CENTER FOR COMPUTER RESEARCH IN MUSIC AND ACOUSTICS MAY 1988

Department of Music
Report No. STAN-M-52

AN ENVIRONMENT FOR THE ANALYSIS, TRANSFORMATION AND RESYNTHES
OF MUSIC SOUNDS

Xavier Serra

Research sponsored in part by
The System Development Foundation

CCRMA
DEPARTMENT OF MUSIC
Stanford University
Stanford, California 94305

An Environment
for the Analysis, Transformation and Resynthesis
of Musical Sounds

Xavier Serra

Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University
Stanford, California 94305

This paper describes an environment developed at CCRMA for the analysis, transformation, and resyn-
thesis of sounds. It has been written on a Lisp Machine workstation, using an Array Processor to speed
up the signal processing operations. The program is designed as a research tool and a sound manipulation
workbench for music composition.

Introduction

One of the traditional computer applications in music is the manipulation of prerecorded sounds
(digitized sounds). These manipulations can be simple, like looping (a section of a sound repeated over
and over) and mixing (adding sounds), or they may involve soffisticated signal processing techniques such
as the Short-Time Fourier Transform (STFT) or Linear Predictive Coding (LPC) (Moorer 1979, Schafer and
Rabiner 1975). There are already many commercial products for music applications that use the somewhat
simpler techniques.

The environment presented in this paper integrates in a single program the more advanced techniques,
most of which are still in an experimental stage. With this program the user has access to a variety of
signal processing tools used to analyze sounds, transform the analysis data and resynthesize the sounds
from the transformations.

The motivation for developing the environment was to make possible the research for a Ph.D. Disser-
tation. This research project involves the analysis, transformation and resynthesis of inharmonic musical
sounds by means of a particular implementation of the Short-Time Fourier Transform called Parshi (Smith
and Serra 1987) in conjunction with LPC (Linear Predictive Coding). The hope is that such a program-
ming effort will not only be used to complete the dissertation work but that it can be further used for other
applications. It may especially be useful to the composer who whishes to create new sounds with the
techniques available on the program to later integrate them in a composition.

The next section describes the software and hardware environment on which the program has been
developed. Then follows a description of the actual program.

Description of the System

The program has been developed on a Lisp Machine workstation (Symbolics LM-2) and makes use of

1

an array processor (FPS AP-120B). For sound conversion a set of custom made 16-bit A/D and D/A con-
verters are being used. The software uses tools borrowed from SPIRE (Speech and Phonetics Interactive
Research Environment).

The Lisp Machine

The Lisp Machine is conceptually unlike any other computer (Weinreb and Moon 1981). It was
originally developed at the M.I.T. Artificial Intelligence Laboratory as a means of effectively writing, using,
and maintaining large interactive Lisp programs. The LM-2 was the first commercially available Lisp
Machine, introduced by Symbolics in 1981.

The system software of the LM-2 constitutes a large-scale programming environment, with over half
a million lines of system code accessible to the user. Object-oriented programming techniques are used
throughout the system to provide a reliable and extensible integrated environment without the usual division
between an operating system and programming languages. Zetalisp is the Lisp dialect used on the LM-2,
which is closely related to the Maclisp developed in the 1970s, and to the Common Lisp specification.

The main characteristics of the LM-2 hardware are:

+36-bit processor

evirtual memory

shigh resolution black and white display
ecolor display

eMmouse

ededicated 300 Mbyte disc drive
+Chaos network

sUnibus

At CCRMA there are four LM-2s on the Chaos network. They share a tape drive for permanent
storage and are connected to the main-frame computer of the center (Foonly F4) via Ethernet. Through
the F4 the LM-2s have access to several printing devices and the D/A and A/D converters. Fig. 1. shows
the hardware configuration of the system.

Flavors

Our program, like all the LM-2 software, makes extensive use of objects, a programing style which
was first used in the Smalitalk and Actor families of languages.

Object-oriented programming deals with objects, which are instances of types, and generic operations
defined on those types. The definition of a type is done by defining the data known to the type and the
operations that are valid for those data. Then an instance of that type can be created. Each instance
maintains a local state and has an interface to the world through the defined operations. Thus, in object-
oriented programming, data and procedures are encapsulated within an instance of the type.

The support of object-oriented programming on the LM-2 is done through a collection of language
features known as the Flavor System. Flavors are the abstract types; methods are the generic operators.

2

Symbolics Disk Century Data
s Trident
L2 Controller, Disk Drive
.5 Mwords
32 bitsiword 300 Mb
Color TV
— Interface Color disptay
Chaosnet
Interface
Console display
3.8 Mo v keyboard
Interface mouse
To Chaosnet
Kenne
900(5’,y
110 Tape Tape Drive
Interface Controller
To other 1600 bps
devices RS-232 45 ips
Unibus
FPS Ethernet
AP-120B Interface
Digital Signal
rocessgor 10 Mb
22" Versatec
Printer-Ploter
Printer
Foonly E Interface ST -
To other oonly F4 rintronix
devices Matrix Printer
Moorer
POLY DAC/ADC
Digital Signal To audio switch
rocessor 16 bit, var.
sample rate

Figure 1. Hardware configuration of the overall system.

The objects are flavor instances that are manipulated by sending messages, which are requests for specific
operations.

The flavor dependencies form a graph structure; they are not constrained to be hierarchical as in
some languages that support an object-oriented style. Fig. 2 shows an example of flavor dependencies.

|data base mmin monitor—mmin]
|edlt options-misin [\ /displngable attribute-mixin
\nsw -attribute | memoized-computation-mixin |
| waveform-source-mixin] computed-attrihute]

| computed-attribute-from-waveform | | windowed-mixin

[sampled-mixin | | computed-attribute-from-windowed-waveform|

[computed-sampled-attribute-from—windowed-wauefnrm

LPC-analysis-flavor

Figure 2. Example of flavor dependencies.

The Array Processor

Connected to the Unibus of one of the Lisp Machines is the array processor (AP-120B). The AP-120B
(from Floating Point Systems, Inc.) is a high-speed (167-ns cycle time) peripheral floating-point Array

4

Processor, which works in paraliel with the host computer. Its internal organization is particularly well
suited to performing the large numbers of reiterative multiplications and additions required in digital signal
processing. The highly parallel structure of the AP-120B allows the “overhead” of array indexing, loop
counting, and data fetching from memory to be performed simultaneously with arithmetic operations on
the data. This allows much faster execution than on a typical general-purpose computer, where each of
the above operations must occur sequentially.

The AP-120B comes with a Math Library which includes over 350 routines covering a wide range of
array processing needs. These routines, written in AP Assembly Language, can be called by functions
on the Lisp Machine or other programs written in AP Assembly Language. The AP performs arithmetic
operations using a 38-bit floating-point format: one exponent sign bit, nine exponent bits, one mantissa
sign bit, and 27 mantissa bits. The binary point is always located between the mantissa sign bit and the
most significant bit of the mantissa.

The combination of the Lisp Machine and the Array Processor allows one to maintain a high level of
both numeric and symbolic processing power, which is very appropiate for our application.

SPIRE

SPIRE is the Speech and Phonetics Interactive Research Environment, which runs on Symbolics Lisp
Machines (Cyphers 1985, Kassel 1986, Roads 1983, Shipman 1982). It is a program for manipulating
speech signals and computations on those signals interactively. In addition, it can be used as a basis for
developing other speech processing systems and can be extended and customized by the user to perform
specific tasks.

SPIRE was implemented by David Shipman at MIT in 1982. Since then the program has been
modified by many members of the Speech Communication Group of MIT and runs on the last models of
Lisp Machines built by Symbolics. The original SPIRE was designed for collecting speech data and looking
at transformations of it, but the recent versions have become more general and allow other applications.
On the LM-2 the last version of the SPIRE that can be run is 1984 version. There has been a few changes
on the Zetalisp from the time of the LM-2s, and SPIRE is only supported for the last releases of the Lisp
Machine software.

SPIRE's basic tools can be used on a system for the analysis, transformation and resynthesis of
musical sounds. However some tools are very specific to Speech and have to be changed or completely
rewritten, and some others that we would like to have are not available in SPIRE. Therefore our program
is a combination of parts of SPIRE that have not been altered, others that have been rewritten, plus code
written from scratch.

Description of the Program

The program is entirely written in Zetalisp and it makes extensive use of the Flavor System available
on the LM-2. The user interface is based on the display system from SPIRE. The signal processing
computations use the AP-120B and the collection of array processing utilities that come with it. The
control of the AP-120B has also been borrowed from SPIRE.

5

From SPIRE are taken the concept and part of the implementation of the three basic entities that
make up the program. These are: utterance, Computation System, and Display System.

Utterance

An utterance (a term borrowed from speech and not very appropriate for music) is the basic data struc-
ture of the program. The utterance is lmplemented as an object and usually groups together information
related to a single sound, including:

+a pathname where the utterance is stored
ea digital representation of the sound
ea set of computations based on the digitized waveform, called attributes

The acoustic signal is digitized with the A/D converters from the Foonly F4 and then it is stored as the
original waveform of an utterance on the Lisp Machine. All the analysis, transformations, documentations,
or any kind of data that we may think of can be stored on the utterance in the form of attributes.

After a few attributes have been stored in a single utterance, the size of the utterance becomes very
big and difficult to handle. It is best to save only the attributes that are not computed (documentations)
and the ones that are hard to recompute (pitch trajectories or elaborate transformations). Once we have a
synthesized waveform that we want to save, we may store it as the original waveform of a newly created
utterance.

Computation System

The computation system is responsible for analyzing, transforming, resynthesizing, and generally
manipulating utterances. This includes the control of the array processor, and all the signal-processing
tools required for the computations.

The control of the array processor has been borrowed from SPIRE and includes an assembler, a
debugger, a library of canned AP routines supplied by the manufacturer, and software tools for loading
the programs into the AP and transferring data to and from the AP.

Routines for the Array Processor can be written in AP-120B assembly language or in FPS-Lisp. FPS-
Lisp is a highly-constrained Lisp subset which compiles into AP assembly language. The FPS-Lisp facility
is primarily used to chain together or iterate through sequences of precoded routines which are available
in the Math Library. For most of our purposes the FPS-Lisp facility is sufficient and there is no need to
write in assembly language.

Signal processing tools are built on top of the low level AP routines and include: Spectrums, STFT
(Short-Time Fourier Transform) and LPC (Linear Predictive Coding) for analysis and synthesis, pitch de-
tection, filtering, spectrograms, and a modification of the traditional STFT called Parshl (Smith and Serra
1987). Other tools are available for editing waveforms and their analysis results, and for mixing sounds.
Since the program keeps the basic SPIRE characteristics, it is easy to add new computauons or modify
the existing ones.

The computation results are called attributes, which are objects or flavor-instances, and they are
computed by having messages sent to them. For example, an FFT would be an instance of the flavor

6

called “FFT-flavor”. The instance would be first created and then it would be computed by sending
messages to it with the input waveform and the values of its control variables. An attribute may receive
a computing message from the display system, from another attribute which requires its data, or from a
specific function call from outside the display system.

Display System

The display system allows a complete and interactive control over the computation system and utter-
ances. it is based on the window system of the Lisp Machine, which is a very powerfull tool for dealing
with displays.

The system has three different window levels. The higher one is called the /ayout , the middle one
the display and the bottom one the overlay . The data of the attributes is displayed on the overlays. Fig.
3. shows a typical organization of the display system.

| top-level]

v
layou

| t |
|

|
[everis] L‘u/n Goriay] l_’—iﬂ

display
management

computation
management

attribute

attribute attribute

[Wtiersnce)

Figure 3. Example of a Display System.

The overlays are the simplest display objects that the program manipulates, and they describe how
the values are drawn on the screen. They come in two varieties:

eattribute overlays, which draw the values of an attribute
ebackground overlays, which draw utterance-independent annotations

The background overlays are mainly used to display the two different kinds of cursors that are available
and also for background grids or axis. The overlays are tranparent. Two overlays can occupy the same
area of the screen and both will be drawn.

A display is a rectangular area of the screen containing one or more overlays. Unlike overlays,
displays are not transparent. Partially covered displays will be hidden from view.

A display contains information which can be accessed by its overlays. For example, we may want to
draw two overlays on a common axis. The scale and position of each overlay's axis default to the values
stored in the containing display.

The overall screen is managed through layouts. Each layout specifies a collection of displays and their
positions. There can be any number of layouts, but only one is displayed at any time. Some layouts have
been designed in advance and come with a set of displays and overlays to be used for a specific task. For
example there is one layout to study the problem of time-domain windowing of waveforms. Another one
is designed to look at different aspects of the analysis results of Parshl. But the normal layouts are called
“blank” layouts. On these, the user defines the structure of displays and overlays interactively during every
particular session. Fig. 4. shows an example of a layout.

Conclusion

A program has been presented that integrates a set of tools for the purpose of analyzing, transforming
and resynthesizing musical sounds. Its front end is an interactive display system from which the user can
control the different tools available. Waveforms can be played and displayed in a variety of ways. The
results of analyzing these waveforms with different signal procesing techniques may also be displayed.
The analysis data is manipulated visually and new waveforms are generated by using the transformed
analysis data. These synthesized waveforms can even be manipulated with the same set of tools from
which they where obtained.

Work is underway to assert the possibilities that such a set of tools can offer to create new sounds.
In particular we want to come up with indications of how to use Parshl and LPC-related techniques to
manipulate inharmonic sounds (Serra 1988, Serra 1985, Smith and Serra 1987).

The specific issues that are being adressed in the context mentioned are:

stime domain windowing

epreprocessing techniques

stime varying analysis

eseparation of deterministic from noisy part of a sound
ecombined use of LPC-Parshi

esound transformations

0.8467(0.4228)

& B,

0.0000 CELLO Original Waveform 1.0000
0.8467(0.4228)
2 1188.
, P g6. 1 -
0. CELLO LPC-Spectral-Slice 5000.

0.8467(0.4228)

-— r——— - —
— S, ——
—— I —
— - - — -— ———
e ~ ——1930-0Hz
L4 r r4
50-OHz
7U.OH2z
0.0000 CELLO PARSHL-analysis “~1.0000
0.8467(0.4228)
l ' 1
{n
0.0000 CELLO LPC-Synthesis 1.0000

Figure 4. Example of a layout.

Acknowlegments

| wish to thank Tovar, programmer/analyst at CCRMA, for the incredible job of maintaining the LM-2s
running in perfect condition and creating very useful tools for them.

References

Cyphers, David S. (1985) SPIRE: A Speech Research Tool, Master's Thesis, Dept. of Elect. Eng.
MIT. May 1985.

Kassel, Robert H. (1986) A User's Guide to SPIRE, Speech Communication Group. MIT. 1986.

Moorer, James A. (1979) “The Use of the Phase Vocoder in Computer Music Applications,” J. Acoust.
Soc. Amer., vol. 26, no. 3/2, pp. 42-485.

Moorer, James A. (1979) “The Use of Linear Prediction of Speech in Computer Music Applications,”
J. Acoust. Soc. Amer., vol. 27, no. 3, pp. 134-140.

Roads, Curtis (1983) “A Report on SPIRE: An Interactive Audio Processing Environment,” Computer
Music J., vol. 7, no. 2, pp. 70-74.

Schafer, Ronald W. and Lawrence R. Rabiner (1975) “Digital Representations of Speech Signals,”
Proc. IEEE, vol. 63, pp. 662-677.

Serra, Xavier (1986) “A Computer Model for Bar Percussion Instruments,” International Computer
Music Conference, 1986, pp. 257-262.

Serra, Xavier (1988) “Analysis, Transformation and Resynthesis of Inharmonic Sounds for Computer
Music Applications,” in Overview, Center for Computer Research in Music and Acoustics (Recent Work),
ed. X. Serra and P. Wood, Department of Music Technical Report STAN-M-44, March 1988.

Shipman, David W. (1982) “Development of Speech Research Software on the MIT Lisp Machine,”
The Journal of the Acoustic Society of America, 103rd Meeting, Chicago, lllinois, 26-30 April 1982.

Shipman, David W. (1982) “The use of the FPS-100 from the MIT Lisp Machine,” Research Laboratory
of Electronics, MIT, 14 December, 1982,

Smith, Julius and Xavier Serra (1987) "PARSHL: An Analysis/Synthesis program for Non-Harmonic
Sounds Based on a Sinusoidal Representation,” International Computer Music Conference, 1987, pp.
290-297.

Weinreb, Daniel and David Moon (1981) Lisp Machine Manual, Symbolics, Inc.

10

