ot L) war-r =

Oz Finding Rhythmic Patterns in Musical Lines
Bernard Mont-Reynaud, Mark Goldstein

Center for Compuler Research in Music and Acouslics (CCRMA)
Department of Muaic, Stanford University
Stanford, California 24305

ABSTRACT

Awareness of musical patterns is an important aspect of
the perception of music by human listeners. The paper
presents an attempt to capture some aspects of the percep-
tion of musical patterns in formal definitions and usable
algorithms. Altention is restricted to a single musical line.

We begin with an abstract framework for the simple case
of exact matches on a single dimension. Viewing a piece
as a string of fealures, palterns are defined as substrings
that recur. Algorithms for the efficient enumerstion of
patterns, and fot the selection of preferred patterns are
presented. For example, ABRACADABRA yields 2 pat-

terns. The preferred patterns are ABRA and A. The other

7 patterns are implicit in ABRA.

Exact-match rhythmie pattern detection falls out directly
of the abstract approach. Further improvements require in-
troducing a model of rhythmic elaboration. Rewrite rules
allow transformations such as matching a half note with
a quarier and two eighths, The extended algorithm finds
rhythmic skeletons which do not oceur in the piece in exact
form, but receive support by elaboration.

The arrangement of pattern instances provides strong
~lues for the metrical organization of a piece. Another ap-
plication of pattern-finding methods to automatic transcrip-
tion arise when when transcribing from sound. Segmentation
etrors may cause over-detection or under-detection of events,
but the analysis of near-misses for existing palterns can
point to spurious notes or missing notes resulting from such

errors.

“[his work was supported by the National Science Foundation
uodar Contracts NSF MCS5-8012476 and DCR-8214350, Xerox
Corporation bas provided computer equipment for the research,

ag1

INTRODUCTION

Patterns play an important and ubiquitous role in the
perception of music. Without any conscious effort, listeners
detect many forms of redundancy in the music presented
to them, and use the discovered patierns to make predic-
tions about future events. The acquisition of new patterns
in the course of listening to a piece is essential to this
phenomenon, which seems closely related {o the unsuper-
vised learning of siruetural descriptions [7].

We were led to investigate musical patterps in the course

of doing research on music recogrition, towards the goal of
automatic transcription of performed music 1,2, 4,89,
10]. One of the reasons [or using patierns in thjs context
is that regularities found in the arrangement of pattern
instances provide strong clues to the temporal organization
of a piece.
. The paper focuses on providing reasonably efficient algo-
rithms for the identification of certain ¢lasses of musical
patterns, with an emphasis on rhythmic patterns. Attention
is rastricted to a single musical line.

Woe first discuss an approach based on the exact match-
ing of uninterpreted features. This abstract model ieals.
at least in principle, with patterns in any single dimension,
Basic algorithms for the enumeration and selection of pat-
terns are described for this simplified situation.

O! course, exact matching is a crude model. To introduce
a more realistic notion of match, one needs to provide a
topology of the set of features examined. Different dimen-
sions (such as duration and pitch) seem to require different

topologies.

Rhythmic pattern detection is first addressed with exact
matching. To improve upon the exact matching of rhyth-
mic values, we investigate pattern-matching methods that
take rhythmic elaboration into account. A method is given

ICMC "85 Proceedings

to determine the greatest common ancestor of two com-
patible patterns. It is used lo generate patterns whose sup-
port is only from elaboration.

Finally, we discuss some applications of musical pattern
recognition to automatic transcription. Various statistics
over the arrangement of patterny are used to gather clues
for the metrical hierarchy of a piece, for tracking tempo,
and for locating probable errors in Lhe acoustic analysis.
The latter application is based on the notion of near-miss,
familiar in concept formation research.

EXACT. MATCHING

The kind of pattern matching performed by a human
listener relies on “soft” matches, in which sequences of
features that are similar to each other may be treated a9
instances of the same pattern. It follows that a model based
on exact equality among features of events is guaranteed to
have limitations. Ilowever, since exaclt matching is much
easier to deal with, it may provide a good place to start.

This section uses a rather abstract Iangﬁage. so that the
concepts may later be applied to varied situations. We treat
a feature as an uninterpreted symbol from some alphabet.
Features may be compared for equality, but have no lurther
meaning at this point. A piece is defined Lo be a sequence of
features, that is, a string over the given alphabet. We call
pallern & non-empty sequence of features that cccurs more
than once in Lhe piece, that is, any repeated substring.

For example, consider the piece ;{LBRACADABRA. The
symbols A, B, C, D, R may stand for durations, pitches,

musical intervals, or other musical features. By the definition

above, there are 9 patterns in this piece. The pattern A
occurs 5 times, and each of B, R, AB, BR, RA, ABR, BRA,
and ABRA occur twice.

Decause ABRA occurs twice in ABRACADADBRA, substr-
ings of ABRA pecessarily oceur af least twice, and if they do
not oceur more (han twice, we might as well consider that
they are implicit in ABRA. Thus, among the 0 patterns
found, we will select ABRA and A as the two preferred
patterns. Note that A is selected, in spile of the fact it is a
substring of ABRA, because it also occurs independently.

Algorithms for enumeration and selection of patterns will

now be described.

Pattern enumeration
Let p{1)p(2)...p(N) be a string of length N - the piece
in which we seek to find repeated substrings. We use [1,J)

{CMC '85 Proceedings

392

to denote the range of indices from the [included to i
excluded,

A simple approach is to examine each range (1,3} for 1
<=1< } <= N tosee il the substring p(I}...p(J-1} vecury
elsewhere in the picce. If 3 mateh p{l)...p(J-1) = plK)...pll-
1) exists tbe string p(I)...p(J-1} is a pattern. However, this
method of enumeration is inefficient, and requires further
work to make sure each pattern is listed only once.

A better enumeration algorithm is based on growing pat-
terns recursively, The recursive enumerator takes two ar-
guments, a previously formed pattern P, and the set § of
instances of P, It enumerates all the patterns which are ex-
tensions of pattern P. To enumerate all patterns, a single
top-level is needed: recursion starts with the empty pattern
{corresponding to the empty string) whose instaoces are al
[L,1) for every I from 1 to N+1.

“Fhe recursive enumerator operates as follows. For each
range [I,J) in S, ignoring a range with J == N+1, the symbu!
p{J) extends an instance of P to the right. Among the
symbols thus generated from S, those that cccur only once
are removed, and duplicates are also removed. For each
symbol E that remains (that is, exactly once for each symbol
found more than once among the generated symbols) a
new pattern P' = PE is obtained by extending P with the
symbol E at the right. The instance set 5' of P consists of
all the ranges [Im,Jm+1) such that (Im,dm) is in S, p(Im)
= E, and Jm < N. Each time a new pattern P* with
instance set S' is obtained, this fact is recorded in a glohal

data structure, and the recusive epumerater is invoked

recursively on P' and S’ to enumerate the extensions of I

itself, il any.

In order to follow the algorithm in action, let us follow
ils operation on ABRACADADRA, at the point where the
5 instances of A have been found, and the enumeralor is
called again to extend the patiern A, it is passed ap instance
st containing [1,2), [4,5), [6,7), [8,0) and [11,12). The places
for extensions have indices 2,5, 7, 9 and 12, but position
12 is ignored (N = 11 here), so we have four extending
symbols B, C, D, and B in positions following an A. Amnung
these symbols, we remove C and D because they occur only

and after removing duplications we are left wuh I3

once,
= A} whuse

This causes the crcation a new pattern P!
instance set S contzins [1,3) and [8,10). A recursive call
of the enumerator to extend P’ == AD produces similarly
ABR and then ABRA, at which point recursion stops, as the
minimum of 2 instances cannot be maintained. Recursion
unwinds to the top level, from where the pattern Bis found,

A e iyt g

T

Bhomos oo

0 B R e TR Y ot oo rpior e oSl W

:
1

Y T A AT

YT, VRJCENI - Y - - 1R P

Heal

ez

T Sh P

D id s o —— -

— el

LT R)

Uy e

o oa -

FIGURE 1
Mozart symphony in G minor (MINUET)

< = =1 in ot i T -y
@H{;;J-——F—-h— A=A e)
fite . p—Tf £ P py
e o e S Sy e F : = 5 =]
Y =1 1

iy - PN -
=] e e S e e pa e e D e s
L.

wf 1 1 -

—_

—

I et
73 == e T S e |
& f e =]

Eé?{‘:‘_ﬂ:‘”—"”f—? ffortipptfoe—

TABLE 1
PATTERN INSTANCES MEASURES
2a 18 £.9,18,17,20,.2,24,25,33. &l
F 2 £.9.108,20,23,24,25.33,41
e a 4,7,19,78.20,32,37,48
2d] 1.6,7,28,30,32, 37,40
20 7 8,3.6.26,27,36,
21 7 7.13 .28.39 32,37,49
29 7 §,7,28.30,32,37,)
<h 3} 2,5.18,17.2 23
2l 6 8.3,6,27.36,39
2) 6 9,19,17,23,24.25
el B 7.28.38,32,37.48
2t 5 2,8,9,23,24

393

FIGURE 2
PATTERNS BY INSTANCE COUNT
_{a) (b (g) (d)
%F-——F—!—F—F—T——-F-—--F—__—lF::' fjﬁ——:‘f—]
_(e) () (g) (h) .,
 F—— et —
=Ea===t= === p:r-zir.ezzrg_J
(i) {4) (x) TS S
['i'f.' e P ":-'F— g 1
] ¥ L4 4 T
FIGURE 2
PATTERNS BY NETRIC SPAN
(2) (b)
= rrrp—p P g a—F T |
A o t o s o ey Ly B f = e pa S

=1 =t g 7

(d)) (e)

Ef: i i =1t = E.——’
_tE) _(g)

”I:-—I—-ll' - I T }i T |— ;_.;_a_.l" = |r i
(h} (1)

=== st === s s S

ICMC '85 Proceedings

and expanded into BR and BIA, then R is found and
expanded as A v

Pattern subsumption

If a pattern P is a substring of a pattern P, we know
that the number of instances of P must be at least equal to
that of P'. H P actually occurs more often than P, it is
bard to tell in general which to prefer, the longer pattern
P' or more popular pattern P. But if P* occurs as often as
P, the longer pattern P’ is preferable for most purposes.
We say that P is subsumed by P'. Eliminating subsumed
patterns significantly reduces the number of patterns used,
withoul causing a loss of information.

The implementation of this simple idea requires some
care. To obtain an efficient algorithm, some observations
must be made, First, il a pattern P of length N is subsumed
at all, there must be a pattern P' of length exactly N+1
which subsumes P. Pattern P’ has one of the forms PE
or EP, where E is a symbol. (Note: it is possible for P
to be subsumed both as a prefix, P'=PE, and as a suffix,
p'=EP). The case P' =P'E is casily detected during the
recursive enumeration algorithm. When a new pattern P’
is formed, if its instance set S is as large as 5, its prefiz P
is immediately known to be subsumed by P'.

The detection of the cases where P’ == EP requires a
separate pass over the patterna. To do this cflicicatly, we
first arrange that the recursive enumerator, when forming
a pattern P’ =PE, takes note of Lhe prefizrelation between
P* and P. Standard tree representalion techniques may be
used to store the informalion in the reverse direction, This

is the prefiz {ree.

The suffiz relations P' = EP may all be found in a single
preorder traversal of the prefix tree, and it suffices to check
the number of instances stored with P and P’ to decide if
P is subsumed. Efficiency-wise, the erucinl observation is
that “sulfix of prefix equals prefix of suflix™. For example,
to locate the suffix pattern of ABRA (whose string is BRA)
one goes f[rom ABRA to its prefix ABR, and from there
to the previously computed suffix BR. The desired BRRA is
then {ound by searching the patteros whose prefix is BR
for a pattern whose last symbol equals the [ast symbol of

I\Dltt\-

Example: rthythmic patterns

To look for rhythmie patterns, one may simply run the
basic algorithm, with note duration taken as the feature
subjected to analysis. The specific notion of duration we
prefer to use for many such apalytical purposes is the metri-

ICMG "85 Proceedings

cal time uatil the next event. In other words, resis are com-
bined with the duration of the preceding pote; an eighth
nole followed by a quarter rest is treated as if it were a
dotted-eighth note.

Figure 1 is a score that was transcribed automatically
from a recarded performance. Readers familiar with the
piece will notice three kinds of errors in this score: octave
errors {c[. pickup note), missing notes (cf. bar 2), and
spurious noles (bar 5, [or example). These errors are due
to imperfections of acoustic event detector. '

Ruanning the algorithm on the data in Figure 1 yields 41

patterns. Patterns consisting of one repeated note value,
are discovered by Lhe al-
Figure 2 shows
heir number of
ble 1 fur-

such as & series of quarter notes,
gorithm, but are ignored in this analysis.
the 12 most frequent patteras, sorted by t
instances {including overlapped.occurrences). Tal
ther describes these patterns.

Palterns 2h, 2¢, and 2k are usually perceived as segments
of the major thematic material in the Minuet, and they are
among the more prominent patterns disccovered.

Figure 3 lists the patterns in order of their length, without
regard to number of occurrences. Again, o portion of the
main theme, 3g, appears as one ol the longer patterns dis-

covered.

Note that the sound segmentation errors that appesr in
this score cause a reduction in the overall quality of pattern
detection, But the unfortunate fact that the piece appears
Jess regular because of these errors can be turned around
Error-detection and even error-correction

to advantage.
s will be discussed later.

schemes based on musical pattern

RIDYTHMIC ELABORATION

In this section, we extend the metbod used to detect
thythmic patterns to take into account elaborative relation-
ships between patterns and instances, This leads lo algo-
tithms to discover groups of rclated patteros, and their

common elaborative sources.

Dasic models

In genersl, we think of rhythmic elaboration as a trans-

formation which adds note attacks while leaving existing
attacks unaffected. In unconalrained elaboration, a note is
repinced by a group of notes that sums to the same dura-
tion: R => RIRZ ... Rk where the sum of the rationals
Ri is R. For instance, (1716 1/8 1/18 1/4) elaborates (1/4

1/4).

sy e w

re ey s

S zters

Crammar-driven elaboralion uses grammatical rules to
constrain the allowable transformations. Strictly speaking,
a grammar specifies & set of non-lerminals, terminal sym-
bols, and rules. This means we need to introduce a separate
non-terminal for each note value, such a Q for quarter-note,
rules such as Q => 1/4 to relate the non-terminal to an
equivalent terminal value, and rules such as Q => E E
{(where E is the non-terminal for an eight note) to express
elaborations. It is clearly easier to simplify notation by
treat rationals like 1/4 as if they were non-terminals as well
as terminals. The duple elaboration rule for quartets now
reads 1/4 =3 1/8 1/8 which is more natural. But we still
need a large number of rules, since every rhythmic value,
taken as a non-terminal, needs its own set of rules.

Consirained elaboration is a comprotnise belween the tight
control of grammar-driven elaboration and the Jack of con-
trol of unconstrained elaboration. It uses meta-rules which
are schemes for dividing note values into parts (evenly or
not). When the meta-rule x =>> x/2 x/2 is used, the effect
is intended to be the same as if duple division rules had
been added to a grammar, for every non-terminal x. For
instance, (1/16 1/18 1/8 1/4) elaborates (1/4 1/4) by two
uses of the duple division rule, but {1/16 1/8 1/18 1/4) does
not elaborate (1/4 1/4) unless we have a meta-rule x =2
x/4 x/2 x/4 or a number of rules combining to the same
effect.

Elaboration rules can be applied repeatedly to compound
transformations. One can see that checking for uncon-
strained elaboration is a problem in rational arithmetie,
while checking for grammar-driven elaboration is a parsing
problem. The useful compromise presented by constrained
elaboration calls for hybrid algorithms, that are partly lin-
guistic and partly numerical.

Rhythmic intersection

The scheme described in the next section uses the solu-
tion to the following problem: Given two rhythmic pat-
terns (with the same metrical span) decide whether they
have a common ancestor by elaboration, and what the most
specific such ancestor is.

In the unconstrained case, the problem is trivial. The
common ancestor always exists, and is obtained by taking
tbe rhythmic intersection of the two patterns, defined as
lollows. If both patterns are sounded at the same time,
their rhythmic intersection consists of exactly those events
which are sounded together. Thus, if each sequence of dura-
tions (d1, d2, ...) is viewed instead as a set of onsel times

395

(0, d1, d1+d2, ...), the rhythmic intersection of patterns
corresponds to the usual set intersection for onset times.

For example, the intersection of {1/4 1/2 1/4) and (1/2
1/4 1/4) is {3/4 1/4). Note that il one pattern elaborates
the other, the interscction is equal to the simpler of the
two patterns. The intersection of two patterns is always an
ancestor of both, via unconstrained elaboration, and is in
fact thelr most specific common ancestor ~ their min with
respect to the partial order induced by elaboration.

If we place grammatical constraints, any attempt ta solve
the greatest common ancestor problem in pucely linguistie
terms is confronted with grest difficulties. The problem
is, given a context-free grammar and two strings A and B,
to find a maximal phrase C such that derives both A and
B. Fortunately, all our grammar rules leave total metrical
time invariant, and it follows that the linguistic greatest
common ancestor, when ¢l exisls, is always identical to the

rhythmic intersection of the two patterns.

An efficient algorithm is thus obtained as follows. The
first step uses rational arithmetic to compute the uncon-
strained rhythmie intersection of the patterns. The second
step checks that elaboration constraints hold be-
tween the computed intersection and both given patterns.
Failing either check, the consirained inlersection does not

exist.

Skeleton generation

By computing the rhythmic intersection of two patterns
{of the same metrical span) one may produce new patterns,
called rhythmic skeletons, which do not explicitly appear in
the piece - only their elaborations do. A skeleton inherits
instances from all the base level patterns that elaborate it.

A series of experiments was carried out to comstruct a
repetoire of skeletons which would bopelully derive many
of the base level patterns. Initially, a skeleton is defined fur
each actual pattern of a given span. Then, in each pass of
the algorithm, all pairs of skeletons are intersected together,
creating a set of new skeletons, out of which any existing

skeletons are removed. This process is guaranteed to con-
verge. It is iterated until no new skeletons are gencrated,

i.e., we have achieved closure under intersection.

If we apply this algorithm with unconstrained elabora-
tion, it will often generate skeletons which do not make very
good musical sense. Thus, it is best to bring grammatical
constraints into play. Iterative closure was tried again with
grammatical constraints. Most experiments were carried

ICMC '85 Proceedings

out using a very simple meta-grammar, with the two rules
(1/2 1/2) and (1/3 1/3 1/3) for duple and triple subdivision.

The addition of a grammatical filter pruned oul many
poor skeletous, and produced many musically meaningful
derivations. But the closure scheme so far has failed to
meet our expectations. We plan to build the elaborative
matches right into the enumeration algorithm, as a way to
avoid some of the problems encountered.

APPLICATIONS TO TRANSCRIPTION

There are specific reasons for pursuing the question of
musical patterns in the context of an automatic transerip-
tion system. Information derived from the arrangement of
patterns can provide useful hints for solving a variety of
problems, Two applications are discussed here.

A first area in which knowledge about patterns is helpful
is the determination of metrical organization. One view
of metrical organization that lends itsell well to taking
hints from a variety of sources is to use a graph in which
nodes represent the important metrical spans of a picce.
The shorter spans represented in the graph come from the
durations of individual notes, but longer $pans come from
levels of grouping based on accents, on periodicity analysis,
or on patterns.

Metrical span hints may be obtained from patterns by
collecting simple statistics designed to reveal periodicities.
If a pattern occurs at metrically regular intervals, the metri-
cal distance from one instance to the next is a poteworthy
period. If another patiern oceurs at irregular intervals, the
distances between instances wander about without pointing
strongly to any period in particelar. Thus, the computa-
tion used is to collect into a single histogratn the metrical
spans between successive instances of all patteras.

The statistics obtained for the Minuet example are as
foljows. The periodicities of one measure (3 quarters) and
three measures are the strongest hints, each with a count of
29. Then comes the beat, with a count of 22, and the span
of two measures, with a count of 19. Anything beyond this
bas a count of 8 or less, and may be safely ignored. The
first four hints are very significant. It is reassuring to see
that besides the beat and the bar, 'on'e gets the 2-bar and
3-bar levels of grouping which are both quite strong. Such
hints, possibly combined with others derived from accent
patterns, play s role in choosing the length of the bar.

Another interesting application of patterns arises when
transcribing from sound. During the course of acoustic

ICMC '85 Proceedings

386

analysis, segmentation errors cause re-detection of certain
notes, or the non-detection of others, Some of these errors
may be noticeable on musical grounds, because the use of
a particular pitch or duration is unexpected in & particuiar
context, or because patterns suggest that the piece would
seem to fall in place better if a certain chaoge is made, like
inserting or removing a note, or changing a pitch.

How does one measure the degree to which a particular
event is expected in the context of its appearance! Oune
simple answer is provided by patterns. Suppose we count,
for each event, how many patterns it belongs in. These
counts are not significant in absolute terms, but take mean-
ing relative to neighbors. Clearly unexpected events {such
as the Lwo sixteenth notes in Figure 1, due to a spurious
note detection) tend to get low counts, Their immediate
neighbors also have somewhat lowered counts, but the effect
do not spread very far. The ratio between a note's count
and a moving average of the counts of neighbor events tends
to Nuctuate around 1.0 in normal circumstances, But the
ratio drops close to 0 al unexpected events.

Thus, we oow have a measure of expectedness based
on participation in patterns. Low values point to least
expected events. This gives a somewhat valuable hint, but
only a negalive cne. A positive hint would also suggest
how to fix the problem by adding, deleting or modifying
an evenl. Dositive hints may be obtained {rom patlera
information by looking for near-mrsses.

A near-miss of a pattern arises when an instance has
almoat been matched, but there is a small, easily described
difference between the instance as it is and what it needed to
be to mateh successfuily. This diference can be described
as 2 suggested modification to the data that would make
the specilic pattern gain another instance. In the case of
rhythmic palterns, the suggestions obtained in the near-
miss detection mode take one of two forms: “delete this
event™ or “create an event at metrical position so-and-so”.
Of course, one is wise not to put too much trust in the
suggestions of a single pattern. Wisdom cangot come [rom
statistics, but if a suggestion comes up repeatedly when
all the palterns are tried in turn, one starts to take it
seriously, especially if the events involved have low on the
“expectedness” measure defined above,

When tesling the implementation of this scheme on the
-Minuet example, we found tbat indeed there is overwhelm-
ing evidence for {a) deleting the second sixteenth note in
bar 5, turning the first sixteenth into an eightb; {b) adding

Y

.

R I e L S

PR A,

PN

the missing event in bar 2. One of the shortcoming of this
scheme is that if the number of errors increase, at some
point the algorithm begins to want to sce more errors of
similar types. Another difficulty, perhaps more importsnt
in practice, is that many changes are suggested where there
really isa't an error. It is jmportant to remember that these
are only suggestions. When the “pattern expert® tells the
“acoustie expert” to look for an undetected attack near
beat 3 of bar 2, the latter must confirm the suggestion be-
fore the change is made in the score.

Since the uses of musical patterns in our application are
always mediated by statistical Giters, it is not so critieal for
the pattern identification methods to be able (o rank pat-
terns by their musical interest. This is fortunate, because
doing the latter requires a level of musical intujtion that
seems difficult to capture in algorithms,

EPILOGUE

We have discussed several algorithms for musical pattern
detection. The simplest ones bandle exact matches only.
This is a uselul first step, whose generality is at first an
advantage. Further refinements require that the topology
needed to define softer matches be explicated for each musi-
cal dimension of interest, at the expense of generality.

The topology of rhythm patterns has been examined in

some detail, and algoritbms that match “modulo elabora- "

tion” have been described. Omitted from discussion were
other important patterns, such as melodic patterns derived
from the combination of duration and pitch. The role of
dynamics and timbre has not been addressed, but it is clear
that may -enter into patterns. In [act, it would seem that
anything that is worth calling a feature is also worth in-
cluding in patterns. This includes features that are not
direct properties of the sound, but are mostly implied by
context, such as the metrical position of an attack, the
harmonie function of a pitch, the position of phrase bound-
aries, and the type and strength of accentuation. Selecting
the relevant dirnensions for pattern formation and combin-
ing their topologies is one of many remaining challenges,

Referencea

{1} C. Chafe, B. Mont-Reynaud and L. Rush, “Toward
an Intelligent Editor of Digital Audio: Recognition of
Musical Constructs,” Computer Musie Journal, vol.

8, no. 1, 1082.

397

(2

[2)

[4)

st

[6]
[7

[8f

ol

{10]

C. Chafe, D, Jaffe, K. Kashims, B. Mont-Reynaud
and J. Smith, “Techniques for Note Identification in
Polyphonic Music,” Proceedings [CMC 1085 (this volume),
also Department of Music Technical Report STAN-
M-50, 1085.

Cooper, G. and L. Meyer, The Rhythmic Structure of
Musi¢, University of Chicago Press, Chicago, 1960.
S. Foster, J. Rockmore and W, Schloss. “Toward an
Intelligent Editor of Digital Audio: Signsl Processing
Methods,” Computer Music Journal, vol, 8, no. 1,
1982,

D. Hofstader, “Analogies and Roles in Human and
Machine Thinking,’ in MectaMagical Themas, Basic
Books, New York, 1085.

L. Meyer, Emotion and-Meaning in Muasic, University
of Chicago Press, Chicago, 1956,

R. Michalsky, J. Carbonell, and T. Mitchell, eds.
Machine Learning, Tloga Publishing Co., Palo Alto,
1983.

B. Mont-Reynaud, et al. “Intelligent Systems for the
Analysis of Digitized Acoustic Signals, Final Report.,”
Department of Musie Technical Report STAN-M-15.,
1984.

B. Mont-Reynaud, “Problem-Solving Strategies in

a Music ‘Transcription System,* Proceedinga of the
IJCAL 1985.

A. Schloss, “On the Automatic Transcription of Percussive
Music,” Ph.D. Thesis, Department of Speech and Hearing,
Stanford University, Stanford, California, Department

of Muai¢ Technical Report STAN-AM-27, 1085,

ICMC "85 Procaedings

