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Abstract

A construction is presented which shows that limit cycies and overflow oscil-
lations can be eliminated in all prevalent forms of lattice and ladder dig:tal filter
structures, whether or not they are time varying, and whether or not the input
signal is zero. In particular, the computationally efficient one-multiply iattice sec-
tion can be made free of limit cycles and overflow oscillations in the time-varying,
nonzero-input case. These results derive from a simplified formulation of digital

filters in terms of cascade transmission-line segments.

Another byproduct of the formulation is a new normalized ladder filter (NLF)
structure which has only three multiplies per section instead of four. The new NLF

is, in principle, a transformer-coupled one-multiply section.
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1. Introduction

Nonlinear effects of numerical roundoff error and overflow have plagued many
applications of digital filters, including, for example, signal acquisition and con-
ditioning systems. Artifacts can be particularly severe in the case of recursive fiiters.
For example. overflow can cause a “chain reaction” of overflows due to the presesce
of feedback {an overflow oscillationj, and roundoff error can result in a persistent.
non-decaying “buzz” or «whistle” which lasts forever after the input signal ceases

(a limit cycle).

Limit cycles and overflow oscillations can be suppressed by ensuring that the
effects of overflow and roundoff error do not increase “signal power” relative to that
of the ideal (infinite-precision) signal. Defining signal power and energy density
on the level of individual signal samples is possible by following closely the basic

physics of waves [2] or classical network theory [1].

The key point of this paper is that when digital filters are implecmented in the
form of classical cascade transmission line networks, a one-to-one correspcndence
can be found between each signal sample within the filter and a physical voltage or
current level in an ideal transmission-line. In this context, it is quite clear how to
define signal power for each delay register and for each sampling instant everywhere
within the filter network. From there, ensuring “passive” computations iIs quite
simple, even under arbitrary time-varying conditions. The only remaining task is
then to show that all lattice and ladder filter structures can be obtained from the
cascade transmission-line structure using network transformations which preserve
exactly the signal power associated with each sample in spite of roundoff error and

possible overflow.

The essential argument in eliminating limit cycles and overflow oscillations
is as follows. Once finite-precision computations are adjusted to avold increasing
signal power on roundoff or overflow, the signal power in the digital filter becomes
bounded above by the signal power in the corresponding infinite-precision filter.

In this way, the infinite-precision signal power at each internal node serves as a
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Lyapunov function for each internal node of the finite-precision filter. This means
that the signal power at each delay element for each sampling instant within the
finite-precision filter can never be larger than in the ideal case. Consequently, we can
interpret all numerical artifacts as attenuating distortion of the original signal—no
signal can persist beyond the ideal output as is characteristic of limit cycles and

overflow oscillations.

2. Background

One of the earliest treatments connecting the scattering formulation of classical
network theory to digital filter theory was carried out by Fettweis [3,4,5,7]. He
has used the term “wave digital filters” (WDF) for the filter structures obtained
by carrying classical continuous-time “wave variables” associated with networks of
capacitors, inductors, and resistors, into the discrete-time domain. Wave variables
are typically defined as z = v + Rt and y = v — Ri, where v and ¢ dcnote the
voltage and current at a terminal of an N-port network, and R is an arbitrary
“reference impedance.” In wave digital filter theory, the analog frequency variable
is mapped to the digital frequency variable via the bilinear conformal mapping
s = (z—=1)/(z + 1). In this formulation, it is not obvious to what extent the well-
known physical properties of the analog prototype filters have been carried over to
the discrete-time domain, particularly in the time-carying case. However, Fettweis
[5] and Meerkoétter (9] have made use of “pseudo-passivity” conditions to develop
digital filter structures which are guaranteed to be free of limit cycles and overflow

oscillations in the time-invariant, zero-input case.

The well-known ladder and lattice filters used in speech modeling and spectrum
estimation (8,10,11,13,16] and the more recent “orthogonal filters” deriving from
state-space and Nerode projection techniques [14,15] can also be derived from clas-
sical scattering theory. Gray [10,13] has used a type of pseudo-passivity (Lyapunov)
theory to demonstrate that the major existing ladder and lattice filter structures

can be made free of limit cycles and overflow oscillations, in the time-invariant,
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zero-input case, by using extended internal precision within each section and us-
ing magnitude truncation for the final outgoing pair of samples [6,13]. Moreover,
Gray proved [13] that the normalized ladder filter (NLF) is free of limit cycles and

overflow oscillations even in the time-varying, zero-input case.

In this paper, we extend the results of Fettweis, Meerkotter, Gray, and others to
include all of the well-known ladder and lattice filter structures in the time-varying,
nonzero-input case. Analogous results have been obtained also for generalized multi-
input, multi-output lattice filter structures [17]. These results are immediate from
a reformulation of the basic theory at the most fundamental level. The formulation
is closely related to the classical scattering theory, except that (1) the wave vari-
ables are pure voltage or current on a transmission-line—not linear combinations
of the two, and (2) scattering points are formed by coupling transmission-line sec-
tions rather than “adapting” two RLC networks of differing “reference impedance”
together. The resulting filter structure is termed a weveguide filter (WGF'), and the
WGF can be transformed into common ladder and lattice structures by nctwork
cquivalence operations. The advantage of working with the WGF structure is that
it corresponds czactly to a physical interconnection of uniform transmission-lines.
This enables immediate determination of true passivity, as opposed to “pseudo-

passivity.”

3. The Waveguide Filter Structure

A single waveguide section between two partial sections is shown in Fig. 1. The
secticns are numbered 1 through 3 from left to right. For definiteness, suppose that
the waveguide is acoustic, and that the signal variables are pressure and volume
velocity. A more elaborate treatment of the acoustic tube can be found in [11].
Each waveguide section is characterized by a real, positive characterictic ympedance
Z;(t) which is allowed to vary with time, but which is constant across a waveguide
section at any given instant. In the tth scction, there are two pressure traveling

waves: P? traveling to the right at speed ¢ and P; traveling to the left at speed c.



THE WAVEGUIDE FILTER STRUCTURE Page 5

Z Z(
Zi(t) 2() é)

+ + + +
P (tT) —pf—p P (1) P (1) —p—p Psﬂ)
1

P LT 4—e— P; ® P, (4T)  <— )

l«—— P
+—— T
Z Zw
! g ¢t < 2 + N0 25"
" P p, (1) 3
2 - 2
+ - +
(0 —*z > P W
1
~ k (1) ~
kK k 2(t) 3 ka(l)
2
-T -
P (eT) “@‘——‘Q— 7 <_® R -« P,
gzm P2 0] P2(t+T)

Figure 1. A waveguide section between two partial sections.

a) Physical picture indicating traveling waves in a continuous medium whose charac-
teristic impedance changes from Z; to Z2 to Zs.
b) Digital simulation diagram for the same situation. The section traversal delay is

denoted as z~T. The behavior at an impedance discontinuity is characterized by forward
and reverse transmission (7;, 7;) and reflection (k;, k) coefficients.
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For minimization of dynarmic range requirements, we may sometiraes choose instead
left- and right-going velocity waves, U ;-., U :, respectively, as the signal variables.

The fundamental equations relating the traveling waves and characteristic 1m-

pedance in the ith section are

P =2zU;
- (1)
Pi' = "ZiUi

These will be referred to below as Ohm’s law for unidirectional traveling waves.
More precisely, P:(:c, t) = Zi(z, t)U?(x, t) and P; (z,t) = —Z{(z, HU, (z,t), where
z is horizontal position along the waveguide axis and ¢ is time. However, since {1)
holds at any fixed point in space and time within each section, the arguments ‘(z, {)’

can be dropped in the general case for simplicity of notation.

If the characteristic impedance Z; is constant, the shape of a traveling wave
is not altered as it propagates from one end of a section to the other. In this case
we need only consider P: and P; at one end of each section 2s a function of time.
As shown in Fig. 1, we define P(t) as the pressure at the eztreme left of section 1.
Therefore, at the extreme right of section i, we have the traveling waves P?(t -T)

and P; (t+ T), where T is the travel time from one end of a scction to the cther.

When the characteristic impedances are time-varying, a number of possibilities
exist which satisfy Ohm’s law (1). For the moment, we will assume the traveling
waves at the extreme right of section ¢ are stiil given by P:(t —T)and P (t+T).
This definition, however, implies the velocity varies inversely with the characteristic
impedance. As a result, signal energy is “pumped” into the waveguide by a changing
characteristic impedance. The appendix describes normalization strategies which

holds signal power fixed in the time-varying case.

The physical instantaneous pressure and velocity in section § are obtained by
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summing the left- and right-going traveling wave components:

P;=P] +P;

—
o

U;=U; +U;

Again this relationship is instantaneous with respect to space and time. Let P,{z, i)
denote the instantaneous pressure at position z and time ¢ in section f, where z is
measured from the extreme left of section ¢ (i.e., 0 < z < ¢T). Then we have, for
example, P;(0,¢) A P;(t) + P (t) and Pi(cT,t) A PI(t — T)+ P; (t+ T) at the

boundaries of section ¢.

Conservation of energy and mass dictate that the instantaneous pressure and

velocity must be continuous across an impedance discontinuity, i.e.,

Pi—1(cT, t) = Pi(0,¢)

Ul.—l(cTy t) = U,’(O, t) (3)

Equations (1,2,3) imply the following scattering equations:

Pi(t) = [L+ k(0] P_y(t = T) — k()P (¢)
PLy(t+T) = k()P y(t = T) + [1 = ki (1) P7 (1)
where
A Zil)=Zi,(Y)
= Zi)+ Zia(Y)
is called the ith reflection coefficient.

k(t) (5)

The scattering equations are illustrated in Fig. 2.* This scattering configuration

is used in the Kelly-Lochbaum acoustic tube model [11].

* In the case of traveling velocity waves, the forward and reverse transmission coeffi-
cients are interchanged. However, we cannot mix pressure and vclocity sections in the
time-varying case unless we interject a “transformer” when changing from pressure to

velocity as discussed in the appendix.
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Figure 2. The Kelly-Lochbaum scattering junction.

By factoring out k(t) in each equation of (4), we can write

Pi(t)=Pi_,(t=T)+Pa(t)

- - (6)
Pi_y(t+T)=P; () +Ps(t)

where

Palt) = k.-(t)[P?_l(t _T)—P; () @)

Thus, only one multiplication is actually necessary to compute the reflected waves
from the incoming waves in the Kelly-Lochbaum junction. This computation is
shown schematically in Fig. 3, and it is known as the one-multiply scattering junc-
tion [11]. In fixed-point implementations, the only source of error would typically

be in single multiplication within the computation of Pj,.

Another one-multiply form is obtained by organizing (4) as
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P. (1)

Figure 3. The one-muitiply scattering boundary.

P} (t) = P (t) + a;(t)Pa(t)
P_,(t+T)=P](t)— P.(t)

where
ai(t) A1+ ki(¢)

PA(t)AP;_,(t—-T)- P ()

(8)

(9)

As in the previous case, only onc¢ multiplication and three additions are required

per junction.

It is easy to show using the formulas of the next section that for junction

passivity, the single section parameter k; of (6) must lie between —1 and 1, while

in (8), the parameter a; must lie between 0 and 2.




5 JUNCTION PASSIVITY Page 10

4. Signal Power

The instantaneous power in a waveguide section containing instantaneous pres-

sure P;(z, t) and velocity Uy(r, ) is defined as the product of pressure and velocity:
I,'(:L', t) =Pi(2’ t)U,-(:c, t) ‘10)

An analogous definition (using the para-Hermitian conjugate of P;) works out
very well for the generalized case in which P# and UF are ¢ by m matriecs of

meromorphic transfer functions [17].

The right-going and left-going power 2t the extreme left of the ith waveguide

section arc defined, respectively, by

+ + + PH2
Ity =PI Ui (t)= [“‘é—%))l‘
[P; ()2 (11)
17 ()= P{ (U7 (0 =~

From (10), we have I;(0,¢) = I:(t) + I;(t) for the net power flow into the tth
waveguide section from the left. The power equation completes the basic picture of

interconnected waveguide sections.

5. Junction Passivity

A junction is passive if the power flowing away from it does not exceced the
power flowing into it. ileferring to equations (4) and (11), the total power flowing
away from the ¢th junction is bounded by the incoming power if

- 5 + o - 1o
PHOP | P TE P TIE | (PFOF
/i(t) Zia) T Zia(Y Zi(t)

p
4
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which is true if and only if J;_,(cT,t) > I,(0,t). Let P denote the finite-precision

version of P. Then a sufficient condition for junction passivity is

Pl <| Pl
(13)

IP;_,(H T)l < IP,-__l(H-T)I

Thus, if the junction computations do not increase either of the output pressure
amplitudes, no signal power is created. An analogous conclusion is reached for

velocity scattering junctions.

8. Passive Arithmetic

In a finite-precision implementation, only the junction output signais P:(t)
and P:_,(t + T') need to be examined as possible sources of increased signal power.
Quantized reflection coefficients k;(t) (between 0 and 1) can be regarded as error-free
(insofar as passivity is concerned) because to each sequence of quantized reflection
coefficients, k;(t),i = 1,..., M, there corresponds a sequence of exact characteris-
tic impedances Z;(t) = Z;—,(t)[1 + k;(8)]/[1 = k{(t)],i =1,..., M + 1, where Z, is
arbitrary and ZM+1 is infinity. The quantized input signals P:_l(t —1T) and P,-(t)
are simply delayed outputs from adjoining junctions, and the intervening delay lines

introduce no further quantization.

In view of the previous paragraph and equation (13), a general means of
obtaining passive junctions is to compute exact results internally vsing extended
precision, and apply saturation and magnitude truncation to the final outgoing

waves. Let
n A Number of bits per signal sample

: : : (14)
m A Number of bits per reflection-coefficient

We assume fractional two’s complement arithmetic is used, although analogous

results exist for other number systems. Both the signal variables P# and the
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Figure 4. Bit allocations in the passive, finite-precision, Kelly-Lochbaum junction.

reflection cocfficients k; are assumed to lie between —1 and 1 so that the binary

point is at the far left in every case.

7. The Passive Kelly-Lochbaum Junction

Figure 4 shows the number of bits needed to implement a passive Kelly-
Lochbaum junction. The forward and reverse transmission coefficients each require
m + 1 bits in order that 1+ k;(t) be represented exactly relative to k;(t). When an
n-bit value is multiplied by an m-bit value, the complete product contains n+m bits,
in general. Similarly, an n-bit value added to an m-bit value requires 1+ max{n,m}

bits to represent exactly all possible results.

The error-free junction outputs occupy 2+n+m bits. The 2 most-significant
bits (MSB’s) and the m least-significant bits (LSB’s) must be discarded. When the
3 MSB's are not equal, overflow has occurred. The 2 MSB's can simply be discarded
(resulting in “wrap-around” on overflow), or they can be used replace the output
value by the maximum-magnitude number in n-bit two's complement having the

correct sign (“saturation” on overflow). The 3 MSB's determine the appropriate
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Figure 6. Bit aliocations in the passive, finite-precision, one-multiply junction.

action to take in a saturating adder. With either overflow-handling strategy, the
signal amplitude is reduced upon overflow. Consequently, by (13), signal power is
always decreased by output adder overflow, even in the otherwise disastrous case

of two’s complement “wrap-around.”

The magnitude truncation function discards the low-order (least significant) m
bits of the result if it is positive. The low-order m bits are also discarded if they
are all zero. If the extended-precision result is negative and any of the m low-order
bits is nonzero, then the smallest positive number (27"*!) is added to the value
obtained by discarding the low-order m bits. Thus, the number is always ¢truncated

toward zero.

A simpler magnitude truncation scheme which loses the LSB with probability
27™ is to simply discard the low-order m bits in all cases, and always add 2—"+1

to the n-bit result if it is negative.

8. The Passive One-Multiply Junction

Figure 5 shows the number of bits needed to implement a passive one-multiply
junction. The adder before the reflection coefficient increases the signal width hy
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one bit, and the reflection coefficient itself adds m bits, for a total of 1 + n +m
bits going into each of the two final adders. The final output signal again occupies
2 + n + m bits. Output overflow considerations are exactly the same as in the
Kelly-Lochbaum junction. However, the magnitude truncation is less expensive
in the present case. Notice in Fig. 5 that every adder has at least one operand
consisting of only n bits. Consequently, the low-order m bits at the input to the two
output adders will be summed with zeros and passed through unchanged. Ilence,
the adders need not accept the low-order m bits. The logical OR of all of the
m LSB's of the multiplier output (denoted s in Fig. 5) can be fed directly to the
magnitude truncation unit, without increasing the adder complexity at all. In the
simplified magnitude truncation scheme, the low-order m bits from the multiplier
can be ignored completely. With some multiplier chips, the low-order product must
be extracted on a separate output tri-state enable; in this situation, the simplified

magnitude truncation scheme may double throughput.
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Figure 8. Waveguide digital filter structure.

9. Reduction to Standard Forms

The basic WGF we have been considering is shown in Fig. 6. Each box enclosing
the symbol k;(f) denotes a scattering junction characterized by k;(i). While we
have mentioned only the Kelly-Lochbaum and one-multiply junction, any type of
lossless junction will do. In particular, the two-multiply lattice and normalized
ladder scattering junctions [11] can appear in these boxes.*The WGF employs delays
between each scattering junction along both the top and bottom signal paths, unlike
conventional ladder and lattice filters. Reduction to the standard forms is merely a
matter of pushing delays along the top rail around to the bottom rail, so that each
bottom-rail delay becomes 2T seconds instead of T seconds. Such an operation is
possible because of the termination at the right by an infinite (or zero) characteristic

impedance.

In the time-varying case, pushing a delay through a multiply results in a

corresponding time advance of the multiplier coefficient, as shown in Fig. 7.

* According to lore, when the diagram within each junction box is a planar graph, as
in the Kelly-Lochbaum and normalized ladder junction, the resulting system 1is called a
ladder filter. When the junction scattering diagrams are nonplanar, as in the one-multiply
or two-multiply cases, the term lattice filter is used. However, this definition appears not

to be universal.
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Figure 7. Commuting a delay with a multiplier coefficient in the time-varying case.

Imagine each delay element in Fig. 6 being divided into halves, and let ¢ denote
a delay of T/2 seconds. Then any WGF can be built from sections such as shown

in Fig. 8a.

The series of transformations shown in Fig. 8 push the two input-signal delays
through the junction to the two output delays. A similar sequence of moves pushes
the two output delays into the two input branches. Consequently, we can replace
any WGF section of the form shown in Fig. 9a by a section of the form shown in

Fig. 9b or c.

By alternately choosing the structure of Fig. 9b and c, the filter structure of
Fig. 10 is obtained. This structure has some advantages worth considering: (1) it
consolidates delays to length 2T as do conventional lattice/ladder structures, (2)
it does not require a termination by an infinite characteristic impedance, allowing
it to be extended to networks of arbitrary topology (e.g., multiport branching,
intersection, and looping), and (3) there is no long delay-free signal path along the
upper rail as in conventional structures—a pipeline segment is only two sections

long. This structure, termed the “half-rate waveguide filter” [17], appears to
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Figure 9. Equivalent waveguide filter sections.
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Figure 10. Pipelineabie, physically extendibie, consolidated-delay, waveguide filter.

have better overall characteristics than any other digital filter structure for many
applications. Advantage (2) makes it especially valuable for modeling plysical

systems.

Finally, successive substitutions of the section of Fig. 8b and reapplication of
the delay consolidation transformation lead to the structure of Fig. 11. This is
the conventional ladder or lattice filter structure. The termination at the right by
a total reflection is required to obtain this structure. Consequently, conventional
lattice filters cannot be extended on the right in a physically meaningful way. Also,
creating network topologies more complex than a simple series (or acyclic tree)
of waveguide sections is not immediately possible because of the delay-free path
along the top rail. For example, the output cannot be fed back to the input.
Nevertheless, the conventional structure enjoys the same physical interpretation as
the more general WGF structures, including the same simple passivity conditions

in the time-varying, nonzero-input case.
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Figure 11. Conventional ladder/lattice filter structure.

10. Appendix — Power-Normalized Waveguide Filters

Above, we adopted the convention that the time variation of the characteristic
impedance did not alter the traveling pressure waves P#*. In this case, the power
represented by a traveling pressure wave is modulated by the changing character-
istic impedance as it propagates. The actual power becomes invsersely proportional

to characteristic impedance:

[P{ (=, )] = [Py (=, )”

Z0) (15)

Iz, )y =I](z,t) + I} (z,t) =

This power modulation causes no difficulties in the Lyapunov theory because it
occurs identically in both the finite-precision and infinite-precision filters. ITowever,
in some applications (e.g. [18]), it may be desirable to compensate for the power
modulation so that changes in the characteristic impedances of the waveguides do

not affect the power of the signals propagating within.

Consider an arbitrary point in the ith waveguide at time ¢ and distance z = c7
measured from the left boundary, as shown in Fig. 12. The right-going pressure

is P:(z, t) and the left-going pressure is P;(z, t). In the absence of scaling, the
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Figure 12. Traveling pressure waves at a general point within a waveguide section.

waveguide section behaves (according to our definition of the propagation medium
properties) as a pressure delay line, and we have P}"(z, t) = P:-'(O,t — 7) and
P;(z,t)= P;(0,t +7) = P; (cT,t — T + 7). The left-going and right-going com-
ponents of the signal power are [P} (z, t)]2/Z;(t) and [P} (z,t)]?/Z{t), respectively.

Below, three methods are discussed for making signal power snvariant with

respect to time-varying branch impedances.

i0.1. Normalized Waveguides

Suppose we are willing to scale the traveling waves as the characteristic impe-
dance changes in order to hold signal power fixed. We can choose any position as
a reference, but perhaps it is most natural to fix the power of each wave to that

which it had upon entry to the section. In this case, it is quickly verified that the
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proper scaling is

. . 12
P.-(z,t)=(-z—._-(z—;i_tlﬁ) P;(0,t—1), r=cT

_ - : /2 _
P"(I,t)=(-z—’.(é'(1,t—)'m) P;(CT,t—T"FT)

In practice, there is no need to perform the scaling until the signal actualily reaches

a junction. Thus, we implement

Pl(cT, t)=git)P}(0,t=T)

- - (17)
P; (0,t) = gi(t)P; (cT,t—=T)
where
() = |2
In the single-argument notation used earlier, (17) becomes
~+ +
Pl (t-T)=g(0P](t=T) |
(18)

P; (t) = gi()P; (8)

A diagram of this normalization strategy is shown in Fig. 13. It has the property
that the time-varying waveguides (as well as the junctions) conserve signal power.
If the scattering junctions are implemented with on&hultiply structures, then the
number of multiplies per section rises to three when power is normalized. There
are three additions as in the unnormalized case. In some situations (such as in
the two-stage structure of Fig. 10), it may be acceptable to normalize at fewer
points; the normalizing multiplies can be pushed through the scattering junctions
and combined with other normalizing multiplies, much in the same way delays were

pushed through the junctions to obtain standard ladder/lattice forms. In physicai
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Figure 18. Normalized-waveguide digital filter structure.

modeling applications, normalization can be limited to opposite ends of a long

cascade of sections with no interior output “taps.”

To ensure passivity of a normalized-waveguide with finite-precision calcula-
tions, it suffices to perform magnitude truncation after multiplication by g,(¢).

Alternatively, extended precision can be used within the scattering junction.

10.2. Normalized Waves

Another approach to normalization is to propagate rms-normalized waves in

the waveguide. in this case, each delay-line contains

Bi(z )= Pi(z,1) / Z0
P;(z,6) = P](, / VZi

(19)

~ &
We now consider P (instead of P#*) to be invariant with respect to the character-
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istic impedance. In this case,

Pi(cT,t) _P;(0,t=T) _ Bl—T)

VZiH  VZa-1

The scattering equations (4) become

VETTPL (0,8 = [1+ k{01 Zia (O Py (€T, ) = K(OVZTD Pi (0,1

0 Py (T, ) = k(O Zea (O Piy(ct, T) + (1= K(OIVZTO Pi (9

P;(cT) =

(20)
or, solving for }3; ,
B 0,0 = 1+ kOl S BT, 0~ KiPi 0.1
7 (21)
PTA(CT, 0 = KOPA(ct )+ [ = kOl 70 P (0
But, from (5),
Zicylt) _ 1=Ki(0) )

Z(t) — 14kt

whence
k(o) B0 = - ko 7 =Vi-RO )

The final scattering equations for normalized waves are

P! (0,) = ei(t)Pi_y(cT, 1) — si(t)P; (0,1)
(24)

Pt

P, (cT, 1) = sit)Pi_y(ct, T) + ei()P; (1)

where
si(t) A ki(t)

ci(t) & (%)

1— K(0)
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Figure 14. Wave-normalized waveguide junction.

can be viewed as the sine and cosine, respectively, of a single angle 0;(¢) = sin™![k;({)]
which characterizes the junction. Figure 14 illustrates the Kelly-Lochbaum junc-
tion as it applies to normalized waves. This time we cannot factor out k;(¢) to
obtain a one-multiply structure. The four-multiply structure of Fig. 14 is used in
the normalized ladder filter (NLF) suggested by Gray and Markel [10,11,13].

Note that normalizing the output of the delay lines (as discussed in the previous
subsection) saves one multiply relative to the NLF which propagates normalized
waves. However, there are other differences to consider. In the case of normalized
waves, duals are easier; i.e., changing the propagation variable from pressure to
velocity or vice versa in the tth section requires no signal normalization, and the
forward and reverse reflection coefficients are unchanged. Only sign-reversal is
required for the reverse path. Also, in the case of normalized waves, the rms signal
level is the same whether or not pressure or velocity is used. While appealing
from a “balance of power” standpoint, normalizing all signals by their rms lev.el
can be a disadvantage: In the case of normalized delay-line outputs, dynamic range
can minimized by choosing the smaller of pressure and velocity as the variable of

propagation.
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10.3. Transformer-Coupled Waveguides

Still another approach to the normalization of time-varying waveguide filters
is perhaps the most convenient of all. So far, the least expensive normalization
technique is the normalized-waveguide structure of ['ig. 13, requiring only three
multiplies per section rather than four in the normalized-wave case. Unfortunately,
in the normalized-waveguide case, changing the characteristic impedance of section
i results in a changing of the reflection coefficients in both adjacent scattering
junctions. Of course, a single junction can be modulated in isolation by changing
all downstream characteristic impedances by the same ratio. But this does not
help if the filtering network is not a cascade chain or acyclic tree of waveguide
sections. A cleaner local variation in characteristic impedance can be obtained using
transformer coupling. A transformer joins two waveguide sections of differing char-
acteristic impedance in such a way that signal power is preserved and no scattering
occurs. It turns out that filter structures built using the transformer-coupled
waveguide are equsvalent to those using the normalized-wave junction described in

the previous subsection, but one of the four multiplies can be traded for an addition.

From Ohm's law (1) and the power equation (11), we see that to Lridge an im-

pedance discontinuity with no power change and no scattering requires the relations

(P2 [P,
Z{t)  Zi—(t)

- - (26)
[P.’ ]2 — [Pi—112
Zi(t)y  Zia()
Therefore, the junction equations for a transformer [1] can be chosen as
P} = git)Pi_,
(27)

P:—: = 9.-"(¢)P.7
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Figure 16. a) Transformer junction.

{depicted in Fig. 15) where, from (22),

Z;(?) . 1+ k()
gi(t) & \/ 7.0~ 1=k (28)

The choice of a negative square root corresponds to the gyrator [1]. The gyrator

is equivalent to a transformer in cascade with a dualizer [17]. A dualizer is a direct
implementation of Ohm’s law (1) (to within a scale factor): the forward path is
unchanged while the reverse path is negated. On one side of the dualizer there
are pressure wave, and on the other side there are velocity waves. Ohm’s law is a
gyrator in cascade with a transformer whose scale factor equals the characteristic

admittance.

The transformer-coupled WGF junction is shown in Fig. 16a. We can now
modulate a single junction, even in arbitrary network topologies, by inserting a
transformer immediately to the left or right of the junction. Conceptually, the
characteristic impedance is not changed over the delay-line portion of the waveguide
scction; instead, it is changed to the new time-varying value just before (or after) it
meets the junction. When velocity is the wave variable, the coefficients g; and g,-_1

in Fig. 16a are swapped (or inverted).



10 APPENDIY, — POWER-NORMALIZED WAVEGUIDE FILTERS Page 28

a)

b)

Pl — () +—=<}
i-1

L
y \

Figure 18. a) Transformer-coupled waveguide digital filter section, for transformer on

left of junction. b) Normalized ladder filter section. The two are equivalent.
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So, as in the normalized waveguide case, for the price of two extra multiplies
per section, we can implement time-varying digital filters which do not modulate
stored signal energy. Moreover, transformers enable the scattering junctions to be
varied independently, without having to propagate time-varying impedance ratios

throughout the waveguide network.

It is interesting to note that the transformer-coupled WGF and the wave-
normalized WGF (shown in Fig. 16b) are equivalent. One simple proof is to start
with a transformer and a Kelly-Lochbaum junction, move the transformer scale
factors inside the junction, combine terms, and arrive at Fig. 16b. The practical
importance of this equivalence is that the normalized ladder filter (NLF) can be
implemented with only three multiplies and three additions instead of four multi-

plies and two additicns.

11. Conclusions

It has been shown that limit cycles and overflow oscillations are easily eliminated
in a waveguide filter (WGF) structure, which precisely simulates a sampled inter-
connection of ideal transmission line sections. Furthermore, the V/GF can be trans-
formed into all well-known ladder and lattice filter structures simply by pushing
delays around to the bottom rail in the special case of a cascade, reflectively ter-
minated WGF network. Therefore, aside from some time skew in the signal and
filter coefficients, the samples computed in the WGF and the samples computed in

other ladder/lattice filters are identical.

The WGF structure gives a precise implementation of physical wave phenomena
in time-varying media. This property may be valuable in its own right for simulation
purposes. It was shown how to delay or advance time-varying coefficient streams in
order to obtain physically correct time-varying waveguide (or acoustic tube) simula-
tions using standard lattice/ladder structures; also, the necessary time corrections
for the traveling waves, nceded to output a simulated pressure or velocity, were

shown.
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A reduction in the required number of multiplies per section was obtained for
the well-known normalized ladder filter (NLF). While the three-multiply structure
can be obtained from the four-multiply structure using network equivalence opera-

tions, its discovery is due to the simplified theoretical formulation presented in this

paper.
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