CENTER FOR COMPUTER RESEARCH IN MUSIC AND ACOUSTICS
MAY 1989

Department of Music
Report No. STAN-M-60

DMIX:
AN ENVIRONMENT FOR COMPOSITION
Daniel V. Oppenheim

CCRMA
DEPARTMENT OF MUSIC
Stanford University
Stanford, California 94305

© copyright 1989 by Daniel V. Oppenheim

DMIX:

AN ENVIRONMENT FOR COMPOSITION
Daniel V. Oppenheim

Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University
Stanford, CA 94305
Dan%CCRMA-F4@Sail.Stanford.edu

Abstract

The integration of real-time editing, highly interactive graphics, functional
programming and alphanumeric coding are important features of Dmix -- an
object oriented environment for Computer Aided Composition. Fast turn-around
times encourage compositional experimentation. Music objects can become the
tools which modify other music objects, thus improving the correlation between a
desired musical result and the means for obtaining it.

Foreword

the 'problems’ of Computer Music are no longer that of technology but
rather of our ability to control it (Mathews, 1989).

Providing the means to easily express musical ideas, to experiment with them,
and to organize them into a musical composition seems the essence of Computer
Aided Composition. It is becoming generally recognized that the ability to
provide such means is, nowadays, less a factor of synthesis capability
(technology) and more that of environment design, or more specifically—the
user interface. Designing a 'good' interface is by no means trivial (Oppehneim
1986). In fact, it seems safe to assume that no two composers would select the
same environment, interface, or tool for handling a given musical problem.
This choice is not only personal but also differs as progress on a composition is
made.

BRIEF OVERVIEW

Dmix is an object-oriented framework for creating, editing and interacting with
music, and is implemented in Smalltalk-80 (see Pope 1989, 1987). Its main
motivation was to design an easy-to-use and yet flexible environment that has a
uniform user-interface, that is easily extendible, and that is independent of
any synthesis hardware (see Oppenheim 1986, 1987). If hooked to a real-time
synthesizer, editing can be carried out in real time with the provision of
instantaneous audio and visual feed-back (see Mathews 1970, Buxton 1980). Dmix
can also be used effectively as a high-level user-interface to non real-time

-1-

Dmix: An Environment for Composition

software-synthesis packages or in conjunction with environments such as PLA
and SAMBOX (Schottstaedt 1984).

A major goal in designing the user interface was to enable composers to work
with minimum interruption of the creative process—once a musical idea has
formed it should be easy to find a way to implement it; during implementation
the composer should not have to spend time writing code or consulting
operating manuals. Dmix offers a rich variety of tools for creating, editing and
modifying music objects. At any point the composer may choose to work via text
editors, graphic editors, real-time editors, applicative (functional)
programming, or conventional alphanumeric programming. All tools are
equally available to the user at all times and may be used in any sequence or in
conjunction with each other. Each tool is simple in conception and therefore
easy to use. Tools are easily extendable and can quickly be tailored to comply
with specific needs. Beyond that, all of Smalitalk's standard features are readily
available: objects may be created, inspected and modified by writing Smalltalk
code.

A unique feature in Dmix is the ability to create tools directly from music
objects and vice versa (see example 3). This enables composers to think of tools
and of ways to use them in more familiar musical terms that may help correlate
between a desired musical effect and the means to produce it. This is also
significant in that it offers alternative ways to deal with important musical
concepts such as motivic treatment and development.

Editors

Classes for editing include TextEditors, GraphicEditors, RealTimeEditors, and
HierarchyEditors (note that class names are capitalized in the Smalltalk
convention). Whenever an edit view is opened, a new music object is created
and the original is kept unchanged. The user can play, inspect or open
different editors on any of the two versions and compare them. Versions of the
new object can be saved as work progresses; a final save will replace the edited
version with the original throughout the system.

TextEditors benefit from every music-object's ability to save and create itself
from an ASCII stream. The user may switch between absolute or relative time-
tagging and all standard text-editing facilities are available.

GraphicEditors are flexible work spaces that can modify events via the mouse,
alphanumeric coding, applicative programming, or real-time editing. Mouse-
oriented editing allows inserting events, deleting, fitting parameters to lines
and curves, and so on. Music Events can be grouped in Selections that enable
higher level editing actions. Selections can be dragged, stretched, copied into
other views, etc. Selections can also be modified by blocks of code from the
editor's CodeDictionary (to be described, see example 2). More powerful actions
can be carried out by applying Modifiers to Selections, as will be described (see
example 3).

Real-time editing is accomplished by connecting external input devices, such as
joy-sticks, faders or Midi controllers, to specific parameters of the music events
(see example 1). During an edit session a copy of each music object is made just
before it's playback time, its parameters are computed in relation to the input
device's position, the new object is played and the EditView displays the new

-2 .

Dmix: An Environment for Composition

parameters over the original. Both audio and visual feedback are instantaneous
and the user may adjust the input device accordingly. The original music
objects remain unchanged and new EventLists are automatically created for the
edited objects and for the input-updates.

HierarchyEditors manipulate the hierarchical structure of a composition and
provide a high level view of the music (see example 4). They are especially
useful in managing large compositions, where each section is composed of
many layers. Each section could be displayed and treated as a single object, or
opened up to display all of its components to allow for detailed editing. They may
be used in a top-down or bottom-up approach, or in any combination of the two.

Extendibility via CodeDictionaries

The ability to perform high level operations is both the advantage and
drawback of any tool. Problems begin when musical situations arise that are
slightly different than those for which it was intended. In such cases the user is
compelled to either compromise his initial concept or to interrupt the musical
activity in order to design the necessary tool. In Dmix this problem is overcome
by using CodeDictionaries.

CodeDictionaries provide the power and flexibility of general programming
with minimal interruption of musical activity. They store blocks of compiled
Smalltalk code and are used by tools to manage the code that determines their
action (see the LegacyDictionary in Diener 1989). For example, a Filter can be in
bandPass or bandReject modes, depending upon the block selected by the user.
Inspecting the dictionary pops up a window in which the user can modify
existing code or write new code that is immediately compiled and ready for
execution (see example 2). The real advantages of CodeDictionaries become
apparent during a work-session as they can be used within the musical context
at hand and they enable the easy modification and extension of any tool's
functionality while it is being used.

Modifiers

Modifiers are tools that are typically applied to notelists in order to modify some
parameter as a function of time (see Mathews 1970, Backus 1978, Harrison 1985,

Kopec 1985, Dannenberg 1986). For example, a Function could set, offset, or scale
amplitudes in a notelist (see example 3). Other Modifiers include Tables, Filters,

Quantizers, and ModifierInterpolators.

Each Modifier represents data (i.e. brake points in the case of the Function) and
some mathematical operations (*, /, +, =, etc.). Data can be derived from music
objects and then edited with text or graphic editors. The algorithms that
implement the mathematical operations are stored in CodeDictionaries so that
they may be accessed and modified.

Music Objects

Dmix merely manipulates music objects, and it does so by sending them
messages. Music is therefore represented by the collection of objects and
messages that produce it. A single abstract class - MusicEvent - represents all
music objects. It has two abstract subclasses: TerminalEvent and EventList. A

-3 -

Dmix: An Environment for Composition

TerminalEvent could represent a single note, one sample, an entire sound file, a
parameter update, a Smalltalk message, a Midi event, a DSP synthesis patch, etc.
EventLists are collections that contain TerminalEvents and/or other EventLists.
Protocol in these three classes defines generic playing methods, ensures that all
music objects will respond to Editors and Modifiers in a uniform way, and
provides several formats for saving and restoring objects from disk.

There is no fixed notion of a 'score’ in Dmix and the user is free in constructing
a model for his music. If synthesis is carried out by a Music-V-like package the
user may want to model notelists and think of their collection as a score; if Midi
is used the user is able to emulate Midi tracks; a more complex tree structure
could also be used (such as 'TTree', see Diener 1989) —Dmix is unbiased. There is
protocol in EventList for managing arbitrarily complex hierarchies, parsing
and enumeration. .

MUSIC EXAMPLES

Example 1: Interactive Real-Time Editing

The Bach prelude in C major is a Midi sequence generated in Smalltalk and will
be used in several examples. Figure 1 shows two EditViews open on the same
prelude. The bottom view is monitoring pitch (midi key number) and duration
in a piano-roll notation. The top view is monitoring velocity; note that all notes
have equal velocity. Each view was assigned to a separate Input device for
simultaneous real-time editing. The black continuous lines were drawn in real-
time and indicate the new parameters. During editing a copy of each music
object is made just before it's playback time, it's parameters are updated
according to the current position of the Input device, the copy is played and the
EditView displays the new parameter value over the original. Both audio and
visual feedback are instantancous and the user may adjust the input device
accordingly.

m S|m #velocity: Bach Prelude In C .Edit 1 |[877] (0:127)
0.0

]
HERTTEIARALZS SIHRHEERITINRARELSI SIHLLTERRITIAAAAES $3 1 UHHERTXINARRESE S FILE

(2Ll le

Figure 1:

S | m [fas Bach Prelude In C .Edit 1 [87] (0:127)

Real-Time
scaling.

It should be noted that scaling empty EditViews will create new events with
parameters that are analogous to the gestural input. A useful example of this
feature for Midi could be the creation of a system-exclusive stream for
controlling an existing Midi-track. This can enable continuous control of
synthesis parameters not readily available through standard Midi techniques.

Dmix: An Environment for Composition

Example 2: using CodeDictionaries

This example demonstrates the ability of applying a block of code to a Selection
of music events within a GraphicEditor. The top edit view displays the selected
notes enclosed in a rectangle. Selecting the do Block option popped open a
CodeDictionaryInspector in which a new block named crazy was written. The
entire code for crazy can be seen above the EditView. The black notes in the
bottom view are the result of applying crazy to the selected notes: their onset-
times were shifted back two seconds, they were transposed two octaves up and
their duration was lengthened by a factor of three. The remaining notes, in
gray, are unchanged.

CodeDictionary

..............................

ECrazy i [itime revent |
setDur
setTime time absoluteTime: time absoluteTime - 2000,
transpose | event pitch: event pitch + 24,

event duration: event duration = 3]

fed Sm |

=

Figure 2: Applying a block of code onto a Selection of notes from
the Bach prelude.

Example 3: Functional Programming with Modifiers

This example demonstrates the ability to apply Modifiers to music objects (see
Mathews 1970, Backus 1978, Harrison 1985, Kopec 1985, Dannenberg 1986). Since
both music objects and Modifiers are merely representations of data, each can
be created with data derived from the other. Figure 3 is an example of mapping
the rhythm from a Midi recording named Jazzy Tune onto the Bach prelude. A
Function is first created from the Jazzy Tune and then applied to the prelude.
The entire process was completed in less than a minute.

Dmix:

Figure 3: Mapping
rhythm from a
Jazzy tune onto
the Bach prelude.

Step 1: A Function is
created from the notes
displayed in Jazzy
Tune. Begin times and
pitches are read as X-
Y coordinates and
stored in the
Function's Table.

Step 2: The Function
is applied to the Bach
prelude in =Rhythm
mode. This mode is
one of several stored
in the Function's
CodeDictionary and
effects only the time-
domain. This code may
be edited by clicking
the =Rhythm button.

Step 3: As a result,
begin-times of notes
in the prelude are
shifted to match the
closest begin-time in
the Jazzy tune.

An Environment for Composition

m Slmlirt]

Jazzy Tune .Edit 1 lra21 ¢0:127)

0.0 [0.0 - 34.49] 13.19

R N . oy R 0?10 g0 gy

1

FunctionView: created from 'Jazzy Tune .Edit 1’
Times: [0.155 : 13.159] Values: [0 127] {42}

lines

Zr| @ | fip & [10] D

=Rhythm

2

Bach Prelude In C .Edit 1 {[877 (0:127)

Ll S m]|rT]|

0.0 [0.15 - 13.35]

Each Frelude In B Edit 2

0.0 [0.15 - 13.35] 13.18
3

Note that the selected mode in this example, =Rhythm, has effected only the
time-domain. Other modes could also modify the pitch-domain, or both.
Applying the Function to an EditView on a parameter other than pitch would
modify that parameter. A Function is also capable of scaling and transforming
the data in it's Table into any time-value window coordinates. Applying it to
another Function would produce a new, more complex, Function.

Example 4: Hierarchy Editors

HierarchyEditors open on EventLists that contain other EventLists, and can
manipulate the hierarchical structure of a composition (see figure 4). In this
example, Composition consists of two themes. Themel is the product of two

layers: DSP flute and Midi

and vocals.

piano. Theme2 is made of glass sounds, wind

Dmix: An Environment for Composition

The HierarchyEditor distinguishes between EventLists that contain
TerminalEvents, i.e. the layers, and those that contain yet other EventLists, i.e.
the themes and composition. A layer is considered a child and colored gray
whereas each theme is a father and colored black (note that this distinction
results only from the way that music objects are being used; in fact, there is
nothing to prevent a father from being inserted into one of his own children).
The time relationship between objects can be adjusted by dragging their
display; music objets can be inserted anywhere in the tree allowing the addition
of new layers, themes or levels; any element can be spawned and edited
independently—if it is a child then a regular EditView will open.

A ‘'hide' feature enables the hiding and redisplaying of any father's children.
This allows the composer to group elements that form a higher level idea and
treat them as a single object. Any edit action performed on a father will also
effect its children, hidden or not. It is always possible to redisplay hidden
children in order to rework them.

Editing: Composition

ﬂ + View | - View | + Signal Help FEMQ

T S mrT] 7] 9 | G ldelete] hide [spawn| &5 | [8] (0:3)
0.0 B Hwind [20.0
Level 2
T YTYIEeal |
o o Gt 12 I Level 1

Figure 4: Hierarchy View.
Numbers in square brackets indicate the number of Events in each
EventList

Conclusions and Future Prospects

Dmix provides a framework for composing that is independent of synthesis-
hardware. During the past several months it readily adapted to diverse
compositional activities ranging from algorithmic composition to interaction
with a performer in real-time. Fast turn-around times, audio and visual
feedback, and real-time editing capabilities, encourage compositional
experimentation and help improve the correlation between a desired musical
result and the means for obtaining it. A feature that seems particularly
significant for composition is the ability to transform music objects into
Modifiers that can, in turn, be applied to other music objects. This offers
composers alternative ways of thinking about transforming musical materials
and may lead to new approaches in dealing with musical concepts such as
motivic treatment and development.

Dmix: An Environment for Composition

Dmix has just made it's first step into the world and many refinements are yet to
be made. We would like to see the addition of components such as a more
meaningful music/sound representation (see Oppenheim 1987), synthesis
patch-editors, and sound file editing. However, it is hard to imagine that any
single implementation could encapsulate such a wide range of functionality
efficiently. We hope that a joint effort within the community might lead to a
formulation of a 'standard' in music-representation that will allow the sharing
of such resources between diverse music applications.

Availability

Dmix will be made available at no cost to interested parties. The author should be
contacted for details. ‘

Acknowledgements

It would be impossible to mention all the people at CCRMA who's constant
encouragement accompanied this project. Guy Garnett sparked off the initial
inspiration and helped construct the basic music classes. Lounette Dyer and
Glendon Diener aided in implementing the CodeDictionary. Amnon Wolman and
Richard Karpen were willing to be the first guinea-pigs.

References

Backus, J. 1978. "Can Programming Be Liberated from the von Neumann Style?,"
Communications of the ACM 21(8):613-641.

Buxton, W., Reeves, W., Fedrokow, G., Smith, K. and Baecker, R. 1980. "A
Microprocessor-Based Conducting System,” Computer Music Journal
4(1):8-21.

Dannenberg, R., McAvinner P. and Rubine. D. 1986. "Arctic: A Functional
Language for Real-Time Systems," Computer Music Journal 10(4):67-78.

Diener, G. 1989. "TTree: A Tool for the Compositional Environment," Computer
Music Journal 13(2):77-85.

Harrison, P. and Khoshnevisan, H. 1985. "Function Programming Using FP,"
Byte August 1985:219-232,

Kopec, G. 1985 "The Signal Representation Language SRL," IEEE Transactions on
Acoustics, Speech, and Signal Processing 33(4):921-932.

Mathews, M. and Moore, F. 1970. "GROOVE - A Program to Compose, Store, and Edit
Function of Time," Communications of the ACM 13(12):715-721.

Mathews, M. V. 1989. private communications.

Oppenheim, D. 1986 "The Need for Essential Improvements in the Machine-
Composer interface used for the Composition of Electroacoustic
Computer Music," Proceedings of the ICMC, the Hague.

Oppenheim, D. 1987. "The PGG Environment for Music Composition - a Proposal,"
Proceedings of the ICMC, Urbana Illinois.

Pope, S. 1987. "A Smalltalk-80 Based Music Toolkit," Proceedings of the ICMC,
Urbana, Illinois.

Pope, S. 1989. "Machine Tongues XI: Object-Oriented Software Design," Computer
Music Journal 13(2):9-22.

Schottstaedt, B. 1984. "PLA - A Tutorial and Reference Manual," CCRMA report
No. STAN-M-24, Department of Music, Stanford University.

3

