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ABSTRACT

Experiments in automatic music recognition at CCRMA
have been in progress for five years. Digitized sound record-
ings of instrumental music are analyzed and transcribed by
computer. The current effort is directed at polyphonic ex-
amples with a variety of instruments and musical styles.
The paper discusses acoustic analysis issucs in accurately
transcribing polyphonic input.

The overall goal of the work is to provide a tool for the
study of musical performance, for applications requiring
tracking of live musicians, for manusecript work and for
segmentation of digital audio recordings.

INTRODUCTION

In transeribing performed music, a system must oxtract
every note played, identifying timings, pitch, dynamie in-
formation and other parameters. A eapability for source
discrimination is also required il a polyphonic musical tex-
ture is present, that is, if the signal resuits from muitiple
simultancous sources.

Identification aigorithms which are adequate for monophonic

input [1,2,3] may not be effective with polyphonic textures.
Balance between underdcetection and overdetection may be-
come diflicult. Improved performance is possible by com-

leaved sources are prone to yield spurious note mterp
tions. By analyzing source coherence, the system can
the note hypotheses that it generates.

Knowledge of source acoustics can limit the numb
possible interpretations. This is particularly uscful
disentangling spectral lines into their sources. As MeAc
[1] has suggested, constraint rules can be derived for
allowable behavior of a given component as a member
source and may prove helpful in filling in obscurcd p
resulting from limitations in the available data. .

SYSTEM OVERVIEW
The acoustic analysis is broken down into four steps

e Spectral Transformation. High resolution in
frequency domain is required to distinguish nes
components of pitches in close intervals [5].
Bounded-Q Frequency Transform (BQFT), is a P
constant-Q technique yiclding better than semit
resolution in each octave of interest [6].

e Event Detection. To scgment thesignal, pertus
tion in different time-varying envelopes is detec
Total amplitude alone can provide correct att
detection of better tham 95% for the piano. Rec
work in bowed string sound has motivated detect

bining the strengths of alternative aigorithms for each identification  of f requency domain events representing other ki

task. The use of acoustic knowledge and context gencrated
at higher leveis aiso assists in the recognition process. As
signal history accumulates, a particular event neced not be
as visible for successful identification if it clearly fits into
an already established context.

Quantilving source coherence has become the focus in
undcerstanding polyphonic input. Overlapping and inter-
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of musical articulations.

¢ Generation of Early Context. Musical cont
is used to complement the results of local segm
tation. Event timings first build a metrical g
Rhythmic patterns then suggest events detectic
that are weak or missing.

o Periodicity Estimation and Source Trackis
Stable scgments between detected transitions are
amined. Chords are separated into source hypothe
and their individual partisls are tracked in tin



lypotheses are weighed for coherence and “good”
notes are added to the note list, labelled with tim-
ing, pitch and dynamic information.

Event Detection

Periodicity cstimation is more apt to be meaningful in
the stable islands between transitions identified by segmen-
tation. A number of event detection schemes are invoked
in segmentation, to scarch for cues in:

e Amplitude envelope.

e VWide-band and narrow-band spectral change over

time.

¢ Rhythmic expectation (discussed elsewhere [5,7]).

The amplitude cnvelope of the signal y{-) is “surfed” with
a moving linear regression of length L to find onsets with
large slope increases (8].
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For each k, And{m,, b;}to minimize Z (y(n)=myn—by)?
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Reliability decreases when the technique is applied to multi-
source textures where events are masked by overlapping
sources, as weil as for non-percussive instruments which can

play a sequence of notes continously with little amplitude
inflection. Highlighting spectral change supplies additional
transition cues. For each of the M log magnitude channecis
Ym, 3 dillerence of the current sample and an average of
the N previous sampics is formed. This is converted to a
“ratio error” by normalizing by the average sample with
thresholding applied to ignore minor fluctuations. A pan-
spectral ratio error signal s(n) is formed by summing the
ratio error signals of ail the channels as follows:
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Finally, the linear regression “surfboard” is run on the
summed ratio error signal.

In cases where simple amplitude envelope detection blurs
together muitiple sources, division into spectral channcls
reveals individual sources. The advantage derived from the
adaptive method of Eq. 2 is its sensitivity to spectral state.
By dicing the spectrum more coarsely or fincly different
event types are revealed (Figs. 1 and 2).

Broad-band Frequency

Time .3 Sec.

Figure 1. A pitch bowed on the csillo is repeated at points A ar
The first, & legato stroks, is not visible in the amplitude envelope
Is evident in the pan-spectral ratio error signai (dark tra
The brosd-band auditory transform in the spectogram-ike ¢is
shows detall In spectral weighting, especially changes in n
componenta.

Narrow-band Frequency

Time A .8 See.

Figwe 2. A narrow-band gpectrss transtorm reveais shured |
cmnenenlhoemnpdnuAmnlmw.mmu
change at C.

Some musical articulations appear to be detectable
only one level of resolution. Therefore the capabilitics
several dctectors which concurrently provide the perp
tives of a variety of frequency and time resolutions 2
merged for stronger polyphonic event detection (Fig. 3).

Periodicity Estimation

Contaminating activity can bleed in from neighbori
segments through the long time windows of the lowest ¢
taves in the BQFT. To avoid this, scgments from siable
lands arc excised from the original signal and then retrans

Periodicity estimation is accomplished using a “pian
tuned” variant of Algorithm 2 from Amuedo [0]. The mod
improve performance by taking advantage of knowledge



Figure 3. A plano performance of a Frescobaidl excarpt. Traca A, the

datector on the ampiitude enveilope, mi some t ght by
two detectors similar to those in the previous figures: Trace C
(narrow-band, (ke figure 2), and trace D (broad-band, like figure 1).
The marged set of svent timings, B, Is lator pruned by pattermn
snaiysis and used to find stable segmants for pariodicity ostimation.

some characteristics of the piano. The algorithm operates
as follows:

o  Generate pitch hypotheses.

¢ Quantize pitches to possible source piano pitches.
e Rank according to overtone presence.

¢ Rank according to total energy.

First, an instantaneous dest resolution spectrum is ob-

tained by taking the upper octave of each octave decima-
tion in the BQFT. Pre-BQFT high [requency emphasis is

removed and peaks representing significant sinusoidal com-
ponents are identified. For each of these components, a
maximum of N pitch hypotheses is generated by dividing
t!;e component frequency by z; = sa'~!, where s goes from
1 to N and s is an approximation of the stretching resuiting
from.the stillness of the piano strings (nominaily 1.0015,
but varying with pitch register {10]). Piano tones nearly al-
ways produce significant energy at either the first or second
partial. Therefore, N is set to 2.

Hypotheses lying in the cracks of the keys, and clusters of
near-lying hypotheses (less than a semitone) are fixed into a
single source at the closest tempered pitch. Any bypotheses
which lie outside the range of the piano are rejected.

A maximum of M partial positions are generated by mul-
tiplying each hypothesis frequency by z;. Use can be made
of the fact that piano strings tend to have their energy
concentrated in the lower partials. A score is created as

ﬁ  §/sqr{z;), where & == 1 if the g:orruponding partial
position is close to one of the originally identified pesks
and § == O otherwise. llypotheses with scores above some

threshoid are asserted.

Encrgy is summed for all partials of each hyp
and those hypothcses whose energy sum fslls t

threshold are discarded. The algorithm returas th
ing candidates as the set of fundamental periodiciti
in the signal.

Source Verification

The following partial grouping clues provide evi
quantifying source coherence:

e Spectral cvolution of transients.
e Modulation behavior.
‘e Resonance structure.

Partials of musical oscillators appear and decay i
fashion and have characteristic frequency skew pa:
points of excitation or tramsition. Those generat
damped resonator with a single excitation (like
string) start at approximately the same time and d
ponentially. A group spread of 25 msee or less is a
able definition of. synchronicity.

Variation in frequency (vibrato) and amplitude (1
are correlated in an ensemble of partials comprising
On the multiple string notes of the piano, beating
correlated AM across several partials. For self-su
oscillators (after the initial transient), FM is locke
all partials and coupled with varying amounts of 2
Such information may help to associate partials |
time.

FM and AM coupling may also include time-varyir
behavior (for example, a vowel formant structure
varies in a coherent fashion for a given source. Re:
structures generally vary more siowly than the afc
tioned modulations. Source identity is strengthe
deducing the resonance structure and the constraint
variation as a function of other note attributes (r
loudness, cte.) [12]).

SUMMARY

The digitized waveform is examined for acoustic
(broadly defined), and these in turn are examined [
tials, instrumentation and musical notes. The pa
problem in polyphony is to group spectral componer
sources in roughly the same fashion as does the ear.

Event detection combines cues from several domair
outpt of an auditory transform [13] (synthesized from
data) is processed in a crude spproximation of sensor)
tation in the car-brain system. The hurpou is to ¢



spectral cucs available to the ear, ignoring inown or oid
information while focussing attention on new information.
Views of spectral data from multiple leveis of resolution
increase the number of cues that are recognizable.

Periodicity estimation techniques form the basis for sug-
gesting possible sources within stable segments. Searches
are constrained and reliability increasesd by building in
knowledge of source acoustics. Other probes are nceded
that will bring to bare cues other than periodicity.

Sources that have been uncovered in the signal are tracked
through time for verification. The present cffort is aimed
at gathering fcatures which provide a foundation for estab-
lishing source coherence in observed data.

The gathering of musical representations of the signal
proceeds in parallel. As processing moves in time, chunks
of data “bubble-up” from lower processes. Higher levels
build streams of abstractions at lower data rates (3, 14]. As
musical features are recognized, they are used to finc-tune
the resuits of the acoustic analysis stage {15].

For a simplified picture of how such feedback improves
analytic performance, consider the role of the “cognitive
flywheel” [16] in hearing music. The ear picks out par-

ticular instruments (up to a point) within complex musi-
cal fabrics. Various features allow this discrmination: dis~
sonant pitches. registral placement, quality, characteristic
rhythm, ete. Attention is focussed not only on individual
sonic events but on longer chunks of time comprised of pat-
terns of events as well. Aggregates of events become easily
condensced into single entities such as “thematic repeat.”
Once the template for a larger chunk is established, attend-
ing to it is less a function of receiving ail sonic cues than
of distinguishing some sufficient subset. The current state
of the music can be described by some number of currently
active, partiaily filled templates and, perhaps, some new
ones in the process of formation.

Events in a short term acoustic picture of the music can
offer an idea of which instruments are currently sounding.
However, the problem arises as to whether an acoustic cvent
can be identified from its apparent features (perhaps in-
complete) or whether it is better to deduce its identity by
its place in a chunk of cvents describe by a well estab-
lished template. The latter is likely to be the stronger
choice. Instead of requiring a large number of principal
acoustic features be noticed, advantage is made of informa-
tion which has been gathered over multiple occurences of

an event.
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