
models of the glottal folds is that of Titze [84][85], using 16 mass and spring elements.
Another model by Titze and Talkin [86] provides control of the glottal folds via parameters
of glottal opening, ligament stress, and vocalis stress. This model provides great insight into
the workings of the glottal oscillator, but is computationally complex. The computational
burden of using these models is quite large. Further, a number of non-linear behaviors (for
example when the vocal folds are closed) must be computed using logical decisions, and
such decisions are often the most costly to compute in a Digital Signal Processor (DSP)
chip architecture. As discussed above, the control stream to such a model is necessarily

quite high, because of the number of discrete components (masses and springs) to control.

Finally, the sound quality of synthesis examples using such models is compelling, but not
yet of sufficiently high quality to suggest their use in musical applications, especially when
compared to more classical linear techniques of direct synthesis. Titze and Talkin state
that their simulations yield results which deviate much more from actual human larynxes
than individual human larynxes differ from each other. Time-varying solutions of boundary
value problems and construction of variable non-linear mass-spring systems yield insight,
and hold much promise for the future of synthesis, but current hardware prohibits the use

of all but the simplest of such models for real time synthesis.

1.6 Sources of Noise in the Vocal Tract

Second to glottal fold oscillation, turbulence is the next most important source of sound
in the vocal tract. The passage of air at sufficient velocity through an aperture causes
turbulent streaming, and thus noise is generated [136][113][114]. The turbulence ceases if
the aperture opens sufficiently or the flow decreases. The possibility of turbulent flow is
indicated by the value of the Reynolds number, which is a unitless quantity expressing
viscous force within the fluid. The Reynolds number is computed from the dimensions of

the aperture and the magnitude of the flow by:

Vd
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where V is the particle velocity and d is the effective diameter of the aperture. The kinematic
viscosity of the fluid, v, is defined as the ratio of the dynamic viscosity to the density, and
is about 0.15 cm?/s for dry air [7]. The Reynolds number can be computed in terms of 4,
the area of the aperture, and U, the volumetric flow, by using the following relationships

for flow through a circular aperture:

wd?
A= e (1.75)
U=VA (1.76)
yielding;:
Re = 20 (1.77)
vV Am

Turbulent streaming is likely if the Reynolds number is greater than a critical quantity,
Re i, which is about 1,000 for a rectangular slit, and larger for circular apertures. If
turbulence is present, noise is generated with a power which is proportional to V8. The

radiated sound power is related to the volumetric flow by:

P x (%—)8 (1.78)

The center frequency of the principal peak in the spectrum of the turbulent noise is given
by:

_SV _Suyrx
P=r = (1.79)

where S is the Strouhal number, which is 0.15 for the center frequency of noise spectral
density.
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1.6.1 Fricative Consonants

In the case of fricative consonants, some region of the oropharyngeal tube is constricted,
air blowing through the constriction causes a turbulent jet to form, and the jet radiates
sound energy. One or two resonant peaks characterize the power spectra of most fricative

consonants [122]. Figure 1.14 shows the power spectra of four fricative consonants.
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Figure 1.14: Power spectra of four fricative consonants.

The spectral properties of most fricative consonants are due to the acoustical behavior of the
turbulent jet [140]. In the case of some fricative consonants, one or more resonances of the
acoustic tube are evident in the spectrum, or tube loading affects jet dynamics [112][124].

The regularly spaced peaks in the /x/ (German fricative as in Bach) fricative spectrum of
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Figure 1.14 are typical of the odd-harmonic resonances of a pipe which is closed at one end
(the constriction point) and open at the other [2]. Some researchers suggest that detailed
studies and simulations of flow throughout the vocal tract are necessary for any significant
improvements to be made in the quality of voice synthesis [128][137][138]. Other researchers
assert that mathematical and computer models of turbulent flow are so primitive at this

time that sound synthesis by actual modeling of unsteady flow is impossible [124].

The noise spectrum nature of fricative consonants suggests that white noise, filtered by
a low-order resonant filter would comprise a successful synthesis model. This technique
is used in LPC, where the detection of an unvoiced (noisy) sound causes the resynthesis
filter to be driven with a white noise source. In the waveguide acoustic tube model of the
vocal tract, the noise source can be injected into the vocal tract at the correct location.
Thus, any spectral properties of the consonant due to linear tube acoustics are modeled
naturally by the acoustic tube simulation filter. Any spectral properties due to turbulence
can be modeled by an additional low-order resonant filter. Figure 1.15 shows four vocal
tract configurations and the spectra of four synthetic fricative consonants. All consonants
were synthesized by injecting filtered white noise into the correct location in the acoustic
tube digital simulation filter. A four-pole filter was used to model the spectral properties
of the jet.

1.6.2 Noise in the Glottis

Flow through the pulsating aperture of the glottis produces noise. This noise is automat-
ically modeled by the residual signal in residual-driven LPC and it is approximated in
multipulse LPC systems. In parametric speech and singing synthesis systems, this noise
component is often ignored. Section 2.5 explores noise generation in the glottal source both

theoretically and experimentally.

1.7 Identification of Filter and Source Control Parameters

Because of the physical nature of the control parameters, many high quality singing voice
synthesis examples can be done experimentally using the multiple acoustic tube waveguide

filter model of the vocal tract. Configuring the tube into intuitively derived shapes and
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/x¢ (Bach)

Figure 1.15: Vocal tract configurations and power spectra of four synthetic fricative conso-
nants.

driving the model with the parametric glottal pulse often yields synthesized sounds which
are perceptually close to the expected sound. This type of synthesis has been called “analysis
by synthesis” and “synthesis by art”. In order for synthesis to proceed past the ad hoc
experimental stage, however, some methods must be made available for identifying the
parameters of vocal tract shape, velum opening, glottal waveform (and thus the parameters
of glottal wave amplitude and closure rate), voice pitch and pitch deviation, noise power,
and noise spectrum. The principle task is to separate the source from the filter, which is
non-trivial. As it is difficult to isolate the source from the filter, it is similarly difficult to
separate the processes and techniques of filter identification and source identification. The

wide variety of sources and filters yielding the same result [66][46] means that either:

1. Assumptions must be made about the source, the filter, or both. In the simple

LPC case, the assumption is that the filter is responsible for all of the spectral
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properties, and thus the source exhibits a flat spectrum.

2. Some on-line or off-line measurements must be performed on the subject. This can
be as invasive as inserting a sensor through a hole in the neck, or as non-invasive as

merely asking the subject to phonate in particular ways (such as whispered speech).

In the remaining sections of this chapter, methods of identifying the vocal tract shape
and glottal waveform are presented. Identification of the glottal waveform is discussed,
followed by a discussion of methods of identifying the vocal tract filter, methods of mapping
a filter to a vocal tract shape, and direct methods of identifying the vocal tract shape.
Chapter 2 concentrates on the principal focus of the experimental research, specifically the

identification of pitch deviation and glottal noise characteristics in singer voices.

1.7.1 Identifying the Vocal Tract Filter

The waveguide acoustic tube model of the vocal tract provides a stable and physical method
of synthesizing vocal sounds, so the aquisition of sampled vocal tract measurements for
digital simulation is of particular importance. Methods of identifying the vocal tract filter
involve the direct identification of the vocal tract shape, or identification of a filter transfer
function, then if desired, the conversion of the filter parameters to physical measurements.
X-ray techniques for identifying vocal tract shape were used extensively throughout the
1950’s and 1960’s [50][8]. The desire for less invasive and more accurate methods of shape

identification led to the development of methods involving the use of acoustical information.

The direct determination of the vocal tract geometry from formant locations [81][77] has
been investigated. Bonder [46] showed, however, that non-uniqueness conditions exist in the
n-tube formulation of the single acoustic tube vocal tract. Incorporation of more spectral
information than simple formant locations, and the use of a priori information about the
human vocal tract yields more accurate solutions, and can solve the uniqueness problem
[71]. Off-line measurement of the vocal tract geometry is accomplished by measuring the
acoustical impedance at the lips by sinusoidal, noise, or impulse injection methods [81][82)].
Since the source is injected into the vocal tract, off-line techniques make no assumption
about the source in solving for the filter characteristics. If the computed vocal tract transfer
functions are later used to solve for source characteristics, however, there is an assumption

made that the vocal tract shape is the same while phonating as it is when measuring the
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lip transfer function.

The reflection coefficients of an acoustic tube model can be derived from the coefficients of
a digital filter realization. Low frequencies in the voice spectrum are often de-emphasized
before performing LPC to reduce dynamic range [11], but the de-emphasis also serves to
cancel the natural spectral roll off of the glottal source. LPC provides a set of filter co-
efficients, and the vocal tract area functions can be obtained from the coefficients using
recursive procedures such as the Levinson [148], Schur [145], and Durbin [151] recursions.
Algorithms such as these are derived from (or related to) scattering formulations from seis-
mology, optics, and acoustics, and are summarized by Yagle [165]. Such recursive algorithms
can be viewed physically as section peeling algorithms, since the pieces of the acoustic tube

are peeled off one section at a time. Given a transfer function with M poles:

H(Z) = -A(I—Z) (1.80)

an all-pole step-down recursion for identification of reflection coefficients from a digital filter

transfer function can be defined. Define:

A(Z)=2""A(Z7Y) (1.81)

A (2) = A(Z) (1.82)

recursively as m ranges downward from M to 1, the steps performed are:

kem = Am(00) (1.83)
Am_1(Z) = A’"(Z)l"_’“k";‘""(z) (1.84)

A(m) can be obtained by applying LPC to vocal tract signals, where the order of the LPC
filter is the same as the number of sections in the acoustic tube model. Possible vocal
tract signals for identification are a high-frequency emphasized speech waveform, whispered
speech, a glottal fry source (extremely low frequency pulse mode of phonation), or a transfer
function aquired from the lips. Figure 1.16 shows the vocal tract shapes for the vowel

/i/ (beet) obtained from the step-down recursion applied to the LPC filter derived from
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whispered speech, glottal fry, and normal voiced phonation with 6 dB per octave emphasis

applied.
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Figure 1.16: Vocal tract shapes for the vowel /i/ (beet). Shapes were obtained by applying
step-down recursion to the LPC filter derived from whispered speech, glottal fry, and normal
voiced phonation with 6 dB per octave emphasis applied.

1.7.2 Adapting the WGF Vocal Tract Model From the Voice Signal

In this section a new method of speech tracking is presented based on the waveguide filter
acoustic tube model of the human vocal tract. This method is similar to that discussed by
Fant, Lin, and Badin [51], but is more general and is focused on vocal tract shape identifi-
cation and speech tracking. A gradient descent method of directly moving the articulators
is presented, driven by spectral features of the speech input signal. The least-squares move-
ment which yields the desired formant pattern is imposed on the articulators. The resulting
vocal tract shape is compared to a library of shapes, and the shape which is closest is

recorded as the vowel estimate. Tracking examples of real speech signals are presented.
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The FAST Vowel Tracking Algorithm

A simple WGF acoustic tube model of the oropharyngeal airway of vocal tract is used for
the adaptation algorithm. The tube is terminated at the glottal end with a single reflection
coefficient, representing the average glottal reflection. At the lip end, an inverting one-zero
low-pass filter is used to approximate the reflection characteristics of the open end of a
tube. For these experiments, the glottal reflection coefficient was chosen to be 0.9, and the

lip filter was chosen to be a simple one-zero filter with a gain of -0.4.

Many features of the input signal could be used to drive the articulators. Formant heights,
formant locations, the entire spectral envelope as defined by the harmonic peaks, or a
combination of these could be used. The system described here uses only the formant
frequency locations to adjust the parameters of the vocal tract, and is thus called the
Formant driven Articulatory Speech Tracker (FAST). Formant peaks are detected in the
speech signal, then the vocal tract model is adjusted to yield matching formant locations.
The radii of the vocal tract model are adjusted in a least-squares fashion, following the
‘laziest’ trajectory to the desired shape. In this study, the model was made up of nine
sections, corresponding to the length of a small female vocal tract (14 cm.) at 22,050 Hz.
sampling rate. For tracking of the male voice, the spectrum of the vocal tract model was
shifted downward by 15% to more closely match male formant locations. The vector of radii

specifying the vocal tract shape is of length ¢, and will be called C:

C=[r17g -+ 1g] (1.85)

Detecting Formants in the Input Speech Signal

Given a sampled data signal z(n), the signal is processed in blocks of length N, by window-

ing, transforming, and computing the magnitude spectrum:

zr(n) = w(n) x (kM + n), O0<n< N (1.86)

Xk (m)| = |Flai(n)]] (1.87)
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where k is the block index, and M is the hop size. F is a frequency transform operator
(Fourier or Hartley as described in Appendix A), and the magnitude operator is defined
appropriately for the transform being used [146][147]. The window used in these experiments
was the second order Blackman-Harris window [153], defined as:

w(n) = (0.42 — 0.5 % cos (2 * K —]%) + 0.08 * cos (4 * T % ]—7:;)) (1.88)

For each magnitude spectrum, the formants are determined. In this study, the following

technique was used:

1. Apply high frequency emphasis of 6 dB per octave to the signal. The emphasis
operation approximately cancels the roll-off of the glottal source, and deemphasizes

any components near zero frequency.

2. Find the largest peak in the spectrum and record the position as a formant

frequency.

3. Multiply the spectrum by a prototype zero spectrum (inverse of prototype pole
spectrum) located at the detected formant. This inverse-filters the effect of the
formant, and emphasizes other formants for detection. The prototype zero is a 0.95
radius complex conjugate pair at 1/4 sampling rate (for minimal interaction of the
roots). The magnitude of the transform of the impulse response of the prototype

zero is stored in a table.
4. Repeat 2. and 3. until several formants are detected.

5. Sort the formants in order and remove any duplicate formants, formants which
are too low in frequency (less than 200 Hz.), or formants which are too close together
(less than 350 Hz. difference).

6. If any detected formant exhibits a level lower in amplitude than -60 dB from the
highest spectral point, it is of questionable use. In this study, any such formant was

replaced with the closest matching formant location of the current vocal tract.

This procedure yields the length p vector of input signal formant locations, S, defined by:
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S=[F\ Fy --- F) (1.89)

Adapting the Vocal Tract

The magnitude transfer function of the impulse response of the vocal tract model exhibits
an all-pole response, and is thus easily searched for local maxima. These peaks are the
formants of the vocal tract, and their locations are stored in the p length vector 7. The
purpose of the adaptation algorithm is to move the vocal tract formants to coincide with

the formants detected from the input speech signal. Define the vector of desired formant

changes as:

A=S-T (1.90)

To adapt the vocal tract articulator coefficients, the sensitivity of each tract formant location
to each coefficient is measured. Define the gradient matrix, which expresses the sensitivity

of each formant location to changes in each of the vocal tract radii, as:

O F; OF: OF,
T1 T : 3712
R, QF ?}_FZ
v=| T " (1.91)
JF; JF; OF,

The actual V is measured discretely. This is accomplished by perturbing a coefficient
by a small amount, recomputing the magnitude transform of the impulse response of the
perturbed vocal tract, and recording the change of each formant position. By perturbing
each coefficient individually, the gradient surface of the formant locations is measured. Thus

the measured V is made up of row vectors whose components are given by:

= (1.92)
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where T} is the formant position vector of the vocal tract with the ith radius r; perturbed
by Ar.

In a linear system, the Newton’s method solution is the least-squares movement of each of

the radii yielding the desired formant shifts, given by:

Ca = A(VVH~ly (1.93)

provided that the inverse exists.

If the system is assumed linear in a small region around the current location, the gradient
can be measured with a small Ar, and the radii can be moved by a small fraction p of the

computed movement vector:

Crew =C + puCa (1.94)
The steps of adaptation for each block of the input signal are:
1. Identify the input signal formants.

2. Compute the vector T of vocal tract formants.

(2

. Compute the desired formant delta vector S.

4. Measure the gradient V (Equation 1.91).

5. Form the radius movement vector Cs (Equation 1.7.2).

6. Move the radii by some fraction x of the movement vector.

7. Repeat steps 2 through 6 until the vector A = T — S is sufficiently small or

cannot be improved.

This algorithm takes advantage of two properties of speech and the speech production

mechanism, and depends on one assumption about vocal tract motion.

e The first property is the slowly varying quasi-stationarity of speech signals, which
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allows the algorithm to track slowly varying changes in the formant features of the
signal.

e The second property is continuity in the vocal tract shape, ensuring that the vocal

tract moves from one shape to the next by occupying intermediate shapes in between.

e  The single assumption made is that the vocal tract follows the least-squares motion

(in this case, least-squares on the radii), when moving from one shape to the next.

These conditions imply that if the vocal tract model is in the correct shape for a given

speech sound, and the sound varies, the vocal tract model varies accordingly.

1.7.3 FAST Experiments on Real Speech Signals

A normally phonated /i/ (as in beet) sound at 150 Hz. was presented to the FAST tracker
with an initially neutral shape (all radii = 1 cm.). Figure 1.17 compares the tract shape
aquired by application of the FAST algorithm to the tract shapes of Figure 1.16, aquired
by applying the section-peeling algorithm presented in Section 1.7.1.

To test the FAST algorithm on continuous vowel trajectories, nine vowels and shapes were

selected for the reference library. Table 1.1 shows the vowels and their first three formant

frequencies.
Vowel Dictionary
IPA Symbol | Reference Word | F1 | F2 F3
[i/ (beet) 250 | 2290 | 3010
/1/ (bid) 390 | 1990 | 2550
Je] (bed) 530 | 1840 | 2480
[ae/ (bad) 660 | 1720 | 2410
/N (bud) 520 | 1190 | 2390
/a/ (father) 730 | 1090 | 2440
/D/ (bought) 570 | 850 | 2410
JU/ (book) 440 | 1020 | 2240
e/ (boot) 490 | 1350 | 1690

Table 1.1: A table of vowels and the corresponding frequencies of the first three formants.

The system was tested on two utterances; one utterance was the simple connected vowel
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Vocal Tract

A Radius (cm.) .
s YOLCEA FAST
—————— Whisper LPC
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1 5 W“&%&“‘
0.5t
) 4 3 8 10
Glottis Section Lips

Figure 1.17: Vocal tract shapes for the vowel /i/ (beet) obtained by applying; FAST algo-
rithm to regular phonation, step-down recursion to the LPC filter derived from whispered
speech, step-down recursion to the LPC filter derived from glottal fry, and step-down re-
cursion to the LPC filter derived from regular phonation with 6 dB per octave emphasis
applied.

trajectory /u//i//a/ (ooo eee ahh), the other was the rainbow vowel passage “We were
away a while ago.” Both were uttered by the author with natural inflection over a pitch
range of 100 to 150 Hz. Through experimentation, the norm selected for identifying the
closest library shape to the adapted vocal tract shape was L3, where:

P
L* =3} |Cc— Cilf (1.95)

k=1
Where Cj, is a library shape for comparison. The higher the number z in Equation 1.95,
the more the largest component is accentuated. Selecting a lower norm deemphasizes the

outliers, and causes selection of the closest shape based on all coefficients.
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Nine trials were run on the /u//i//a/ utterance, with the FAST tracker initialized to each
of the nine library vowels. Figure 1.18 shows the tracking behavior of all trials. To aid in
identifying the individual paths, the trajectories in the plot are artifically ‘fanned out’ to

their starting vowel positions at the end of the plot.

Vowel

000 1
uuy
awy -
ahh
uhh -
aah -
ehh -
ihh -
eee 4 -

5 10 15 20 Time

Figure 1.18: Tracking results for the utterance /u//i//a/ (000 eee ahh) with nine initial
starting shapes.

The initial shapes /I/,/e/,/U/, and /u/ tracked correctly, and within four analysis blocks

these four trajectories joined to follow the path:

(el [Y] el el el i1 1] BTGB IN TSN D] IA]

The other five shapes converged to /I/ and remained at that state through the /u/ and /a/
phases of the input speech signal. This demonstrates a multi-modal nature to the the vocal
tract shape space, consistent with the multiplicity of vocal tract shapes yielding the same
acoustical properties [46][66]. Further, it shows that the /i/ and /I/ vowels are not as close
in the shape space as in the formant space, and that the ordering of shapes is likely quite
different from the formant based order of table 1.1.

Figure 1.19 is a vocal tract shape vs. time display of the trajectory with initial position
/1/. The different shapes of the three vowels are evident in the plot.
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The FAST tracker was given the correct initial shape of /u/ to process the utterance ”"We
were away a while ago”, and yielded the trajectory of Figure 1.20. The vowels identified

were:

/el /1] [e][U]]ul[1]]n]/ae/[a][ae][A]

"We w ere aw ay aw hilea g o

TractPos.

Figure 1.19: Vocal tract shape vs. time display for utterance /u//i//a/.

An important question to discuss at this time is, “If the formants are detected as part of the
FAST tracking algorithm, and if the dictionary of Table 1.1 contains the formant locations,
why not simply match the measured formants to the library formants and quit?” One reason
is that formants are not the only features which could drive the algorithm. For this study the
formant frequency positions alone were selected to drive the articulators. The ear is most
sensitive to the formant locations [167][172], but is also capable of detecting the bandwidth

and gain of the formants. Other cues might lie in the noise underlying the formant shaped




CHAPTER 1. SYNTHESIS OF THE SINGING VOICE 48

Vowel

000

uuu ¢+
aww
ahh
uhh
ash T
ehh

ihh
eee +
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T T

o L . . Time
5 10 15 20
"We Were Away A While Ago"

Figure 1.20: Trajectory for Utterance ”We were away a while ago”.

harmonic peaks. The smallest set of features giving best perceptual recognition is one likely
set. Other likely sets might not be restricted to human hearing constraints, but could
be entirely performance based. Given the assumption (or identification) of a glottal pulse
shape, the FAST algorithm could be modified to the TFAST (Time domain Feature driven
Articulatory Speech Tracker) algorithm, where the vocal tract is modified to best match
the time domain wave shape of the input speech signal.

Even if formants are the features which drive the tracking algorithm, there are still good

reasons to track in the shape space:

o  Segmentation of the speech signal is accomplished by observing the current vocal
tract shape estimate and comparing to shapes in a library. As the current shape
changes continuously, the closest shape in the stored library gives the estimate of
the vowel being uttered. The points where the closest library shape changes are
indicators of potential boundaries between phonemes. If the shapes in the library
are ordered, the continuous slowly-varying nature of the shape description implies

that if the shape library is searched outward from the previous shape, the current
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shape will be located quickly.

e Improved separation of consonants is realized by using information about the vocal
tract shape and trajectory. One frequently occurring problem in both human and
machine speech recognition is that consonants within a family (fricatives, plosives,
voiced plosives, etc.) sound much the same. The duration of such events is often so
short that frequency domain analysis to determine the phoneme is difficult, if not
impossible. If the vocal tract shape and trajectory is known, the formation of a con-
striction could indicate the likelihood of a consonant in the future. If the consonant
occurred, the shape would identify the consonant, and the use of spectral processing
could increase confidence if needed. Such predictive capabilities are powerful, and

not as easily obtained from frequency domain techniques alone.

Investigation of the control and feature detection aspects would improve the basic FAST
algorithm. Specifically:

e Investigation of the norms used for vocal tract adaptation and identification. The
issues of laziness of movement and closeness of fit of the vocal tract articulatory
controls are highly influenced by the norm used to define distance in the articulatory
vector space. If the same norm is used to determine shape as is minimized in the
adaptation, the closest shape decision is more likely to yield the starting shape.
The experiments showed that the norm used for defining closeness of vocal tract
shapes clearly influences the ordering, and thus would influence the decisions of any
system which tracks vocal tract shapes. The norm which is minimized piecewise
in the adaptation process is naturally selected to be least-squares on the radii,
but an equally likely candidate would be least-squares on the areas. A somewhat
less physical but computationally efficient criterion is least-squares on the reflection
coefficients themselves. Norms other than least-squares should also be investigated,
as well as other schemes which attach penalties and weightings based on physical

constraints of the human vocal tract.

e Vector quantization of vocal tract shapes. This reduces search complexity and mem-
ory usage. If the set of vocal tract shape vectors is quantized to some set of discrete
vectors, efficient data and complexity reduction is possible. Further, there is a com-

pelling physical motivation for selecting a subset of all possible vectors. Since the
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vocal tract shapes that humans can use vary only over a specific range, and over an
even smaller range in normal speech, the restriction of shapes to these ranges is nat-
ural. Such a physically based subspace selection not only reduces the complexity of
the search, but further steers the tracking process by indicating when the adapted
shape is nearing a physically impossible region (an indication that the system is
lost).

e Library construction. Selection is aided by perceptual and physical guidelines. Re-
lated to the vector quantization of shapes is the selection and ordering of shapes
which best fit the perceptual boundaries of phonemes and diphones. This provides
a further reduction in the complexity of the space to be searched, and thus more
efficient look-up and decoding. A library of diphones (transition rules from one state
to another), often considered important in speech analysis and synthesis, could be
constructed. It is likely that the smoothly tracking nature of the system would

negate the need for such a lexicon, however.

o Use of general and specialized hardware. The model used for this study was im-
plemented entirely in software, and thus required significant time to perform the
gradient measurement and adaptation. Each articulator coefficient requires an im-
pulse response and log-magnitude transform calculation, dominating the computa-
tion time. The vocal tract model is running in a synthesis-only system [49][48] on a
Motorola DSP56001 digital signal processing chip, and could be used for the FAST
tracking algorithm. If the DSP model were reduced to the components required for
FAST, and the log-magnitude frequency transform operations were implemented on
the DSP, an improvement in computation time of two to three orders of magnitude
is projected. Further computational improvements in the searching and adaptation

algorithms would bring the system to real-time capability.

1.7.4 Identifying the Glottal Wave

Once a reliable estimate of the vocal tract filter is obtained, the glottal wave can be estimated
by applying a technique known as inverse filtering, or deconvolution. Given the assumption
that the voice wave y(t) is generated by the linear filtering of source wave z(t) by convolution

with vocal tract impulse response h(t), the frequency domain representation of this linear
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operation is:

Y(2) = X(2)H(2) (1.96)

The source is obtained by:

X(2)=Y(2)/H(2) (1.97)

provided that H(Z) has no zeroes (roots of the numerator polynomial) outside the unit circle

in the Z plane. Equation 1.97 is the defining equation for inverse filtering. In the LPC case,

1

1@ =32

(1.98)
so the inverse filtering operation is guaranteed stable. The process of inverse filtering in
actual practice is often part science and part art. Early techniques involved the use of analog
filters [72] , and called for initial coarse adjustment of the filters given a priori information
about the speech wave, then the filters were adjusted further while watching the output on
an oscilloscope until the output wave met some criteria. Typically the goal was thought
to have been achieved when the output waveform ‘looked’ like a glottal waveform. So the
process involved the assumption of a glottal pulse shape, then filtering was applied until
the result looked enough like the assumed glottal shape. Automatic inverse filtering was
investigated by Miller and Mathews [78].

Digital filtering improves the stability and method of solution of the deconvolution problem,
and was proposed as a method of identifying the vocal tract filter in the time-varying case
[76]. Again, however, the filter was used in a hand guided mode of operation. Wakita defined
a recursive method of inverse filtering [88}(89], but with the stated goal of identifying vocal
tract shape rather than source characteristics. Rothenberg proposed and investigated a
method of inverse filtering which uses a special apparatus to measure volume velocity from
the lips, rather than acoustic pressure [80]. The inverse filtering problem is simplified if the

flow is deduced from pressure gradient measurements performed very near the glottal folds

[67).
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Somewhat more invasive methods involve the insertion of probes into the vocal tract, some-
times through the throat wall [134], or the use of Electroglottographs (EGG) to measure
electrical resistance of the larynx [75]. Such methods are generally not considered suitable

for the study of singer voices.

The inverse filtering method used for the singing research and resynthesis examples herein
involves using LPC to fit the spectra of multiple signals made by a single singer using a single
vocal tract shape. The LPC filter is then factored into complex resonator pairs (formants) by
finding the complex roots of the polynomial and grouping them into second order real filter
polynomials. The parameters of center frequency and Z plane radius are made available for
adjustment by hand, such as increasing or decreasing filter resonance. In a normal mode of
use for identifying glottal shape, a vowel is selected and the singer phonates at the specific
pitch and volume under investigation. Taking care not to change his/her vocal tract shape,
the singer then produces whispered speech. If the singer is able (some are not), they are
then asked to phonate in a glottal fry mode (extremely low frequency glottal pulses), again
with the same vocal tract shape. The whisper and fry signals can be processed with LPC
analysis in multiple blocks and averaged, yielding smoothed estimates of the vocal tract
transfer function. If the whisper and fry filter transfer characteristics differ greatly, the
process can be repeated. If the transfer functions agree, the estimate is assumed to be
reliable and is used to inverse filter the normally phonated sound. The resulting waveform
may be inspected for similarity to typical glottal waveforms. Figure 1.21 shows the spectra
of the normal phonation mode, whispered speech, and glottal fry of the vowel /i/ (beet),
with the LPC transfer functions superimposed. High frequency emphasis of 6 dB per octave
was applied to the normal phonation signal only. The numbers to the right are the center

frequencies and Z plane radii of the resonances of the corresponding LPC filters.

Figure 1.22 shows the waveform of the vowel /i/, and the waveforms aquired by inverse

filtering using the voiced, whispered, and fry LPC filters shown in Figure 1.21.

Noting that the spectra of all inverse filtered glottal waveforms in Figure 1.22 exhibited
peaks at the second and fifth harmonics, the fry inverse filter was modified by increasing
the resonance of the first formant to 0.985, and a fifth resonance was added at 750 Hz. (the
location of the fifth harmonic). Figure 1.23 shows the glottal waveform estimate achieved
by application of the hand adjusted filter. By aquiring many glottal waveforms by inverse

filtering many vowels, a reliable estimate of the time domain glottal shape is obtained.
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6d8 Normal Phonation /i/
FL = 273 Hz. ©.982
~28d8 F2 = 2283 Hz. ©.79
F3 = 3873 Hz. B.769
~40d8 F4 = 3128 Hz. 8.833
2008 Hz. 4099 Hz.
8dB Whispered /i/
FiL = 385 Hz. ©.961
-28dB F2 = 2444 Hz. 9.945
F3 = 2789 Hz. 8.931
-46dB F4 = 3495 Hz. 8.932
2000 Hz. 4008 Hz.
BdB Glottal Fry /i/
Fi = 338 Hz. ©.983
~28dB F2 = 2099 Hz. 0.933
F3 = 2632 Hz. 0.855
-40dB F4 = 3382 Hz. 0.958
2000 Hz. 4900 Hz.
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Figure 1.21: Spectra of normal mode phonation (top), whispered speech (center), and glottal
fry (bottom) of the vowel /i/ (beet). The smooth curves are the LPC filter spectra, and the
numbers to the right are the resonances and Z plane radii of the LPC filters. The normal
mode phonation signal was processed with 6 dB per octave high frequency emphasis prior

to application of LPC.

Normal Phonation /i/

Inverse Filtered by Speech LPC

/\/\ /\/\ fj\/‘/\ Inverse Filtered by Whispered LPC
/‘//\W\ Inverse Filtered by Fry LPC

Figure 1.22: From top to bottom: Waveforms of normal mode phonation of the vowel /i/,
and normal mode phonation inverse filtered by its own LPC filter, a whispered speech LPC

filter, and glottal fry LPC filter.
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Inverse Filtered by Hand
Adjusted Whisper LPC

Figure 1.23: Waveform of normal mode phonation of the vowel /i/, after inverse filtering
by hand adjusted whispered speech LPC filter.




Chapter 2

Identification of Glottal Source

Deviations

Deviations of pitch and timbre in the voice are extremely important perceptual features.
Some amount of pitch deviation is present in the voice at all times, no matter how much
the speaker/singer endeavors to remove it. This involuntary pitch deviation comes about
automatically, as a result of the neurological system controlling the physical elements of the
voice source oscillator [94]. There is even a component of modulation of the fundamental
pitch of the voice which is caused by the heartbeat [103]. Other components of pitch
deviation are controlled consciously, such as pitch inflection, and to a lesser extent, singer
vibrato. Synthesis of vowels without pitch deviation sounds mechanical [96][3]. If a singing
tone is synthesized without pitch deviation, then deviation is added slowly, the percept
suddenly becomes that of a human singer [28][174]. Some deviations in spectrum come
about because of the source/filter model of the vocal tract. The spectrum changes shape as
the changing source pitch causes the harmonics to move under the relatively fixed spectral
envelope of the vocal tract filter. Other spectral changes are due to deviations of the source

spectrum, caused by modulation of subglottal pressure and noise in the voice source.

Pitch deviation and noise in the quasi-periodic voice source is discussed and analyzed in
this chapter. First, a brief overview of singing voice pitch deviation research is presented,
followed by an overview of methods of extracting the pitch signal. A new method of pitch

detection is defined which provides accurate smoothed or unsmoothed estimates of the pitch

55
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at any sampling interval. An experimental study of singer pitch deviation using the new
pitch detection method is presented. Using a large sample of vocal tones from a number
of trained professional singers, rules are formed about the behavior of the deviation signal
as a function of pitch and vocal effort. A discussion of spectral and waveshape deviations
emphasizes noise generation in the glottal source. A fluid dynamics analysis of the glottal
source is performed. Methods for extracting the periodic and residual parts of the voice
signal are presented. Studies of noise in singer voices are presented, with conclusions and
definitions of rules for synthesis of glottal source additive noise as a function of pitch, voice

type, and mode of phonation.

2.1 Pitch Deviation in the Voice Source

For discussion and analysis of pitch deviation, it is important to define pertinent terms. The
intentional sinusoidal modulation of the fundamental pitch is called vibrato, and occurs at
a frequency of 5-7 Hz. in trained western BelCanto singing voices. The commonly believed
notion that a singer is capable of controlling the rate of his/her vibrato is a subject of
controversy. One compelling study used auditory masking and vibrato side tones, and
found that singers were not able to vary vibrato to match a particular rate [166]. There is
no debate that singers can be trained to control the amount of vibrato to a large degree,
as is demonstrated in barbershop and early-music singing. The perceived pitch of vibrato
tones was investigated by Sundberg, and Shonle and Horan [21][179]. These studies found
that the perceived pitch was closest to the geometric mean of the extreme frequencies
(rather than the linear mean), but the difference between the geometric and linear means
at normal modulation values is too small to be of musical significance. The studies also
showed that the perceived pitch was relatively independent of the total modulation amount,

and modulation rate (when varied between four and eight Hz.).

Modulation components at frequencies higher than the vibrato are called jitter. These high
frequency components are also often called flutter. The production of jitter is generally
regarded as an involuntary process, caused by random neural firing and a low level feedback
mechanism which, in the singing voice, can be trained to cause the periodic oscillation of
vibrato [178].

Modulation components at frequencies lower than the vibrato rate have commonly been
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called wow. The terms wow and flutter stem from the wow and flutter specifications used to
evaluate motor-driven analog audio playback equipment. In the case of these specifications,
it is desirable to reduce the wow and flutter to zero. In contrast, some non-zero amount of
frequency modulation is necessary to simulate natural vocal sounds. To avoid the negative
connotations associated with the terms wow and flutter, the terms drift and jitter will be
used for the remainder of this dissertation. Drift components of very low frequency are
directly related to tuning, or the long term average of the fundamental pitch. Drift is
generally considered to be consciously controllable by means of an auditory feedback loop

[181][168], but it is not possible to completely remove the drift component at will.

Most synthesis models of singer (and instrument) pitch deviation involve a single sinusoid
to model the vibrato, mixed with simple low-pass filtered noise to model both the drift
and jitter components [111]. Maher and Beauchamp [97] proposed a more elaborate model
of vocal pitch control, involving one sinusoidal oscillator, three sources of lowpass filtered
noise, various summing elements, and a multiplier. The multiple noise sources isolate the
random variations in average frequency, vibrato rate, and vibrato depth. The authors
stated, however, that the extra parameterization is of questionable perceptual significance.
The vibrato study research conducted herein is to investigate the behavior of the jitter
and drift regions of the pitch signal spectrum as a function of sung pitch and intensity, to
formulate a set of rules for pitch deviation control, and to suggest a suitable set of control

parameters.

2.1.1 A Brief Summary of Pitch Detection Methods

Pitch detection is of interest whenever a single quasi-periodic sound source is to be studied
or modeled, specifically in speech and music [95][104]. Pitch detection algorithms can
be divided into methods which operate in the time-domain, frequency-domain, or both.
One group of pitch detection methods uses the detection and timing of some time-domain
feature. Other time-domain methods use autocorrelation functions or difference norms to
detect similarity between the waveform and a time lagged version of itself. Another family
of methods operates in the frequency-domain, locating sinusoidal peaks in the frequency
transform of the input signal. Other methods use combinations of time and frequency-

domain techniques to detect pitch.
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Frequency-domain methods call for the signal to be frequency-transformed, then the fre-
quency-domain representation is inspected for the first harmonic, the greatest common
divisor of all harmonics, or other such indications of the period. Windowing of the signal is
recommended to avoid spectral smearing, and depending on the type of window, a minimum
number of periods of the signal must be analyzed to enable accurate location of harmonic
peaks [153][156]. Various linear pre-processing steps can be be used to make the process
of locating frequency-domain features easier, such as performing linear prediction on the
signal and using the residual signal for pitch detection. Performing non-linear operations

such as peak limiting also simplifies the location of harmonics.

In a time-domain feature detection method the signal is usually pre-processed to accentuate
some time-domain feature, then the time between occurrences of that feature is calculated as
the period of the signal [91]{92][110]. A typical time-domain feature detector is implemented
by low pass filtering the signal, then detecting peaks or zero crossings. LPC is often used
as a pre-processing step [90]. Since the time between occurrences of a particular feature is
used as the period estimate, feature detection schemes usually do not use all of the data
available. Selection of a different feature yields a different set of pitch estimates [93]. Since
estimates of the period are often defined at the instant when features are detected, the
frequency samples yielded are non-uniform in time. To avoid the problem of non-uniform
time sampling, a window of fixed size is moved through the signal, and a number of detected
periods within each window are averaged to obtain the period estimate. For reliable and
smooth estimation, the window must be at least a few periods long. For best accuracy,
the signal should be interpolated between samples in order to locate the feature occurrence

time as accurately as possible.

Related to the time-domain feature detector is the autocorrelation method. The autocor-

relation of the signal is first formed:

g+N-1
z®z(m) = Z z(1)z(i 4+ m) (2.1)
i=q
The main peak in the autocorrelation function is at the zero-lag location (m = 0). The
location of the next peak gives an estimate of the period, and the height gives an indication

of the periodicity of the signal.
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All three of the above methods usually require a number of periods of data to form a
reliable estimate, and thus some averaging of the frequency signal is unavoidable. The
methods often exhibit difficulty in detecting the period of a periodic signal which is missing
the fundamental harmonic in the harmonic series. Periodic but pathological signals can be

devised to cause nearly any pitch detection algorithm to fail [149].

2.1.2 The Period Predictor Pitch Tracker (PPPT)

The pitch detector/tracker presented here is a refinement of the Average Magnitude Differ-
ence Function (AMDF) detectors [108], the earliest of which is that of Miller and Weibel
[99]. Methods of this type have also been called comb-filter methods [100]. The AMDF
pitch detector forms a function which is the compliment of the autocorrelation function, in
that it measures the difference between the waveform and a lagged version of itself. The
generalized AMDF function is:

N-1
AMDF(m) = q+2 |z(3) — z(i + m)|F (2.2)
i=q
The quantity k is set to 1 for average magnitude difference, and other values for other
related methods. The zero lag (m = 0) position of the AMDF function is identically zero,
and the next significant null is a likely estimate of the period. Other nulls will occur at
integer multiples of the period. The signal is preprocessed to aid in detection of the first
null. The difficulties of using this pitch detection method arise from the issues of finite
sampling rate, noise, and signal stationarity. If the signal is truly periodic with period Tp,
and Ty is an integer multiple of the sampling period T, then all nulls at integer multiples
of T are identically zero. If the period is not an integer multiple of T, however, the
first null (m 3# 0) actually exists between two values of m. A coarse estimate of pitch is
tolerable for many speech applications, but is not acceptable for analysis and synthesis of
music. Compared to the small computational burden of computing the AMDF, there is
no economical method of accurately interpolating between samples to find the true period.
This implies that the sampling rate must be sufficiently high to yield the high accuracy
required for musical applications. If the signal is quasi-periodic (amplitude modulated,

corrupted by noise, etc.), the nulls will never be zero, even if Tp is an integer multiple of
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T,. The problem of interpolation between lag samples to obtain an accurate pitch estimate

is even further complicated in the case of a frequency modulated signal.

A method of pitch detection which uses the phase delay of a periodic predictor to form
the pitch estimate is presented in the next sections. This pitch detector accurately tracks
a quasi-periodic signal, and will be called the Periodic Predictor Pitch Tracker (PPPT).
The PPPT provides a method of automatically and adaptively determining the optimum
continuous-time lag, and also provides an estimate of the reliability of the pitch estimate.
The PPPT system as initially described is not a complete pitch detector, in that it relies on
some other scheme for an initial estimate of the period. Once the detector locks onto the
correct period, the method provides accurate estimates of the instantaneous period using
all samples of the input signal, provides an estimate of the periodicity of the signal, and

provides controls which affect the dynamics and accuracy of the pitch detector.

2.1.3 FIR Filter Methods of Periodic Prediction

Given a quasi-periodic signal z(n), and an integer estimate P of the initial period, periodic

prediction is implemented by:

Z(n) = % z(n — P +1)c(3) (2.3)
i=-M
where M is some appropriately chosen small number and ¢(z) are the predictor coefficients.
Algorithms for obtaining the predictor coefficients are discussed in Section 2.1.4. Backward
prediction is implemented by replacing P with —P in Equation 2.3. Figure 2.1 shows a
block diagram of the predictor.

The phase (relative to the Pth delayed sample) of the FIR filter implemented by the pre-

dictor coefficients is computed by:

M

Z ¢(2) * sin(w * 1)
6 = arctan ij;M (2.4)

Z (1) * cos(w * 1)

i=—M
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2M Total Delays

Figure 2.1: Linear FIR period predictor.

The frequency w is the frequency at which the phase delay of the filter is calculated. The
frequencies of interest in calculating the phase delay are the harmonics of the fundamental
that it is desired to detect, so some uncertainty is present in the initial calculations. A
coarse calculation of w can be performed by using the value of P, in which case the value of
w is stored and reused as long as the integer value of P does not change. If a more accurate
estimate is required, the last predicted period is used to compute w, or the calculation of w
and the pitch estimate is iterated until a desired accuracy is reached. The relation between

the pitch estimate and w is:

27r~ 27

w=F0~PTs

(2.5)

where T} is the sampling period in seconds and T is the period estimate. Computation is
reduced by exploiting the evenness and oddness of the cosine and sine functions, and the

symmetry of the filter definition. Equation 2.4 thus reduces to:

M

D () = c(—4)) * sin(w * 1)

i=1

M
c(0) + Z(c(z) + ¢(—1)) * cos(w * 1)

i=1

# = arctan

(2.6)

For further computational savings, sine, cosine, and arctan values can be calculated by
interpolated table lookup as discussed in Section 1.5.1. The phase delay of the filter is
computed by:
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Phase Delay =

€l

(2.7)

By adding the computed time delay to the time delay of the P length delay line, the net
time delay of the predictor is computed. This total delay is then used to compute a period

and frequency estimate:

. P
Period=Tp = Sampling Rate + Phase Delay (2.8)
1
Frequency = Fy = T (2.9)
0

2.1.4 FIR Period Predictor Implementation Algorithms

The three methods of implementation of the adaptive FIR predictor discussed here are
Covariance method Least Squares (CLS), Recursive Least Squares Adaptive (RLS), and
Least Mean Squares Adaptive (LMS). All of these methods minimize the Mean Square
Error:

1 N-1
MSE = + Y& (2.10)
k=0

where the instantaneous error ¢, is defined as the difference between the signal sample and

the predicted sample at time k:

e = z(k) — £(k) (2.11)

The Covariance Method

This method of prediction was defined in the LPC descriptions of Section 1.3.1. In this case,
the linear prediction is performed P samples ahead. The coefficients c(z) from Equation 2.3
are assumed to implement the least squares P step-ahead predictor over the data set, and

thus solve the set of linear equations:
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where
z(3)z(3) z(@)z@+1) - z@)z@E+2M) ]
z(i+1)z() z(t+Dz@E+1) -+ z(E+1)z(E+2M)
R=E;| z(i+2)z(3) z(i+2)z(t+1) --- z(+2)z(i+2M) (2.13)
| z(i+2M)z(i) z(i+2M)z(i+1) --- z(i+2M)z(i+2M) |
is the covariance matrix, and
z()z(i + P)
z(i)z(t+ 1+ P)
r=FE| z@z(@+2+P) (2.14)
| 2()e(i+2M + P) |

the P-delayed covariance vector. If the matrix R is invertible, the coefficient vector ¢ is

given by:

c=Rr (2.15)

The signal can be processed in blocks of length N, yielding a set of predictor coefficients,
and thus a period estimate, for each block. Each sample, calculating the coefficients requires
2N M multiplies to compute the covariance matrix and vector, and O(M?) operations for
the matrix inversion. Recall that M is small, however, so the autocorrelation operation

usually dominates computation.

Recursive Least Squares (RLS)

The Recursive Least Squares algorithm implements a recursive approximate Newton’s method

solution of Equation 2.15 [143][154]. The matrix R is approximated by an exponentially
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decaying sample mean:

Ry =1 —-a)Rp_1 + aXp XT (2.16)

The matrix at this point can be inverted directly. To reduce computation, however, the

matrix inverse can be updated recursively using the matrix inversion lemma:

(A+BC)1=4"1-4"1B(A'B+C1)A™! (2.17)

SO:

p—1 ap—1 T p-1
Ry XRk—1Xka Rlc—l

Rpt= Sl k
k A A+ aXTRIL X

(2.18)

where A = 1 — a. With this estimate of the inverse of the autocovariance matrix, the

predictor coefficients are updated adaptively:

Ckt1 = Cp + aR;leek (2.19)

The operations required for RLS are O(M?2), but since M is typically low for the periodic
predictor, other computational factors usually dominate. To avoid numerical problems,

methods of recursively updating R~! involving matrix factorization are often used [150].

Least Mean Squares (LMS)

The Least Mean Squares adaptive [163][164] algorithm is a gradient steepest descent al-
gorithm using the instantaneous error to estimate the gradient of the error surface. Each
coeflicient is adjusted each sample by an amount proportional to the instantaneous error
and the signal value which is associated with the coefficient being adjusted. This corre-
sponds to setting the fi;l matrix equal to the identity matrix in the RLS coefficient update
Equation 2.19, and yields the LMS update equation:

Chy1 = Ck + 2pXyex (2.20)
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The adaptation constant 2u replaces o by convention from the Newton’s method deriva-
tion (the 2 comes from taking the multi-dimensional derivative of the error function), and

controls the dynamics (and stability) of adaptation. Stability is ensured if:

u< (eM+1a2)” (2.21)

where z2 is the signal power. The adaptation parameter u can be adapted dynamically,
yielding the Normalized LMS algorithm:

Chy1 =¢C (2.22)

+ 2 Xre
T eM 1zt
where the signal power is computed over the last 2M+1 (or greater) samples. The parameter

« is any positive number less than 1.

Adapting the Delay Parameter P

The integer period estimate P is variable, and there are new issues of filter dynamics in the
LMS and RLS systems caused by on-line adaptation of the delay-line length. Ideally, the
filter should experience no transients because of the adaptive modification of P. A proposed

method for the on-line adaptation of P follows.

In the proposed algorithm, three LMS/RLS predictors are implemented, one with the cur-
rent delay P and one each with delays P — 1 and P + 1. This provides optimum filter
coefficients to be used in the P predictor when the delay line length is modified. If the
value of the FIR filter delay is computed to be greater than 0.5 samples, a sample is added
to the delay line (P is increased by 1). The coefficients of the P predictor are copied to the
P —1 predictor. The coefficients of the P + 1 predictor are copied to the P predictor. Thus
the coefficients placed in the P — 1 and P predictors are optimal for continued prediction.

The coefficients of the P + 1 predictor are time-reversed:

c(@) & e(—1), <M (2.23)

This coefficient swap operation takes advantage of the symmetry of the filter formulation
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and the resulting phase delay expression of Equation 2.7. By flipping the coefficients of
the filter, the phase delay is negated. A phase delay of 0.5 samples becomes -0.5, and the
P+1+40.5 net delay of the P+1 delay predictor becomes P+2—0.5 when P is increased by
1, yielding the same net delay. Thus the coefficients of the P+1 predictor exhibit the correct
delay (but are not guaranteed optimal for minimum MSE prediction). A complementary

set of operations is performed to shrink the delay line:
e copy the P coefficients to the P + 1 predictor
e copy the P — 1 coefficients to the P predictor

e time-reverse the P — 1 predictor coeflicients

After the delay line length has been modified, no further changes to the delay line length are
allowed until a number of samples have been processed. This avoids rapid oscillation of delay
line length when the period is near a 0.5 sample boundary, and allows the time-reversed

coefficients to adapt to optimal values.

A more economical scheme involves running only one predictor, and simply swapping the
filter coefficients according to Equation 2.23. This method also requires a settling time
during which no changes are made to the delay line length after time-reversal of the filter

coefficients.

2.1.5 Adaptive Sampling Rate and Delay Method

One other method of implementing a periodic predictor is similar to the pitch detector
of Ney [102], which uses dynamic time-warping of the sampled data signal. The method
presented here involves sinc interpolation [162][159] of the sampled data signal z(n) = z(nT)
to yield a continuous time signal z(t). The value of a period P (no longer restricted to be
an integer) is then selected which minimizes the MSE of Equation 2.10, where the error in

this case is defined as:

ex = z(kT) — z(kT + P) (2.24)

This method essentially implements the continuous-time (arbitrary sampling rate) aver-

age squared-magnitude difference function pitch detector. Sinc interpolated resampling to
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minimize a vector difference norm is discussed in more detail in Section 2.6.3.

2.1.6 Demonstration of Performance of the LMS PPPT

The Normalized LMS PPPT (a = 0.01) was selected for testing because of its computational
efficiency. The number of coefficients was selected to be 5 (M = 2). The pitch estimate
was averaged and written out each 50 samples. The sampling rate used for this example
was 22.05 kHz, which corresponds to a pitch sampling rate of 441 Hz. Figure 2.2 shows the
test signal, which is a 500 Hz. sine wave synthesized with additive white noise at -30 dB
and 10% sinusoidal vibrato at 10 Hz.

AAANANAA
VY VWYV VYWY

Figure 2.2: Test signal for pitch detection: noisy sinusoid with sinusoidal vibrato

Figure 2.3 shows the time-domain pitch signal extracted by the NLMS PPPT. Below the
time-domain pitch signal display is the Log-Magnitude spectrum of the pitch signal (with
the mean removed). The smoothing window of 50 samples is about one period of the input
signal, meaning that the pitch estimates are obtained at regular intervals using all of the
signal data, but no averaging of multiple periods takes place. The signal was also analyzed
using linearly interpolated low pass filtering and zero crossing detection, with an analysis

window of 200 samples (about four periods) and a hop size of 50 samples.

Figure 2.4 shows the pitch signal and the Log-Magnitude spectrum results of LPFZCD
analysis. The time-domain feature detection spectrum exhibits a measurement noise floor
of about -42 dB, while the LMS detector exhibits one lobe of second harmonic distortion
at -39 dB, and a noise floor of about -55 dB. The Zero Crossing detector overestimated

the maximum frequency by as much as 6.1 Hz. (1.1%), and underestimated the minimum
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frequency by 8.3 Hz. (1.8%). The LMS detector overestimated the maximum frequency by
0.14 Hz. and underestimated the minimum frequency by 0.13 Hz. (0.03% in both cases).

Figure 2.3: Time-domain and frequency-domain plots of LMS-Extracted pitch trajectory.
Signal was noisy sine with sinusoidal vibrato.

Figure 2.4: Time-domain and frequency-domain plots of Zero-Crossing-Extracted pitch
trajectory. Signal was noisy sine with sinusoidal vibrato.

2.1.7 PPPT Relation to Maximum Likelihood Estimator

In the case of a deterministic signal with additive gaussian noise, the total signal can
be viewed as a Gaussian noise process with a time-varying mean. Rife investigated the
identification of single tones and multiple tones in noise [106][107). In the case of the PPPT,
the signal model is that of a periodic signal with additive noise. The PPPT coefficients are

adjusted to yield the minimum error. If the additive noise is Gaussian, the minimum error
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predictor is equivalent to the maximum likelihood predictor, yielding an error power equal
to the variance of the additive Gaussian noise. If the additive noise is not Gaussian, the

PPPT is the minimum variance predictor.

2.1.8 An Extension to the PPPT

The PPPT predicts any integer number of periods ahead, and thus does not yield a unique
pitch estimate for a given periodic signal. An extension to the PPPT is proposed which
uses multiple predictors to eliminate the problem of harmonic prediction error. The task of
pitch detection of brass instrument signals is essentially one of determining which harmonic
is being played, since the valve (or slide) position uniquely determines the harmonic series of
notes which are easily played [2][101]. In the system constructed for this study, a family of
8 fixed length u-LMS PPPT’s was implemented with M = 1 (three predictor coefficients).
The adaptation parameter u was calculated according to Equation 2.21, where z2 was
selected to be twice the maximum possible signal power. The delay line lengths were
nearest-integer fractions of an assumed fundamental period. The predictors were configured
to run constantly, with each predictor keeping track of its average squared error over the
last 80 samples (10 ms. in this case). Since the lengths were fixed and the predictors ran
constantly, the need to run parallel predictors at P + 1 and P — 1 was eliminated. The
power of the input signal over the last 80 samples was also computed, for determination of

the presence of a signal. The sampling rate of the system was 8012 Hz.

By inspecting the error power signal of each PPPT, the harmonic being played is determined.
If the signal power is sufficiently low, the instrument (or voice) is assumed to be silent. If
all error power signals are high (compared to the power in the input signal), it is likely that
the instrument is playing a noisy or inharmonic tone. Such is the case in the attacks of
instruments, or in the case of the voice, during the utterance of a fricative consonant. If
some error power signals are high while others are low, the most likely period is that of the
low error PPPT with the smallest integer period. Thus the signal power and error powers
determine whether a signal is silent, whether the signal is periodic, and the period of the
signal. Estimates of the instantaneous period are calculated (and compared, averaged, etc.)

from the coefficients of one or more of the predictors which exhibit a low error signal.

Figures 2.5 and 2.6 show graphs of the harmonic detection PPPT predicting two multi-note
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events. Eight normalized LMS PPPT’s were used to predict eight harmonics. All eight error
signals are displayed. The instantaneous period is displayed for the harmonic which is the
most likely pitch, and is circled for ease of location in the graph. Each sample (plot pixel)
of the error signal represents 10 ms., and each vertical grid line on the graph represents 100

ms.

The graph of Figure 2.5 is the display of the brass instrument PPPT predicting the musical
notes Bb5 (415 Hz.), F5 (622 Hz.), and Bb6 (830 Hz.). The notes were sampled from a
real trumpet. Each attack was approximately 40 ms, and the PPPT required 50 ms., 40
ms., and 10 ms., respectively, to lock onto each of the three notes. No erroneous estimates
occurred once the correct note was identified. Continuous tracking of pitch is evident in the

vibrato of the first and last notes.

The graph of Figure 2.6 is the result of prediction of small pieces of the same three notes
randomly edited together. No attacks were included. This experiment was conducted to
determine the average time required to identify a new note, with no noise present in the
transition. The average time required to identify a new note was 13 ms., with none longer
than 20 ms..
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Figure 2.5: Harmonic detector PPPT results for the note sequence Bb5, F5, Bb6.
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Figure 2.6: Harmonic detector PPPT results for randomized notes Bb5, F5, Bb6.
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2.2 A Study of Singer Jitter and Drift

Studies of jitter and drift in western BelCanto singing voices have been conducted in the
past, but typically on tones produced by singers instructed to sing with no vibrato [111].
One reason for this is that the jitter and drift components are easier to isolate and study
when the vibrato is absent. Another reason is that many pitch detection methods yield
noisy pitch estimates. Signal processing on low amplitude components in the presence of a
large vibrato peak is difficult, because the jitter and drift components are often below the

noise floor of the pitch detection algorithm.

The PPPT was shown to exhibit a noise floor of less than -55 dB in the presence of a single
sinusoidal modulation signal and noise. This pitch detector was used to extract singer pitch
signals, for the purpose of studying the behavior of jitter and drift as a function of pitch,

loudness, and the behavior of jitter and drift in the presence and absence of vibrato.

Four singers, one each of the voice parts Soprano, Alto, Tenor, Bass, were selected for the
initial study. All of the singers are judged to have excellent vocal quality, have received
extensive private instruction, and each singer has over 10 years each of choral and solo
singing experience. The singers were instructed to sing 30 long tones on the vowel /a/
(father). The singers breathed between each note, and were allowed to repeat any notes
which they felt were uncharacteristic of their ability. The frequencies produced were se-
lected individually for each singer, to ensure that 5 samples were available across the entire
comfortable singing range. The notes sung are shown in Figure 2.7. The first set of five
notes was performed at the dynamic level of Mezzo Forte (medium loud), with vibrato. This
sequence was repeated at the same dynamic level, but without vibrato. Next, the same five
notes were performed with vibrato at the dynamic level of Pianissimo (very soft), then
without vibrato. Then the same sequence was performed at the dynamic level of Fortissimo
(very loud), first with vibrato, then without. Even though some component of vibrato is
present in many of the non-vibrato tones, the sung-tones produced under the non-vibrato

requirement will hereafter be referred to as non-vibrato tones.

The sound files were digitized directly to 16 bit samples at a rate of 44.1 kHz. using a B&K
4006 microphone, an IMS MPA-4 microphone preamp, and a Sony DTC 1000ES Digital
Audio Tape (DAT) machine. The files were transferred to computer disk using an Ariel
DM-N digital microphone. The files were then down-sampled to a sampling rate of 5512.5




CHAPTER 2. IDENTIFICATION OF GLOTTAL SOURCE DEVIATIONS 74

1
Y 17
©
® _____ arw
-:;()
O

Bass Tenor Alto Soprano

Figure 2.7: Musical notes sung by the singer vibrato test subjects.

Hz. by digital low-pass filtering at 2.5 kHz. cutoff frequency and decimating the resultant
signal by a factor of eight. The low-pass filter used was designed with -96 dB stop-band
rejection. Pitch signals were extracted from these files using a sampling rate of 100 Hz.
by taking the average of each set of 55 PPPT pitch samples. This pitch signal sampling
rate ensures that modulation information up to 50 Hz. was available for analysis. Figure
2.8 shows time-domain pitch signals extracted from the sung tones of the soprano subject
KH and the bass subject PC. Vibrato and non-vibrato cases are shown, and the vibrato

component is clearly visible in the non-vibrato tone of subject KH.

Figures 2.9, 2.10, 2.11, and 2.12 show the plots of the power spectral densities (PSD) of the
pitch signals of the four singers. The upper plots show all PSD’s for all samples of a given
singer plotted on the same graph. The left plots are of the singer singing with vibrato, and
the right plots are of the singer singing as instructed to produce no vibrato. The lower plots
are the averages and standard deviations of all of the spectra. The jitter region (8-50 Hz.)
of the mean spectrum was fit with a linear function, and intercepts of that line at 8 and 32

Hz. are marked for comparison of vibrato/non-vibrato characteristics.
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Figure 2.8: Time-domain pitch signals extracted from singer tones. The vibrato component
is clearly visible in the non-vibrato tone of subject KH
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Figure 2.9: Power spectral densities of vibrato (left) and non-vibrato (right) tones of bass
singer subject PC. The lower plots are the averages and standard deviations of the vibrato
and non-vibrato PSD’s.
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Figure 2.10: Power spectral densities of vibrato (left) and non-vibrato (right) tones of tenor
singer subject MP. The lower plots are the averages and standard deviations of the vibrato

and non-vibrato PSD’s.

Subject ED With Vibrato
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Figure 2.11: Power spectral densities of vibrato (left) and non-vibrato (right) tones of alto
singer subject ED. The lower plots are the averages and standard deviations of the vibrato

and non-vibrato PSD’s.
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Figure 2.12: Power spectral densities of vibrato (left) and non-vibrato (right) tones of
soprano singer subject KH. The lower plots are the averages and standard deviations of the

vibrato and non-vibrato PSD’s.
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Each singer exhibited a peak in the non-vibrato tones near their natural vibrato frequency,
as was found by Ternstrém and Friberg [111]. The location of this peak was relatively
consistent within a particular singer across dynamic level and pitch, but not as consistent
as the location of the peak produced when intentionally introducing vibrato into a tone. The
consistency of vibrato rate in vibrato tones is shown by the low standard deviation directly
under the average vibrato peak in each of the graphs. The vibrato peak in the tenor and
alto non-vibrato tones is so low that location of a clear center frequency is difficult. The
average location of the peak in the non-vibrato tones was significantly different than that of
the vibrato tones in each particular singer, with the peak locations of the vibrato tones and
non-vibrato tones being, respectively, 5.21 Hz. and 5.1 Hz. for the bass, 5.38 Hz. and 4.6
Hz. for the tenor, 5.27 Hz. and 4.0 Hz. for the alto, and 6.28 and 6.5 Hz. for the soprano.

Also consistent with Ternstrom’s and Friberg’s study was that the overall amplitude of
jitter decreased with vocal range. That is, sopranos exhibit less jitter than basses. The
four subjects studied here exhibited ordering according to this hypothesis. In the vibrato
case, singers exhibited jitter spectra of about -65 dB (0.97 cents average) at 8 Hz, and
rolled off at about 6 dB per octave. In the non-vibrato case, the jitter spectra were about
-70 dB (0.55 cents average) at 8 Hz, and exhibited an average 8 dB per octave roll off.
The standard deviations were consistently smaller in the drift region than the jitter region,
which is consistent with the conscious/unconscious control difference between these two
modulation components, and the fact that singers are highly trained in pitch control. The
drift spectrum fell off slowly (roll off of about 1.5 dB / octave) from -50 dB (5.5 cents
average) at 1 Hz. out to the vibrato peak at -50 dB average in the vibrato tones, and
showed a decrease in the non-vibrato tones to -53 dB at 1 Hz. rolling off at about 2 dB per
octave. This decrease implies that singers can hear their voices and control them better in
the non-vibrato case than in the vibrato case, and is consistent with the model of drift as

a random mechanism with control input from auditory feedback.

Ternstrom and Friberg investigated the non-vibrato case of eight singers on different vowels,
but on one note and one dynamic level only. To investigate the dependence of jitter and drift
on loudness, the PSD’s of all pitch signals at a particular dynamic level were averaged in
the vibrato and non-vibrato case. Figure 2.13 shows the plots of the power spectral density
of the pitch signals of all singers in the vibrato case, arranged by dynamic marking. The
broad dual peak nature of the aggregate vibrato peak shows the variability of vibrato rate
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between different singers. Figure 2.14 shows the plots of the power spectral density of the
pitch signals of all singer subjects in the non-vibrato case, arranged by dynamic marking.
One spectrum, the tenor subject MP singing his lowest note pianissimo, was discarded in
the computation of the average spectrum because of its extreme difference from all other

entries.

All Singers Pianissimo
dB Mag. dB Mag.

1 2 4 8 16 32 HE. 1 2 4 8 16 32 Hz.
All Singers Mezzo Forte

1 2 4 8 16 32 Hz. 1 2 4 8 16 32 Hz.

8 16 32 Hz.

Figure 2.13: Spectra of non-vibrato pitch signals of all singers arranged by dynamic level.

The average PSD jitter curves show only a slight dependence on dynamic level in both
vibrato and non-vibrato tones. An overall increase in jitter with increasing dynamic level
was shown, with the deviation being about 4 dB between pianissimo and fortissimo. No

significant change in spectral slope was observed, with all vibrato curves exhibiting a 6
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All Singers Pianissimo

db Mag. db Mag.
Exci.uded from

Ry

T 5 % 8 16 2 W 1 2 4 8 16 2

db Mag. db Mag.

1 5 4 8 16 2 1 2 4 8 16 2k

All Singers Forte

6 32 H.

Figure 2.14: Spectra of vibrato pitch signals of all singers arranged by dynamic level.

dB/octave roll-off, and all curves without vibrato exhibiting an 8 dB/octave roll-off. The
drift regions of the spectra showed no clear dependence on dynamic range, implying that
the singers in this study could hear themselves and tune well at all dynamic levels. It should
be noted, however, that in this study the singers were singing alone in an extremely quiet
recording studio control room. In a noisier environment, singers hear themselves less well

at soft dynamic levels, and a corresponding increase in drift should be expected.

A final investigation was conducted to determine whether jitter and drift depend on the
position within the particular singer’s range, the absolute pitch of phonation, or both.

Two sets of spectral averages were formed. The PSD’s of all singers at a particular region
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in their vocal range were averaged in the vibrato and non-vibrato case. Averages were
also done within 4 one-octave frequency ranges; 90-179 Hz., 180-359 Hz., 360-719 Hz.,
and 720-1439 Hz. Figure 2.15 shows the plots of the power spectral densities of the pitch
signals of all singers for both vibrato and non-vibrato tones, arranged by position within
the singer’s range. The standard deviations of all of these plots are significantly larger than
the mean spectra, indicating that grouping spectra in this way is an unreliable method of
classification. Figure 2.16 shows the plots of the power spectral density of the pitch signals
of the singers for both vibrato and non-vibrato tones, arranged by the absolute pitch. The
standard deviations for these plots are quite small, indicating that the grouping of spectra

by absolute pitch is a reliable method of classification.
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Figure 2.15: Singer pitch spectra averaged according to position within each singer’s range
(low to high). The high standard deviations show that averaging across relative range is

unreliable.
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No Vibrato

No Vibrato

. No Vibrato

Figure 2.16: Singer pitch spectra averaged according to absolute pitch in one octave bands.
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The jitter spectra showed a slight dependence on pitch, decreasing 2 dB per octave from
low pitch to high pitch. The jitter curves exhibited a consistent slope for all ranges of 8.5
dB per octave in the non-vibrato case and 6 dB per octave in the vibrato case. The drift
curves showed a weak dependence on pitch, decreasing about 1 dB per octave of increasing

pitch.

2.3 Rules for Synthesis of Jitter and Drift

Figure 2.15 shows the line segment approximations to the jitter and drift spectra, in the
vibrato and non-vibrato cases, arranged by pitch and dynamic level. The data indicates
that a suitable control space for jitter must allow control over spectral height and slope as a
function of dynamic level, phonation pitch, and presence/absence of vibrato. The minimum
jitter is exhibited with no vibrato, at high pitch, and low dynamic level. This jitter is about
-70 dB at 8 Hz., rolling off at 8.5 dB per octave. The maximum jitter is exhibited with
vibrato, at low pitch, and high dynamic level. This jitter is about -60 dB, rolling off at 6 dB
per octave. In both the vibrato and non vibrato case, increases in dynamic level account
for about 4 dB increase in jitter across the entire dynamic range, and decreases in pitch

account for about 2 dB per octave of jitter increase.

From the data and the model of drift production, the drift modulation component is most
strongly affected by the singer’s ability to hear him/herself. An extremely simple but nearly
complete model of drift is a flat spectrum at -50 dB extending to the vibrato peak. The only
significant deviations from this model found in this study were in the vibrato/non-vibrato

comparison, which indicated a small increase in spectral roll-off in the non-vibrato case.

2.4 Spectral Deviation in the Voice

Shimmer is the term used to describe the fluctuations of amplitude and spectral shape in
sounds. The voice exhibits significant shimmer, especially in tones sung with vibrato. For
pure spectral or waveform synthesis methods, Maher and Beauchamp [97] suggest a solution
to the requirement of a time-varying synthesis spectrum. The suggested solution is to use

two wavetables, and interpolate between them synchronous to the vibrato oscillator. This
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Figure 2.17: Line segment fits to jitter and drift spectra as function of phonation pitch and
dynamic level.

way, the time variation due to vibrato is modeled.

The source filter model of the vocal mechanism provides many characteristics of the vibrato
synchronous shimmer component automatically, because of the spectral modulation which
comes about as the spectrum of the voice source moves under the relatively constant spec-
trum of the vocal tract filter. Figure 2.18 shows the time domain envelope of a synthesized
vocal tone with vibrato. Two spectra are shown, one spectrum was computed at a high fre-
quency point in the vibrato cycle, and the other spectrum was computed at a low frequency
point. The shape of the vocal tract resonance envelope and resultant modification of the

levels of particular harmonics is clearly evident in the region around the tenth harmonic.

There is at least one other component of vocal shimmer, however, due to variations in
the source itself. If more vibrato synchronous deviation is needed than is provided by the
source/filter model, the interpolated wavetable method outlined by Maher and Beauchamp
can be used to model the glottal source. The dual wavetable interpolation is controlled by

the vibrato oscillator.
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Sound Envelope

Figure 2.18: Time domain envelope (top) and two spectra (bottom) of a synthesized vocal
tone with vibrato. The left spectral plot was calculated from a high frequency point in the
vibrato cycle, and the right plot from a low frequency point.

Slow time-varying control of glottal source interpolation models the changes in the glottal
wave shape with register, intensity, and mode of phonation. Figure 2.19 shows an example
of slow interpolation of the glottal source, in the case of a tone increasing in power and
vocal effort (a musical crescendo). The amplitude envelope shows the increase in volume
over the event. The left spectral plot is the spectrum near the beginning (soft phonation) of
the event, and shows decreased high frequency energy. The right plot shows the increased

high frequency energy at the other extreme of the event.

Sound Envelope e .

e
BT vy y g

Figure 2.19: Time domain envelope and two spectra of a synthesized musical crescendo. The
left and right spectra were computed at the soft and loud portion of the event, respectively.
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2.4.1 Non-Linearities in the Vocal Tract

Other sources of spectral and amplitude deviations are the results of non-linearities in the
vocal tract. One source of non-linearity is the non-stiff nature of the vocal tract walls,
which are composed of tissue. The pliable nature of the vocal tract walls causes losses to
be distributed throughout the vocal tract. Other distributed losses in the vocal tract are
heat conduction losses and the energy loss due to the viscosity of air. The basic model
assumes that the tract is both linear and lossless, and thus does not model non-linear vocal
tract losses. Models accounting for this have been proposed [57][65], but are significantly
more complex than the waveguide ladder filter formulation. The waveguide model can be
modified to simulate non-linear losses [62]. To simulate the losses due to vocal tract wall
flexibility, viscosity, and heat conduction, simple loss coefficients are introduced into all
scattering gains in each scattering junction, or lumped at one point in the linear system.
For more accurate modeling of non-linear distributed losses, elaborate time-varying filters
may be included into each scattering junction. The transcutaneous coupling between the
vocal and nasal paths via the velum and soft palate is modeled easily at the three way
junction modeling the intersection of these paths. Losses due to the resistive component of

glottal impedance can be modeled in the glottal model.

Other sources of non-linearity exist because waves propagate through the vocal tract tubes
superimposed on a flow of air. The flow breaks into jets and vortices at boundaries, causing
potential sources of sound radiation. The basic one-dimensional wave propagation model
of the vocal tract as being composed of n-tubes does not address the problem of acoustics
in a flow. Work by Kaiser [128], Teager and Teager [138][137], and lijima, Miki and Nagai
[127] demonstrate some phenomena attributed to non-linear fluid dynamic activity in the

vocal tract.

Kaiser [128] proposes a jet-cavity flow model of the vocal tract, in which additional com-
ponents of sound are generated throughout the vocal tract by flow phonomena. Vortices
and jets interacting at boundaries such as the teeth cause sound components which are
superimposed on the basic glottal wave. One striking example is at the teeth, where a
toroid of turbulence is formed which modulates the effective area at this point. Kaiser con-
cludes with a statement that linear models will continue to be the best available until the

interactions and the acoustic consequences of jet-cavity flow phenomena are measured and
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verified. Because of the inherent method of controlling the WGF acoustic tube model by
a shape description, the phenonemon of time-varying modulated area functions are easily

simulated.

The studies of Teager and Teager approached the problem of actually measuring flow in a
vocal tract during phonation using hot-wire anemometry. They discovered various turbulent
phenomena, including sheets of flow which oscillate between opposite walls of the vocal tract
at frequencies of around 500 Hz. The modulating sheets of air found by Teager and Teager
are more difficult to model than a simple modulation of area function. The possibility of
a modulating path length is an extremely difficult problem to tackle in the WGF acoustic
tube framework, because the samples of the vocal tract are assumed to be uniform in space.
Also, the one dimensional wave nature of the WGF acoustic tube model breaks down in the

presence of multiple possible paths through the same tube.

Iijima, Miki, and Nagai [127] investigated viscous flow in the glottis using finite element
techniques to solve the two-dimensional Navier Stokes equations. The simulations showed
the formation of vortices, and in the case of time varying flow, the vortices propagated
downstream. The authors conclude that vortices at the glottal source should not be ignored
in models of vocal fold vibration. Such findings of turbulent behavior motivate the research
presented in the remainder of this chapter, specifically noise generation in the glottal source

region.

2.5 Pulsed Noise in the Glottis

The quasi-periodic oscillations of the glottis exhibit small period-to-period deviations in the
waveform, some of which is brought about by bursts of noise in or near the glottal oscillator.
The passage of air at sufficient velocity through an aperture causes turbulent streaming,
and thus noise is generated [136][113][114]. The flow is zero when the time varying aperture
is closed, and the turbulence ceases if the aperture opens sufficiently or the flow decreases.
The basic fluid dynamic equations quantifying turbulent jet formation and noise radiation
were presented in Section 1.6. The Reynolds number, which is proportional to flow and

inversely proportional to the radius of the aperture, indicates the likelihood of turbulence:
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Re=-22_ (2.25)
vV AT

where U is the volumetric flow and A is the effective area of the aperture. The kinematic
viscosity of the fluid, v, is defined as the ratio of the dynamic viscosity to the density, and
is about 0.15 cm?2/s for dry air [7]. Turbulent streaming is likely if the Reynolds number is
greater than a critical quantity, Re s, which is about 1,000 for a rectangular slit, and larger
for circular apertures. If turbulence is present, noise is generated with a power proportional

to V8. The radiated sound power is computed from the volumetric flow by:

U
Po ()8 2.26
o (5) (2.26)
The center frequency of the principal peak in the spectrum of the turbulent noise is given

by:

SV _SUVE
d  2/a43

where S is the Strouhal number, which is 0.15 for the center frequency of noise spectral

f= (2.27)

density. Tube resonances affect the formation and power radiated by turbulent jets. Vortex
shedding is a related but quite different phenomenon which occurs at sharp edges and
boundaries, producing sound with a power which depends on lower powers of the flow-to-

area ratio. Hirschberg [124] gives power relationships of

4 6
s and v

— ” (2.28)

for turbulent sound radiation in a tube, and vortex dipole sound radiation in a tube, re-

spectively.

Figure 2.20 shows the characteristics of a typical cycle of oscillation of the glottal folds.
Views a) and b) are superior and cross sectional views of the glottal folds. The drawings
were made by the author after Hess [95] from the work on electro-glottographs (EGG) of
Lecluse [75]. Graphs c) and d) are of the effective area and volumetric flow (flow glotto-
graph). Graph e) is an EGG (electro-glottograph, or laryngograph), which measures laryn-

geal impedance using electrodes placed on the neck. The glottal impedance is maximum
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when the folds are closed, so the EGG curve is inverted from the other curves describing

'

glottal activity.

a) Superior

b) Cross-Section

¢) Area / ﬁ\\\# / /\
o N L
v \// f\“‘_‘\\\

12 3 4 5 6

Figure 2.20: Superior and cross section views of the glottal folds at 6 phases of a typical
cycle of oscillation. The time-varying area function, a flow glottogram, and a laryngogram
are also shown.

From Fant’s [8] reference to a Bell Labs film of glottal vibration, the glottal folds are approx-
imately 11 mm wide and achieve a maximum breadth of 2.6 mm. Chiba and Kajiyama [6]
observed an average flow of 140cm3/s at medium intensity phonation at 144 Hz. Assuming
the functional form of the glottal flow from Equation 1.52 with e} = e = 0.7, the maximum
flow is about 300 cm3/s. Kioke and Hirano [131] demonstrated a near-identical relationship
between the width and the area of the glottal opening, and provided graphs and data on
these functions. Using the numbers of Kioke and Hirano for glottal area and the functional
form of glottal flow from Equation 1.52, an analysis of the Reynolds number was done for
each of 18 positions within the glottal cycle. Table 2.1 shows the results of this analysis,
and predicts the possible turbulent behavior of a typical glottal cycle assuming quasi-static

free-space jet conditions. The six phases of oscillation shown in Figure 2.20 are marked in
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Glottal Reynolds Number Analysis

Phase | Area U R | Turbulent? | Power | Freq.
(em?) | (cm3/s) (dB) | (Hz.)

1 27 300 4340 Yes -44 285
.225 297 4710 Yes -39 370

2 .168 282 5175 Yes -30 545
.108 256 5860 Yes -18 960

.048 139 4773 Yes -11 1760

3 .015 0 0 No -00 0
€ 0 0 No -00 0

€ 0 0 No -00 0
.001 4 952 Maybe 0 16815

4 .01 15 1130 Maybe -34 1995
.045 40 1420 Yes -52 560

.084 74 1920 Yes -53 405

.138 114 2310 Yes -55 295

5 .189 157 2715 Yes -55 255
231 199 3115 Yes -53 240

.264 237 3470 Yes -52 230

6 291 269 3750 Yes -51 230
3 290 3980 Yes -49 235

Table 2.1: Analysis of Reynolds number at positions within a typical glottal cycle.

the first column of Table 2.1.

The calculations of Table 2.1 indicate that a likelihood of turbulence exists for the entire
open phase, but achieves maximum sound radiation power at the point where the vocal
folds begin to close (Phase 1 of Figure 2.20). An extremely high power burst of noise is
also likely at the glottal opening instant (Phase 4 of Figure 2.20), corresponding to highly
pressurized air rushing through a small slit. As is shown in the Phase 5 cross-section of
Figure 2.20, the aperture exhibits a sharp edge at the time of glottal opening, further
indicating the likelihood of vortex formation. Thus it is expected that in some cases there
are two pulses of noise per cycle, one when the the vocal folds are opening, and one when
they are closing. Higher values of flow, common in singing and loud speech, would yield
linearly higher Reynolds numbers and center frequencies, and would increase the radiated

noise power by the exponentiated flow-to-area relationship. The pulse at the opening phase
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exhibits the greatest power, with the pulse corresponding to glottal closure being secondary
in power. Similarly, the spectral peak of the radiated noise power spectrum is at the highest
frequency at the opening phase, decreases until the point of full glottal opening, and rises
again as the glottal folds are closing. Figure 2.21 shows graphs of the Reynolds number, the
noise power, the center frequency, and the glottal area and volumetric flow with the same

phases of glottal oscillation marked as in Figure 2.20.

12 3 4
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e) Flow /
¢) Reynolds -
Number /
RecFit P
d) Rapdiated
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20kHz .-+
e) genter f\ f
requency \
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Figure 2.21: Graphs of the time-varying glottal area function, a flow glottogram, the
Reynolds number, the radiated power, and the center frequency of the power spectrum.
Six Phases of a typical cycle of glottal oscillation from Figure 2.20 are marked.

The simple analysis of Table 2.1 assumes that turbulence is instantly born when the dimen-
sions and flow quantity are suitable, and the disturbance dies as quickly. A more detailed
analysis of the behavior of pulsed turbulence was done by Kingston [130], after the work
of Brown, Marglois, and Shah [115]. These studies investigated the effects of turbulent jets
in tubes driven by pulsating sources of flow. The ratio of normalized pulsation frequency,
Q, to the Reynolds number was identified as an important measure of turbulent behavior.

The normalized pulsation frequency is a unitless quantity defined as:
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2
=% (2.29)
14

where r is the radius of the tube. Another convenient expression for {2 is:

_ 2AF,
- v

Q (2.30)

where A is the tube cross-sectional area, and Fy is the frequency of phonation in Hz.
Recalling the large frequency range of the singing voice, and allowing for large deviations
in tube cross-sectional area depending on the vowel,  can range from 102 at 50 Hz. in an
/1] (boot) vowel, to 105 at 2000 Hz. in an /a/ (father) vowel.

Three regimes of pulse-turbulence interaction were observed by Kingston, corresponding
to high, medium, and low ratios. For low pulsation frequencies (2/Re < 0.04), the flow is
quasi-steady and follows the behavior indicated by the analysis of Table 2.1. For high pulsa-
tion frequencies (€2/Re > 0.1), the turbulence is steady and independent of flow pulsations.
For intermediate frequencies, the relation between turbulence and pulsation is complex,
and is characterized by vortex resonance phenomena. The average value of the Reynolds
number from Table 2.1 is 2750. Assuming a minimum vocal tract tube area of 0.15 cm?,
the transition region from pulse-turbulence interaction to non-interaction lies between 55

and 140 Hz. The maximum Reynolds number is 5860, yielding a transition region bounded
by 120 and 300 Hz.

From the calculations, pulsed turbulence is expected at phonation frequencies below 200
Hz., which is located within the vocal range. Even allowing for large deviations in the
assumed parameters of flow and glottal area, it is still expected that low notes sung by bass
singers might exhibit pulses, or perhaps dual pulses. Kingston also studied the relationship
between pulsation amplitude and turbulent behavior, but restricted most of his analysis
to amplitude modulations of less than 50%. In the case of normal glottal oscillation, the
amplitude is 100%, and the assumptions of Brown are less valid. Highly modulated flow
could significantly affect the location of the transition region separating steady from pulsed
turbulence. The phenomenon of vortex shedding is expected in the glottal area as discussed
by Hirschberg [124] and simulated by Iijima, Miki, and Nagai [127].

The presence of pulsed noise in singer voices is investigated in the next sections from a
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digital signal processing viewpoint, concentrating on extracting the aperiodic part of the

glottal wave, and inspecting the extracted residual for time domain structure.

2.6 Methods for Extraction of Non-Periodic Part of Glottal

Waveform

To investigate noise in the any quasi-periodic signal, techniques for identifying and sepa-
rating the periodic and non-periodic parts are required. Three methods of extracting the
non-periodic part are discussed, one operating in the frequency domain, and two operating
in the time domain. All of these methods yield similar results, but are slightly different due

to the definition of periodicity that each assumes.

2.6.1 Noise Extraction by Frequency Transform

One method of extraction uses the Deterministic plus Residual Model of Serra [160], em-
ploying short term Fourier analysis to locate and remove sinusoidal peaks in the frequency
domain. By any definition of periodicity, the sinusoidal peaks corresponding to the periodic
part of the signal should be spaced nearly evenly, aiding the location process. Any spectral
component not harmonically related to the fundamental frequency must be classified as part
of the noise signal. After the sinusoidal components are carefully identified and removed,
the remaining signal (noise residual) can be resynthesized by inverse transforming. Alterna-
tively, the sinusoidal component is resynthesized and subtracted from the original signal in
the time-domain to yield the residual. Figure 2.22 shows a periodic waveform with additive

noise and a frequency domain representation showing sinusoidal peaks in the presence of

noise.

2.6.2 Noise Extraction by Periodic Prediction

Another extraction method operates in the time domain and uses a least-squares periodic
predictor [44][42]. The prediction process yields an error signal which is the non-periodic
component of the signal (the component we wish to study). The form of a periodic predictor

which predicts the signal z(n) is:
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Figure 2.22: Time domain waveform of periodic signal with noise. DFT of signal shows
harmonic peaks in the presence of noise.

M
i(n)= Y z(n—P+i)c(i) (2.31)
i=-M
where M is some appropriately chosen small number, P is an integer estimate of the period,

and ¢(2) are the predictor coefficients.

The number of filter taps (2M +1 adjustable weights) is usually small, and the algorithm for
adjusting the weights can be quite simple, since the weights need not change once they are
adjusted for a given periodic signal. The Least Mean Squares (LMS) algorithm [163][164]
was used for the examples of this study. LMS is a gradient steepest descent algorithm
using the instantaneous error as an estimate of the gradient of the error surface. Each
coefficient is adjusted at each sample by an amount proportional to the instantaneous error
and the signal value which is associated with the coefficient being adjusted. The LMS

update equation is:

Cut1 = Ch + 2 Xne(n) (2.32)

Where C,, is the filter coefficient vector:
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c(—M)
c(—M+1)

= (2.33)
(M)
X, is the current sample vector in the filter memory:
z(n— P - M)
z(n—P—-M+1)
X(n)= . (2.34)
z(n— P+ M)

and €(n) is the non-periodic error signal, defined by:

e(n) = z(n) — &(n) (2.35)

The adaptation constant u controls the dynamics (and stability) of adaptation. Stability is

ensured if:

p< ((2M + 1)52') - (2.36)

where z2 is the signal power. If the adaptation parameter p is adapted dynamically, the
Normalized LMS algorithm results:

Cn+1 =C =

n + mxnf(n) (2.37)

where the signal power is computed over the last 2M+1 (or greater) samples. The parameter

a is any positive number less than 1.
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2.6.3 Noise Extraction by Period Similarity Processing

Another time-domain method uses period similarity processing [142], with the added im-
provement of sinc-interpolated sampling rate conversion [159}{162]. Each period is resam-

pled by sinc interpolation. This operation is given by:

o0
&(nTp) =C ) z(i)sinc(i+nTy +0) (2.38)
1=—00
where T is a sampling period, C is a gain constant, and 0 is a time offset. Figure 2.23 shows

the conversion of a sampled data signal to a continuous time signal using sinc interpolation.
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Figure 2.23: Sinc interpolation of the sampled data signal Z~140.2272+0.5Z2-3+0.1Z24—
0.4Z73, to yield a band-limited continuous-time signal.
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The sampling parameters T3, C, and 8 are then selected to yield a least squares difference
between the current resampled period and a prototype period. As the resampled periods are
successively added to the prototype to yield a smoother prototype period, the noise com-
ponent in the prototype approaches zero in the limit as the number of periods approaches

infinity.

Denote the prototype period as the vector sum of the resampled periods:

number of periods

XProto = Z Xy (2.39)
k=1
X = &(nTy, theta,C) (2.40)

where £(nT5, theta, C) is the kth resampled period with the parameters T, 8, and C selected
to yield a least squares difference between the kth resampled period and the prototype

period:

period length )
) |XProto(®) — Xi(n)[> = Minimum (2.41)

n=1

The prototype is subtracted from each period to yield the period residuals:

X} Residual = Xk = XProto (2.42)

This process has the advantage that no averaging of multiple periods takes place in forming
a period of residual. The time domain connection between the signal and the residual
is preserved, simplifying later evaluation of the noise signal. One further advantage of
the period similarity method is that any period-to-period correlations in the noise signal
(provided the correlation decays with increasing time lag) average to zero in the formation
of the prototype. Any short term correlations in the noise signal (perhaps due to formant
resonances, for example), average to zero in the prototype, and are reflected in the residual

signal. Figure 2.24 schematically shows period similarity processing.

A combination extraction and analysis method which is similar to the period similarity
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processing method was proposed by Schumacher and Chafe [139]. This method will be

b
Resampled Periods Prototype
—

A Vector §+
. Sums

Period

discussed in Section 2.8.

f Reatdual,

Figure 2.24: Schematic diagram of the process of averaging resampled periods to form a
prototype. The prototype is subtracted from each period to yield residual periods.

Noise extraction by period similarity processing was performed on an example vocal tone.
A bass singer was asked to sing a 100 Hz. tone on the neutral vowel /A/ (bug). This
vowel corresponds to a vocal tract filter which colors the glottal signal so little that inverse
filtering is often not required to find the glottal closing time. Period similarity processing
was performed over 200 periods, and the prototype and residual periods were formed. Figure
2.25 shows a few cycles of the original waveform, the prototype waveform, and the amplified
residual signal. Noise is clearly evident in the original waveform. Some structure seems
evident in the residual signal, but clearly it is difficult to conclude anything by visual

inspection of so few cycles.

2.7 Methods for Analysis

Two new methods of analyzing the extracted noise residual signals are presented. The
techniques involve identifying the periods of the original signal. Identification of the pe-
riods is already accomplished if extraction is performed by the period similarity method.
Identification of the periods involves detection of some time domain feature using a method
such as low-pass filtering and zero-crossing detection. Each detected period yields a pointer

into the time-domain residual signal, and thus segments the signal into ‘noise periods’. The
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Figure 2.25: Original waveform (top), periodic prototype (center), and amplified residual
(bottom) of male vocal tone sung at 100 Hz. on the vowel /A/ (bug).

noise periods can be inspected for features which occur at particular times within each pe-
riod. Each residual period can be subdivided and processed in sections containing particular

signal events, such as glottal closing and opening epochs [91][90][92].

One other analysis technique involves a simple visual inspection of the time domain signal.
This is instructive for certain signals where the noise bursts are clear enough to be easily

viewed, but it does not yield quantitative results for use in comparison and modeling.

2.7.1 Period-Synchronous Noise Power Analysis

In the period-synchronous noise power analysis method, the noise power (sum of squared
sample values) is computed in each of the sub-period sections. These powers are plotted in
three dimensions, with height representing power, one axis representing the period number,
and one axis representing the position within the period. Inspection of this ‘noise period
power surface’ shows clear ridges and valleys running in the direction of the period number
if the signal contains pulsed noise. The duty cycle of the noise pulses is deduced from the
width of the peaks and valleys, and the dynamic range of the noise is deduced from the
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heights of the peaks and valleys. The Noise Dynamic Range (NDR), representing the ratio
of the average ridge height to the average valley height, is used for analysis of signals within
this paper. Figure 2.26 shows the noise period power surface of the vocal tone of Figure
2.25.

o Ridges
Closing

Opening

Pd

Pover

Position

Figure 2.26: A noise period power surface of the residual signal extracted from a male vocal
tone sung at 100 Hz. on the vowel /A/ (bug). Glottal opening and closing phases are
marked.

2.7.2 Noise Period Spectrum Analysis

The third analysis technique involves performing Discrete Frequency Transforms (DFT) on
each of the noise period subsections. Each DFT is used to compute a power spectrum.
The power spectra corresponding to each particular period position are averaged across all
periods, yielding smoothed estimates of the power spectrum of the noise at each position
within a typical period. This provides information about the time-varying nature of the
noise signal spectrum. These spectra can be plotted in 3D with height representing intensity,
one axis representing position within the period, and one axis representing frequency. Figure

2.27 shows a plot of the noise period spectra of the vocal tone of Figure 2.25. The average
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spectral deviation of the residual component is easily seen.

Figure 2.27: A noise period spectral surface of the residual signal extracted from a male
vocal tone sung at 100 Hz. on the vowel /A/. Glottal opening and closing phases are
marked.

2.8 Extensions and Similar Methods

A combination extraction and analysis method similar to the period similarity processing
method was proposed by Schumacher and Chafe [139]. This method calls for the identifica-
tion of the periods, then resampling to make all periods equal to the length of the longest.
Each period may be subtracted from any other, generating plots which display the portion
of the waveforms which vary most. Discrete Fourier Transforms can be performed at one
location across many features, yielding information about features which occur periodically,
but at multiples of the period of the signal being investigated. Such periodic disturbances
are called subharmonics, and are discussed in Section 2.11. The differences between the

period similarity processing/power surface/spectral period computation methods and the
methods of Schumacher and Chafe are:

1. In period similarity processing, sinc-interpolated resampling is performed to
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2.9

minimize the least squares difference between the waveform and all other waveforms.
This provides the minimum power estimate of the residual signal. In the method
of Schumacher and Chafe, linear interpolated resampling is done to match period

lengths only. Lengths are defined by zero crossings.

2. In period similarity processing, the formation of the prototype waveform provides
an estimate of the least-squares periodic component of the signal. The method of

Schumacher and Chafe does not call for the formation of the period prototype.

3. The method of period similarity processing was devised to investigate the time-
domain microstructure of noise in quasi-periodic signals. Periods are divided into
sub-sections of a few samples to compute power and spectra. The analysis meth-
ods of Chafe and Schumacher were devised to search for subharmonics, which are
periodic occurrences. Period similarity processing is inferior in performance in the
presence of subharmonics, because part of the subharmonic behavior is coded into

the prototype.

4. Period similarity processing, power surface computation, and spectral period
computation provides characterization of the disturbances within a typical period.
The power surface method of visualization is extremely simple to compute and yields
an arrangement of the data which is easy to evaluate visually. The spectral period
method provides information about the spectrum of the noise component at specific
locations within a typical period. The method of Schumacher and Chafe allows
browsing and exploration of feature differences and similarities between any two

periods, but the cost is increased computational complexity.

Male Singing Voice Extraction and Analysis Examples

Three voice signals were selected for analysis: a male singer singing the neutral vowel /A/

(bug) at 100 Hz, the same vowel in falsetto register at 275 Hz, and the voiced fricative

/z/ at 100 Hz. Figure 2.28 shows the power surfaces and spectral periods. The dual pulse

nature of the chest register tone is easily seen in the power surface plots. The long-term
Signal to Noise Ratio (SNR) of the chest register tone was 6 dB less than that of the falsetto
tone, but the NDR for the chest register tone was 6 dB greater than that of the falsetto
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tone. The power surface of the falsetto residual shows no clear noise ridge, indicating that
the breathier quality often associated with the male falsetto voice might come from the
flatter less-modulated noise signal. Voiced fricatives generate a pulsed noise component.
As the glottal folds open and close, the pressure in the chamber behind the constriction
is modulated, and thus the flow rate through the constriction varies synchronous with the
glottal oscillation [38][39]. The voiced fricative in the study exhibited broad single pulse

surfaces.

Power Surface Male /A!@ 100 Hz Special Perod

Freq. &cHz)

Figure 2.28: Power surfaces (left) and spectral periods (right) of male vocal tones.
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2.10 A Study of the Noise Characteristics of Singers

Recordings were made for analysis of a number of trained singers. Four choral singers were
studied: one bass, one tenor, one alto, and one soprano. The singers were asked to sing
long tones across their entire comfortable range on the neutral vowel /A/ as in bug. This
vowel yields an output waveform close to the glottal waveform, so inverse filtering is usually
not necessary. The sequences of notes were sung at three dynamic levels, pianissimo (very
soft), mezzo forte (medium loud), and fortissimo (very loud). Figure 2.7 shows the notes
sung by the singer test subjects. The sound files were digitized directly to 16 bit samples
at a rate of 44.1 kHz. using a B&K 4006 microphone, an IMS MPA-4 microphone preamp,
and a Sony DTC 1000ES Digital Audio Tape (DAT) machine. The files were transferred to
computer disk using an Ariel DM-N digital microphone. The files were then down-sampled
to a sampling rate of 22.05 kHz. by digital low-pass filtering at 11 kHz. cutoff frequency and
decimating the resultant signal by a factor of two. The low-pass filter used was designed
with -96 dB stop-band rejection. A 200 period sample was extracted from the center of each
tone for pulsed noise extraction and analysis. Pulsed noise extraction was performed by the
period similarity method. The average Normalized Noise Power (NNP) was calculated for
each of the analyzed signals. The NNP in dB of the quasi-periodic signal z(n) of length N

is defined as:

N-1

>_en)?
1010g10 ﬁ?—— (2.43)

>_z(n)?

n=0
2.10.1 Average Noise in Singer Voices

Figure 2.29 shows the average NNP for the four singers as a function of the position within
the particular singer’s range. The three superimposed curves correspond to the three dy-
namic levels. The maximum noise level deviation across dynamic level was 10 dB. The
average noise level deviation between any two dynamic levels for the same note was 2.35
dB. The maximum deviation across pitch for a given dynamic was 19.6 dB, and the mini-

mum was 3.1 dB. The average deviation from the lowest to the highest note was 10.6 dB.
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The results indicate that the NNP depends little on dynamic, and much more on pitch, and
further that this dependence is consistent across subjects of different phonation frequency

ranges as well as within a particular subject.

Normalized Noise
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-20 -20
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Figure 2.29: Average Normalized Noise Power (NNP) as a function of frequency. The
superimposed curves correspond to three dynamic levels of singing.

Figure 2.30 shows all plots together, aligned by pitch. A line proportional to inverse fre-
quency is fit through the curves, and shows that the NNP rolls off inversely in frequency.
The data of post operative laryngeal surgery patients of Muta, Baer et.al. [132] is consistent
with the inverse relationship of NNP with pitch.

There is one consistent exception to the monotonic decrease in NNP, and this occurs at
the highest note of the tenor subject MP in all three dynamic levels. This was theorized
to be due to the changing of the mode of phonation from the chest (normal) to the head
(falsetto) register. To investigate this theory, four additional male singers were asked to sing
the same sequence of five notes across their comfortable range. They were instructed to sing

the highest note in falsetto register immediately after singing in in chest voice, then to sing
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Figure 2.30: Average Normalized Noise Power (NNP) of all singers as a function of fre-
quency. The bold curve is a log plot of fre—qﬁen-a, to show that the noise component rolls
off roughly according to this relationship.

one more falsetto note above the duplicated chest/falsetto tone. The NNP curves of Figure
2.31 show that the falsetto signals averaged 2.4 dB greater in NNP than the corresponding

chest register tones.

To verify the 1/f hypothesis of NNP, data was taken from eight additional singers, two of
each voice part. The extraction was performed using linear periodic prediction as described
in Section 2.6.2. The average NNP as a function of frequency is plotted in Figure 2.32,
along with a plot of Log(k/f). A curve of the form a * f® was fit to the data of all twelve
singers. The least-squares fit was 59 * f 12, which closely agrees with the hypothesis of an
inverse proportionality relationship of NNP with frequency.

Given Equation 2.26, which predicts that the radiated noise power varies as the eighth
power of flow, it may seem contradictory that measured noise in singer voices was largely
independent of dynamic level, and inversely proportional to frequency. A study of airflow
in singer voices [134] found that airflow increases slightly with both increasing pitch and
loudness, but often airflow decreases in higher tones. This is also consistent with the
findings of Cavagna and Margaria [116]. Higher tones often are produced with a more

‘pressed’ voice, and the overall glottal resistance changes as a result. The nature of noise




CHAPTER 2. IDENTIFICATION OF GLOTTAL SOURCE DEVIATIONS 108

Normalized Noise Normalized Noise
Power (dB) Power (dB)
~-108 -10
Falsetto Voice .
0 R —20 Falset{:lmce
-30 Chest \bice -30
Chest \bice
200 400 600 Hz. 200 400 600 Hz.
dB dB
-10 -10
Falsetto Vioice Falsetto Voice
=20 -20
-30 D’e/t\bic -30
st\oice Cné st Vbice
200 400 600 Hz. 200 400 600 Hz.

Figure 2.31: Average Normalized Noise Power (NNP) of male singers as a function of
frequency. The curves corresponding to chest register and falsetto register are shown.

production in the glottis is that of a time-varying process which is dependent on flow and
the area of the aperture, so it is likely that any increase in flow is being offset by changes
in the time-varying area function. In the falsetto register there is a direct relationship
between phonation frequency and flow [171], so there is a likelihood of higher noise power
for increasing frequency in this range. All of the male falsetto test subjects showed an
increase in noise power when entering the falsetto register, and some of the falsetto data

exhibited an increase in noise power with increasing frequency.
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Figure 2.32: Average Normalized Noise Power (NNP) of eight additional singers as a func-

tion of frequency. The smooth line is a plot of logmf.

2.10.2 Pulsed Noise in Singer Voices

A time domain analysis of pulsed noise was performed using the extracted noise residual
periods from the four singer subjects. The period residuals were divided into six segments,
with the first segment being that which contains the glottal closure epoch. The average
noise power for each of the six sub-segments was computed across 200 periods. Figures 2.33
and 2.34 show the average noise power at six period positions for the four singers. The three
superimposed graphs represent the three dynamic levels, and the five sets of curves represent
the five notes sung. Since no clear relationship existed between time-domain noise power
behavior and dynamic level, the three curves are not labeled separately. The waveform
shown below the graphs is a typical waveform from the particular singer, aligned to show

the point at which each of the average powers were computed within a typical period.
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Figure 2.33: Average Normalized Noise Power (NNP) of bass singer PC and tenor singer
MP as a function of the position within a typical period.
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Figure 2.34: Average Normalized Noise Power (NNP) of alto singer ED and soprano singer
KH as a function of the position within a typical period.
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For low frequency phonation in the bass and tenor subjects, the curves show a dual-pulse
nature. The primary pulse occurs at the initial glottal opening phase and the secondary
pulse occurs at the glottal closure epoch. This is demonstrated in Figure 2.33 in the bass
singer subject PC curves at 90, 180, and 270 Hz. The tenor subject MP exhibited dual-pulse
activity in the 110, 160, and 220 Hz. curves of Figure 2.33. The alto subject ED exhibited
dual-pulse activity in the 210 Hz. curves of Figure 2.34. The soprano singer subject KH
exhibited a small modulation dual-pulse noise signal on two of the 420 Hz. curves of Figure
2.34.

As frequency increases, the time domain behavior shifts to a single-pulse nature, with one
broad pulse of noise centered at the glottal open phase. This is shown in the 360 Hz. curves
of the bass subject PC in Figure 2.33. The tenor subject MP demonstrated single-pulse
activity in the 320 Hz. curves of Figure 2.33. The alto subject ED demonstrated single-pulse
activity in the 315, 420, and 630 Hz. curves of 2.34.

Yet a third regime of pulsed noise generation was observed in the 430 Hz. curves of tenor
subject MP in Figure 2.33. This same activity is seen in the 280, 560, 840, and 1120 Hz.
curves of soprano subject KH in Figure 2.34. These curves show a single broad noise pulse
centered at the glottal opening event. This is consistent with the fact that the glottal folds

do not completely close in female vocal fold oscillation, and in male falsetto oscillation [21].

The NDR’s averaged 5.35 dB, with a variance of 5.9 dB. The large variance reflects the wide
range of NDR’s encountered, with the maximum being 13.4 dB and the minimum being 1.4
dB. There was a weak inverse relationship of NDR upon pitch in the male singers, specifically
a high NDR in the lowest notes of phonation. This is consistent with the predictions of

turbulent behavior in the frequency regions above and below 200 Hz. from Section 2.5.

2.11 Subharmonics in the Singing Voice

Subharmonics are periodicities which occur at time intervals which are longer than the
intended or perceived period of a quasi-periodic waveform. These can be thought of as
undertones, similar in definition to musical overtones. The numbering system for overtones
specifies that the first overtone is the fundamental, then successive integer multiples of the

fundamental are indexed by the integer multiplication factor (the third overtone of 100 Hz.
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is 300 Hz.). Using the overtone nomenclature, the third subharmonic (undertone) of 100
Hz. is 33.3 Hz. Subharmonics exhibit their own overtone series, thus causing sinusoidal

peaks to appear between the ‘actual’ harmonics of the spectrum of a quasi-periodic signal.

In studies of bowed-string instruments, pulsed noise has been shown to be important
in bow-string slip phase initiation, and plays a part in the generation of sub-harmonics
[118][139][117]. The voice also exhibits measurable and audible sub-harmonics, and one
plausible cause is the interaction of the glottal folds with reflected noise pulses. Diplopho-
nia is a disorder of the voice which is characterized by the generation of subharmonics of
such extreme amplitude that the pitch of phonation is obscured. The name comes from the
fact that many diplophonic waveforms exhibit an extremely strong second subharmonic,
thus yielding a pitch period twice the length of the intended pitch. Waveforms of this
kind are of the class of pathological waveforms which confound most machine pitch detec-
tion schemes. A study of diplophonic patients [121] theorized that diplophonia was a beat
phonomenon caused by the two vocal folds vibrating independently at different frequencies.
Simulations of such independent fold vibration were performed which produced waveforms
which resembled PhotoGlottoGraphic (PGG) waveforms obtained from the test subjects.
This theory indicates that the assumptions of symmetry in most physical models of the
glottis are not valid.

The generation of subharmonics, however, is not necessarily a pathological condition of the
voice. In fact it is quite common in the trained ‘resonant’ voices of singers and actors.
Figure 2.35 shows a clear subharmonic and its overtones in the time and frequency domain
plots of the sung tone of a professional baritone soloist. The power of the subharmonic
signal is 7 dB above the noise floor, and 20 dB below the ‘periodic’ component of the signal.

One common method used to detect diplophonia and subharmonics is to form an autocorre-
lation signal as defined in Equation 2.1. If the autocorrelation signal component correspond-
ing to two periods of lag is larger than the component corresponding to one period of lag,
the signal contains significant 2nd subharmonic components. Other methods of detecting

subharmonics can be implemented in the frequency domain.

For this study, the residual from periodic prediction of Equation 2.35 was used to study
subharmonics in normal singer voices. Noise was extracted using the periodic prediction

method, first with the prediction period equal to the period intended by the singer, then
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Figure 2.35: A bass singer voice waveform displaying clear subharmonics. The plot at
the lower left is the frequency spectrum of the waveform. The plot at the lower right is
the frequency spectrum of the residual from periodic prediction showing the subharmonic
components only.

with a prediction period twice that of the intended period. In a perfectly periodic signal
corrupted by a white noise process, any delay length which is an integer multiple of the actual
period yields the same prediction results. For a quasi-periodic signal with no subharmonics,
a two-period predictor will usually perform worse than the single-period predictor, because
in such a signal pairs of adjacent periods are usually more similar than periods which
are separated by more than one period. In a signal which contains second subharmonic
components, the periodic predictor with doubled period accurately predicts any multiple of
the 2nd sub-harmonic, and thus yields an error signal free of this subharmonic component.
If significant second sub-harmonic components are present in a signal, the NNP should be

less than that yielded by prediction of the signal using the actual fundamental period.

Four singers were recorded at three volume levels and five pitches. Eight singers were
recorded at medium volume and five pitches. Periodic prediction was performed at one
period and two periods of delay. Normalized Noise Power was computed for the residual
signals. If the NNP was greater for the single lag predictor residual than for the double

lag predictor residual, the tone was judged to contain a significant second subharmonic
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component.

All of the 12 singers exhibited subharmonics in one or more sung tones, and 28 of the total
100 vocal samples showed a measurable component of the second subharmonic. The largest
detectible subharmonic referenced to the residual noise was 8.9 dB above the glottal noise
signal. The largest detectible subharmonic referenced to the periodic component of the
glottal wave was 17.9 dB below the periodic glottal component. The male subjects were
more likely to produce subharmonics than the female subjects, with the males displaying
2nd subharmonic components in 32 percent and the females in 24 percent of the tones.
Soft phonation (musical pianissimo) exhibited subharmonics only in one subject at high
frequencies. Medium and loud phonation exhibited subharmonics in all subjects at higher
phonation frequencies. Table 2.2 summarizes the results of this analysis. A zero indicates
that there was no detectible subharmonic, and a number represents the subharmonic power,

referenced to the residual signal with the subharmonic removed.

To model subharmonics using wavetable synthesis methods, the wavetable is filled with the
sub-harmonic period of the glottal wave. To represent a second subharmonic component,
the wavetable length is doubled and two ‘periods’ (one period of the second subharmonic)

are stored.

2.12 TUse of Noise Residual for Vocal Tract Filter Identifi-

cation

One common problem with LPC or other source/filter analysis methods is presented when
attempting to analyze female vocal tones [22]. It is common to encounter sung tones in
which the fundamental lies above the location of the first formant. Since LPC is a least
squares minimization technique, the filter spectrum is fit to the harmonic peaks, ignoring any
spectral information lying between the harmonics. Methods of identifying the underlying
formant envelope using the trajectories of the harmonics were proposed previously [97]
[69]. Assuming the residual component is generated near the glottal source, clues to the
underlying vocal tract resonance curve are contained in the residual spectrum which is
ignored by LPC. If the harmonics of the periodic component can be extracted from the

spectrum of the sung tone without disturbing the residual spectrum, LPC can be applied
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Bass Subject PC Tenor Subject MP
Freq. | pianissimo | mezzo forte | forte [| Freq. | pianissimo | mezzo forte | forte
90 0 0 0 110 0 0 0
133 0 1.6 0 165 0 0 0
180 0 2.5 3.0 220 0 1.2 0
270 0 0.2 0 330 8.9 0 0
360 0 0.9 0.2 440 2.6 0 5.8
Alto Subject ED Soprano Subject KH
Freq. | pianissimo | mezzo forte | forte || Freq. | pianissimo | mezzo forte | forte

220 0 0 0 290 0 0 0
315 0 0.7 0 440 0 0 0
440 0 0 0 580 0 0 0
630 0 0 0 880 0 0 0
880 0 0 0.1 1160 0 1.4 0

Bass WR Bass WB Ten. RC Ten. AB

Freq. | mf || Freq. | mf || Freq. | mf {| Freq. | mf

80 0 82 0 90 0 110 0

120 0 122 0 135 0 165 0

160 0 165 0 180 0 220 | 0.1

240 0 245 0 270 | 1.0 330 | 14

320 {49 | 330 | 1.0 360 0 440 | 0.6

Alto LU Alto AD Sop. KB Sop. CC
Freq. | mf || Freq. | mf || Freq. | mf || Freq.
180 | 2.4 180 0 200 0 220
26 3.2 275 | 0.9 300 | 0.8 330
360 | 1.0 360 0 400 0 440
525 | 0.4 || 550 0 600 { 0.8 || 660
720 0 720 0 800 0 880

Jury P
S ISEEE)ES

Table 2.2: Data from detection of 2nd subharmonic in 12 singer voices. A zero indicates
that no subharmonic component was found.
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to the residual. This is similar to the whisper method of vocal tract transfer function

identification described in Section 1.7.4.

Figure 2.36 shows a synthetic vocal tract spectrum, the spectrum of a vocal tone with
noise added to the glottal source, and residual spectra obtained by periodic prediction and
period similarity processing. The smooth curves on the lower three plots are LPC spectra,
and the formants are indicated to the right of each curve. The LPC spectra of the two
residual signals both detected the formant near 400 Hz. All three LPC analyses missed
the tightly grouped second and third formants, although these are visibly evident in the

periodic prediction spectrum.

2.13 Pulsed Noise in Other Musical Systems

The pulsed noise extraction and analysis techniques were used in another study [119] to
analyze musical instrument tones. In the case of bowed strings, the sliding of the bow
against the string during the slip phase of oscillation causes friction, and thus noise is both
radiated and introduced into the string [118]. Pulsed noise has been shown to be important
in bow-string slip phase initiation, and to play a part in the generation of sub-harmonics
in stringed instruments [139]. Noise extraction was performed on a cello tone of 150 Hz
using the SANSY system [160]. Figure 2.37 is a time domain plot of the magnitude of the

resynthesized residual, and clearly shows the pulsed noise bursts.

The case of wind-driven instruments is similar to that of the glottis. In the reed family,
returning noise pulses interact with the generation of future noise pulses, causing correla-
tion between successive periods of noise. In this case the period similarity method yields
better results, as this method is less sensitive than periodic prediction to period-to-period
correlations which decay with time. The interaction of noise pulses with the oscillator at
each period is less clear in the case of the voice, where the oscillator is weakly loaded by
the vocal tract and the tube length does not determine the frequency of oscillation. Noise
extraction was performed on clarinet signals using the period prediction method. Two tones
of approximately 200 Hz were analyzed; one played loudly with a soft reed, and the other
played softly with a stiff reed. Figure 2.38 shows the power surfaces and spectral periods.
The soft reed flexes greatly in oscillation, yielding a two pulse noise surface consistent with

a large open aperture phase. The stiff reed barely interrupts the air flow in a softly blown
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tone, and thus the noise power surface is flatter (breathier), and exhibits only a single ridge.
This is consistent with a single noise pulse as the reed constricts the aperture. The NDR
of the soft reed tone was 15.28 dB, and the NDR of the stiff reed tone was 2.47 dB.
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Figure 2.36: Top to Bottom: Vocal tract response used for synthesis, LPC spectral fit to
synthesized tone, LPC spectral fit to residual obtained by periodic prediction, LPC spectral
fit to residual obtained by period similarity processing. Formant frequencies are noted to
the right of each spectrum.
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Figure 2.37: Magnitude of residual signal of bowed cello tone shows clear noise bursts.
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Figure 2.38: Power surfaces (left) and spectral periods (right) of clarinet tones generated
with stiff reed (above) and soft reed (below).




Chapter 3

Software Systems for Singing

Synthesis

Two voice synthesis systems were constructed using the waveguide multiple acoustic tube
model of the human vocal tract. One system is a real-time Digital Signal Processor (DSP)
interface program, which allows graphical interactive experimentation with the various con-
trol parameters. The other system is a text-driven software synthesis program. The vocal
tract is modeled in both systems by a digital Waveguide Filter (WGF) network, controlled
directly by shape parameters. A nasal tract WGF is coupled to the vocal tract at the velum
bifurcation point. Glottal source pulses are stored and retrieved from multiple wavetables.
A filtered pulsed noise component is added to the periodic glottal source, simulating the
turbulence generated as air flows through the oscillating vocal folds. To simulate the tur-
bulences of fricatives and other consonants, a filtered noise source can be made arbitrarily

resonant at two frequencies and placed at any point within the vocal tract.

The real-time DSP program is called SPASM (Singing Physical Articulatory Synthesis
Model). The vocal tract shape is graphically displayed by a cross section of a human
head. Sliders on an editor window control the radius of each vocal tract segment, the size
of the velum opening into the nasal tract, and the radius of each nasal tract segment. A
Formant Editor Window displays the log-magnitude frequency response of the tract. The
glottal pulse shape is edited in the time domain, and the spectrum is edited in the frequency
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domain. Other real-time controls allow experimentation with pitch and vibrato. The sys-
tem can interactively record a consonant and design a matching filter for use in resynthesis.
Similarly, the user can record a vowel, and the periodic glottal waveform and noise param-
eters are identified by the system and used for resynthesis. All control parameters can be

saved as disk files.

The software synthesis system is called “singer,” and takes as input a file of C function calls
specifying the events to be synthesized. These function calls are a time-ordered event list for
controlling the singer model. An event specification includes a transition time, shape and
glottal files as created by the SPASM system, noise and glottal volumes, glottal frequency
(either in Hz. or as a musical note name), and vibrato amount. The system synthesizes a
sound file, smoothly interpolating from each set of parameters to the next over the times
specified. All parameters of shape, glottal input, and noise filter control are interpolated
on the single sample level. In this way smoothly varying connected singing performances
are generated. All other parameters, such as random vibrato amount and periodic vibrato

speed may be changed at any time but, for computational speed, are not interpolated.

3.1 The Synthesis Model

Figure 3.1 shows a block diagram of the model constructed for singing synthesis. A variety
of sound sources are injected into the WGF acoustic tube model of the vocal tract. All

waveform oscillators may be loaded with arbitrary waveforms.

Two glottal wavetables are provided to allow slow variations in the source under explicit
control, or vibrato-synchronous variations. The glottal noise source consists of four-pole
filtered white noise, multiplied by an arbitrary time domain waveshape synchronized to the
glottal oscillators. This allows pulsed noise to be simulated and mixed with the periodic
glottal source. Vibrato is simulated by a wavetable oscillator (sine default), mixed with

four-pole filtered white noise.

Four-pole filtered white noise is injected into the oropharyngeal WGF by mixing with the
forward-going wave component. The noise can be injected into any number of sections, as

controlled by independent gain controls.
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Figure 3.1: Block diagram of the model used for sing
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The mixed glottal source signal is injected into the vocal tract filter. The glottal reflection
is modeled by a simple reflection coefficient, and the lip and nostril conditions are modeled
by a one-pole low-pass filter for the reflection characteristic, and a one-zero filter for the
transmission characteristic. The transcutaneous radiation component is modeled by a one-
pole low-pass filter and a delay line. All outputs have independent gain and stereo pan

controls.

3.2 The SPASM System

3.2.1 Design Goals

The SPASM (Singing Physical Articulatory Synthesis Model) system was developed to place
the waveguide vocal tract model into a graphical interactive environment for experimenta-

tion, synthesis, and library construction. The following design goals were used:
1. The primary goal of the system is to produce high quality musical vocal synthesis.

2. Some knowledge of music and musical acoustics on the part of the target user is
assumed, but no knowledge of digital filter design or other engineering topics should

be necessary to use the system for synthesis experiments.

3. Technically trained or experienced users should be able to access advanced fea-

tures.

4. Selection of model characteristics should be made so that, wherever possible,
control parameters are physically meaningful. Guidelines 1. and 2. take precedence

over this requirement.

3.2.2 The System Screen

Figure 3.2 shows the main system screen. The various windows allow the user to modify
the parameters controlling the model. Displays show shape, time, and spectral descriptions
of the model and signals. The windows visible when the program is first run are those

required for a beginner to do initial synthesis experiments. Figure 3.2a is the Vocal Tract
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shape Editor window, which controls and displays the shape of the vocal tract. Figure
3.2b is the Glottal Excitation Editor window, allowing time and frequency domain control
of the glottal source, and saving glottal description files to disk. Figure 3.2c is the Noise
(turbulence) Generator controller, which controls placement of the noise source within the
tract, the gain of the injected noise, and provides access to a more elaborate editor for the
noise source. Figure 3.2d is the Phoneme Synthesis and Library window, where shapes are
tested with short synthesis examples, and vocal tract description files are saved to disk.
Figure 3.2e is the Performance Feature Editor window, allowing parameters affecting pitch
to be controlled and saved to disk. Figure 3.2f is the Diphone Synthesis and Library window,
which permits transitions between shape and glottal states to be specified, auditioned, and
saved to disk. Hidden windows can be called up for more advanced control and analysis

functions.

3.2.3 Vocal Tract Shape

The Vocal Tract Editor provides control over the shape of the acoustic tube (and thus
the digital filter) which models the vocal tract. Shapes are saved to or loaded from disk
files. Sliders in the graphical editor window control the radius of each segment of the tract.
The path through the nasal airway is controlled by a velum position slider. A graphical
cross-section of a human head provides immediate feedback to the user about the vocal
tract shape. An additional text window showing the radii in centimeters allows the user
to enter parameters with greater accuracy. Another window allows the editing of the nasal
tract shape parameters, although these characteristics are usually not varied in connected
speech and singing. Switches and sliders control and mix the lip, nose, and throat radiation

outputs.

One other tract shape control window is the Shape Space Interpolator. This window allows
the user to enter a number of shape filenames into text fields. Each point along the edge
of the round shape space control area represents a region dominated by a particular library
shape. The user may control the current vocal tract parameters by moving a cursor about
the control area, thus determining the “mix” of shapes. This control is particularly useful
in the real time DSP synthesis mode, discussed in Section 3.2.9. Figure 3.3 shows the vocal

tract shape control windows.
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Figure 3.2: The initial SPASM screen, showing the windows which open upon running the
program.

3.2.4 The Glottal Source

The glottal source used in this system copies the time-domain and spectral properties of the
pressure, velocity, or power waveform of the human glottis. The glottal source waveform
is additively synthesized from Fourier coefficients controlled by simple parameters entered
in the editor, or from a library file of coefficients derived from analysis data. The simple
parameter editor controls operate principally on the time-domain glottal waveform. Param-
eters include the number of harmonics used for synthesis (primarily to prevent aliasing), the
overall amplitude, and the position and slope of the falling edge of the glottal pulse, which

has been shown to be an important feature when describing vocal effort (Sundberg 1987;
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Figure 3.3: Windows for controlling vocal tract and nasal tract shape.

Cummings 1990; Rosenberg 1971). Graphical displays of the log-magnitude spectrum and
the time-domain waveform are provided. Parameters may be saved to and loaded from disk
files. The Glottal Noise Editor allows the user to specify a time-domain pulse shape for an
additive noise source, simulating the pulsating noise generated as flow through the glottal
folds is interrupted. A default set of natural amplitude and frequency control functions are
available for synthesis, or the user can edit the performance features using sliders or text
fields. Performance controls affect frequency features and are located in the Performance
Parameters window. Figure 3.4 shows the glottal source editing and analysis windows, and

performance controller window.
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Figure 3.4: Windows for controlling and identifying the glottal pulse source.

3.2.5 The Noise Source

To simulate the turbulences of fricatives and other consonants, a noise source can be placed
at any point in the oropharyngeal path of the vocal tract. The output of the noise source
can be made arbitrarily resonant at two frequencies by a four-pole filter. This allows for
injection of a tuned source of local turbulent noise at a point of constriction. Noise source

parameters are saved as part of shape files. Figure 3.5 shows the noise controller windows.
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Figure 3.5: Windows for controlling and identifying the turbulent noise source.

3.2.6 Glottal Pulse and Noise Source Identification

To aid the user in obtaining natural source parameters quickly, and to provide frameworks
for both rapid detailed study of glottal and noise sources, there are various identifica-
tion/analysis functions built into the system. The Record Consonant and Identify Noise
window allows the user to record a fricative consonant, or specify a prerecorded sound file.
Using LPC, the system then designs a four-pole filter which matches the spectrum of the
recorded sound. Similarly, the Record Voice and Identify Glottis (Figure 3.4) window allows
the user to inverse filter a recorded voice, using the current SPASM vocal tract configuration

as the prototype. The inverse filtering process yields an estimate of a glottal pulse function.

An interactive inverse filtering window is available for more accurate identification of vocal
tract transfer function and glottal input function. The user can fit an LPC filter to a
sound, and multiple representations of the filter are available. The coefficients of the filter
are displayed, or alternatively, the center frequencies and radius locations of the poles are
displayed. The poles of the filter are located and displayed on a Z plane view. Mapping of
filter parameters onto vocal tract shape description quantities (radii or areas) is available.
The user may edit all filter representations. Using this tool, interactive inverse filtering of

the vocal tract transfer function is accomplished. Figure 3.6 shows the Interactive Filtering
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Figure 3.6: An interactive filter editor, with controls for fitting, editing, and applying filters
to sounds.

3.2.7 Phoneme and Diphone Synthesis

Once the glottal source, the noise source, and the vocal tract shape are established, synthesis
of a short musical ‘performance’ is accomplished by mouse clicking the synthesis button,
located in the Phoneme Synthesis and Library window (Figure 3.7). Once the synthesis
is complete, the result is heard via the computer’s internal digital to analog converters.
The file may be played back repeatedly by mouse clicking the Sing button. By typing
any file name into the Output File field and pressing the carriage return, the file is played
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back. Synthesis of different files allows speedy A/B comparison of sound examples. The
time domain waveform and the log magnitude spectrum of the synthesized phoneme can be

displayed.

Diphthongs are constructed by specifying initial and final sets of parameters, an interpo-
lation curve, and the time in seconds of the initial and final steady state segments. The
Diphone Synthesis and Library window (Figure 3.7) controls these synthesis parameters.
Since the synthesis yields one second of sound, specifying the duration of the initial and final
states also specifies the transition time. Curves available for interpolation include linear,
hyperbolic tangent, and exponentials. In the case of the glottis, the interpolation is carried
out between initial and final wave tables. For controlling the noise generators, the filter
pole parameters are interpolated in the Z-plane as radius and angle quantities. The vocal

tract and nasal tract scattering relationships are interpolated in the radius space.

3.2.8 Formant Editor and Display

The Formant Editor window (Figure 3.7) allows the user to display and edit features of the
vocal tract filter in the formant domain (the one in which the ear perceives speech sounds).
When this window is activated, the system impulse response is obtained. A log-magnitude
transform is computed and displayed, and peaks are located and marked. Each of the first
few (selectable) peaks is associated with a text-field/slider control, and the user may move
the markers to new locations. By depressing the Doit button, the system adaptively moves
the formant peaks to the desired locations, modifying the vocal tract in a least squares
perturbation fashion. When the Link button is active, the formant display updates each
time any change is made in vocal tract control parameters. This allows the connection

between vocal tract controls and vocal tract filter spectrum to be interactively explored.

3.2.9 Real Time DSP Synthesis

By clicking the Sing switch in the Performance Features window (Figure 3.4), the system
uses a Digital Signal Processing (DSP) chip to synthesize in real time. Performance features
active in real time are pitch, vibrato speed and amount, and random vibrato amount. Tract
section, velum, and noise parameter controls modify the model and sound in real time. New

glottis wavetables may be synthesized and down-loaded to the DSP chip. A cross fader
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Figure 3.7: Phoneme and Diphone synthesis control windows, and the Formant Edi-
tor/display window.

controls the mix between the current glottal waveform and the last loaded glottal wave.

3.2.10 Object Oriented Programming Structure

The techniques of Object Oriented Programming Systems (OOPS) are becoming increas-
ingly popular for the development of software [183][188]. Because of the notions of heirar-
chical inheritance [184] and abstract data types [186][190], program code generated in such
systems is extendible and reusable [187][189]. The paradigm of object oriented program-
ming languages is that of Instances of Classes (objects) passing Messages (function calls
and data) to each other. The Class Heirarchy and Class Definitions define the behaviors
of and relationships between different types of objects. The Class Heirarchy is the family

tree followed to determine how a particular object behaves. Redundant coding is reduced
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by the fact that objects Inherit Instance Variables (variables which are objects themselves,
whose values are known only to the particular instance of an object) and Methods (pieces
of executable code) from their ancestors. Only behaviors unique to the object need to be
defined. All others are inherited from the ancestor. Any behavior significantly different
from that of the ancestor may be Ouverridden by simple redefinition. OOPS techniques
allow rapid prototyping of software and the construction of libraries which may then be

shared among many developers of similar systems.

The SPASM system was developed in the Objective C [182] object-oriented programming
extensions to the C programming language [185]. The important Class Definitions of the
SPASM program are given in Appendix B. Figure 3.8 shows a block diagram of some the
objects in the SPASM program, and the type of information that is passed between objects.
Such an organization of the code allows for flexible modification of the synthesis model,

controls, and user interface.

All Control
Peremeters DSP Singer Nosal Tract
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Samples
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Figure 3.8: Some of the objects in the SPASM program, and the type of information that
is passed between objects.

Design of the glottis is an example of the flexible programming features afforded by OOPS.
In the current implementation of the model, the Glottis object is a waveform synthesizer
which generates the glottal wave under the control of a Performance Controller object. The
Performance Controller object generates frequency and amplitude information and passes
it to the Glottis object. The Glottis object generates a sample by combining some of the

wave variable coming into the superglottal area from the Vocal Tract object with the value




CHAPTER 3. SOFTWARE SYSTEMS FOR SINGING SYNTHESIS 134

from a wavetable. The wavetable is an instance variable of the Glottis object. This sample
is passed to the Vocal Tract object as its current input. If a physical model of the glottis
were constructed, the only code that would be edited is that of the Glottis object, replacing
wavetable lookup with mass-spring oscillator calculations. The glottis would derive the
necessary local control variables of mass values and spring constants from the frequency
and amplitude values being passed from the Performance Controller object. Such a design
paradigm allows pieces of the voice system model to be isolated and refined individually, or
perhaps assigned to different programmers for refinement. By keeping the interface to all
glottal models the same, various models of the glottis could be compared rapidly, without

requiring any changes to objects which interact with the glottis.

3.3 The Singer Software Synthesis System

For many applications, accurate control of synthesis at the single sample level is desired.
Repeatable synthesis is important for the generation of sounds for psychoacoustic testing
and other investigations. Toward these ends, a software synthesis system based on the
WGF model of the vocal tract was constructed. The program is written entirely in the
ANSII C programming language [185], simplifying porting to any computer. The program
takes as input a text file containing a series of C function calls. The C functions specify
target values for the model parameters, and times for the transitions to take place. Some
arguments to the functions are the names of shape and glottal files as created using the
SPASM system. Others are floating point numbers specifying pitch, vibrato, and other
important performance controls. For speed of synthesis, linear interpolation is performed

on all parameters.

The synthesize function is the heart of the singer program. This function interpolates
the singer model from the last parameter values to a new set of parameter arguments,

synthesizing and writing the samples to a sound file.
The arguments are:
time is the time over which the current transition will take place.

FShape is a vocal tract shape file as created by the SPASM system.
FGlot is a glottal file as created by the SPASM system.
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FPitch is the average pitch in Hz of the glottal source.
Note names (af4 instead of 415.3 Hz.) may be used.
FGlotAmp is the amplitude of the glottal source component.
FNoiseAmp is the amplitude of the fricative noise component.
FVibrAmt is the amount of periodic vibrato of the glottal source.
1.0 is 100% vibrato.

fd is a file descriptor of an open sound file.

One other synthesis function synthesizes silence.
silence(time,fd)

Some non-interpolated parameters may be changed instantly by function calls.
setPerfVibrFreq(float afreq); Vibrato frequency in Hz.
setPerfRndAmt(float r); Random vibrato amount.
setGlotNoiseGain(float gain); Glottal noise gain.

setPulseShape(float plpos,float plwidth,float p2pos,
float p2width,float p2height,float pfloor); Glottal noise pulse shape.

setGlotNoiseFilter(float gnfreql,float gnradl,
float gnfreq2,float gnrad2); Glottal noise filter characteristics.

Figure 3.9 shows a typical Singer control file. The shape ”eeesh” is the shape "eee” with
the noise generator placed as it would be in the case of shape ”"shh”. This prevents the

noise source from moving during this transition.
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singer{fd)
int fd;
i This example sings the name "Shiela” with a crescendo at the end
set_file_path("/localipre/library/SPASM"); # file path to shape
i and glot directories
init(} # initialize state variables
setup(” shh","”soft",400.0,00,0.0,0.0); i Initial setup for
] performance
i time shape glot. freq glotAmp noiseAmp %vibr.
synthesize( 0.3, “shh”, "soft’, 4000, 0.0, 0.3, 0.00, fd)
synthesize{ 0.1,  “"eeesh”, "soft”, 4300, 0.2 03, 0.04, fd):
synthesize( 0.7,  "eeesh”, "soft’, a4 , 0.2 0.0, 0.07. fd);
synthesize{ 0.2, ", "soft’, 4400, 04 0.0, 0.04, f{d);
synthesize( 0.2, “ahh”, "soft", 4000, 0.3, 0.0, 0.00, fd);
synthesize{ 0.2, “ahh", “soft”, 4000, 0.3, 0.0, 0.00, fd)
synthesize{ 1.5, “ahh”, “loud”, 400.0, 1.0, 0.0, 0.08, fd):
synthesize( 0.1, "ahh”, "soft”, 400.0, 0.0, 0.0, 0.08, fd);

silence(0.5fd}
retum;

}

i# Write some sllence

Figure 3.9: Singer command file to synthesize a sung performance of the name ”Shiela”.




Chapter 4

Conclusions and Suggestions for
Future Research

4.1 Conclusions

The approach in the research presented in this dissertation has been to view the human
vocal mechanism as a time varying linear system. A simple linear model was developed, and
investigations were conducted to determine which controls provide the greatest flexibility,
which features are the most important perceptually, and how the important features and
controls can be added to the simple linear model. Taking the viewpoint that the vocal
system is a time varying linear system, rather than a non-linear system, allows standard
and proven techniques of linear system analysis to be employed in obtaining values for the

control parameters of the model.

A new algorithm for tracking speech which directly drives the articulatory vocal tract model

was presented. This algorithm was investigated, and benefits of its use were discussed.

The pitch deviation component in the vocal signal is an extremely important perceptual
feature, without which vocal synthesis sounds machine-like. A new algorithm for tracking
pitch was presented, tested, and used in a study of singer pitch deviation. Rules for low

and high-frequency pitch deviation components were derived from the experimental data.

The phenomenon of noise generation near the glottal source was investigated. New methods
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of extracting, analyzing, and visualizing the non-periodic component of the vocal signal were
presented, and a study of source noise in singer voices was conducted. It was discovered
that there is a significant time-domain structure to the noise present in the glottal source,
consistent with a hypothesis of pulsed turbulence derived from a fluid-dynamics analysis of
glottal source behavior. Rules for additive synthesis of this pulsed noise component were

derived from the experimental data.

A number of examples of singing synthesis have been done using the SPASM and singer
programs. The combination of real-time DSP control and software synthesis allows the user
to quickly experiment with the model, yet produce repeatable results. Many synthesis at-
tempts yield extremely natural sounds on the first attempt. Since descriptions of unnatural
sounding synthesized sounds often rely on physical references (“She sounds like her jaw is
open too far”, or “His tongue sounds fat”), the physical parameters indicate what to do to
the model controls if the synthesis does not sound correct. The programs have been made
available to composers for use in musical compositions, and to psychologists for use in the

generation of stimuli for psychoacoustic testing.

4.2 Suggestions for Future Research

Of the topics which were investigated in this dissertation, the two greatest areas for future
research are those of articulatory speech tracking, and noise in the glottal source. Section
1.7.3 discusses various areas for future research in articulatory tracking. These topics will
be briefly listed here:

o Investigation of the norms used for vocal tract adaptation and identification. Norms
other than least-squares should be investigated, as well as other schemes which
attach penalties and weightings based on physical constraints of the human vocal

tract.

e  Vector quantization of vocal tract shapes. This reduces search complexity and mem-

ory usage.

e Library construction by selection and ordering of shapes which best fit the perceptual

boundaries of phonemes and diphones.
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e Use of general and specialized hardware, and optimization to bring the system to

real-time capability.

The topic of noise generation in the vocal mechanism is not new, but seems to be entering
a new era. Until recently, most research into vocal noise has been conducted in the areas of
vocal pathology, concentrating on abnormal voices. Realizations that the noise component
in normal voices is an important perceptual component have caused much new research in
this area, with a concentration on the study of normal voices and using the results for more

natural synthesis. Areas worthy of investigation are:

e Distributed noise generation in the vocal tract. Disturbances which are formed at
one point then propagate downstream causing noise at locations within the vocal

tract.

e  Use of the noise component for vocal tract parameter identification, and for identi-
fication of individual speakers/singers. Features of the noise signal might indicate

physiological differences between individuals.

The greatest area for improvement of the entire vocal model lies in modeling of the glottal
source. Physical models based on mass/spring systems or finite element simulations of
non-homogeneous material are currently too complex to allow high-quality real-time sound
synthesis. As computing power increases, however, these models hold the greatest promise of
true improvement in natural sounding vocal synthesis, controlled by intuitive and physically

meaningful parameters.




Appendix A

Fourier and Hartley Transforms

This appendix will define the Fourier and Hartley Transforms and present theorems which
are relevant to the calculations performed in the dissertation. The Fourier Transform [146]
in discrete time and frequency is called the Discrete Fourier Transform (DFT), and is defined
by:

N-1

X(m) = DFT{z(n)} = 2 m(n)e:ﬂTﬂm (A1)
n=0
where
e~9% = cos(8) — jsin(9) (A.2)

The frequency in Hz. of a transform sample can be determined from the index m and the

sampling rate Fs by the relationship:

F
Frequency = s (A.3)
N
Inverse transformation is defined by:
(=13 X A4
z(n) = + m)e (A.4)

n=0
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Various operations are simplified by transformation into the frequency domain. The con-

volution of two signals, defined by:

+o00
zxy(n) = Z z(m)y(n — m) (A.5)

m=—0o0

can be transformed into the frequency domain by using the relationship:

DFT{z xy(n)} = X(m)Y (m) (A.6)

Thus, given restrictions on the time extent of the two signals, the convolution operation
is changed into a simple multiplication operation. Deconvolution can be performed in the
frequency domain by a division operation, provided that the frequency transform contains

1o zero components.

The autocorrelation operation, defined as:

q+N-1
z®z(n) = Z z(t)z(i +m) (A.7)

i=gq

can be transformed into the frequency domain by using the relationship:

DFT{z ® z(n)} = X(m) x X(—m) (A.8)

where —m corresponds to N — m in the DFT formulation. Real time signals exhibit Her-

mitian symmetry,

X(-m) = X*(m) (A.9)

so the autocorrelation relationship in the frequency domain simplifies to:

DFT{z ® (n)} = |X(m)|? (A.10)
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To obtain the autocorrelation function in the time domain, inverse transformation is per-
formed. The symmetry properties of the frequency domain autocorrelation function allow

inverse transformation by the cosine transform:

N
N

2
z®z(n) = % > X (m)Pcos( T
n=0

N

) (A.11)

Calculation of signal power is accomplished the same way in the time and frequency domains,

as given by:

N-1 N-1
Y le@P =Y [X(m)? (A.12)
n=0 n=0

The Discrete Hartley Transform and its inverse are given by:

N-1

Xu(m) = DHT{z(n)} = ¥ x(n)cas(QW;m) (A.13)
n=0
N-1
z(n) = %Z X(m)cas(27mm) (A.14)
n=0
where
cas(8) = cos(8) + sin(0) (A.15)

The Hartley Transform [147] operates on real data and yields real data, so transformation
of real data is somewhat simplified by the use of the Hartley Transform. The Fourier Trans-
form calculations can be optimized to accept real data, yielding the same computational
complexity as the Hartley Transform. Properties of the Fourier Transform and the sine
and cosine functions, specifically those of symmetry, evenness, and oddness, allow simple

relationships between the Fourier and Hartley Transforms to be derived:

Xu(m) = Xyear(m) — Ximag(m) (A.16)
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X (m) = Xgeven(m) — jXgodd(m) (A.17)

From these relationships, theorems such as the autocorrelation and power relationships can

be derived for the Hartley Transform.




Appendix B

Object-Oriented Class

Descriptions

The classes used in the SPASM software/DSP singing synthesis program are described in

this appendix. The form of a class description is:

Class: SuperClass
where Class inherits instance variables and methods from SuperClass.
Methods are specified by:
- (type) methodName: (type) argumentl optional: (type) arg2 . . .

where the data types are C data types for all methods defined in this Appendix. The
type before the methodName describes the data type of the returned quantity (default
is an object id).

Classes and Methods Used in SPASM singing synthesis system

DiphController: Object

Diphone Controller - Controls transitions between shapes and glottal states during di-

phone synthesis. Synthesizes short soundfiles from transition parameters. Saves and
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loads parameter files to/from disk.

DSPSinger: SynthPatch

NeXT Musickit Motorola 56001 DSP Chip custom Synthpatch.

Uses various NeXT standard and custom unit generators.

FloatView: View

Displays floating point data arrays with normalization and notation of minimum and

maximum values.

FormantEditor: Object

Locates and displays formants in a spectrum. Controls vocal tract to move least-squares

to match a given set of formants.

GlotAnalyzer: Object

Records and plays soundfiles for analysis. Inverse filters input spectrum by vocal tract
spectrum in the frequency-domain to yield estimated glottal spectrum. Saves resultant
glottal file to disk.

Glottis: Object

Models glottis as wavetable synthesizer. Models reflection characteristic of incoming
wave value from vocal tract as reflection coefficient. Principle sample generation method

is:
- (float) next: (float) ampl with: (float) tractSamp;

which takes an amplitude and incoming vocal tract sample and yields a sample of output.

Frequency in Hz. is set with the method:
- setFreq: (float) freq;

and reflection coefficient is set by:
- setYourGlotReflGain: (float) value;

Last output sample can be retrieved by:
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- (float) lastOut: sender;
Loads and saves glottal parameters and Fourier coefficients to/from disk.
LipFilter: Object

Models lip reflection/transmission filter as simple low-pass/high-pass filters. Principle

sample generation method is:
- (float) next: (float) input;

which takes an input sample and yields an output sample. Reflection gain value is set
with:

- setYourLipReflGain: (float) value;
and state variables are cleared with:
- clearOut: sender;
Last output and reflection samples can be retrieved by:

- (float) lastOut: sender;
- (float) lastRefl: sender;

NasalTract: Object

Models nasopharynx as WaveGuide Digital Filter (WGF'). Reflection and transmission
characteristics of nostrils are included in the object. The principal sample generation

method is:
- (float) next: (float) plusSamp with: (float) minusSamp;

which accepts a sample from the vocal tract glottal side (plusSamp) and a sample from
vocal tract lip side (minusSamp) and yields a sample for injection into vocal tract glottis

side. Sample for injection into vocal tract lip side is retrieved by:
- (float) lastPlusRefl: sender;

Sample for injection into vocal tract glottis side is retreived by:
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- (float) lastMinusRefl: sender;
Velum opening size is set by:
- setYourVelumPosition: (float) value;
Scattering relations are set by:
- setShape: (float) leftRadius with: (float) rightRadius;

where leftRadius is the vocal tract radius to the glottal side of the velum, and rightRa-
dius is the vocal tract radius to the lip side of the velum. Last wave sample output from

nostrils can be retreived by:

- (foat) lastOutput: sender;

NoiseAnalyzer: Object

Records and plays soundfiles for analysis. Inverse filters input spectrum by vocal tract
spectrum in the frequency-domain to yield estimated noise spectrum. Fits LPC filter

to spectrum, and passes resultant filter parameters to its NoiseController.

NoiseController: Object

Synthesizes noise with random number generator and four-pole filter. The principal

sample generation method is:
- (float) next: (float) ampl;

which accepts an amplitude value and returns a sample. Amplitude value is multiplied

by internal gain value. Filter parameters can be set by:

- setYourNoiseGain: (float) value;

- setYourNoiseAngle: (float) value;

- setYourNoiseRadius: (float) value;
- setYourNoiseAngle2: (float) value;
- setYourNoiseRadius2: (float) value;

where radii and angles are positions in the Z plane. Filter state variables can be cleared
by:
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- clear: sender;

PerfController: Object

Synthesizes pitch and amplitude control signals. The principal sample generation method

is:
- (float) next;

which increments the object’s internal time and returns an amplitude sample. Last

frequency sample can be retreived by:
- (float) frequency;

and last amplitude sample can be retreived by:
- (float) amplitude;

parameters are accessed by:

- setPerfVibrFreq: (float) aFreq;

- setPerfPitch: (float) aPiitch;

- setPerfVibrAmt: (float) aVibratoAmt;

- setPerfRndAmt: (float) aRandomAmt;

- setPerfRndPeriod: (float) aRandomPeriod;

Saves and loads parameters to/from disk.

PhonController: Object

Loads, plays, and displays soundfiles and frequency transforms. Aquires impulse re-
sponses of vocal tract for analysis. Synthesizes short performances. Loads and saves

vocal tract shape files to/from disk.

Shapelnterpolater: View

Uses mouse position within a region to interpolate between a number of vocal tract

shapes.

SignalProcessor: Object




APPENDIX B. OBJECT-ORIENTED CLASS DESCRIPTIONS 149

Applies windows to signals. Performs frequency transforms, computes magnitude and
log magnitude spectra. Inverts matrices, computes LPC coefficients, and finds complex

roots of polynomials.

SingerController: Application

Controls DSPSinger in realtime. Provides main interface to mouse-controlled events.
This object is the SPASM application itself.

SpectrumView: View

Displays spectra with optional markers for gain, frequency, peaks, etc.

TractView: View

Displays vocal tract shape. Displays position and gain of fricative noise source. Shape

parameters are set by:

- updateRadii: (float *) r;
- updateVelum: (float) v;
- updateBoth: (float *) r vel: (float) v;

VocalTract: Object

Models oropharynx as WaveGuide Digital Filter (WGF). The principal sample genera-
tion method is:

- (float) next: (float) glotSamp with: (float) lipSamp;

which accepts a sample from the vocal tract glottal side and a sample from vocal tract
lip side and yields an output sample at the lip end. Output sample at glottis end is
retrieved by:

- (float) lastMinus: sender;
Last ouput sample from lip end is retrieved by:
- (float) lastPlus: sender;

Tract shape or scattering coefficients can be set by:
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- setYourRadius: (int) location to: (float) value;
- setCoeff: (int) location to: (float) value;

A signal can be mixed with the wave variable in the vocal tract by:
- addValue: (float) value at: (int) impulsePosition;

The tract will automatically add noise obtained from its noise generator at the current

noise position by using:
- addNoise: (float) ampl;
All state variables are reset by:

- clearOut:sender;

ZPlaneView: View
Displays poles and zeroes on the complex Z plane. Methods are:

- setBackGround: (float) gray;

- setDraw: (float) gray;

- drawPole: (float) radius angle: (float) angle;
- drawZero: (float) radius angle: (float) angle;
- drawUnitCircle;

- clear;




Appendix C

Sound Examples

This appendix lists and describes the sound examples which accompany this dissertation.
The sound examples are available on various tape formats from: Center for Computer
Research in Music and Acoustics, Department of Music, Stanford University, Stanford, CA.
94305.

All sound examples are played twice.
1. Vowel synthesis examples.
2. Diphthong transition synthesis examples.
3. Nasal synthesis examples.
4. Nasal to vowel transition synthesis examples.
5. Voiced plosive synthesis examples.
6. Crescendo synthesis example.
7. Synthesis of sung “Shiela”.
8. Synthesis of singer exercise.
9. Original utterance of "OooEeeAhh”.

10. FAST resynthesis of ”OooEeeAhh”.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Original male utterance of "Easy”.

FAST female resynthesis of ”Easy”.

Vowel synthesis examples without pitch deviation.

Vowel synthesis examples with pitch deviation.

Male vocal tone.

Periodic part of male vocal tone.

Residual part of male vocal tone extracted by period similarity processing.
Male vocal tone with subharmonic.

Extracted subharmonic component.

Four octave arpeggio: no pitch deviation or noise.

Four octave arpeggio: fixed rate and amount of periodic vibrato only.
Four octave arpeggio: random pitch deviation and noise.

Four octave arpeggio: rule-based random and periodic vibrato, no noise.

Four octave arpeggio: rule-based random and periodic vibrato, fixed glottal

noise.

25.

Four octave arpeggio: rule-based random and periodic vibrato, rule based glottal

noise.
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2.9

minimize the least squares difference between the waveform and all other waveforms.
This provides the minimum power estimate of the residual signal. In the method
of Schumacher and Chafe, linear interpolated resampling is done to match period

lengths only. Lengths are defined by zero crossings.

2. In period similarity processing, the formation of the prototype waveform provides
an estimate of the least-squares periodic component of the signal. The method of

Schumacher and Chafe does not call for the formation of the period prototype.

3. The method of period similarity processing was devised to investigate the time-
domain microstructure of noise in quasi-periodic signals. Periods are divided into
sub-sections of a few samples to compute power and spectra. The analysis meth-
ods of Chafe and Schumacher were devised to search for subharmonics, which are
periodic occurrences. Period similarity processing is inferior in performance in the
presence of subharmonics, because part of the subharmonic behavior is coded into

the prototype.

4. Period similarity processing, power surface computation, and spectral period
computation provides characterization of the disturbances within a typical period.
The power surface method of visualization is extremely simple to compute and yields
an arrangement of the data which is easy to evaluate visually. The spectral period
method provides information about the spectrum of the noise component at specific
locations within a typical period. The method of Schumacher and Chafe allows
browsing and exploration of feature differences and similarities between any two

periods, but the cost is increased computational complexity.

Male Singing Voice Extraction and Analysis Examples

Three voice signals were selected for analysis: a male singer singing the neutral vowel /A/

(bug) at 100 Hz, the same vowel in falsetto register at 275 Hz, and the voiced fricative

/z/ at 100 Hz. Figure 2.28 shows the power surfaces and spectral periods. The dual pulse

nature of the chest register tone is easily seen in the power surface plots. The long-term
Signal to Noise Ratio (SNR) of the chest register tone was 6 dB less than that of the falsetto
tone, but the NDR for the chest register tone was 6 dB greater than that of the falsetto
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tone. The power surface of the falsetto residual shows no clear noise ridge, indicating that
the breathier quality often associated with the male falsetto voice might come from the
flatter less-modulated noise signal. Voiced fricatives generate a pulsed noise component.
As the glottal folds open and close, the pressure in the chamber behind the constriction
is modulated, and thus the flow rate through the constriction varies synchronous with the
glottal oscillation [38][39]. The voiced fricative in the study exhibited broad single pulse

surfaces.

Power Surface Male /A!@ 100 Hz Special Perod

Freq. &cHz)

Figure 2.28: Power surfaces (left) and spectral periods (right) of male vocal tones.
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2.10 A Study of the Noise Characteristics of Singers

Recordings were made for analysis of a number of trained singers. Four choral singers were
studied: one bass, one tenor, one alto, and one soprano. The singers were asked to sing
long tones across their entire comfortable range on the neutral vowel /A/ as in bug. This
vowel yields an output waveform close to the glottal waveform, so inverse filtering is usually
not necessary. The sequences of notes were sung at three dynamic levels, pianissimo (very
soft), mezzo forte (medium loud), and fortissimo (very loud). Figure 2.7 shows the notes
sung by the singer test subjects. The sound files were digitized directly to 16 bit samples
at a rate of 44.1 kHz. using a B&K 4006 microphone, an IMS MPA-4 microphone preamp,
and a Sony DTC 1000ES Digital Audio Tape (DAT) machine. The files were transferred to
computer disk using an Ariel DM-N digital microphone. The files were then down-sampled
to a sampling rate of 22.05 kHz. by digital low-pass filtering at 11 kHz. cutoff frequency and
decimating the resultant signal by a factor of two. The low-pass filter used was designed
with -96 dB stop-band rejection. A 200 period sample was extracted from the center of each
tone for pulsed noise extraction and analysis. Pulsed noise extraction was performed by the
period similarity method. The average Normalized Noise Power (NNP) was calculated for
each of the analyzed signals. The NNP in dB of the quasi-periodic signal z(n) of length N

is defined as:

N-1

>_en)?
1010g10 ﬁ?—— (2.43)

>_z(n)?

n=0
2.10.1 Average Noise in Singer Voices

Figure 2.29 shows the average NNP for the four singers as a function of the position within
the particular singer’s range. The three superimposed curves correspond to the three dy-
namic levels. The maximum noise level deviation across dynamic level was 10 dB. The
average noise level deviation between any two dynamic levels for the same note was 2.35
dB. The maximum deviation across pitch for a given dynamic was 19.6 dB, and the mini-

mum was 3.1 dB. The average deviation from the lowest to the highest note was 10.6 dB.
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The results indicate that the NNP depends little on dynamic, and much more on pitch, and
further that this dependence is consistent across subjects of different phonation frequency

ranges as well as within a particular subject.

Normalized Noise

Power (dB) Tenar Singer Subject MP
-10 Bass Singer Sukject PC -10
-20 -20
~304 ~30
Position Within
o 1 2 3 4 5 Renge Low 1 2 3 4 5 Range

pp -o-1-120 |-216 |-208{-174 | -31.6 pp +-1-149/-18.1 |-49|-286 |-233
mf —o-{-76 |-135|-218]|-222]-25.7 mf --1-12.0|-20 |-220([-262|-21.7
ff w|-121 |-199 |-228]-201 |-21.8 ff «{-158|-200|-260(-289|-189

Alto Singer Subject ED Soprano Singer Subject KH

-204 -20

-30 N Si -30) %a_q
ow 1 2 3 4 5 Renge Llow 1 2 3 4 5 Renge
pp —+-|-19.4 |-254 |-27.0| -233 | 334 | |pp —e-[-25.1] -276[ -27.9] -31.1] -328

mf <o-|-2191-257|-253}| -8 |-318 mf —o-|-24.7]-27.0] -235] -315] -308
T |-218|-194|-46]-285|-337 ff —x|-23.1]-253| -24.3| -307| 327

Figure 2.29: Average Normalized Noise Power (NNP) as a function of frequency. The
superimposed curves correspond to three dynamic levels of singing.

Figure 2.30 shows all plots together, aligned by pitch. A line proportional to inverse fre-
quency is fit through the curves, and shows that the NNP rolls off inversely in frequency.
The data of post operative laryngeal surgery patients of Muta, Baer et.al. [132] is consistent
with the inverse relationship of NNP with pitch.

There is one consistent exception to the monotonic decrease in NNP, and this occurs at
the highest note of the tenor subject MP in all three dynamic levels. This was theorized
to be due to the changing of the mode of phonation from the chest (normal) to the head
(falsetto) register. To investigate this theory, four additional male singers were asked to sing
the same sequence of five notes across their comfortable range. They were instructed to sing

the highest note in falsetto register immediately after singing in in chest voice, then to sing
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Figure 2.30: Average Normalized Noise Power (NNP) of all singers as a function of fre-
quency. The bold curve is a log plot of fre—qﬁen-a, to show that the noise component rolls
off roughly according to this relationship.

one more falsetto note above the duplicated chest/falsetto tone. The NNP curves of Figure
2.31 show that the falsetto signals averaged 2.4 dB greater in NNP than the corresponding

chest register tones.

To verify the 1/f hypothesis of NNP, data was taken from eight additional singers, two of
each voice part. The extraction was performed using linear periodic prediction as described
in Section 2.6.2. The average NNP as a function of frequency is plotted in Figure 2.32,
along with a plot of Log(k/f). A curve of the form a * f® was fit to the data of all twelve
singers. The least-squares fit was 59 * f 12, which closely agrees with the hypothesis of an
inverse proportionality relationship of NNP with frequency.

Given Equation 2.26, which predicts that the radiated noise power varies as the eighth
power of flow, it may seem contradictory that measured noise in singer voices was largely
independent of dynamic level, and inversely proportional to frequency. A study of airflow
in singer voices [134] found that airflow increases slightly with both increasing pitch and
loudness, but often airflow decreases in higher tones. This is also consistent with the
findings of Cavagna and Margaria [116]. Higher tones often are produced with a more

‘pressed’ voice, and the overall glottal resistance changes as a result. The nature of noise
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Figure 2.31: Average Normalized Noise Power (NNP) of male singers as a function of
frequency. The curves corresponding to chest register and falsetto register are shown.

production in the glottis is that of a time-varying process which is dependent on flow and
the area of the aperture, so it is likely that any increase in flow is being offset by changes
in the time-varying area function. In the falsetto register there is a direct relationship
between phonation frequency and flow [171], so there is a likelihood of higher noise power
for increasing frequency in this range. All of the male falsetto test subjects showed an
increase in noise power when entering the falsetto register, and some of the falsetto data

exhibited an increase in noise power with increasing frequency.
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Figure 2.32: Average Normalized Noise Power (NNP) of eight additional singers as a func-

tion of frequency. The smooth line is a plot of logmf.

2.10.2 Pulsed Noise in Singer Voices

A time domain analysis of pulsed noise was performed using the extracted noise residual
periods from the four singer subjects. The period residuals were divided into six segments,
with the first segment being that which contains the glottal closure epoch. The average
noise power for each of the six sub-segments was computed across 200 periods. Figures 2.33
and 2.34 show the average noise power at six period positions for the four singers. The three
superimposed graphs represent the three dynamic levels, and the five sets of curves represent
the five notes sung. Since no clear relationship existed between time-domain noise power
behavior and dynamic level, the three curves are not labeled separately. The waveform
shown below the graphs is a typical waveform from the particular singer, aligned to show

the point at which each of the average powers were computed within a typical period.
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Figure 2.33: Average Normalized Noise Power (NNP) of bass singer PC and tenor singer
MP as a function of the position within a typical period.
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Figure 2.34: Average Normalized Noise Power (NNP) of alto singer ED and soprano singer
KH as a function of the position within a typical period.
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For low frequency phonation in the bass and tenor subjects, the curves show a dual-pulse
nature. The primary pulse occurs at the initial glottal opening phase and the secondary
pulse occurs at the glottal closure epoch. This is demonstrated in Figure 2.33 in the bass
singer subject PC curves at 90, 180, and 270 Hz. The tenor subject MP exhibited dual-pulse
activity in the 110, 160, and 220 Hz. curves of Figure 2.33. The alto subject ED exhibited
dual-pulse activity in the 210 Hz. curves of Figure 2.34. The soprano singer subject KH
exhibited a small modulation dual-pulse noise signal on two of the 420 Hz. curves of Figure
2.34.

As frequency increases, the time domain behavior shifts to a single-pulse nature, with one
broad pulse of noise centered at the glottal open phase. This is shown in the 360 Hz. curves
of the bass subject PC in Figure 2.33. The tenor subject MP demonstrated single-pulse
activity in the 320 Hz. curves of Figure 2.33. The alto subject ED demonstrated single-pulse
activity in the 315, 420, and 630 Hz. curves of 2.34.

Yet a third regime of pulsed noise generation was observed in the 430 Hz. curves of tenor
subject MP in Figure 2.33. This same activity is seen in the 280, 560, 840, and 1120 Hz.
curves of soprano subject KH in Figure 2.34. These curves show a single broad noise pulse
centered at the glottal opening event. This is consistent with the fact that the glottal folds

do not completely close in female vocal fold oscillation, and in male falsetto oscillation [21].

The NDR’s averaged 5.35 dB, with a variance of 5.9 dB. The large variance reflects the wide
range of NDR’s encountered, with the maximum being 13.4 dB and the minimum being 1.4
dB. There was a weak inverse relationship of NDR upon pitch in the male singers, specifically
a high NDR in the lowest notes of phonation. This is consistent with the predictions of

turbulent behavior in the frequency regions above and below 200 Hz. from Section 2.5.

2.11 Subharmonics in the Singing Voice

Subharmonics are periodicities which occur at time intervals which are longer than the
intended or perceived period of a quasi-periodic waveform. These can be thought of as
undertones, similar in definition to musical overtones. The numbering system for overtones
specifies that the first overtone is the fundamental, then successive integer multiples of the

fundamental are indexed by the integer multiplication factor (the third overtone of 100 Hz.
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is 300 Hz.). Using the overtone nomenclature, the third subharmonic (undertone) of 100
Hz. is 33.3 Hz. Subharmonics exhibit their own overtone series, thus causing sinusoidal

peaks to appear between the ‘actual’ harmonics of the spectrum of a quasi-periodic signal.

In studies of bowed-string instruments, pulsed noise has been shown to be important
in bow-string slip phase initiation, and plays a part in the generation of sub-harmonics
[118][139][117]. The voice also exhibits measurable and audible sub-harmonics, and one
plausible cause is the interaction of the glottal folds with reflected noise pulses. Diplopho-
nia is a disorder of the voice which is characterized by the generation of subharmonics of
such extreme amplitude that the pitch of phonation is obscured. The name comes from the
fact that many diplophonic waveforms exhibit an extremely strong second subharmonic,
thus yielding a pitch period twice the length of the intended pitch. Waveforms of this
kind are of the class of pathological waveforms which confound most machine pitch detec-
tion schemes. A study of diplophonic patients [121] theorized that diplophonia was a beat
phonomenon caused by the two vocal folds vibrating independently at different frequencies.
Simulations of such independent fold vibration were performed which produced waveforms
which resembled PhotoGlottoGraphic (PGG) waveforms obtained from the test subjects.
This theory indicates that the assumptions of symmetry in most physical models of the
glottis are not valid.

The generation of subharmonics, however, is not necessarily a pathological condition of the
voice. In fact it is quite common in the trained ‘resonant’ voices of singers and actors.
Figure 2.35 shows a clear subharmonic and its overtones in the time and frequency domain
plots of the sung tone of a professional baritone soloist. The power of the subharmonic
signal is 7 dB above the noise floor, and 20 dB below the ‘periodic’ component of the signal.

One common method used to detect diplophonia and subharmonics is to form an autocorre-
lation signal as defined in Equation 2.1. If the autocorrelation signal component correspond-
ing to two periods of lag is larger than the component corresponding to one period of lag,
the signal contains significant 2nd subharmonic components. Other methods of detecting

subharmonics can be implemented in the frequency domain.

For this study, the residual from periodic prediction of Equation 2.35 was used to study
subharmonics in normal singer voices. Noise was extracted using the periodic prediction

method, first with the prediction period equal to the period intended by the singer, then
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Figure 2.35: A bass singer voice waveform displaying clear subharmonics. The plot at
the lower left is the frequency spectrum of the waveform. The plot at the lower right is
the frequency spectrum of the residual from periodic prediction showing the subharmonic
components only.

with a prediction period twice that of the intended period. In a perfectly periodic signal
corrupted by a white noise process, any delay length which is an integer multiple of the actual
period yields the same prediction results. For a quasi-periodic signal with no subharmonics,
a two-period predictor will usually perform worse than the single-period predictor, because
in such a signal pairs of adjacent periods are usually more similar than periods which
are separated by more than one period. In a signal which contains second subharmonic
components, the periodic predictor with doubled period accurately predicts any multiple of
the 2nd sub-harmonic, and thus yields an error signal free of this subharmonic component.
If significant second sub-harmonic components are present in a signal, the NNP should be

less than that yielded by prediction of the signal using the actual fundamental period.

Four singers were recorded at three volume levels and five pitches. Eight singers were
recorded at medium volume and five pitches. Periodic prediction was performed at one
period and two periods of delay. Normalized Noise Power was computed for the residual
signals. If the NNP was greater for the single lag predictor residual than for the double

lag predictor residual, the tone was judged to contain a significant second subharmonic
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component.

All of the 12 singers exhibited subharmonics in one or more sung tones, and 28 of the total
100 vocal samples showed a measurable component of the second subharmonic. The largest
detectible subharmonic referenced to the residual noise was 8.9 dB above the glottal noise
signal. The largest detectible subharmonic referenced to the periodic component of the
glottal wave was 17.9 dB below the periodic glottal component. The male subjects were
more likely to produce subharmonics than the female subjects, with the males displaying
2nd subharmonic components in 32 percent and the females in 24 percent of the tones.
Soft phonation (musical pianissimo) exhibited subharmonics only in one subject at high
frequencies. Medium and loud phonation exhibited subharmonics in all subjects at higher
phonation frequencies. Table 2.2 summarizes the results of this analysis. A zero indicates
that there was no detectible subharmonic, and a number represents the subharmonic power,

referenced to the residual signal with the subharmonic removed.

To model subharmonics using wavetable synthesis methods, the wavetable is filled with the
sub-harmonic period of the glottal wave. To represent a second subharmonic component,
the wavetable length is doubled and two ‘periods’ (one period of the second subharmonic)

are stored.

2.12 TUse of Noise Residual for Vocal Tract Filter Identifi-

cation

One common problem with LPC or other source/filter analysis methods is presented when
attempting to analyze female vocal tones [22]. It is common to encounter sung tones in
which the fundamental lies above the location of the first formant. Since LPC is a least
squares minimization technique, the filter spectrum is fit to the harmonic peaks, ignoring any
spectral information lying between the harmonics. Methods of identifying the underlying
formant envelope using the trajectories of the harmonics were proposed previously [97]
[69]. Assuming the residual component is generated near the glottal source, clues to the
underlying vocal tract resonance curve are contained in the residual spectrum which is
ignored by LPC. If the harmonics of the periodic component can be extracted from the

spectrum of the sung tone without disturbing the residual spectrum, LPC can be applied
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Bass Subject PC Tenor Subject MP
Freq. | pianissimo | mezzo forte | forte [| Freq. | pianissimo | mezzo forte | forte
90 0 0 0 110 0 0 0
133 0 1.6 0 165 0 0 0
180 0 2.5 3.0 220 0 1.2 0
270 0 0.2 0 330 8.9 0 0
360 0 0.9 0.2 440 2.6 0 5.8
Alto Subject ED Soprano Subject KH
Freq. | pianissimo | mezzo forte | forte || Freq. | pianissimo | mezzo forte | forte

220 0 0 0 290 0 0 0
315 0 0.7 0 440 0 0 0
440 0 0 0 580 0 0 0
630 0 0 0 880 0 0 0
880 0 0 0.1 1160 0 1.4 0

Bass WR Bass WB Ten. RC Ten. AB

Freq. | mf || Freq. | mf || Freq. | mf {| Freq. | mf

80 0 82 0 90 0 110 0

120 0 122 0 135 0 165 0

160 0 165 0 180 0 220 | 0.1

240 0 245 0 270 | 1.0 330 | 14

320 {49 | 330 | 1.0 360 0 440 | 0.6

Alto LU Alto AD Sop. KB Sop. CC
Freq. | mf || Freq. | mf || Freq. | mf || Freq.
180 | 2.4 180 0 200 0 220
26 3.2 275 | 0.9 300 | 0.8 330
360 | 1.0 360 0 400 0 440
525 | 0.4 || 550 0 600 { 0.8 || 660
720 0 720 0 800 0 880

Jury P
S ISEEE)ES

Table 2.2: Data from detection of 2nd subharmonic in 12 singer voices. A zero indicates
that no subharmonic component was found.
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to the residual. This is similar to the whisper method of vocal tract transfer function

identification described in Section 1.7.4.

Figure 2.36 shows a synthetic vocal tract spectrum, the spectrum of a vocal tone with
noise added to the glottal source, and residual spectra obtained by periodic prediction and
period similarity processing. The smooth curves on the lower three plots are LPC spectra,
and the formants are indicated to the right of each curve. The LPC spectra of the two
residual signals both detected the formant near 400 Hz. All three LPC analyses missed
the tightly grouped second and third formants, although these are visibly evident in the

periodic prediction spectrum.

2.13 Pulsed Noise in Other Musical Systems

The pulsed noise extraction and analysis techniques were used in another study [119] to
analyze musical instrument tones. In the case of bowed strings, the sliding of the bow
against the string during the slip phase of oscillation causes friction, and thus noise is both
radiated and introduced into the string [118]. Pulsed noise has been shown to be important
in bow-string slip phase initiation, and to play a part in the generation of sub-harmonics
in stringed instruments [139]. Noise extraction was performed on a cello tone of 150 Hz
using the SANSY system [160]. Figure 2.37 is a time domain plot of the magnitude of the

resynthesized residual, and clearly shows the pulsed noise bursts.

The case of wind-driven instruments is similar to that of the glottis. In the reed family,
returning noise pulses interact with the generation of future noise pulses, causing correla-
tion between successive periods of noise. In this case the period similarity method yields
better results, as this method is less sensitive than periodic prediction to period-to-period
correlations which decay with time. The interaction of noise pulses with the oscillator at
each period is less clear in the case of the voice, where the oscillator is weakly loaded by
the vocal tract and the tube length does not determine the frequency of oscillation. Noise
extraction was performed on clarinet signals using the period prediction method. Two tones
of approximately 200 Hz were analyzed; one played loudly with a soft reed, and the other
played softly with a stiff reed. Figure 2.38 shows the power surfaces and spectral periods.
The soft reed flexes greatly in oscillation, yielding a two pulse noise surface consistent with

a large open aperture phase. The stiff reed barely interrupts the air flow in a softly blown
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tone, and thus the noise power surface is flatter (breathier), and exhibits only a single ridge.
This is consistent with a single noise pulse as the reed constricts the aperture. The NDR
of the soft reed tone was 15.28 dB, and the NDR of the stiff reed tone was 2.47 dB.
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Figure 2.36: Top to Bottom: Vocal tract response used for synthesis, LPC spectral fit to
synthesized tone, LPC spectral fit to residual obtained by periodic prediction, LPC spectral
fit to residual obtained by period similarity processing. Formant frequencies are noted to
the right of each spectrum.
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Figure 2.37: Magnitude of residual signal of bowed cello tone shows clear noise bursts.
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Figure 2.38: Power surfaces (left) and spectral periods (right) of clarinet tones generated
with stiff reed (above) and soft reed (below).




Chapter 3

Software Systems for Singing

Synthesis

Two voice synthesis systems were constructed using the waveguide multiple acoustic tube
model of the human vocal tract. One system is a real-time Digital Signal Processor (DSP)
interface program, which allows graphical interactive experimentation with the various con-
trol parameters. The other system is a text-driven software synthesis program. The vocal
tract is modeled in both systems by a digital Waveguide Filter (WGF) network, controlled
directly by shape parameters. A nasal tract WGF is coupled to the vocal tract at the velum
bifurcation point. Glottal source pulses are stored and retrieved from multiple wavetables.
A filtered pulsed noise component is added to the periodic glottal source, simulating the
turbulence generated as air flows through the oscillating vocal folds. To simulate the tur-
bulences of fricatives and other consonants, a filtered noise source can be made arbitrarily

resonant at two frequencies and placed at any point within the vocal tract.

The real-time DSP program is called SPASM (Singing Physical Articulatory Synthesis
Model). The vocal tract shape is graphically displayed by a cross section of a human
head. Sliders on an editor window control the radius of each vocal tract segment, the size
of the velum opening into the nasal tract, and the radius of each nasal tract segment. A
Formant Editor Window displays the log-magnitude frequency response of the tract. The
glottal pulse shape is edited in the time domain, and the spectrum is edited in the frequency

121
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domain. Other real-time controls allow experimentation with pitch and vibrato. The sys-
tem can interactively record a consonant and design a matching filter for use in resynthesis.
Similarly, the user can record a vowel, and the periodic glottal waveform and noise param-
eters are identified by the system and used for resynthesis. All control parameters can be

saved as disk files.

The software synthesis system is called “singer,” and takes as input a file of C function calls
specifying the events to be synthesized. These function calls are a time-ordered event list for
controlling the singer model. An event specification includes a transition time, shape and
glottal files as created by the SPASM system, noise and glottal volumes, glottal frequency
(either in Hz. or as a musical note name), and vibrato amount. The system synthesizes a
sound file, smoothly interpolating from each set of parameters to the next over the times
specified. All parameters of shape, glottal input, and noise filter control are interpolated
on the single sample level. In this way smoothly varying connected singing performances
are generated. All other parameters, such as random vibrato amount and periodic vibrato

speed may be changed at any time but, for computational speed, are not interpolated.

3.1 The Synthesis Model

Figure 3.1 shows a block diagram of the model constructed for singing synthesis. A variety
of sound sources are injected into the WGF acoustic tube model of the vocal tract. All

waveform oscillators may be loaded with arbitrary waveforms.

Two glottal wavetables are provided to allow slow variations in the source under explicit
control, or vibrato-synchronous variations. The glottal noise source consists of four-pole
filtered white noise, multiplied by an arbitrary time domain waveshape synchronized to the
glottal oscillators. This allows pulsed noise to be simulated and mixed with the periodic
glottal source. Vibrato is simulated by a wavetable oscillator (sine default), mixed with

four-pole filtered white noise.

Four-pole filtered white noise is injected into the oropharyngeal WGF by mixing with the
forward-going wave component. The noise can be injected into any number of sections, as

controlled by independent gain controls.
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Figure 3.1: Block diagram of the model used for sing
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The mixed glottal source signal is injected into the vocal tract filter. The glottal reflection
is modeled by a simple reflection coefficient, and the lip and nostril conditions are modeled
by a one-pole low-pass filter for the reflection characteristic, and a one-zero filter for the
transmission characteristic. The transcutaneous radiation component is modeled by a one-
pole low-pass filter and a delay line. All outputs have independent gain and stereo pan

controls.

3.2 The SPASM System

3.2.1 Design Goals

The SPASM (Singing Physical Articulatory Synthesis Model) system was developed to place
the waveguide vocal tract model into a graphical interactive environment for experimenta-

tion, synthesis, and library construction. The following design goals were used:
1. The primary goal of the system is to produce high quality musical vocal synthesis.

2. Some knowledge of music and musical acoustics on the part of the target user is
assumed, but no knowledge of digital filter design or other engineering topics should

be necessary to use the system for synthesis experiments.

3. Technically trained or experienced users should be able to access advanced fea-

tures.

4. Selection of model characteristics should be made so that, wherever possible,
control parameters are physically meaningful. Guidelines 1. and 2. take precedence

over this requirement.

3.2.2 The System Screen

Figure 3.2 shows the main system screen. The various windows allow the user to modify
the parameters controlling the model. Displays show shape, time, and spectral descriptions
of the model and signals. The windows visible when the program is first run are those

required for a beginner to do initial synthesis experiments. Figure 3.2a is the Vocal Tract




CHAPTER 3. SOFTWARE SYSTEMS FOR SINGING SYNTHESIS 125

shape Editor window, which controls and displays the shape of the vocal tract. Figure
3.2b is the Glottal Excitation Editor window, allowing time and frequency domain control
of the glottal source, and saving glottal description files to disk. Figure 3.2c is the Noise
(turbulence) Generator controller, which controls placement of the noise source within the
tract, the gain of the injected noise, and provides access to a more elaborate editor for the
noise source. Figure 3.2d is the Phoneme Synthesis and Library window, where shapes are
tested with short synthesis examples, and vocal tract description files are saved to disk.
Figure 3.2e is the Performance Feature Editor window, allowing parameters affecting pitch
to be controlled and saved to disk. Figure 3.2f is the Diphone Synthesis and Library window,
which permits transitions between shape and glottal states to be specified, auditioned, and
saved to disk. Hidden windows can be called up for more advanced control and analysis

functions.

3.2.3 Vocal Tract Shape

The Vocal Tract Editor provides control over the shape of the acoustic tube (and thus
the digital filter) which models the vocal tract. Shapes are saved to or loaded from disk
files. Sliders in the graphical editor window control the radius of each segment of the tract.
The path through the nasal airway is controlled by a velum position slider. A graphical
cross-section of a human head provides immediate feedback to the user about the vocal
tract shape. An additional text window showing the radii in centimeters allows the user
to enter parameters with greater accuracy. Another window allows the editing of the nasal
tract shape parameters, although these characteristics are usually not varied in connected
speech and singing. Switches and sliders control and mix the lip, nose, and throat radiation

outputs.

One other tract shape control window is the Shape Space Interpolator. This window allows
the user to enter a number of shape filenames into text fields. Each point along the edge
of the round shape space control area represents a region dominated by a particular library
shape. The user may control the current vocal tract parameters by moving a cursor about
the control area, thus determining the “mix” of shapes. This control is particularly useful
in the real time DSP synthesis mode, discussed in Section 3.2.9. Figure 3.3 shows the vocal

tract shape control windows.
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Figure 3.2: The initial SPASM screen, showing the windows which open upon running the
program.

3.2.4 The Glottal Source

The glottal source used in this system copies the time-domain and spectral properties of the
pressure, velocity, or power waveform of the human glottis. The glottal source waveform
is additively synthesized from Fourier coefficients controlled by simple parameters entered
in the editor, or from a library file of coefficients derived from analysis data. The simple
parameter editor controls operate principally on the time-domain glottal waveform. Param-
eters include the number of harmonics used for synthesis (primarily to prevent aliasing), the
overall amplitude, and the position and slope of the falling edge of the glottal pulse, which

has been shown to be an important feature when describing vocal effort (Sundberg 1987;




CHAPTER 3. SOFTWARE SYSTEMS FOR SINGING SYNTHESIS 127

{0.503268
& ",‘ oo,

[l

Interpolator

o

Figure 3.3: Windows for controlling vocal tract and nasal tract shape.

Cummings 1990; Rosenberg 1971). Graphical displays of the log-magnitude spectrum and
the time-domain waveform are provided. Parameters may be saved to and loaded from disk
files. The Glottal Noise Editor allows the user to specify a time-domain pulse shape for an
additive noise source, simulating the pulsating noise generated as flow through the glottal
folds is interrupted. A default set of natural amplitude and frequency control functions are
available for synthesis, or the user can edit the performance features using sliders or text
fields. Performance controls affect frequency features and are located in the Performance
Parameters window. Figure 3.4 shows the glottal source editing and analysis windows, and

performance controller window.
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Figure 3.4: Windows for controlling and identifying the glottal pulse source.

3.2.5 The Noise Source

To simulate the turbulences of fricatives and other consonants, a noise source can be placed
at any point in the oropharyngeal path of the vocal tract. The output of the noise source
can be made arbitrarily resonant at two frequencies by a four-pole filter. This allows for
injection of a tuned source of local turbulent noise at a point of constriction. Noise source

parameters are saved as part of shape files. Figure 3.5 shows the noise controller windows.
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Figure 3.5: Windows for controlling and identifying the turbulent noise source.

3.2.6 Glottal Pulse and Noise Source Identification

To aid the user in obtaining natural source parameters quickly, and to provide frameworks
for both rapid detailed study of glottal and noise sources, there are various identifica-
tion/analysis functions built into the system. The Record Consonant and Identify Noise
window allows the user to record a fricative consonant, or specify a prerecorded sound file.
Using LPC, the system then designs a four-pole filter which matches the spectrum of the
recorded sound. Similarly, the Record Voice and Identify Glottis (Figure 3.4) window allows
the user to inverse filter a recorded voice, using the current SPASM vocal tract configuration

as the prototype. The inverse filtering process yields an estimate of a glottal pulse function.

An interactive inverse filtering window is available for more accurate identification of vocal
tract transfer function and glottal input function. The user can fit an LPC filter to a
sound, and multiple representations of the filter are available. The coefficients of the filter
are displayed, or alternatively, the center frequencies and radius locations of the poles are
displayed. The poles of the filter are located and displayed on a Z plane view. Mapping of
filter parameters onto vocal tract shape description quantities (radii or areas) is available.
The user may edit all filter representations. Using this tool, interactive inverse filtering of

the vocal tract transfer function is accomplished. Figure 3.6 shows the Interactive Filtering
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Workspace.

Amp/ahh.snd

Amp/testOut.snd

Figure 3.6: An interactive filter editor, with controls for fitting, editing, and applying filters
to sounds.

3.2.7 Phoneme and Diphone Synthesis

Once the glottal source, the noise source, and the vocal tract shape are established, synthesis
of a short musical ‘performance’ is accomplished by mouse clicking the synthesis button,
located in the Phoneme Synthesis and Library window (Figure 3.7). Once the synthesis
is complete, the result is heard via the computer’s internal digital to analog converters.
The file may be played back repeatedly by mouse clicking the Sing button. By typing
any file name into the Output File field and pressing the carriage return, the file is played
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back. Synthesis of different files allows speedy A/B comparison of sound examples. The
time domain waveform and the log magnitude spectrum of the synthesized phoneme can be

displayed.

Diphthongs are constructed by specifying initial and final sets of parameters, an interpo-
lation curve, and the time in seconds of the initial and final steady state segments. The
Diphone Synthesis and Library window (Figure 3.7) controls these synthesis parameters.
Since the synthesis yields one second of sound, specifying the duration of the initial and final
states also specifies the transition time. Curves available for interpolation include linear,
hyperbolic tangent, and exponentials. In the case of the glottis, the interpolation is carried
out between initial and final wave tables. For controlling the noise generators, the filter
pole parameters are interpolated in the Z-plane as radius and angle quantities. The vocal

tract and nasal tract scattering relationships are interpolated in the radius space.

3.2.8 Formant Editor and Display

The Formant Editor window (Figure 3.7) allows the user to display and edit features of the
vocal tract filter in the formant domain (the one in which the ear perceives speech sounds).
When this window is activated, the system impulse response is obtained. A log-magnitude
transform is computed and displayed, and peaks are located and marked. Each of the first
few (selectable) peaks is associated with a text-field/slider control, and the user may move
the markers to new locations. By depressing the Doit button, the system adaptively moves
the formant peaks to the desired locations, modifying the vocal tract in a least squares
perturbation fashion. When the Link button is active, the formant display updates each
time any change is made in vocal tract control parameters. This allows the connection

between vocal tract controls and vocal tract filter spectrum to be interactively explored.

3.2.9 Real Time DSP Synthesis

By clicking the Sing switch in the Performance Features window (Figure 3.4), the system
uses a Digital Signal Processing (DSP) chip to synthesize in real time. Performance features
active in real time are pitch, vibrato speed and amount, and random vibrato amount. Tract
section, velum, and noise parameter controls modify the model and sound in real time. New

glottis wavetables may be synthesized and down-loaded to the DSP chip. A cross fader
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Figure 3.7: Phoneme and Diphone synthesis control windows, and the Formant Edi-
tor/display window.

controls the mix between the current glottal waveform and the last loaded glottal wave.

3.2.10 Object Oriented Programming Structure

The techniques of Object Oriented Programming Systems (OOPS) are becoming increas-
ingly popular for the development of software [183][188]. Because of the notions of heirar-
chical inheritance [184] and abstract data types [186][190], program code generated in such
systems is extendible and reusable [187][189]. The paradigm of object oriented program-
ming languages is that of Instances of Classes (objects) passing Messages (function calls
and data) to each other. The Class Heirarchy and Class Definitions define the behaviors
of and relationships between different types of objects. The Class Heirarchy is the family

tree followed to determine how a particular object behaves. Redundant coding is reduced
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by the fact that objects Inherit Instance Variables (variables which are objects themselves,
whose values are known only to the particular instance of an object) and Methods (pieces
of executable code) from their ancestors. Only behaviors unique to the object need to be
defined. All others are inherited from the ancestor. Any behavior significantly different
from that of the ancestor may be Ouverridden by simple redefinition. OOPS techniques
allow rapid prototyping of software and the construction of libraries which may then be

shared among many developers of similar systems.

The SPASM system was developed in the Objective C [182] object-oriented programming
extensions to the C programming language [185]. The important Class Definitions of the
SPASM program are given in Appendix B. Figure 3.8 shows a block diagram of some the
objects in the SPASM program, and the type of information that is passed between objects.
Such an organization of the code allows for flexible modification of the synthesis model,

controls, and user interface.

All Control
Peremeters DSP Singer Nosal Tract
v)
| Wave
Samples
GClottal Vavi Yave Li
Singer e ip
COntr%eller Yave Glottis | samples Vocal Tract Samples | Filter
Tables e "
Freq. & Amp
Freq. & Amp
:onegrol Params. Semples
L4
Per formence
Controller

Figure 3.8: Some of the objects in the SPASM program, and the type of information that
is passed between objects.

Design of the glottis is an example of the flexible programming features afforded by OOPS.
In the current implementation of the model, the Glottis object is a waveform synthesizer
which generates the glottal wave under the control of a Performance Controller object. The
Performance Controller object generates frequency and amplitude information and passes
it to the Glottis object. The Glottis object generates a sample by combining some of the

wave variable coming into the superglottal area from the Vocal Tract object with the value
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from a wavetable. The wavetable is an instance variable of the Glottis object. This sample
is passed to the Vocal Tract object as its current input. If a physical model of the glottis
were constructed, the only code that would be edited is that of the Glottis object, replacing
wavetable lookup with mass-spring oscillator calculations. The glottis would derive the
necessary local control variables of mass values and spring constants from the frequency
and amplitude values being passed from the Performance Controller object. Such a design
paradigm allows pieces of the voice system model to be isolated and refined individually, or
perhaps assigned to different programmers for refinement. By keeping the interface to all
glottal models the same, various models of the glottis could be compared rapidly, without

requiring any changes to objects which interact with the glottis.

3.3 The Singer Software Synthesis System

For many applications, accurate control of synthesis at the single sample level is desired.
Repeatable synthesis is important for the generation of sounds for psychoacoustic testing
and other investigations. Toward these ends, a software synthesis system based on the
WGF model of the vocal tract was constructed. The program is written entirely in the
ANSII C programming language [185], simplifying porting to any computer. The program
takes as input a text file containing a series of C function calls. The C functions specify
target values for the model parameters, and times for the transitions to take place. Some
arguments to the functions are the names of shape and glottal files as created using the
SPASM system. Others are floating point numbers specifying pitch, vibrato, and other
important performance controls. For speed of synthesis, linear interpolation is performed

on all parameters.

The synthesize function is the heart of the singer program. This function interpolates
the singer model from the last parameter values to a new set of parameter arguments,

synthesizing and writing the samples to a sound file.
The arguments are:
time is the time over which the current transition will take place.

FShape is a vocal tract shape file as created by the SPASM system.
FGlot is a glottal file as created by the SPASM system.
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FPitch is the average pitch in Hz of the glottal source.
Note names (af4 instead of 415.3 Hz.) may be used.
FGlotAmp is the amplitude of the glottal source component.
FNoiseAmp is the amplitude of the fricative noise component.
FVibrAmt is the amount of periodic vibrato of the glottal source.
1.0 is 100% vibrato.

fd is a file descriptor of an open sound file.

One other synthesis function synthesizes silence.
silence(time,fd)

Some non-interpolated parameters may be changed instantly by function calls.
setPerfVibrFreq(float afreq); Vibrato frequency in Hz.
setPerfRndAmt(float r); Random vibrato amount.
setGlotNoiseGain(float gain); Glottal noise gain.

setPulseShape(float plpos,float plwidth,float p2pos,
float p2width,float p2height,float pfloor); Glottal noise pulse shape.

setGlotNoiseFilter(float gnfreql,float gnradl,
float gnfreq2,float gnrad2); Glottal noise filter characteristics.

Figure 3.9 shows a typical Singer control file. The shape ”eeesh” is the shape "eee” with
the noise generator placed as it would be in the case of shape ”"shh”. This prevents the

noise source from moving during this transition.
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singer{fd)
int fd;
i This example sings the name "Shiela” with a crescendo at the end
set_file_path("/localipre/library/SPASM"); # file path to shape
i and glot directories
init(} # initialize state variables
setup(” shh","”soft",400.0,00,0.0,0.0); i Initial setup for
] performance
i time shape glot. freq glotAmp noiseAmp %vibr.
synthesize( 0.3, “shh”, "soft’, 4000, 0.0, 0.3, 0.00, fd)
synthesize{ 0.1,  “"eeesh”, "soft”, 4300, 0.2 03, 0.04, fd):
synthesize( 0.7,  "eeesh”, "soft’, a4 , 0.2 0.0, 0.07. fd);
synthesize{ 0.2, ", "soft’, 4400, 04 0.0, 0.04, f{d);
synthesize( 0.2, “ahh”, "soft", 4000, 0.3, 0.0, 0.00, fd);
synthesize{ 0.2, “ahh", “soft”, 4000, 0.3, 0.0, 0.00, fd)
synthesize{ 1.5, “ahh”, “loud”, 400.0, 1.0, 0.0, 0.08, fd):
synthesize( 0.1, "ahh”, "soft”, 400.0, 0.0, 0.0, 0.08, fd);

silence(0.5fd}
retum;

}

i# Write some sllence

Figure 3.9: Singer command file to synthesize a sung performance of the name ”Shiela”.




Chapter 4

Conclusions and Suggestions for
Future Research

4.1 Conclusions

The approach in the research presented in this dissertation has been to view the human
vocal mechanism as a time varying linear system. A simple linear model was developed, and
investigations were conducted to determine which controls provide the greatest flexibility,
which features are the most important perceptually, and how the important features and
controls can be added to the simple linear model. Taking the viewpoint that the vocal
system is a time varying linear system, rather than a non-linear system, allows standard
and proven techniques of linear system analysis to be employed in obtaining values for the

control parameters of the model.

A new algorithm for tracking speech which directly drives the articulatory vocal tract model

was presented. This algorithm was investigated, and benefits of its use were discussed.

The pitch deviation component in the vocal signal is an extremely important perceptual
feature, without which vocal synthesis sounds machine-like. A new algorithm for tracking
pitch was presented, tested, and used in a study of singer pitch deviation. Rules for low

and high-frequency pitch deviation components were derived from the experimental data.

The phenomenon of noise generation near the glottal source was investigated. New methods
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of extracting, analyzing, and visualizing the non-periodic component of the vocal signal were
presented, and a study of source noise in singer voices was conducted. It was discovered
that there is a significant time-domain structure to the noise present in the glottal source,
consistent with a hypothesis of pulsed turbulence derived from a fluid-dynamics analysis of
glottal source behavior. Rules for additive synthesis of this pulsed noise component were

derived from the experimental data.

A number of examples of singing synthesis have been done using the SPASM and singer
programs. The combination of real-time DSP control and software synthesis allows the user
to quickly experiment with the model, yet produce repeatable results. Many synthesis at-
tempts yield extremely natural sounds on the first attempt. Since descriptions of unnatural
sounding synthesized sounds often rely on physical references (“She sounds like her jaw is
open too far”, or “His tongue sounds fat”), the physical parameters indicate what to do to
the model controls if the synthesis does not sound correct. The programs have been made
available to composers for use in musical compositions, and to psychologists for use in the

generation of stimuli for psychoacoustic testing.

4.2 Suggestions for Future Research

Of the topics which were investigated in this dissertation, the two greatest areas for future
research are those of articulatory speech tracking, and noise in the glottal source. Section
1.7.3 discusses various areas for future research in articulatory tracking. These topics will
be briefly listed here:

o Investigation of the norms used for vocal tract adaptation and identification. Norms
other than least-squares should be investigated, as well as other schemes which
attach penalties and weightings based on physical constraints of the human vocal

tract.

e  Vector quantization of vocal tract shapes. This reduces search complexity and mem-

ory usage.

e Library construction by selection and ordering of shapes which best fit the perceptual

boundaries of phonemes and diphones.
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e Use of general and specialized hardware, and optimization to bring the system to

real-time capability.

The topic of noise generation in the vocal mechanism is not new, but seems to be entering
a new era. Until recently, most research into vocal noise has been conducted in the areas of
vocal pathology, concentrating on abnormal voices. Realizations that the noise component
in normal voices is an important perceptual component have caused much new research in
this area, with a concentration on the study of normal voices and using the results for more

natural synthesis. Areas worthy of investigation are:

e Distributed noise generation in the vocal tract. Disturbances which are formed at
one point then propagate downstream causing noise at locations within the vocal

tract.

e  Use of the noise component for vocal tract parameter identification, and for identi-
fication of individual speakers/singers. Features of the noise signal might indicate

physiological differences between individuals.

The greatest area for improvement of the entire vocal model lies in modeling of the glottal
source. Physical models based on mass/spring systems or finite element simulations of
non-homogeneous material are currently too complex to allow high-quality real-time sound
synthesis. As computing power increases, however, these models hold the greatest promise of
true improvement in natural sounding vocal synthesis, controlled by intuitive and physically

meaningful parameters.




Appendix A

Fourier and Hartley Transforms

This appendix will define the Fourier and Hartley Transforms and present theorems which
are relevant to the calculations performed in the dissertation. The Fourier Transform [146]
in discrete time and frequency is called the Discrete Fourier Transform (DFT), and is defined
by:

N-1

X(m) = DFT{z(n)} = 2 m(n)e:ﬂTﬂm (A1)
n=0
where
e~9% = cos(8) — jsin(9) (A.2)

The frequency in Hz. of a transform sample can be determined from the index m and the

sampling rate Fs by the relationship:

F
Frequency = s (A.3)
N
Inverse transformation is defined by:
(=13 X A4
z(n) = + m)e (A.4)

n=0
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Various operations are simplified by transformation into the frequency domain. The con-

volution of two signals, defined by:

+o00
zxy(n) = Z z(m)y(n — m) (A.5)

m=—0o0

can be transformed into the frequency domain by using the relationship:

DFT{z xy(n)} = X(m)Y (m) (A.6)

Thus, given restrictions on the time extent of the two signals, the convolution operation
is changed into a simple multiplication operation. Deconvolution can be performed in the
frequency domain by a division operation, provided that the frequency transform contains

1o zero components.

The autocorrelation operation, defined as:

q+N-1
z®z(n) = Z z(t)z(i +m) (A.7)

i=gq

can be transformed into the frequency domain by using the relationship:

DFT{z ® z(n)} = X(m) x X(—m) (A.8)

where —m corresponds to N — m in the DFT formulation. Real time signals exhibit Her-

mitian symmetry,

X(-m) = X*(m) (A.9)

so the autocorrelation relationship in the frequency domain simplifies to:

DFT{z ® (n)} = |X(m)|? (A.10)
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To obtain the autocorrelation function in the time domain, inverse transformation is per-
formed. The symmetry properties of the frequency domain autocorrelation function allow

inverse transformation by the cosine transform:

N
N

2
z®z(n) = % > X (m)Pcos( T
n=0

N

) (A.11)

Calculation of signal power is accomplished the same way in the time and frequency domains,

as given by:

N-1 N-1
Y le@P =Y [X(m)? (A.12)
n=0 n=0

The Discrete Hartley Transform and its inverse are given by:

N-1

Xu(m) = DHT{z(n)} = ¥ x(n)cas(QW;m) (A.13)
n=0
N-1
z(n) = %Z X(m)cas(27mm) (A.14)
n=0
where
cas(8) = cos(8) + sin(0) (A.15)

The Hartley Transform [147] operates on real data and yields real data, so transformation
of real data is somewhat simplified by the use of the Hartley Transform. The Fourier Trans-
form calculations can be optimized to accept real data, yielding the same computational
complexity as the Hartley Transform. Properties of the Fourier Transform and the sine
and cosine functions, specifically those of symmetry, evenness, and oddness, allow simple

relationships between the Fourier and Hartley Transforms to be derived:

Xu(m) = Xyear(m) — Ximag(m) (A.16)
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X (m) = Xgeven(m) — jXgodd(m) (A.17)

From these relationships, theorems such as the autocorrelation and power relationships can

be derived for the Hartley Transform.




Appendix B

Object-Oriented Class

Descriptions

The classes used in the SPASM software/DSP singing synthesis program are described in

this appendix. The form of a class description is:

Class: SuperClass
where Class inherits instance variables and methods from SuperClass.
Methods are specified by:
- (type) methodName: (type) argumentl optional: (type) arg2 . . .

where the data types are C data types for all methods defined in this Appendix. The
type before the methodName describes the data type of the returned quantity (default
is an object id).

Classes and Methods Used in SPASM singing synthesis system

DiphController: Object

Diphone Controller - Controls transitions between shapes and glottal states during di-

phone synthesis. Synthesizes short soundfiles from transition parameters. Saves and
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loads parameter files to/from disk.

DSPSinger: SynthPatch

NeXT Musickit Motorola 56001 DSP Chip custom Synthpatch.

Uses various NeXT standard and custom unit generators.

FloatView: View

Displays floating point data arrays with normalization and notation of minimum and

maximum values.

FormantEditor: Object

Locates and displays formants in a spectrum. Controls vocal tract to move least-squares

to match a given set of formants.

GlotAnalyzer: Object

Records and plays soundfiles for analysis. Inverse filters input spectrum by vocal tract
spectrum in the frequency-domain to yield estimated glottal spectrum. Saves resultant
glottal file to disk.

Glottis: Object

Models glottis as wavetable synthesizer. Models reflection characteristic of incoming
wave value from vocal tract as reflection coefficient. Principle sample generation method

is:
- (float) next: (float) ampl with: (float) tractSamp;

which takes an amplitude and incoming vocal tract sample and yields a sample of output.

Frequency in Hz. is set with the method:
- setFreq: (float) freq;

and reflection coefficient is set by:
- setYourGlotReflGain: (float) value;

Last output sample can be retrieved by:
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- (float) lastOut: sender;
Loads and saves glottal parameters and Fourier coefficients to/from disk.
LipFilter: Object

Models lip reflection/transmission filter as simple low-pass/high-pass filters. Principle

sample generation method is:
- (float) next: (float) input;

which takes an input sample and yields an output sample. Reflection gain value is set
with:

- setYourLipReflGain: (float) value;
and state variables are cleared with:
- clearOut: sender;
Last output and reflection samples can be retrieved by:

- (float) lastOut: sender;
- (float) lastRefl: sender;

NasalTract: Object

Models nasopharynx as WaveGuide Digital Filter (WGF'). Reflection and transmission
characteristics of nostrils are included in the object. The principal sample generation

method is:
- (float) next: (float) plusSamp with: (float) minusSamp;

which accepts a sample from the vocal tract glottal side (plusSamp) and a sample from
vocal tract lip side (minusSamp) and yields a sample for injection into vocal tract glottis

side. Sample for injection into vocal tract lip side is retrieved by:
- (float) lastPlusRefl: sender;

Sample for injection into vocal tract glottis side is retreived by:
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- (float) lastMinusRefl: sender;
Velum opening size is set by:
- setYourVelumPosition: (float) value;
Scattering relations are set by:
- setShape: (float) leftRadius with: (float) rightRadius;

where leftRadius is the vocal tract radius to the glottal side of the velum, and rightRa-
dius is the vocal tract radius to the lip side of the velum. Last wave sample output from

nostrils can be retreived by:

- (foat) lastOutput: sender;

NoiseAnalyzer: Object

Records and plays soundfiles for analysis. Inverse filters input spectrum by vocal tract
spectrum in the frequency-domain to yield estimated noise spectrum. Fits LPC filter

to spectrum, and passes resultant filter parameters to its NoiseController.

NoiseController: Object

Synthesizes noise with random number generator and four-pole filter. The principal

sample generation method is:
- (float) next: (float) ampl;

which accepts an amplitude value and returns a sample. Amplitude value is multiplied

by internal gain value. Filter parameters can be set by:

- setYourNoiseGain: (float) value;

- setYourNoiseAngle: (float) value;

- setYourNoiseRadius: (float) value;
- setYourNoiseAngle2: (float) value;
- setYourNoiseRadius2: (float) value;

where radii and angles are positions in the Z plane. Filter state variables can be cleared
by:




APPENDIX B. OBJECT-ORIENTED CLASS DESCRIPTIONS 148

- clear: sender;

PerfController: Object

Synthesizes pitch and amplitude control signals. The principal sample generation method

is:
- (float) next;

which increments the object’s internal time and returns an amplitude sample. Last

frequency sample can be retreived by:
- (float) frequency;

and last amplitude sample can be retreived by:
- (float) amplitude;

parameters are accessed by:

- setPerfVibrFreq: (float) aFreq;

- setPerfPitch: (float) aPiitch;

- setPerfVibrAmt: (float) aVibratoAmt;

- setPerfRndAmt: (float) aRandomAmt;

- setPerfRndPeriod: (float) aRandomPeriod;

Saves and loads parameters to/from disk.

PhonController: Object

Loads, plays, and displays soundfiles and frequency transforms. Aquires impulse re-
sponses of vocal tract for analysis. Synthesizes short performances. Loads and saves

vocal tract shape files to/from disk.

Shapelnterpolater: View

Uses mouse position within a region to interpolate between a number of vocal tract

shapes.

SignalProcessor: Object
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Applies windows to signals. Performs frequency transforms, computes magnitude and
log magnitude spectra. Inverts matrices, computes LPC coefficients, and finds complex

roots of polynomials.

SingerController: Application

Controls DSPSinger in realtime. Provides main interface to mouse-controlled events.
This object is the SPASM application itself.

SpectrumView: View

Displays spectra with optional markers for gain, frequency, peaks, etc.

TractView: View

Displays vocal tract shape. Displays position and gain of fricative noise source. Shape

parameters are set by:

- updateRadii: (float *) r;
- updateVelum: (float) v;
- updateBoth: (float *) r vel: (float) v;

VocalTract: Object

Models oropharynx as WaveGuide Digital Filter (WGF). The principal sample genera-
tion method is:

- (float) next: (float) glotSamp with: (float) lipSamp;

which accepts a sample from the vocal tract glottal side and a sample from vocal tract
lip side and yields an output sample at the lip end. Output sample at glottis end is
retrieved by:

- (float) lastMinus: sender;
Last ouput sample from lip end is retrieved by:
- (float) lastPlus: sender;

Tract shape or scattering coefficients can be set by:
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- setYourRadius: (int) location to: (float) value;
- setCoeff: (int) location to: (float) value;

A signal can be mixed with the wave variable in the vocal tract by:
- addValue: (float) value at: (int) impulsePosition;

The tract will automatically add noise obtained from its noise generator at the current

noise position by using:
- addNoise: (float) ampl;
All state variables are reset by:

- clearOut:sender;

ZPlaneView: View
Displays poles and zeroes on the complex Z plane. Methods are:

- setBackGround: (float) gray;

- setDraw: (float) gray;

- drawPole: (float) radius angle: (float) angle;
- drawZero: (float) radius angle: (float) angle;
- drawUnitCircle;

- clear;




Appendix C

Sound Examples

This appendix lists and describes the sound examples which accompany this dissertation.
The sound examples are available on various tape formats from: Center for Computer
Research in Music and Acoustics, Department of Music, Stanford University, Stanford, CA.
94305.

All sound examples are played twice.
1. Vowel synthesis examples.
2. Diphthong transition synthesis examples.
3. Nasal synthesis examples.
4. Nasal to vowel transition synthesis examples.
5. Voiced plosive synthesis examples.
6. Crescendo synthesis example.
7. Synthesis of sung “Shiela”.
8. Synthesis of singer exercise.
9. Original utterance of "OooEeeAhh”.

10. FAST resynthesis of ”OooEeeAhh”.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Original male utterance of "Easy”.

FAST female resynthesis of ”Easy”.

Vowel synthesis examples without pitch deviation.

Vowel synthesis examples with pitch deviation.

Male vocal tone.

Periodic part of male vocal tone.

Residual part of male vocal tone extracted by period similarity processing.
Male vocal tone with subharmonic.

Extracted subharmonic component.

Four octave arpeggio: no pitch deviation or noise.

Four octave arpeggio: fixed rate and amount of periodic vibrato only.
Four octave arpeggio: random pitch deviation and noise.

Four octave arpeggio: rule-based random and periodic vibrato, no noise.

Four octave arpeggio: rule-based random and periodic vibrato, fixed glottal

noise.

25.

Four octave arpeggio: rule-based random and periodic vibrato, rule based glottal

noise.
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