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Introduction

Ever since Newton discovered his famous laws of motion, physicists have been applying them to natural
phenomena, deriving differential equations which govern their motion. Analytic solutions have given much insight
into the dynamic behavior of physical systems. In more recent history, differential equations have provided a
direct basis for computational modeling. They can be numerically integrated by computer to simulate the response
of the physical system to external forces and boundary conditions. Because the mathematical description is local,
giving relations at only a single point in time and space, numerical integration is normally very expensive as a
computational modeling technique.

There are situations, however, in which a computational solution based on differential equations is highly eco-
nomical. This happens with musical instrument models because systems constructed to produce musical sound
have two important properties: (1) Losses are small, compared with a period of sound, and (2) phase is weakly
perceived on a time scale of one period. These properties enable the following solution approach:

Solve the wave equation analytically in the free medium, with no boundary conditions.
Simulate the solution directly (traveling waves) instead of numerically integrating.
Commute losses and dispersion to the medium boundaries, consolidating them.
Simulate the consolidated losses and dispersion using a single, low-order, digital filter.

Interior to the medium, away from inputs, outputs, and boundary conditions, we simulate a lossless idealization
where a superposition of traveling waves may be implemented using pure delays. This can result in a huge
reduction in the computational burden without affecting simulation accuracy.

The Lossless One-Dimensional Wave Equation
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Figure 1. The ideal vibrating string.

Newton’s law equating force to mass times acceleration leads to the following wave equation for transverse waves
along the ideal string, depicted in Figure 1 (Morse 1936):
Ky' =¢j



where

K £ string tension y 2 y(t, x)
. a0
¢ £ linear mass density ¥ 4 -a—ty(t, z)
i)
y2 string displacement y' = 6_zy(t’x)

The same equation applies to any perfectly elastic medium which is displaced along one dimension, such as
a column of air in a clarinet or organ pipe. We refer to the general class of such media as one-dimensional
waveguides.

Solution

Solutions to the wave equation can be obtained by numerically integrating the differential equations, and string
sounds have been computed based on such an approach (Ruiz 1969, Hiller and Ruiz 1971). Before the availability
computers, however, the wave equation was typically solved in closed form by finding analytic functions which
satisfy the differential equations. Because e®! is an eigenfunction under differentiation (i.e., the exponential
function is its own derivative), it is normally profitable to plug in a generalized exponential function, with
maximum degrees of freedom in its parametrization, to see if parameters can be found to fulfill the constraints
imposed by the equations.

In the case of the one-dimensional wave equation with no boundary conditions, an appropriate choice of
eigensolution is

y(t, CL‘) — esH—vz
Substituting into the wave equation yields
y= sy y =y
j= sy y'= %y

. 3 J- 0
Defining wave velocity as ¢ = s/v, the wave equation becomes
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Thus

y(t,x) - es(td:z/c)

is a solution for all s. By superposition,

y(t,z) = ZA+(s)e’("’/°) + A~ (s)e*(t+2/9)

is also a solution, where A+ (s) and A~ (s) are arbitrary complex-valued functions of s. Setting s = jw, we have,
by Fourier’s theorem,

e = 1= Z) o (1+2)

for arbitrary continuous functions f(-) and g(-). This is the traveling-wave solution of the wave equation attributed
to D’ Alembert. A function of (t — z/c) may be interpreted as a fixed waveshape traveling to the right, (i.e., in the
positive z direction), with speed c. Similarly, a function of (t + z/c) may be seen as a wave traveling to the left
(negative z direction) at ¢ meters per second.



Digital Simulation

To simulate the solution of the ideal, one-dimensional wave equation, we simply sample the traveling-wave

amplitude at intervals of T seconds, which implies a spatial sampling interval of X £ ¢T' meters. Sampling is
carried out by the change of variables

r— 2y, =mX
t—=t,=nT
and this substitution gives
Y(tnsZm) = f(tn —zm/c) + g(tn + Tm/c)
= f(nT - mX/c)+ g(nT + mX/c)
= fl(n=m)T]+g[(n +m)T]
Define
y*(n) £ f(nT) v~ (n) & g(nT)
Then a section of the ideal string or waveguide can be simulated as shown in Figure 2 (where outputs have been
arbitrarily placed at z = 0 and z = 3X).
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Figure 2. Digital simulation of the ideal, lossless waveguide with observation points at z = 0
and z = 3X = 3.T.

A more compact simulation diagram which stands for either sampled or continuous simulation is shown in Figure 3.
The figure emphasizes that the ideal, lossless waveguide is simulated by a bidirectional delay line.

y+(n) y+(n-M)
s M samples delay e
y (nT,0) y (nT,E)
y(n) y(n+M)
v M samples delay [ v
x=0) x=8) (x=McD

Figure 3. Simplified picture of ideal waveguide simulation.

It is important to note that the digital simulation of the traveling-wave solution to the lossless, one-dimensioqal wave
equation (e.g., the ideal string) is exact at the sampling instants, (to within the numerical precision), provided the
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waveshapes traveling along the string are initially bandlimited to less than half the sampling frequency. In other words,
the highest frequencies present in the signals f(t) and g(¢) may not exceed half the temporal sampling frequency

fs = 1/T; equivalently, the highest sparial frequencies in the shapes f(z/c) and g(z/c) may not exceed half the
spatial sampling frequency v, = 1/X.

Bandlimited spatial interpolation may be used to construct an output for an arbitrary z not a multiple of T, as
suggested by the output drawn in Fig. 3. Similarly, bandlimited interpolation across time (Smith and Gossett 1984)
serves to evaluate the waveform at an arbitrary time not an integer multiple of T". Because bandlimited interpolation is
always approximate in practice, being primarily limited by the quality of the lowpass filter used in the interpolation,

the signal at interpolated times and positions will not be exact to within numerical precision, except perhaps within a
frequency band strictly less than (e.g., 90% of) f,/2.

The Lossy One-Dimensional Wave Equation

In any real vibrating string, there are energy losses due to yielding terminations, drag by the surrounding air, and
internal friction within the string. A wide class of losses, such as the wave impedance and viscosity of air, exert a
purely resistive force proportional to transverse velocity of the string. If this proportionality constant is ¢, we obtain
the modified wave equation

Ky" = €j+ py

Again let y(t, z) = e**+7= to find the relationship between temporal and spatial frequencies in the eigensolution, and
use Fourier superposition to build the general class of solutions. The wave equation becomes

K (vYy) = e(s’y) + n(sy) = Kv® =es® +pus

o ol em g (10 £) 25 (0 8)

> v=t— 1+—li
Co €s

where ¢ 2 VK /¢ is the wave velocity in the lossless case. At high frequencies (large |s|), or when the friction
coefficient p is small relative to the mass density ¢, we have the approximation

(1+£)%z1+%%

by the binomial theorem. For this small-loss approximation, we obtain the following relationship between temporal
and spatial frequency:
1
v k— (s + E )

Co -2—6
The eigensolution is then

o =l £) 3] ool (2 Dlew(-5

The right-going part of the eigensolution is
ghl-going p & e—(p/Ze)z/cea(t—z/c)

which decays exponentially in the direction of propagation, and the left-going solution is

e(p/Ze)a:/ces(t+z/c)

which also decays exponentially in the direction of travel.



Setting s = jw and using superposition to build up arbitrary traveling wave shapes, we obtain the general class of
solutions

y(t, z) = e'(“/zé)“'/”f (t - :c/c) + e(“/'“)"/"g (t + :c/c)
Sampling these exponentially decaying traveling waves at intervals of T' seconds (or X = T meters) gives
Y(tny ) = e~ W203mlcf (4 — g fe) + eB/2)2mIcg (£, 4 20 [c)

= e'(“/ze)"‘x/cf (nT - mX/c) + e(“/z‘)"'x“cg (nT +mX/c)

= e~#mT/%f [(n = m)T] + e#™T/2g[(n + m)T)

= (e*#T/"")m yt(n—m)+ (e“T/z‘)m y (n+m)

The digital simulation diagram for this type of waveguide is shown in Figure 4.
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Figure 4. Discrete simulation of the ideal lossy waveguide. The loss factor g = e~ #7/%¢
summarizes the distributed loss incurred in one sampling period.

Again note that the simulation is exact at the sampling points and instants, even though losses are admitted in the
wave equation. Note also that the losses which are distributed in the continuous solution have been consolidated, or
lumped, at discrete intervals of cT' meters in the simulation. The lumping of distributed losses does not introduce an
approximation error at the sampling points.

Consolidating Losses on a Larger Scale

In many applications, it is possible to realize vast computational savings in waveguide simulation by commuting
losses out of unobserved and undriven sections of the medium and consolidating them at a minimum number of points.
Because the digital simulation is linear and time invariant (given constant medium parameters K, ¢, 1), and because
linear, time-invariant elements commute, the diagram in Figure 5 is exactly equivalent (to within numerical precision)
to the previous diagram in Fig. 4.
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Figure S. Discrete simulation of the ideal lossy waveguide. Each per-sample loss factor
g = e~#T/2¢ is “‘pushed through’’ delay elements and combined with other loss factors until an
input or output is encountered which inhibits further migration. If further consolidation is possible
on the other side of a branching node, a loss factor can be pushed rhrough the node by pushing a
copy instance into each departing branch. If there are other inputs to the node, the inverse of the

loss factor must appear on each of them. Similar remarks apply to pushing backwards through a
node.

To illustrate how significant the computational savings can be, consider the simulation of a lossy ‘‘guitar string’’
for purposes of music synthesis. For simplicity, we rigidly terminate the length L string on either end which means
traveling waves impinging on the ‘‘nut’ or ‘‘bridge’’ will be reflected with a change of sign and no attenuation. The
simulation diagram is given in Figure 6. Also, assume the string will be *‘plucked’’ from initial conditions so that there
is no input to couple into the string. Let the output be simply the signal passing through a particular delay element
rather than the more realistic summation of opposite elements in a bidirectional delay line.

N2
Yn-nr) g

y"zn) N/2 samples delay, N/2 loss factors g Output
‘GBridge,Q -1 “Nut”
Rigid Termination Rigid Termination
y(n) N/2 samples delay, N/2 loss factors g y (n+N/2) g-N/Z
(x=0) (x=L)

Figure 6. Discrete simulation of the rigidly terminated string with resistive losses. The N loss factors g
are imbedded between the delay-line elements.

In this string simulator, there is a loop of delay containing N = 2L/X = f,/ f, samples where f; is the desired pitch
of the string. Because there is no input/output coupling, we may lump all of the losses at a single point in the delay
loop. Furthermore, the two reflecting terminations (gain factors of —1) may be commuted on top of each other to
cancel them. Finally, the right-going delay may be combined with the left-going delay to give a single, length N,
delay line. The result of these inaudible simplifications is shown in Figure 7.
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Figure 7. Discrete simulation of the rigidly terminated string with consolidated
frequency-independent losses. All N loss factors g have been ‘‘pushed’ through
delay elements and combined at a single point.

If the sampling rate is f, = 50 kHz and the desired pitch is f; = 100 Hz, the loop delay equals N = 500 samples.
Since delay lines are efficiently implemented as circular buffers, (only a read-pointer and write-pointer need be
used and updated each sample time per delay line), the cost of implementation is normally dominated by the loss
factors, each one requiring a multiply every sample, in general.* Thus, the consolidation of loss factors has reduced
computational complexity by three orders of magnitude, i.e., by a factor of 500 in this case. However, the physical
accuracy of the simulation has not been compromised.

Frequency-Dependent Losses

It is well known that string losses increase with frequency. This is true whether the string is terminated rigidly or
attached to a bridge. The largest losses in a real stringed instrument occur at the bridge. The bridge of a violin
can be modeled up to about 5 kHz, for purposes of computing string loss, as a single spring in parallel with a
frequency-independent resistance (‘‘dashpot’’) (Cremer 1984, page 27). Similarly, air absorption increases with
frequency, providing an increase in propagation loss for sound waves in air (Morse and Ingard 1968).

The derivation for the lossy waveguide can be repeated substituting u(w) for x, where w is radian frequency in Hz. In
other words, frequency-dependent losses can be treated exactly like frequency-independent losses. Mathematically,

the frequency variable w in the loss factor argument is treated as independent of the frequency variable s 2o+ jw
Instead of factors g distributed throughout the diagram, the factors are now G(w). These loss factors, implemented
as digital filters, may also be consolidated at a minimum number of points in the waveguide without introducing
an approximation error. However, an aproximation error will normally be introduced when replacing the irrational
function G(w) by a rational approximation which is realizable as a digital filter (Smith 1983).

In general, the coefficients of the optimal rational loss filter are obtained by minimizing || G(w) — G(e) || with
respect to the filter coefficients or the poles and zeros of the filter, where G(e’*) denotes the approximation
filter frequency response. To avoid introducing frequency-dependent delay, the loss filter should be a zero-phase,
finite-impulse-response (FIR) filter (Rabiner and Gold 1975).

Restriction to FIR filters yields the important advantage of keeping the approximation problem convex in the weighted
least-squares norm. Convexity of a norm means that gradient-based search techniques can be used to find a global
miminizer of the error norm without exhaustive search (Smith 1983).

Restriction to zero-phase loss filters means the impulse response §(n) must be symmetric about time zero, ie.,
§(—n) = §(n). (For real-time implementations, the filter can be made causal by ‘‘stealing’’ delay from the loop delay
lines.) The zero-phase requirement halves the degrees of freedom in the filter coefficients. That is, given §(n) for
n > 0, the coefficients §(—n) = §(n) are also determined. The loss-filter frequency response can be written in terms
of its (impulse response) coefficients as

(Ng=1)/2
G(e)=3(0)+2 Y §(m)e™nT

n=1

* Losses of the form 1 — 27%,1 — 2=% — 2-! etc., can be efficiently implemented using shifts and adds.
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where w = 2 f, = 2 /T, and impulse-response length N; is assumed odd.

A further degree of freedom is eliminated from the loss-filter approximation by assuming all losses are insignificant at
OHzsothatG(0) =1 = G (e’°) = 1 (taking the approximation error to be zero at w = 0). The condition G(1) =
means the coefficients of the FIR filter must sum to 1. If the length of the filter is NV; (assumed odd), we have

(Ny~1)/2

1= 3(m)=340)+2 > in)

n=1

The simplest rational approximation G(z) is obtained with the one-zero digital filter.

G(z) 2 212 B(2) 2 bpz!/2 4 by 271/

The zero-phase requirement gives rise to the factor z'/2 and implies by = b;. (Since the length is even, time 0
must lie midway between the two impulse-response samples. In practice, we accept a half-sample delay from the
one-zero filter and make up for it elsewhere in the loop.) Requiring no loss at w = 0 implies by + b; = 1. Thus,
two equations in two unknowns uniquely determine the coefficients to be by = b; = 1/2 which gives a string loss
frequency response equal to G(e’*) = cos (“’T) y |w| € 7f,. The simulation diagram for the ideal string with the
simplest frequency-dependent loss filter is shown in Figure 8. Readers of the computer music literature will recognize
this as the structure of the Karplus-Strong algorithm (Karplus and Strong 1983, Jaffe and Smith 1983).

Output
+ +
y(n) N samples delay = y(n-N)
172 \
- +
12
VA -1

A

Figure 8. Rigidly terminated string with the simplest frequency-dependent loss filter.
All N loss factors (possibly including losses due to yielding terminations) have been
consolidated at a single point and replaced by a one-zero filter approximation.

The Karplus-Strong algorithm is obtained when the initial conditions used to ‘‘pluck’’ the string are obtained by filling
the delay line with random numbers, or ‘‘white noise.”” Referring to Fig. 6, we know the initial shape of the string is
obtained by adding the upper and lower delay lines, i.e., y(tn, zm) = y*(n — m) + y~(n + m). It is straightforward
to show that the initial velocity distribution along the string is determined by the difference between the upper and
and lower delay lines. Thus, in the Karplus-Strong algorithm, the string is ‘‘plucked’’ by a completely random initial
displacement and initial velocity distribution. This is a very energetic excitation, and usually in practice a lowpass
filter is applied to the white noise to subdue it. We can see that by ‘‘drawing’’ an initial shape for the string twice
in the loop delay, first in what was the upper delay-line and second in what was the lower delay-line in Fig. 6, we
obtain a classical ‘‘plucked string’” simulation with a zero initial velocity profile (Morse 1936). Similarly, by making
the initial waveform in the lower delay-line the negative of the initial waveform in the upper delay-line, a classical
*‘struck string’’ is obtained (Morse 1936).



The Dispersive One-Dimensional Wave Equation

Stiffness in a vibrating string introduces a restoring force proportional to the fourth derivative of the string displacement
(Morse 1936):

Eﬁ = Ky” - Ky”"
where, for a cylindrical string of radius a and Young’s modulus @, the moment constant « is equal to x = Qma* /4.
As before, we set y(t, ) = e**+9% to get

s’ = Kv? — kvt
At very low frequencies, or when stiffness is negligible in comparison with K /v2, we obtain again the non-stiff string:
es? x Kv? = v=ds/e

At very high frequencies, or when the tension K is negligible relative to xv2, we obtain the ideal bar approximation
. e\ 1/4
es? v —gvt = v teT (-—) Vs
K

The only restoring force in an ideal bar is due to stiffness. Setting s = jw gives solutions v = j (¢/ n)l/ 4 /@ and
v = (¢/k)"* \/w. In the first case, the wave velocity becomes proportional to v/w. That is, waves travel faster
along the ideal bar as oscillation frequency increases, going up as the square root of frequency. The second solution
corresponds to a change in the wave shape which prevents sharp corners from forming due to stiffness (Cremer 1984).

At intermediate frequencies, between the ideal string and the ideal bar, the stiffness contribution can be treated as a
correction term (Cremer 1984). This is the region of most practical interest because it is the principle operating region
for strings, such as piano strings, whose stiffness has audible consequences (an inharmonic, stretched overtone series).

We have, assuming ko = s/K < 1,

K
§ = Evz ~Ep e 2 (1 - = 2) a cdv? (1- Kov?)
€ € €
52 2 2
= ¥ 7z (1+Rovz) = (1+no;2-)
0 0 0

Substituting for v in terms of s in s***+¥% gives the general eigensolution

2
st+vze __ f_ _1. S_
e —exp{s [t:&:ca (1+2nocg)}}

Setting s = jw as before, corresponding to driving the medium sinusoidally over time at frequency w, the medium
response is

efttve — ejw[t:tz/c(w)]
where ,
A KW

c(w) =y (1 + -2—1?;%-)

Because the effective wave velocity depends on w, we cannot use Fourier’s theorem to construct arbitrary traveling
shapes. At z = 0, we can construct any function of time, but the waveshape disperses as it propagates away from
z = 0. The higher-frequency Fourier components travel faster than the lower-frequency components.
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It is nevertheless possible to simulate the stiff medium in a local fashion. Since the temporal and spatial sampling
intervals are related by X = cT, this must generalize to X = c(w)T = T(w) = X/c(w) = coTy/c(w), where
To = T(0) is the size of a unit delay in the absence of stiffness. Thus, a unit delay z~! may be replaced by

271 o zc0/ew) (for frequency-dependent wave velocity)

That is, each delay element becomes an allpass filter which approximates the required delay versus frequency. A

diagr/ax(n )appears in Figure 9, where H,(z) denotes the allpass filter which provides a rational approximation to
z—co clw .

yin) Yn-1) ¥(n-2) ¥(n-3)
oo H a(z) H a(z) H a(z)
y (nT,0) y (nT,3c(®)T)
y(n) yi(n+1) y(n+2) y(n+3)
s Ha(z) Ha(z) Ha(z) .
(x=0) (x=c()T) (x=2¢(w)T) (x=3c(w))

Figure 9. Section of a stiff string where the unit delay elements are replaced by allpass filters.

The general, order L, allpass filter is given by

Ha(2) £ 7L A(="Y)/A(2)

where

A(z) 21 t+arz YV 4agz %+ tagzt

and the roots of A(z) must all have modulus less than 1. That is, the numerator polynomial is just the reverse of the
denominator polynomial.

For computability of the string simulation in the presence of scattering junctions, there must be at least one real sample
of delay from the input to the output of at least one allpass filter along each uniform section of string. That is, for at
least one allpass filter in each branch, we must have H,(oco) = 0 which implies H,(z) can be factored as z~1 H(z).
In a systolic VLSI implementation, it is desirable to have at least one real delay from the input to the output of every
allpass filter, in order to be able to pipeline the computation of all of the allpass filters in parallel. Computability can
be arranged in practice by deciding on a minimum delay, (e.g., corresponding to the wave velocity at a maximum
frequency), and using an allpass filter to provide excess delay beyond the minimum.

Because allpass filters are linear and time invariant, they commute like gain factors with other linear, time-invariant
components. Figure 10 shows a diagram equivalent to Fig. 9 in which the allpass filters have been commuted and
consolidated into two points. For computability, a single sample of delay is pulled out along each rail.

10



y"?n) y+(n-3)

- 3
.« o z-1 . ZHa(z) . .
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Figure 10. Section of a stiff string where the allpass delay elements are consolidated
at two points, and a sample of pure delay is extracted from each allpass chain.

If H,(z) denotes the consolidated allpass transfer function, it can be designed by minimizing the phase-delay error,
where phase delay is defined by
LH, (e
Pw) & - ——%-)— (Phase Delay)

It can be shown that minimizing the Chebyshev norm of the phase-delay error, || P(w) ~ co/c(w) ||oo, approximates
minimization of the error in mode tuning for the freely vibrating string (Smith 1983). Since the stretching of the
overtone series is typically what we hear most in a stiff vibrating string, the worst-case phase-delay error is a good
choice in musical acoustics.

A robust method for designing allpass filters with a prescribed group delay is given in (Yegnanarayana 1982). It
is straightforward to adapt the method to approximate phase delay. To model stiff strings, the allpass filter must
supply a phase delay which decreases as frequency increases. A good approximation may require a fairly high-order
filter, adding significantly to the cost of simulation. It is therefore important to consolidate the loop delay as much as
possible to minimize computational cost. However, note that to a large extent the allpass order required for a given
error tolerance increases as the number of lumped frequency-dependent delays is increased.

Finally, for simple *‘piano string synthesis,’’ the counterpart of Fig. 7 is shown in Figure 11 (Allen 1983). Of course,
in practice, losses are also added for realistic behavior.

+ Output +
y(n) N samples delay > ¥ (n-N)

< Allpass

Figure 11. Simulation of a rigidly terminated, stiff string. All NV allpass filters H,(z)
have had a minimum sample of delay extracted, corresponding to the delay at f,/2, and
have been combined at a single point. The delay-line length NV is the number of samples
in K periods of fx, where K is the number of the highest partial supported (normally
the last one before f,/2).

The General Linear Case

Given both frequency-dependent losses and dispersion, the wave equation is

"no_ "

ej + p(w)g = Ky" — sy
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In this case, the filter which replaces each delay element has a fully general frequency response

H,(ejw) a G(w)e—ijco/c(w)

Since every digital filter has a unique decomposition into a zero-phase filter in cascade with an allpass filter, we have
H,(z) is simply a general digital filter transfer function. The general approximation problem is then to minimize
|| Ha(e7) — 2™« Hy(e’) || with respect to the numerator and denominator coefficients of H,(e’“), which are now
largely unconstrained. (The filter must be stable, and we may wish to keep the condition H,(1) = 1. The term
2™+ corresponds to the delay which is “‘pulled out™ of each generalized unit delay filter. Above, we suggested
mg = co/c(7 f,) as a reasonable estimate for stiff strings. In order to allow the zero-phase part to span symmetrically
to the left and right of the current time, a reasonable modification is to use m, = [(N; — 1)/2][co/c(wo )] which shifts
the impulse response left by half the natural delay of the zero-phase part at some intermediate frequency wp.

Since general, linear, time-invariant filters commute, the simulation diagram can be simplified exactly as in figures 10
and 11. A qualitative depiction of the general case is shown in Figure 12.

+
y(m
oo Pure Delay > Summary Filter
y (nT,0) y (£,x)
yn)
vee i Summary Filter = Pure Delay

Figure 12. Simulation of a general string section. All distributed losses and dispersion are ‘‘swept
out’” of the string, leaving pure delay behind, and are consolidated, or ‘‘lumped,”’ into discrete

‘‘summary filters.”

Concemning higher order terms in the wave equation, the general, linear, time-invariant, differential equation is

ad 6’°y(t,x) ol 'y(t, )
,;a* otk ";ﬁ‘ ol

which yields the algebraic equation,
o0 o0
Z aj sk = Z ﬂw'
k=0 1=0

Solving for v in terms of s is, of course, nontrivial. However, in specific cases, it is plausible to expect one
could determine the appropriate G(w) and ¢(w) by numerical map construction. For example, starting at 5 = 0,
we have also v = 0. Stepping s forward by a small differential jaw, the left-hand side can be approximated by
ao + oy aw. Requiring the generalized wave velocity s/v(s) to be continuous, a physically reasonable assumption,
the right-hand side can be approximated by 3y + ;av, and the solution is easy. As s steps forward, higher order
terms become important one by one on both sides of the equation. Each new term in » spawns a new solution for v
in terms of s, since the order of the polynomial in v is incremented. It is quite possible that homotopy continuation
methods (Morgan 1987) can be used to keep track of the branching solutions of v as a function of s. For each
solution v(s), let v,.(w) denote the real part of v(jw) and let v;(w) denote the imaginary part. Then the solution
family can be seen in the form exp{jwt + v(jw)z} = exp{+v,(w)z} - exp{jw (t £ vi(w)z/w)}. Sampling gives
exp{xv,(w)Zm} -exp{jw (tn £ Tm/c(w))} = [exp{Ev (W) X}™ -exp{jw (n £ m) T(w)}, where c(w) = w/vi(w),
and X = ¢(w)T(w) as before. Thus, a completely general map of v versus s, corresponding to a partial differential
equation of any order, can be translated, in principle, into an accurate, local, linear, time-invariant, discrete-time
simulation.
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Linear Extensions

Beyond the vibrating medium itself, there are couplings to the outside world to consider. For example, a violin
model would require attachment of the string to a digital filter which represents the body of the violin (Cremer 1984,
Smith 1983). The violin body, would then radiate into a room model (reverberator), etc. In a piano simulation, it is
desirable to couple strings together (Weinreich 1979, Jaffe and Smith 1983). Even to simulate a single string properly
requires simulation of two transverse modes of vibration, in the vertical and horizontal planes; these modes couple
together linearly through the bridge, and nonlinearly along the string via neglected terms in the differential equations
(Elmore and Heald 1969). In the bowed string, torsional waves are known to be important (Cremer 1984, McIntyre,
Schumacher, and Woodhouse 1983).

In practical simulations of musical strings and air columns, there is need of another allpass filter in the delay loop
which provides fine tuning of the perceived pitch of the vibration. A tuning technique using a first-order allpass
filter is described in (Jaffe and Smith 1983). Also in that paper are techniques for simulating a moving *‘pick,”’
sympathetically vibrating strings, providing a ‘‘dynamic level’’ illusion, and other items of interest to the musician.
The tuning-allpass technique can be extended to provide smooth vibrato as though the player were moving a finger
along the fingerboard (Smith 1983).

Nonlinear Extensions

A first set of nonlinear extensions has to do with nonlinear coupling such as occurs in the bowed string and woodwinds.
The basic theory of the bowed string is covered in (Cremer 1984), and in a unified fashion for bowed strings,
single-reed woodwinds, and jet-driven instruments, such as the flute and organ pipe, by (McIntyre, Schumacher, and
Woodhouse 1983).

In this paper, only linear systems arising from a linear set of differential equations have been discussed. However, the
very fact that the simulation produces physically meaningful variables makes it straightforward to extend to nonlinear
behavior. The general technique is to ‘‘watch’’ some variable, such as displacement of the string, or instantaneous
pressure in the air column, and modify the otherwise constant coefficients in the differential equation for the medium.
Below is a list of some of the possible applications of this approach:

¢ Simple ‘‘soft clipping’’ can be implemented for both strings and air columns by watching the displacement and
attenuating it when it reaches the elastic or adiabatic limit of the medium. In other words, the loss factors can be
made amplitude-dependent.

¢ String tension increase causes pitch increase. The delay in a section of string can be reduced as displacement is
seen to increase, or the integral of the displacement can be used to control a more global sampling rate. In strings
with low tension, the initial decay of the pitch gives a ‘‘twang”’ to the sound.

o The bow-string theory does not provide a restoring force due to tension increase caused by string elongation. By
watching the string length as is done for pitch-sharpening simulation, the proper restoring force can be added.
Without this force, it is easy for the string to ‘‘stick’’ to the bow and depart with it forever.

o In stiff string simulation, the ‘‘curvature” can be watched, and when it increases beyond a certain point, a
corrective exponential shape can be added to the current string displacement, thus ‘‘rounding’’ what is becoming
a ‘‘corner’’ in the string. This technique compensates for having neglected the exponentially decaying solutions
to the differential equation for the stiff string.

¢ In air columns, local increases in pressure cause faster propagation of sound. (In strings, on the other hand, local
tension increases are so rapidly propagated throughout the length of the string that they are best regarded as global
tension increases.) By shrinking the unit delays in regions of the simulation where instantaneous pressure is high,
according to standard first-order approximations for nonlinear propagation in air (Beyer 1974), the sharpening of
wave crests as in ‘‘shock wave’’ formation can be simulated. Such an effect may be important in the simulation
of brasses and other instruments where the pressure near the mouthpiece gets large enough to enter the nonlinear
regime.
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¢ Bending hysteresis in strings can be simulated by watching the transverse displacement and velocity and applying
a force correction.

¢ Nonlinear mode coupling of string vibration modes can be implemented.

¢ From the absolute flow and known area function in an air column or ‘‘acoustic tube,”’ it is possible to predict the
formation of turbulence at a constriction. This might enable higher quality simulation of voice, flutes, and the
like, by automatically injecting the proper filtered noise at the right place in the simulation.

e From the absolute flow in an air column, the pressure due to the Bernoulli effect can be computed. This pressure
can be used to compute forces on the walls with practical applications such as pulling reeds together in a bassoon
model or the vocal folds together in a vocal synthesis simulation (Cook 1990).

o From the absolute flow and detailed acoustic geometry, the type of flow can be predicted, i.e., whether it is
laminar, turbulent, vortex shedding, etc., and where jets may form, where flow separates from a wall, and so on.
Some relevant observations appear in (Hirschberg 1990). Knowledge of flow details can provide the information
needed to add losses, delay modulation, radiators, and/or filtered noise in order to maintain numerous acoustically
important phenomena.
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