Center for Computer Research in Music and Acoustics May 1984

Department of Music
Report No. STAN-M-19

AUTOMATIC SPECIES COUNTERPOINT

by
Bill Schottstaedt

Research sponsored by

System Development Foundation

CCRMA
DEPARTMENT OF MUSIC
Stanford University
Stanford, California 84305

Center for Computer Research in Music and Acoustics May 1984

Department of Music
Report No. STAN-M-19

AUTOMATIC SPECIES COUNTERPOINT

by
Bill Schottstaedt

Species counterpoint as presented by J. J. Fux in Gradus Ad Parnassuimn appears to be a
ready made case for a rul based "expert system”. In programs of this sort, knowledge is
encoded as a list of IF.. THEN statements. These attributes can easily be defined in such a
manner that a computer program can use them to find acceptabdle solutions to species
counterpoint problems. In this paper we present a program that can write counterpoint
of this sort. Rather than get bogged down in circumlocutions, we provide the actual
code, and the reader can if he so desires re-implement the entire program. The language
used is SAIL, an Algol-like language fully described elsewhere. The original
implementation "«<as done in Pla, an offshoot of SAIL also described elsewhere. We
translated everything to SAIL to speed up execution. This file is itself an executable
program which solves species counterpoint problems as described in the text.

This research was supported by the System Development Foundation under Grant SDF
#346. The views and conclusions contained in this document are those of the suthors
and should not be interpreted as necessarily representing the official policies, either
expressed or implied, of Stanford University, any agency of the U. S. Government, or
of sponsoring foundations.

@ Copyright 1884
Bill Schottstaedt

Table of Contents

Table of Contents

Automatic Species Counterpoint
Assumptions

Basic Definitions

Data Representation

Basic Rules

Species Definition

Multi-Part Counterpoint
Searching Methods

Acknowledgments

10
18
22
25
35

Species Counterpoint |
Automatic Species Counterpoint

Species counterpoint as presented by J. J. Fux in “Gradus Ad Parnassum” appears

to be a ready made case for a rule based “expert system™. In programs of this sort,
knowledge is encoded as a list of IF.THEN statements. Obvious examples from
Fux are:

IF Melodic-Leap > Octave THEN Try-Something-Else.
or

IF Interval-With-Bass = Fourth AND Species = First-Species
THEN Try-Something-Else.

These attributes can easily be defined in such a manner that a computer program
can use them to find acceptable solutions to species counterpoint problems. In this
paper we present a program that can write counterpoint of this sort. Rather than get
bogged down in circumlocutions, we provide the actual code, and the reader can if
he so desires re-implement the entire program. The language used is SAIL, an
Algol-like language fully described elsewhere. The original implementation was
done in Pla, an offshoot of SAIL also described elsewhere. We translated
everything to SAIL to speed up execution. This file is itself an executable program
which solves species counterpoint problems as described in the text.

Assumptions

The octave is divided into 12 semitones. We can therefore give a unique integer to
every possible pitch. In our examples, this value is the distance in semitones from the
given pitch to low C (16 Hz).

Rhythms can be represented as a certain number of eighthnotes.

Notes within a voice do not overlap. Each note’s onset time can therefore be
represented as a certain number of eighthnotes from time 0. Of course a prior
assumption is that there are things called voices that can be assigned a unique
succession of notes. Each note has a duration, an onset time, and a pitch. If more
than one voice exists, there is also a notion that a “vertical” interval exists between
these voices equivalent to the melodic interval necessary to jump from one voice to
the other.

The cantus firmus and the starting note of each counterpoint voice are specifed by
hand. We also currently assume that the cantus firmus is entirely in whole notes, but
it would riot be difficult to remove this restriction.

2 Basic Definitions
Basic Definitions

We must first define our terms. These include the interval names, consonance and
dissonance classifications, and so on. To define the intervals:

H
BEGIN ®foox"
REQUIRE 20888 SYSTEM_PDL;
DEFINE 1«"COMNENT";
DEFINE Unisons s,
flinorSecondsi,
fla jorSeconds2,
finorThirds 3,
RajorThirds 4,
Four the S5,
Tritones 8,
Fifthe 7,
NinorSixthe 8,
BajorSixths 9,
RinorSevanths18,
RajorSeventhell,
Octaves 123
t

Each interval is defined by the number of semitones within it. These intervals are
impervious to octave interpolations and transpositions.

We classify each interval as either a perfect consonance, imperfect consonance, or
dissonance:

BOOLEAN ARRAY Per factConsonance(8:12); SINPLE PROCEDURE PerfInit; BEGIN

Per fectConsonance [Unison] « TRUE;

PertectConsonance IF i th) « TRUE;

Per fectConsonance [Octavel «TRUE; END; REQUIRE PerflInit INITIRLIZATION;

BOOLERN RRRAY Imper fectConsonance (0:112); SINPLE PROCEOURE ImperfInit; BEGIN
Imper factConsonance (NinorThird) « TRUE;

Imper factConsonance (Ma jor Third] « TRUE;

Imper factConsonance (MinorS ixth) « TRUE;

Imper fectConsonance [(Ma jorS ixth) «TRUE; END; REQUIRE ImperfInit INITIALIZATION;

BOOLEAN RRRAY Dissonance(8:12]; SINPLE PROCEDURE DisInit; BEGIN

Dissonance [RinorSecond) « TRUE;

Dissonance [Ma jorSecond] «TRUE;

Dissonance [MinorSeventh) «TRUE;

Dissonance [fla jorSeventh] «TRUE;

Dissonance [Four th) «TRUE;

Dissonance [Tr | tonel «TRUE; END; REQUIRE DisInit INITIRLIZATION;
'
To ascertain whether a given interval is a dissonance, we merely use that interval as
an index into the Dissonance array. The other arrays are used similarly. Under
certain circumstances, the fourth is considered an imperfect consonance, but we will
leave that complication until later. (In SAIL all Boolean variables are initialized to
False, so we need only set the ones that should be True. These assignments tike

place at initialization time before the main program is executed).

We must also define the basic scales used in species counterpoint. The representation
chosen here takes advantage of the fact that the scales are only an octave in extent,
o0 octave transpositions can be removed before a decision is made as to whether a
given pitch is in a mode. However, we do have to take into account transpositions by
some interval other than an octave. In the definition given here, we assume that the
tranposition (if any) has also been removed — from this code’s viewpoint every mode
starts on pitch 0 and has only 12 pitches to choose from. Any pitch that is in the
mode has a value of 1 in the corresponding mode array. A value of O means that
the given pitch is illegal (or at least a chromatic alteration) in that mode.

Species Counterpoint 3

OEFINE Reoliansl,Dorisns2,Phrygians3,Lydiansé, HixolydiansS, lonianaB,Locrians?;

PRESET_MITH 1, 8, 1, 8, 1, 1, 8, 1, 8, 1, 8, 1; INTEGER ARRAY _lonisn{8:11);
PRESET.MITH 1, 8, 1, 1, 8, 1, 0, 1, 8, 1, 1, 8 INTEGER ARRAY _Dorian(8:11};
PRESET_MITH 1, 1, 8, 1, 8, 1, 8, 1, 1, 8, 1, & INTEGER RRRAY _Phrygian(@:11);
PRESET_MITH 1, 8, 1, 8, 1, 8, 1, 1, 8, 1, 8, 1; INTEGER ARRAY _Lydian(8:11];
PRESEV.MITH 1, 8, 1, 8, 1, 1, 8, 1, 8, 1, 1, 8; INTEGER ARRRY Mixolydian(@:113;
PRESEV_HITH 1, 8, 1, 1, 8, 1, 8, 1, 8, 8, 1, §; INTEGER RRRAY _Reo!ian(0:111;
PRESEV_MITH 1, 1, 8, 1, 8, 1, 1, 8, 1, 8, 1, & INTEGER ARRAY _Locrisn(d:11};

BOOLERN PROCEDURE InMode (INTEGER Pitch,Mode);
SEGIN
INTEGER Pit;
PitePitch NOD 12; | remove any lingering octave information;
CASE Node OF
BEGIN
(Ionian) RETURN(_Ionian(Pit]);
[Reoi ian) RETURN(ReolianlPit));
[Dor ian) RETURN(Dorian(Pit));
[(Phrygian) RETURN(PhrygianIPitl);
(Lydian) RETURN(_ Lydian(Pit));
[Mixolydian) RETURN(Nixolydian(Pit));
{Locrian) RETURN(LocrianIPit])
END;
END;
!

Although defined here, the Ionian and Locrian modes have not actually been used
during testing and may contain unnoticed bugs.

Certain intervals are not allowed melodically because they are considered hard to
sing:
H

BODLEAK ARRAY BadMelodyInterval(8:12); SINPLE PROCEDURE BadInit; BEGIN

BadNetodylnterval [Tritone) «TRUE;

BadfietodyInterval [NajorSixth) « TRUE;

BadNetodylnterval (NinorSeventh) «TRUE;

BadNetodyInterval (NajorSeventh] «TRUE; END; REQUIRE BadInit INITIRLIZATION;
1
Other “bad” intervals such as the augmented second can be avoided by forbidding
chromatic alterations within the mode. The latter are necessary unfortunately at
cadences, so more elaborate checks will be made later. We must also avoid a leap
greater than an octave and a leap of a minor sixth down. The leap of a minor sixth
up is acceptable.
H

BOOLEAN PROCEDURE BadMfelody (INTEGER Intv);

RETURN(A3S(Intv)>0ctave OR { more than an octave either way;
Badlelodylnterval (RBS(Intv)] OR ! tritone or major sixth or seventh;
Intve-finorSixth); ! dounward minor sixth;

We will often need to distinguish a “skip” (or leap) from a “step”. These are not
explicitly defined in my version of Fux, but it is clear that a skip is any interval
greater than a major second, and that a step is an interval that is not a skip and
also not a unison.

BOOLERN PROCEDURE RSk ip (INTEGER Interval);
RETURN (RBS (Interval)>Na jorSacond);

BOOLEAN PROCEDURE RStep (INTEGER Interval);
\ RETURN ((RBS (Interval)slinorSecond) OR (RBS(Interval)shajorSecond));
The intervals are further divided up into the groups second, third, sixth, seventh,

and so on. We therefore define the obvious procedures:

Basic Definitions

SCOLERN PROCEDURE RThird (INTEGER Interval);
RETURN ((Interval=minorThird) OR (Xnurval-ﬂuor'l’hlrd));

BOOLERAN PROCEDURE ASeventh (INTEGER Interval);
RETURN((IntervalsminorSeventh) OR (IntervalsfsjorSeventh));

BOOLERN PROCEDURE AnOctave (INTEGER interval);
RETURN ((IntervalxUnison) AND ((RBS(Interval) HOD 12)=0));

BOOLEAN PROCEDURE ATenth(INTEGER Interval);
RETURN ((RBS (Interval)>14) AND AThird((RBS(Interval) NOD 12)));

The last procedure (AT enth) is used to implement only one rather obscure rule.

Now we define the four kinds of “motion™ direct, oblique, contrary, and no motion:

3

BEFINE DirectBotional,
Contraryllotions2,
Obiiquellotione3,
Nolotionad;

INTEGER PROCEQURE MotionType (INTEGER Pitchl,Pitch2,Pitchd,Pitchd);
COMNENT Pitchl and Pitch2 are from Voice 1, Pitchd and Pitchd from voice 2.
That is the passage in question is:

Voicel: Pitchl Pitch2
Voice2: Pitchd Pitché

This procedure decides shich kind of motion these pitches indicate.
Either voice may go up (Pitch2>Pitchl), doun (Pitch2<Pitchl),
or hold its pitch (PitchlsPitch2).

3
IF (Pitchl=Pitch2 OR Pitch3s=Pitché) | at least one voice does not move;
THEN
IF (PitchisPitch2 ARD Pitch3=Pitché) | neither voice moves;

THEN RETURN (Noflotion)
ELSE RETURN(Ob! iqueltotion)
ELSE
IF ((Pitch2-Pitchl)s(Pitchd-Pitch3)>®) | either both >8 or both <8;
THEN RETURN(Directfotion)
ELSE RETURN (Contraryflotion);

Direct Contrary Oblique No
Motion Motion Hotion fotion

Two other procedures will be useful later when we apply rules involving direct
motion to a perfect consonance and consecutive leaps:

BOOLEAN PROCEDURE OirsctiiotionToPer fectConsonance(
INTEGER Pitchl,Pitch2,Pitchd,Pitchd);
RETURN (Per fac tConsonance [R8S (P) tchd-P i tch2) NOD 121 AND
MotionType (Pitchl,Pitch2,Pitchd,Pitchd)=lirecttiotion);

Species Counterpoint 5

BOOLEAN PROCEDURE ConsscutiveSkipsInSameDirection(

INTEGER Pitchl,Pitch2,Pitch3);

RETURNC (((Pitchl>Pitch2) AND (Pitch2>Pitch3)) OR
((Pitchl<Pitch2) RND (Pitch2<Pitch3))) AND
ASkip(Pitch2-Pitchl) AND | first interval is a skip;
Askip (Pitch3-Pitch2)); t so is second;

1

The extreme high and low pitches in a melody define its overall range. Fux
emphasizes on many occasions that this range should be constrained to fit human
vocal ranges.

3 0 p ©
[’ 4 ¥]
DEFIRE HighestSemitones72; ! this is & high C (1825 Hz); EFT_t:—_-i
DEFINE LowestSenitones2é; | this is a louw C (65 Hz); o

{ these are libesral ranges;
BOOLEAN PROCEDURE OutOtRange (INTEGER Pitch);

RETURN((Pitch>HighestSemitone) OR (PitchdouestSemitone)); W

BOOLEAN PROCEDURE ExtremeRange (INTEGER Pitch);
RETURN (Pitch> (HighestSenitone-3) OR Pitch<(LowestSemitone+3));

¢l

These procedures give a rather liberal range check. We also need code to find the
overall melody range so that it normally does not exceed an octave and a fifth. This
code, however, depends on the representation we choose for voice data.

Data Representation

For the purposes of this description we will use a simple representation which uses
parallel arrays for onset time, duration, and pitch. First we have integers for the
transposition (BasePitch), the current mode (Mode), and the length of the cantus
firmus in eighth notes (T'otalTime).

H

DEFINE MostNotess128; | most notes any one voice can have;
DEFINE MostVoicess8;

INTEGER BasePitch,Node,TotaliTime;

We arbitrarily limit the longest melody to 128 notes and the number of voices to 8
(once again, these are purely for array allocation purposes and are not built into any
of the counterpoint writing procedures). We need a place to hold the pitch, duration,
and onset time data for each voice, including the cantus firmus.

3

INTEGER ARRAY CtrPt,Onset,Dur[1:NostNotes,8:MostVoices]);
, INTEGER RRRRY TotalNotes(8:MostVoicesl;
The cantus firmus is voice 0 in this scheme, but is not otherwise distinguished from
the other voices. Each note of voice V keeps its note information for note number N
in these three parallel arrays. OnSet[V ,N] is the begin time in eighth notes of the
note, Dur[V N1] is its duration (in eighth notes), and CtrPt[V ,N] is the pitch of the
note (in semitones above the low c). Next we need a variety of procedures to access
the data in these arrays.

6 Data Representation

INTEGER PROCEDURE Us (INTEGER n,v);
RETURN(Ctrptin,vl); { returns pitch of note N in voice V;

BOOLEAN PROCEDURE LastNote (INTEGER n,v);
RETURK (naTotalNotes(v]l); ! returns true if N is the last note of V;

BOOLEAN PROCEDURE FirstNote (INTEGER n,v);
RETURN (n=1); | returns true if N is the first note;

BOOLERAN PROCEDURE MextTolastNote (INTEGER n,v);
RETURN(n= (TotaiNotes(vi-1)); | returns true if N is the next to tast note;
1 these are used mainly for cadentia! formulas;

PROCEDURE SetUs (INTEGER n,p,v);
Ctrptin,vlep; | sets the pitch of note N in voice V to P;

We also need a procedure that returns the total range of the voice V at the note CN
(counting from the beginning of the melody), given the current pitch CP.

5
INTEGER PROCEDURE TotalRange (INTEGER Cn,Cp,v);
BEGIN ! reaturn total range of melody so far (including CP);
INTEGER Ninp,Naxp, i}
RinPeCp;
Naxp«Cp;
FOR -1 STEP . UNTIL Cn-i DO
BEGIN

NinPeltinP NIN Us(i,v);
flaxP+ltaxP RAX Us(i,v);

END;
RETURN (NaxP-NinP)
END;
'

We present most of the data analysis procedures in this form. In words, we have a
proposed pitch (CP) in a voice (V) at the point (CN) in that voice, and need a
decision about the acceptability of that pitch.

Since we assume for simplicity’s sake that the cantus firmus is always in whole notes,
it is easy to write a procedure which returns the cantus firmus note at any given
eighth note beat N.

4
INTEGER PROCEDURE Cantus (INTEGER n,v);
RETURN(CtrPt{((Onsetin,v] DIV 8)+1),01);
!

A similar procedure is needed to return the current pitch in some other voice (we
could use this procedure for the cantus firmus also because it is just voice 0, but as
long as we are assuming the cantus moves in whole notes we can handle it separately
to save some time):

'

INTEGER PROCEDURE VIndex (INTEGER Time,VNum);
BEGIN
INTEGER iy
FOR i«1 STEP 1 UNTIL TotaiNotes[VNuml DO
IF Onsetl(i,viunlSTime AND Onset(i,vium) +Durli,vium)>Time THEN DONE;
RETURNCi) 3
END;
INTEGER PROCEDURE Other (INTEGER Cn,v,v1);
RETURN(Ctrpt {VIndex (Onset [Cn,v],v1),v1));

INTEGER PROCEDURE Bass (INTEGER Cn,v);

BEGIN

INTEGER j,LowentPitch;

LouestPitcheCantus(Cn,v);

FOR je1 STEP 1 UNTIL v-1 DO LowestPitchelLonestPitch NIN Other(Ca,v,));
RETURN (LowestPitch);

END;

Species Counterpoint 7

This is not an optimal search procedure, but normally there are not tco many notes
in a melody. We can therefore search laboriously from the beginning for the note in
voice V1 that sounds at the same time as the note CN in voice V.

We must also define various rhythmic values:
4

DEFINE WholeNotes 8,
HalfRotes 4,
DottecHal tNotes 8,
Quar tarNotes 2,
EighthNotes 1

'
A measure contains 8 eighth notes (triple time is not supported).

INTEGER PROCEDURE Beat8(INTEGER n);
RETURN(n MOD 8); t 8=first beat,7=last;
!

A downbeat occurs on the first (0-th) beat of the measure.

H

BOOLEAN PROCEDURE DounBeat (INTEGER n,v);
\ RETURN (Beat8(Onsetin,v])al);
An upbeat can be considered to be any beat that is not a downbeat. There are
several cases where beat 4 (the second half note beat) is a downbeat, but these will be
handled separately.
4

BOOLEAN PROCEDURE UpBeat (INTEGER n,v);
RETURN (KOT DounBeat(n,v));
!

Fux mentions that it is desirable to maintain “variety” in the melodies. This variety
seems to entail a mix of melodic intervals coupled with an avoidance of too many
repetitions of any one pitch. To check the latter condition we define a procedure
which looks for repeated pitches within a melody:
3

INTEGER PROCEDURE PItchRepeats (INTEGER Cn,Cp,V);

BEGIN

INTEGER 1,k;

;5:'&.1 STEP 1 UNTIL Cn-1 D0 IF Us(k,v)sCp THEM ieisl;

RETURN(i);
\ END;
We also need to encourage the melody to contain a nice mixture of intervals (in third
and fifth species). We keep track of how many times a given interval type has been
used so far, then check to see if others have been used nearly as many times. The
interval type ignores distinctions of major and minor, but does not ignore direction
(a rising minor second is considered the same interval type as a rising ma jor second,
but not the same as a descending minor second).

8 Data Representation

DEFINE One=8, Tuos2, Threea3, Foursd, FivesS, Sixa8, Eights8;

INTEGER PROCEDURE Size (INTEGER Mellnt);
BEGIN

INTEGER Retlint, IntTyp;
Rctint-ABS(Nallnt);

CRSE ActInt OF

{unisonl IntTypeOne;
{minorSecond] (ma jorSecond} IntTypeTuo;
IminorThird) (majorThird]) IntTypeThree;
{fourth} IntTypeFour;
(tifth} IntTYpeF ive;
{minorsixth) IntTypeSix;
{octave) IntTypeEight;
ELSE PRINT(“illegal melodic interval: “,HelInt)
END;

RETURN(IF MelInt>8 THEN IntTyp ELSE ~IntTyp);

END;

BOOLEAN PROCEOURE TooMuchOfInterval (INTEGER Cn,Cp,v);

BEGIN

INTEGER ARRAY Ints(-8:8);
INTEGER i,k,MinL;
ARRCLR(Ints);
FOR i+2 STEP 1 UNTIL Cn-1 DO
BEGIN
keSize (CtrPtli,v}-CtrPtli-1,v]);
Ints(kleIntslkl+l;
END;
k+Size (Cp—LtrptiCn-1,vl);
Ninle—8;
FOR i~-7 STEP 1 UNTIL 8 DO
IF imk AND Ints(il>Ints{NinL] THEN Ninlei;
RETURN(IntsIx1>(Ints(Rinl)+8));
END;

Next we must define when a dissonance is legal in each species, and also when
chromatic (altered) notes occur. The rules governing the cadential formulas are
pretty clear, but the rules governing ficta seem to consist mostly of handwaves and
exceptions. We first define dissonance handling in each species:

H

BOOLERN PROCEDURE RDissonance (INTEGER Interval,Cn,Cp,v,Species);

IF Species=] OR Dur(Cn,vlswholenote THEN RETURN(DissonancelIntervall)
!
In first species no dissonances are allowed, so we simply return true in every case in
which Intervel is a dissonance. Similarly, we do not allow wholenotes to form a
dissonance (in fifth species).
3 01 1

_ 1
ELSE @:W
IF Species=2
THEN A

IF (DounBeat(Cn,v) OR (NOT (Rstep(Cp-Us(Cn-1,v))}))
THEN RETURN (Dissonance(Intervall)
ELSE RETURN (FALSE)

Passing Tone

1

In second species, a dissonance is aliowed only as a passing tone on an upbeat. Since
we don’t yet know what the next note will be, we must put off the rest of the
dissonance check until later.

Species Counterpoint 8

H
ELSE
IF Speciess3
THEN o

BEGIN
INTEGER Mellnt;
IF Beat8(0nSet(Cn,v])=8 OR FirstNote(Cn,v) OR LastNote(Cn,v) Canbiata
THEN RETURN(DissonancelIntervall);
NelInteCp-Us{Cn-1,v);
IF (NOT RStep(MelInt)) THEN RETURN(Dissonsncellntervall);
CORNENT
@ cannot be dissonant (downbeat)
1 can be if passing sither say, but must be approachad by step.
2 can be it passing 2 to & (both latter cons)
3 can be if passing but sust be approached and left by step

3
RETURN (FRLSE) §
END

!

In third species, the downbeat cannot be a dissonance, but any of the other beats can
if they are passing tones or cambiatas. As with second species, the dissonance
resolution is checked later.

4 0 1

ELSE —
IF Speciessé
THEN ©
BEGIN
INTEGER Neilnt;
IF UpBeat(Cn,v) OR FirstNote(Cn,v) OR LastNote(Cn,v) Suspension

THEN RETURN (Dissonancelintervall);
RetlnteCp-Us(Cn-1,v);
IF Neilnt=® THEN RETURN (Dissonancellntervall);
RETURN (FRLSE) ; | i.e. unison to downbeat is ok, but neads check later;
END
!

In fourth species, a dissonance is legal as a suspension. The suspension is handled
here as a note repeated from the upbeat to the downbeat (consider it tied across the
bar), so the melodic interval is obviously a unison.

H

ELSE
IF Speciess$S
THEN
BEGIN
IF Beaat8(OnsetiCn,vl)sd ! first note;
THEN ! s0 can be tied from previous to diss now;
IF CpsUs{(Cn-1,v) { is a unison (assume tie);
THEN RETURN (FALSE) ! so dissonance is ok here (check resolution later);
ELSE RETURN(DissonancelIntervall)
ELSE ! not first beat;
IF NOT AStep(Cp-Us(Cn-1,v)) { cannot jump to dissonance;
THEN RETURN(Dissonance{Intervall);
RETURN (FALSE) 3
END;

|

Finally, in fifth species we have passing note dissonances, cambiatas, and suspensions.
Therefore, if the downbeat (beat 0) of the measure is dissonant, the note must have
been tied across the bar (the melodic interval must be a unison). On any other beat
the dissonance must be approached by step. We will check later for its proper
resolution. .

Lastly, in multi-part counterpoint we often need to check for various kinds of pitch
doublings:

10 Data Representation

BOOLEAN PROCEDURE Doubled (INTEGER Pitch,Cn,v);
BEGIN
INTEGER vNum;
FOR Vnume8 STEP 1 UNTIL v-1 0O
IF (Other (Cn,v,VNum) NOD 12)=Pitch THEN RETURN(TRUE);
RETURN (FALSED ;
END;

Basic Rules

The basic rules of species counterpoint describe how melodies are formed and
combined. In most cases any given rule can be broken if other factors necessitate it.
Fux repeatedly presents the rules as guidelines, not absolutes. In our implementation
we define the relative importance of the rules by assigning each rule a penalty. The
higher the penalty, the worse it is to break the associated rule. The relations between
these penalties determine what kind of solutions the program will find.

Our penalty types and the associated penalty values are:

1
DEFINE Infinitys®2118";
DEFINE Bad!=188;
DEFINE RealBad!=288;

DEFINE UnisonPenalty sbadi,
DirectToF ifthPenalty =Reaibad!,
DirectToOctavePenalty =ResiBad!,
ParallelIFifthPenalty =infinity,
ParailelUnisonPenalty sinfinity,
EndOnPer fectPenalty sintinity,
NoLeadingTonePenalty =infinity,
OissonancePenalty =infinity,
OutOfRangePenal ty =reaiBad!,
OutOffodePenal ty =infinity,
TuoSk ipsPenaity =1,
DirectfotionPenalty =1,

Per fectConsonancePenal ty =2,
CompoundPenal ty =1,
TenthToOctavePenalty =8,
Sk ipTo8vaPenalty =8,
Sk ipFroaUnisonPenal ty =4,

Sk ipPrecededBySanelirectionPenality «l,
FifthPrecededBySameDirectionPenalty «3,
SixthPrecededBySamelirectionPenalty =8,
Sk ipFol lowedBySameDirectionPenalty 3,
FlithFollonedBySameDdirectionPenalty =8,
SixthFollonedBySameDirectionPenalty =34,

TuwoSk ipsMotInTriadPenalty =3,

Bade lodyPenalty sinfinity,
ExtremeRangePenalty =5,
LydianCadentiaiTritonsPenalty =13,
UpperNeighborPenal ty -],
LousrNe ighborPenalty =1,
OverTuel fthPenal ty winfinity,
OverCctavePenalty =bad!,
SixthLeapPenalty =2,
OctaveLeapPenalty =5,
BadCadencePenalty =sintfinity,
DirectPer fectOnDosunbeatPanal ty winfinity,
RepetitionOnUpbsatPenalty sbadi,
DissonanceNotF il lingThirdPenaity sinfinity,
UnisonDounbsatPenal ty =3,
TuoRepeatedNotesPenalty =2,
ThreeRepeatediotesPenalty =4,

FourRepsatedNotesPenal ty =7,

Species Counterpoint 1

LespRtCadencePenalty =13,
NotaCambiataPenalty sinfinity,
NotBastCadencePenalty =8,
UnisonOnBeatdPenaity 3,

Notal igaturePanaity =21,
Unresolvedl igaturePenalty =infinity,
NoTimeForal igaturePenalty sinfinity,
EighthJumpPenai ty =bad!,

Hal fUntiedPenalty «13,
UnisonUpbeatPenal ty =2},
NelodicBoredonPenal ty =1,

Sk ipToDounBeatPenal ty =1,
ThreeSk ipsPenai ty -3,
DounBeatUnisonPenalty =sbadt,
VerticalTritonePenaity =2,
NelodicTritonePenalty =8,
AscendingSixthPenalty =1,
RepeatedPitchPenalty =1,
NotContraryToOthersPenalty =1,
NotTriadPenalty =34,

InnerVoicesInDirectToPer factPenalty =21,
InnerVoicesInDirectToTritonePenalty =13,

SixFivaChordPenalty =infinity,
UnpreparedSixF ivePenal ty sbad!,
UnresolvedSixF ivePenalty =badi,
RugmentedintervalPenalty =infinity,
ThirdDoub ledPenal ty a5,

Doub ledLeadingTonePenalty =intinity,
Doub ledSixthPanalty 5,
DoubledF i fthPenaity «3,
TripledBassPenalty =3,
UpperVo icesTooFarRpartPenalty =1,
UnresolvedLeadingTonePenalty sinfinity,
AltVoicesSkipPenalty =8,
DirectToTritonePenalty =bad!,
CrossBelouBassPenalty sintinitys

These penalty values have come partly from Fux's comments (the more important
rules get a higher penalty), and partly from experience running the program.
Obviously not all the penalties apply to every species of counterpoint. The penalties
are all positive (that is, there are no rewards), because we want to be able to abandon
a line as soon as its penalty gets too high. This implies that the penalty function
should never descend. Even the smaller penalties have a profound effect on the
outcome of the counterpoint search. The solver is consistently “bent” in the direction
determined by the penalties causing the music to reflect the slightest changes in that
direction.

We need a procedure which examines the current note of the current voice and
returns a measure of its goodness (the lower the penalty, the better the note).

FORWARD INTEGER PROCEDURE SpecialSpeciesCheck(
INTEGER Cn,Cp,v,0ther8,0therl,Cthar2,NusParts,
Species,MelInt, Interval, Retint,LastIntClass,Pitch,LastietInt);
FORUARD INTEGER PROCEOURE OtherVoiceCheck(
INTEGER Cn,Cp,v,v1,Species);
1

We define the special attributes of each species later. These are checked by the
SpecialSpeciesCheck procedure (declared here for convenience, but defined later to
make the presentation more clear).

12 Basic Rules

INTEGER PROCEDURE Check (INTEGER Cn,Cp,v,NusParts,Species);
BEGIN | return penslity azsociated uith pitch CP in voice V at note CN;
INTEGER Vai, accumuiated penalty for CP;

i,k, temp counters;

!
!
Interval, ! current pitch to other voice current pitch;
IntCtass, ! octaves and direction removed from Interval;
Pitch, | CP pitch class;
LastIntClass, | previous such Interval;
Hellnt, { melodic interval in current voice;
Lastiellnt, { last malodic interva! in volice;
Other®, | current other voice pitch;
Otherl, | previous other veice pitch;
Other2, ! pitch 2 back in other voice;
Cross; ! veice cross counter;
BOOLEAN SameDir; | did last 2 melodic intervals go same direction;
IF vsl
THEN
BEGIN
Other8+Cantus(Cn,v); ! current pitch in cantus;

OtherleCantus(Cn-1,v);
IF Cn>2 THEN Other2+Cantus(Cn-2,v);
END
ELSE
BEGIN
Gthar8Bass(Cn,Vv); ! check current against bass line;
OthericBass (Cn-1,v)s
IF Cn>2 THEN Other2+Bass(Cn-2,v);

END;
Vale«8; | accumulated penalty;
IntervaleCp-Others; | vertical interval betuesn current pitch and cantus;

IntClass+ABS(Intervai) N00 12; | remove direction and octave info;
fellnte(Cp-Us (Cn-1,v))}
PitcheCP HOD 12;
1
The rules are applied here in an order which hopes to reduce redundant checks of

various kinds. At the start we apply rules that apply to every pitch in the melodies.

! melody must stay in range;
IF OutOfRange (Cp+BasePitch) THEN ValeVal+OutOfRangePenalty;

| extremes of range are also bad (to be avoided);
IF ExtremsRange (Cp+BasePitch) THEN Val«Val+ExtremeRangePensity; n

| Chromatically altered notes are accepted only at the
| cadence. Other alterations (such as ficta) uill be handied later);
o ©

IF NOT NextToLastNote(Cn,v) o
THEN

BEGIN

"n:::“i“-z) Reo!ian Cadence
IF NOT Infada (P tch, Node) in Second Species

THEN ValeVal+sOutOffodePenalty

ELSE

ELSE

IF (CnsTotaiNotes[vl-2) OR (ModesReolian) OR (CpsOther8) OR (IntclasssFifth)
THEN

IF NOT InMode (Pitch,Nods)
THEN Vale«Val+OutOffiodePenalty;
END
ELSE
BEGIN
BOOLEAN WeHaveRReallLeadingTone;
HeHaveRRealLeadingTones
(Pitch=11) OR ((Pitch=18) RND (ModesPhrygian));
' .

The leading tone cannot be doubled, nor should the raised leading tone be preceded
by its unraised form. The next to last chord of the counterpoint must have a leading

tone somewhere.

Species Counterpoint 13

IF HeHaveRReailLeadingTone
THEN

IF Doubted(Pitch,Cn,v) t leading tone doubled;
THEN ValeVal+DoubledleadingTonePenalty
ELSE
ELSE
IF (Pitchsl®) ! unraised leading tone, but need raised form;
THEN Val+Val+BadCadencePenalty
ELSE ! are we last — does anyone have one;
IF NOT InMode(Pitch,Mode) | maybe not the leading tone at all;
THEN Val«Val+OutOffiodePenalty
ELSE
IF vsNumparts ! last voice — check that somsone has it;
THEN

IF NOT Doubled(11,Cn,v) AND
NOT Doubled(16,Cn,v)
THEN ValeValeNoLeadingTonePenal ty;
END;
IF ValZinfinity THEN RETURN(val);

IF Cn>2
THEN 0+ 1}
BEGIN
Lasthe)Inte (Us(Cn-1,v) -Us(Cn-2,v));
SameDire((NalIntslastielint)20);

i

END;

1F Cn>1 THEN LastIntClasse(RBS (Us(Cn-1,v)-Otherl) NOD 12); q

| dissonance must be handlied correctly. Tha procedure %‘L—
| RDISSONANCE returns true i1 & CP forms & dissonance that is

! not correctiy prepared. Other rules later check that it is

| resotved correctiy;

IF ADissonance(IntClass,Cn,Cp,v,Species) THEN Val+Val+DissonancePenalty;

IF Valzinfinity THEN RETURN(val);
ValeVal+SpeciaiSpeciesCheck (Cn,Cp,v,0ther®,0therl,0ther2, NusParts,
Species,fallnt,Interval,intClass,LastIntClass,Pitch,LastNelInt);
IF v>1 THEN Vale«Val+OtherVoiceCheck (Cn,Cp,v,NusParts,speciss);
'

This procedure call looks at the current state from the point of view of the current
species. There are a number of rules unique to each species.

H
IF FirstNote(Cn,v) THEN RETURN(Val);
{ no further rules apply to first note;
IF VaiZinfinity THEN RETURN(val);

!

The “fundamental rule” defines which intervallic relationships are acceptable between
two melodies. Fux presents this as four rules, but as Martini remarks, these four are
actually reducible to one — voices cannot move by direct motion to a perfect
consonance. In multi-voice counterpoint, this rule can be broken, especially at
cadences.

H
| direct motion to perfect consonances considered harmful;
IF NOT LastNote(Cn,v) OR NuwPartssl
THEN L

1F DirectlotionToPer fectConsonance (Us (Cn-1,v),Cp,0therl,Cther®)
THEN ! ue do have direct motion to perfect;
1IF IntClasssunison | reached an octave or unison;
THEN ValeValsDirectToOctavePenalty
ELSE ValeValeDirectToFifthPenalty;
!

The expression “NumParts«l" checks that we are indeed in a multi-voice situation. In
two part counterpoint we do not allow direct motion to a perfect consonance at all.

14 Basic Rules

1 check for more blatant examples of the same error; 0
IF IntClassefifth AND LastIntClasssFifth |7]
THEN Vai«Val+ParatlelFitthPenalty; m
J e O

IF IntClass=unison AND LastIntClass=unison
THEN VaieVal+ParallsiUnisonPenalty;
| voices parailel in octave or tifths;
| which Fux seems to consider to be worse;
| than just direct motion to these;
IF Vai2intinity THEN RETURN(val);
{ certain malodic intervais are disalioued;
IF Badhelody(MelInt) THEN Vale«Val+BadielodyPenalty;
IF Val2infinity THEN RETURN(val);
t

This rule (the meodic interval check) is actually built into the search procedures
given below so its inclusion here is mostly for completeness. A

} o —
| must end on unison or octave in tuo parts, fifth and major third
| alloned in 3 and 4 part uriting; U

IF (LastNote(Cn,v)) ANO 1 it is the last note;

(IntClassmunison) ! must ba octave or unison here (2 parts); 0
THEN #:s‘,:

IF NusPartsal OR Interval<® | two part writing or bass;
THEN Val«Vai+EndOnPerfectPenalty
ELSE t NusParts>l 80 ne must have 3 or more part writing;
IF Intctasssfitth AND IntclassalajorThird
THEN VaieVal+EndOnPerfectPenalty;

!
If we end on a major third, this should of course be a major third above the cantus,
not below it (similarly for the fifth).

! psnalize direct motion kind (contrary wotion is better);
IF NMotionType(Us(Cn-1,v),Cp,0therl,Other8)=Directiiotion
THER

BEGIN
ValeVat+DirectiotionPenalty;
IF IntClass=Tritons

THEN ValeVal+DirectToFifthPenalty;
END;
1 penalize compound intervais (close position is favored);
IF ABS(Interval)>0ctave | avoid compound intervals wherever possible; Y

THEN ValeVal+CompoundPenai ty;
!

Now we present a raft of rules involving skips. For example, it is considered bad to
have too many consecutive skips in the same directions.

! penalize consscutive skips in the same direction; r 0
) A

IF Cn>2 AND ConsecutiveSkipsInSameDirection(Us(Cn-2,v),Us(Cn-1,v},Cp)
THEN
e re———

INTEGER totalJump;
Val+Val+TuoSk ipsPenai ty;

totalJump+RBS (Cp-Us (Cn-2,v));
! do not let these skips traverse more than an octave, nor a sevanth;
IF ((totalJump>NajorSixth) AND (totalJumpsOctave))
THEN VateValeTuoSk ipsNotInTrisdPenalty;

END;
| penalize a skip to an octave;
IF ((IntClasssunison) AND (RSkip(felInt) OR RSkip(Other8-Otherl)))
THEN ValeVal+SkipTo8vePenalty;

| do not skip from a unison (not a very important rule);
IF (OtherisUs(Cn-1,v)) AND RASkip(fellnt)
THEN ValeVai+SkipFromlUnisonPenalty;

Species Counterpoint 15

| penalize skips folloued or preceded by motion in same direction;

IF Cn>2 AND RSkip(fellnt) AND SameDir
THEN | skip preceded by same direction;

BEGIN
! especially penalize fifths, sixths, and octaves of this sort;
IF RBS(MelInt)<Fifth ! skip of third or fourth;

THEN ValeVal+SkipPracededBySemeDirectionPenalty
ELSE
IF RBS(MelInt)eFifth OR RBS(Meilnt)=Octave
THEN ValeVal+FifthPrecededBySameDirectionPenslty
ELSE Val+Vat+SixthPrecededBySameDirectionPenalty;

END;
IF Cn>2 RND RSkip(LastiielInt) AND SameDir
THEN

BEGIN

IF RBS(LastMellnt)<Fifth ! skip of third or fourth;
THEN ValeVal+SkipFoliousdBySameDirectionPenalty

ELSE

IF ABS(LastMeilnt)sFifth OR ABS(LastHelInt)sOctave
THEN VateValeFifthFollouedBySameDirectionPenalty
ELSE ValeVai+SixthFollonedBySameDirectionPenatty;

END; A
| too many skips in & rou —— favor 8 mix of steps and skips; &

IF Cn>4 RND
RSk ip(HetInt) AND

ASkip(LastfetInt) AND
RSk ip (Us (Cn-2,v) -Us (Cn-3,V))
THEN ValeVal+ielodicBoredonPenal ty;

! avoid tritones melodically;
IF Cn>4 AND

(ABS (Cp-Us (Cn-2,v))=Tritone OR

ABS (Cp-Us (Cn-3,v))eTritone OR

ABS (Cp-Us (Cn-4,v)) =Tritone)

THEN ValeValelalodicTritonePenal ty;

!
As can be seen from the solutions given at the end of the paper, tritone handling is
far from perfect. Perhaps the MelodicT ritone penalty should be higher, and more
elaborate checks should be added for tritones over larger meledic distances.

]
! do not allouw movement from a tenth to an octave by contrary motion;
1F Speciess5 AND NuwPartssl
THEN +
IF ATenth(Otherl-Us(Cn-1,v)) AND AnOctave(Interval) ©

THEN ValeVal+TenthToOctavePenalty;

!
Fux admits this rule (disallowing motion from a tenth to an octave) is without
obvious musical justification, but states that the rule merely follows the practice of the

great composers.

3
{ more range checks —— did we go over an octave recently;
IF Cn>2 RND RBS(Cp-Us(Cn-2,v))>0ctave THEN ValoV.loﬂvorOcuvc'-nalty; ©
! same for a tuslfth;
IF Cn>3 AND faﬂlllnql(Cn,Cp,v)>(Dc'lv.oFlHh) THEN Val+Vat+OverTus!{thPenalty;
IF VaiZinfinity THEN RETURN(val);

1 slightly penalize repsated notes;

IF (Cn>3) AND (CpsUs(Cn-2,v)) AND (Us(Cn-1,v)eUs(Cn-3,v)) 0 .
THEN Val«Val+TuoRepeatediotasPenalty; %—n—_o—_n:_—*’__—_
IF (Cn>S) AND (CpsUs (Cn-3,v)) RND

(Us(Cn-1,v)=Us (Cn-4,v))} AND (Us(Cn-2,v)sls(Cn-5,v))
THEN VateVal+ThresRepsatedNotesPenalty;
IF (Cn>6) AND (CpsUs(Cn-4,v)) AND
(Us(Cn-1,v)sUs (cn-s,m AND (Us(Cn-2,v)sUs (Cn-s.v))
THEN Va to\lalomruhpuuale tesPenal tg-l;
IF (Cn>?7) RARD (Cp=Us(Cn-4,v)) AND
(Us (Cn-1,Vv)=Us (Cn-5,v)) AND (Us(Cn-2,v)=Us(Cn-8,v)) RAND
(Us (Cn-3, V) =sUs (Cn-7,V))
THEN Vale«Val+FourRepeatedNotesPenalty;
IF (Cn>8) RAND (CpeUs(Cn-5,v)) RAND
(Us (Cn=1,v)aUs (Cn-8,v)) AND (Us(Cn-2,v)=Us(Cn-7,v)) AND
(Us(Cn-3,v)sUs (Cn-8,V))
THEN VateVai+FourRepestedNotesPanalty;

N Y

-

1 QE

16 Basic Rules

These rules do not penalize sequences, nor do they catch widely separated pattern
repetitions. We may add such checks to a later version of the program.

4
f hid

IF LastNote(Cn,v)
THEN
BEGIN
INTEGER LastPitch;
LastPitche (Us(Cn-1,v) MOD 12);
IF ((LastPitch=11l) OR ((LastPitch=18) ANO (ModesPhrygian))) RND (Pitchx®)
THEN Vat«VaieUnresolvedLeadingTonsPenalty;

END;

Without this rule forcing the leading tone to go to the tonic, in multi-voice situations
the program sometimes skips from the leading tone to some other note than the tonic
to avoid direct motion to an octave.

i
IF ValZintinity THEN RETURN(val);
| an imperfect consonance is better than » perfect consonance;
IF PertectConsonance(IntClass] THEN Vai«Val+PerfectConsonancePenaity;

0
! no unisons allowed within counterpoint unless wore than 2 parts; 7 - i
IF NunPartsel AND (Intervalsunison) THEN ValeValsUnisonPenalty; 8 ——a—

IF VaiZintinity THEN RETURN(val); @

| seek variety by avoiding pitch repstitions;
\ ValeVai+PitchRepeats (Cn,Cp,v)/2;
Without a few rules governing melodic practices, the counterpoint writer is as happy
to bounce around by octaves as by steps. This can lead to some rather funny looking
melodies.
3

! panalize octave leaps a little;
IF AnOctave(Mailnt) THEN ValeVal+OctavelespPenalty;

! similarly for minor sixth leaps;
IF MelInteNinorSixth THEN ValeValsSixthLeapPenalty; /]
! penatize upper neighbor notes siightly (also louer neighbors); m
IF Cn>2 RND
(MetInt<®) AND | last interval was dounard; J
RAStep(Mailnt) AND | downuard step in fact;
(CpaUs (Cn-2,Vv)) ! upper neighbor (this note repeated 2 back);
THEN ValeVal+UpperieighborPenalty;
IF Cn>2 AND
(Na1Int>8) AND ! last interval was upuard;
AStep (NelInt) AND ! upnard step in fact;
(Cp=Us (Cn~-2,Vv)) ! lousr neighbor (this note repeated 2 back);

THEN ValieVal+loueriaighborPenalty;
{ do not allow normal leading tone to precede raised leading tons;
{ aiso check here for sugmented fifths and diminished fourths;

IF (NOT InMode(Pitch,Mode)) AND ! sust be raised leading tone;
((MetInt=minorsscond) OR ! and preceding uas & normal leading tone;
(Mot intsMinorSixth) OR | preceded by augmented fifth;
(MeiInte-fiajorThird)) ! preceded by diminshed fourth;
THEN
Vai«Val+OutOtModePenalty;
! gslightly frown upon leap back in the opposite direction;
IF Cn>2 AND ASkip(MeilInt) AND RAskip(LastMelInt) AND NOT SameDir
THEN

BEGIN

VaieVaie (8 NAX ((RBS(MellInt)+ABS(LastNeiInt))-8));

IF Cn>3 AND ASK ip (Us (Cn-2,v)-Us(Cn-3,v)) - ——
THEN VaieVai+ThreaSkipsPenslty;

3

!

This rule only penalizes a leap of more than a major third followed immediately by a
leap in the opposite direction. Fux has an example that leaps up an octave, then
immediately down an octave, so this is not a terrible flaw. More “common sense”
checks of this sort are given below.

Species Counterpoint

17

! try to approach cadential passages by step;
IF NuwParts=l ANO Cn2TotalNotes[vl-4 AND (RBS(Mellnt)>4)
THEN Val«Vai+leapRtCadencePenalty;

| check for entangied voices;
Cross«8;
IF NuwPartss}
THEN
FOR k4 STEP 1 UNTIL Cn DO
IF (Us(k,v)-Cantus(k,v))s(Us(k-1,v)-Cantus(k-1,v)) <8

THEN CrosseCrosse+l;
IF Cross>8 THEN ValeVal+(8 MRX ((Cross-2)s3));

This formula “(Cross-2)e3" does not penalize the melody until there are three
crossings.

! don’t repeat note on upbest;
IF (Upbeat(Cn,v) RAND (Me!lnteUnison))
THEN Vai«ValeRepetitionOnlpbeatPenalty;
1 avoid tritones near Lydian cadence;
IF (ModesLydian) AND (Cn>TotalNotes(vl-4) AND (Pitche6)
THEN ValeVal+lydianCadentialTritonsPenalty;
! various misceliansous checks. More elaborate dissonance resolution and
| cadential formu!a checks uiil be given under “Spacies definition®;

IF Speciesml RND DounBeat(Cn,v)
THE

N
BEGIN
IF Species<é
THEN
BEGIN
IF NeiIntsunison RND ! don’t repeat upbeat nots on downbeat;
NOT LastNote(Cn,v)
THEN VaieValslUnisonDounbeatPenaity;
! check for dissonance that doesn’t fill & third as a passing tone;
IF Dissonance{LastIntClass]) AND
((NOT RStep(NeiInt)) OR (NOT SameDir))
THEN Vai«Val+BissonanceNotFiltingThirdPenalty;

END;
{ check for Dirsct 8ve or S where the intervening interval is less than a fourth;

IF DirectlotionToPerfectConsonance (Us(Cn-2,v) ,Cp,0ther2,0ther8) AND
(RBS (LastNelInt) <Fourth)

THEN ValeVal+DirectPer factOnDounbeatPenal ty;
END;
| check for tritone with cantus or bass; ©

IF IntClass=Tritone THEN ValeValeVerticaiTritonsPenalty;

| check for metodic interval varisty;
IF Cn>19 AND TooluchOfInterval(Cn,Cp,v)
THEN Val+Val+fletodicBoredonPenalty;

RETURN(Val)§
ND

3
'

We have not yet provided rules guiding the program toward good overall melodic
shapes. It may be useful in this regard to treat a melody as a waveform and look
for its low frequency components. We then presumably want the various melodies to
have different such components or at least different initial phases.

18 Species Definition

Species Definition

There are differences between the species that can most easily be handled by
providing a special set of rules for each species. This procedure is called in Check
(given above). The two major special areas are cadential formulas and dissonance
handling.

3

INTEGER PROCEDURE SpecialSpeciesChack (
INTEGER Cn,Cp,v,0ther8,0therl,0ther2, NunParts,
Species,felInt, Interval,Actint,LastintClass,Pitch,LastlelInt);

BEGIN “SSC*

INTEGER Vai;

IF Species=l THEN RETURN(8); ! no special rules for lst spacies;
Valed; ! accumuiated penalty;

In first species all vertical intervals must be consonances (this is handled by the
procedure ADissonance given above), the first and last intervals must be perfect
consonances, imperfect consonance are better than perfect, and the next to last
interval must be a major sixth if the cantus firmus is below or a minor third if the
cantus firmus is above. All these rules are handled by Check, so we have no further
rules to apply in first species.

In second species the interval at the downbeat must be consonant, but the upbeat can
be dissonant if it fills in a third (a “passing tone”). The next to last measure has a
fifth to a major sixth if the counterpoint is above, and a fifth to a minor third if it is
below. The phrygian cadence is also special. Direct motion to a perfect consonance
between successive down beats is accepted if the intervening interval is larger than a
major third. ADissonance handles the passing tone check, so we need only define
the cadences here.

]
IF Speciess2
THEN

BEGIN "2°
IF NextTolLastNote(Cn,v) AND (Pitchall OR Pitchs1®)
THEN { we have the leading tone;
IF ((ModesPhrygian) OR Interval2®)
THEN ! phrygian befou is special case;
BEGIN

IF LastIntClasswFifth
THEM Vale+Val+BadCadencePenaity;
END
ELSE —
IF LastIntClasssflinorSixth
THEN Val+Val+BadCadencePenalty; r
END "2°
ELSE
!

Fourth species introduces suspensions and accented dissonances. The dissonance
must be resolved by a step downward. Since there are more similarities between
third and fifth species and second and fourth, we can save some code by combining
third and fifth below.

H
BEGIN “3 4 5° ! 3rd, 4th, and Sth need more info;
INTEGER «;
IF Speciesad
THEN
BEGIN "4*
IF DounBeat(Cn,v) RAND Mellntslnison ! strongly sncourage |igatures;
THEN ValeValeNotal igaturePenalty;
1

Fux says we should try to use a ligature wherever possible, so we penalize anything
else.

Species Counterpoint 19

IF Upbeat(Cn,v) AND
Dissonance(LastIntClass)
THEN

BEGIN
IF (Nellnts-minorSecond AND MeiIntu-ma jorSecond)
THEN ValeVal+linresolvedligaturePenalty;
'
If the last interval was a downbeat and a dissonance, the dissonance must be
resolved on this beat by a step downward.
H
IF ActIntsUnison AND
(Intervai<® OR
(RBS (Us (Cn-2,v) -Other2) MOD 12)sUnison)
THEN ValeValsNoTimeForal igaturePenalty;
t
The vertical interval cannot resolve to a unison or octave if the preceding downbeat
was also a unison or octave (the ligature does not make direct motion to a unison or
octave acceptable, but does enable one to move from one fifth to another). It is also

bad to resolve to an octave if the cantus firmus is above the melody.

1]
IF ActIntsFifth OR actintaTrltone
THEN VaieVal+NoTimeForALigaturePenalty;
END;
'

And, finally, the resolution must be to a consonance (not a tritone for example).

3

END “4°
, ELSE
In third species in addition to the passing tone dissonance (which can occur on any
beat except the first), we must also accept cambiatas. The result is that any
dissonance must be approached by step. If the dissonance occurs on the second beat
and is approached from above and is left by a third down, then it must be left by
two steps up. In the latter case every interval must be consonant except the second
(and the fourth if it is a passing tone). In addition, this particular dissonance (the
cambiata) can only be a seventh if the cantus firmus is below, or a fourth if it is
above (in two parts).
H

BEGIN *3 S§*
INTEGER Above,Cross;
Aboves(Interval28);

| added check to stop optimizer from changing 4th best passing tones into
! repeated noteseskip;
IF (Beat8(OnsetiCn,v])=6 OR Beat8(Onset(Cn,v))=7) AND Cp=Us(Cn-1,v)

THEN ValeVai+lUnisonOnBeatdPenalty;

20

Species Definition

t skip to doun beat seems not so graat;
IF Beat8(OnsetiCn,v])=d
THEN

BEGIN

IF ASkip(MelilInt) THEN ValeVal+SkipToDounbeatPanalty;

IF Cn>2 AND (RctInt=unison OR ActIntaFifth)
N ! look for parallel 8ve or S on dounbeat;
BEGIN

INTECER 13
IF SpeciessS
THE

N

FOR i«Cn-1 STEP -1 UNTIL 1 DO
BEGIN
IF Beat8(OnSetli,v])=8 THEN DONE;
END

ELSE ielned;
IF (RBS(Us(i,v)-Bass(i,v)) NOD 12)=Actint
THEN ValeVal+DounbeatUnisonPenal ty;
END;
END;
| check for cembiata not resolved correctiy (on 4th beat);
IF Beat8(Onset(Cn,v]))=6 AND
AThird (ABS (Lastle!Int)) AND
Dissonance {RBS (Us (Cn-2,v) -Other2) NOD 12) RAND
((Metlnt<®) OR
(RBS (Me | Int) wita jorSecond AND RBS (Mellnt)mlinerSecond))
THEN ValeValsNotaCambiataPenalty;
IF Val2infinity THEN RETURN(Val);
IF Species=3 AND
Cn>1 AND
Dissonance {LastIntCiass)
THEN

BEGIN
CRSE Beatd(Onset(Cn,v)) OF

coembiata or passing tones?;

IF (NOT RStep(failnt)) OR
(NOT RStep(LastieliInt)) OR
((NelIntslastMelInt)<8)
THEN Val+Val+DissonancePenalty;

{2} ValeVai+DissonancePenalty;

(4} IF (NOT RStep{Lasthellnt)) OR
(RBS (Me | Int) >NajorThird) OR
(HelInta®) OR
((LasthelInteflallnt) <8)

THEN ValeVal+DissonancePenalty

ELSE
IF (NOT RStep(Meilnt))
THEN

BEGIN
IF Rbove

(4 vas diss or 3 uas diss);

can’t happen (1 can’t be diss);

cambiata or passing tone are alike in this;
step if passing, third if cambiata;
neither being & unison;

both continue same direction;

so loseg

now check more cases;

passing tone ok (so ELSE clause ok);

THEN
BEGIN
IF MOT ASeventh(LastIntClass)
THEN Vai+Val+DissonancePenalty;

SE
IF LastIntClasswFourth
THEN Vai+Vali+DissonancePenalty;
END
END;
END;

Species Counterpoint 21

IF SpeciessS

THEN
BEGIN °S*
INTEGER LastDislInt;
IF Cn>1 AND Beat8(OnsetICn,v])=8 AND (Cpmlis(Cn-1,v)) RAND (Dur[Cn,v]SDur(Cn-1,v})
THEN ValeVal+(NotaligaturePenaity/3);
IF Cn>3 AND
Dur[Cn,vishalfnote AND
Beat3 (Onset(Cn,vl)=é AND
Our [Cn-1,v)=quarternote RND
Our [Cn-2, vlsquarternote
THEN ValeValsHaltUntiedPenalty;
IF Dur(Cn,v)sEighthNote AND DounBeat(Cn,v) RND Dissonance(Rctintl
THEN ValeVal+0issonancePanaity;
IF Vai2intinity THEN RETURN(Val);
IF Cn>1 THEN LastDisInt+ABS (Us(Cn-1,v)-Otherl) NOD 12;
IF Cn>1 AND
Dissonance[LastDislnt])
N ! cambiata or passing tones?;
BEGIN *Diss®
CASE Beat8(OnsetiCn-1,v)) OF
BEGIN
(6 (&)

IF LastDisIntsFourth AND
flelInt=Unison AND
(Other8-Otherl)sunison RND
Beat8(OngetiCn,v])=l

N

ELSE
IF (NOT RStep(flellnt)) OR
(NOT AStep(Lastiiallnt)) OR
(el Intslastialint)<8) OR
(Our(Cn-1,vl=eighthnots) OR
(Dur {Cn-1, vl =quarterNote AND DurICn-2,v)shalfNote)
THEN Vaile«Val+DissonancePensity;
N 8147}
IF (NOT RStep(lleiInt)) OR ! (4 uas diss or 3 was diss);
(NOT AStep(Lastiieilnt)) OR
((MelIntslasthelInt) <8)
THEN Val+Vat+DissonancePenalty;

dissonance uas a fourth;

tied to current;

and bass is also motionless;

and tied across bar;

“consonant fourth”!;

cambiats or passing tone or suspension;
(4 uas diss or 3 nas diss);

1))
BEGIN
IF (Dur[Cn-2,v]=eighthnote) OR
(Dur [Cn-2, v] Dur [Cn-1,v1)
THEN VaisVal+loT imeForAl igaturePenalty;
IF (MelInts-minorSecond AND Ne)Ints-ma jorSecond)
THEN ValeValelnresolvadl igaturePenalty;
IF RctinteFourth OR ActintaTritone
THEN Vai+Val+NoT imeForRL igaturePenalty;
IF RetinteFifth AND Interval<®
THEN VateVai+doTimeForAL igaturePenal ty;
IF Actints8 AND
(RBS (Us (Cn-2,v) -Other2) N0D 12)s8
THEN Val«Vai+NoTimeForal igaturePenaity;
éF LasthelIntmunison THEN Val«Val+DissonancePenalty;
NO§

22 Species Definition

121 IF (NOT RStep(LasthelInt)) OR

(ABS (MeiInt)>HajorThird) OR
(Meilnts®) OR
(Dur (Cn-1,vieaighthnote) OR
((Lastla)Intsilel Int)<®)

THEN Vatl+VateDissonancePenslty

cambiata or passing tons are alike in this;

step if passing, third if cambiate;
neither being a unison;

both continue same direction;
so lose;

ELSE now chack wore cases;
1r“::or AStep (e llnt)) passing tone ok (so ELSE clause ok);
N
BEGIN
IF Above
THEN
BEGIN

IF NOT ASeventh(LastIntClass)
THEN Vale«Vai+DissonancePenalty;

END
ELSE
IF LastIntClasssfourth
THEN VaieVai+ODissonancePenalty;
END
END;
END “Diss*;

IF Cn>1 RND Dur[Cn-1,vi=eighthnote AND (NOT RStep(NeiInt))
THEN Vai+Val+EighthJumpPenalty;

IF Cn>1 AND Dur [Cn-1,vishalfnote AND Beat8(Onset{Cn,vl)=4 AND NellIntsUnison
THEN Vaie«Vale+UnisonUpbeatPenalty;
END *§°;
END "3 5%
END *3 & S°;
RETURN(Val);
\ END “SSC";
It is perhaps interesting that we do not need to add any special encouragement for
cambiatas — they occur as a side effect of the rules (once the dissonance handling is
defined as acceptable). The passing tone (second note of the cambiata) is more likely
to jump to an imperfect consonance (the leap down by a third making a sixth with
the cantus) than to a perfect consonance (the latter is slightly penalized), so we get

cambiatas simply as a result of the preference for imperfect consonances.

Multi-Part Counterpoint

Each added voice must obey all the normal rules with regard to the bass voice, but
need not be quite so particular in relation to other voices. We assume here that the
bass voice is either the cantus firmus or the first of the voices calculated by the
Search mechanism. The extra rules for multi-voice counterpoint deal mainly with the
makeup of chords.

INTEGER ARRAY IntervalisWithBass{8:7]1;
0 = octave, 2 = step, 3 = third, 4 = fourth, 5 = fifth, 6 = sixth, 7 = seventh;
!

We need to look at the chord currently formed by the counterpoint and decide

Species Counterpoint 23

whether the pitch doublings are acceptable. In general, the leading tone should not
be doubled, the fifth is rarely doubled, the third and sixth (figuring from the bass)
can be doubled, but rarely tripled, and the octave can occur as often as necessary. A
full chord (octave, third, and fifth for example), is better than a partial one (octave,
octave, and third for example). In any case, the chord must contain at least one
imperfect consonance. A root position triad is better than a first inversion triad
(octave, third, and fifth is better than octave, third and sixth). Dissonances between
upper voices are acceptable as long as the voices are individually consonant with the
bass, but the 6-5 chord is a special case. In this chord the upper voices contain both
the fifth and sixth above the bass, and according to some sources, the fifth should be
treated as a form of suspension. To simplify matters we allow the 6-5 chord only in
fifth species.

H

PROCEDURE RddIntervatl (INTEGER n);]
GIN

BEi ! collect currant notes in chord;
INTEGER Actlnt; W
Rctinte(CASE (n MOD 12) OF (8,2,2,3,3,4,4,5,6,8,7,7)); e o

Intervatsili thBass[Rctint) «Intervaisili thBassiRctIntl+l;
END;

After each voice has checked that its proposed pitch agrees with the basic rules, it
must also check for agreement with the other voices currently active. The following
procedure handles this:

INTEGER PROCEDURE OtherVoliceCheck (INTEGER Cn,Cp,v,NumParts,Species);
BEGIN

INTEGER Vai,k,CurBass,Other$,0therl,Int®,Intl,ActPitch,IntBass,LastCp;
BOCLEAN R11Skip;

IF val THEN RETURN(®); ! tuo part or bass voice, so nothing to check;
ARRCLR(IntervaisidithBass); | our current chord;

Vale8;

CurBass+Bass (Cn,v);

Since we assume that either the first voice or the cantus firmus is the bass, we cannot
allow other voices to cross below the current bass and thereby render invalid all the
previous calculations of voice leading and chord type.

IF CpsCurBass
THEN Val+Val+CrossBelouBassPenalty;
1

We must also ensure that the raised leading tone in the bass (if present) does not
confuse the consonance checker into thinking a diminished fourth is a ma jor third.

IntBass« ((Cp-CurBass) MO0 12);
IF IntBasssMajorThird AND NOT InMode (CurBass,lode)
THEN ValeVal+AugmentedintervaiPenalty;
ActPitche(Cp NOD 12);
IF VaiZinfinity OR (vaNuwParts AND Dissonance(IntBass]) THEN RETURN(Val);
! logic here is that only the last part can be non-1st species
and may therefore have various dissonances that don’t uant to be
calculated as chord tones

11
R11Sk ip+ASK ip (Cp-Us(Cn-1,Vv));
RddIntervail (IntBass);
LastCp+Us (Cn-1,v);
FOR k8 STEP 1 UNTIL v-1 0O
BEGIN ! check our pitch against each other voice;
Other8+0ther (Cn,v,k);
Otheri+0ther (Cn-1,v,k)}
IF NOT ASkip(Other8-Otherl) THEN ALISkip-FALSE;
fRddInterval (Other8-CurBass); { add up tones in chord;

24 Multi-Part Counterpoint

| avoid unison uith other voice;
IF NOT LastNote(Cn,v) AND Other8=Cp THEN ValeVal+UnisonPenaity;

! keap upper voices closer together than lower;
IF Other8xCurBass AND RBS(Cp-Other®)20ctave+Fifth

THEN Val«Val+UpperVoicesTooFarRpartPenalty;
! check for direct motion to parfect consonace betusen these two voices;
Int8+ABS (Other8-Cp) NOD 12;
Intl-ABS(Otherl-LastCp) MOD 12; o
IF Intl=Int®
THEN

IF IntCaunison THEN ValeVal+ParallelUnisonPenalty ELSE
IF Int8afifth THEN ValeValsParallalFifthPenalty;

IF Cn>2 RND Int8sUnison AND (ABS (Us(Cn-2,v)-Other (Cn-2,v,k)) HOD 12)=Unison
THEN ValeVal+ParalleiUnisonPenalty;

IF VaiZinfinity THEN RETURN(Val);

! penalize tritones between voices;
' IF Int8=Tritone THEN ValeValsVerticalTritonePenalty;
The following block of code attempts to ensure that a 6-5 chord is properly prepared
and resolved. If there is a dissonance between these two voices, it is either a fourth
or tritone (6-3 or 5-3 chord), a second (6-5 with 6th above), or a seventh (6-5 with
fifth above). The dissonance in the 6-3 chord is considered unobjectionable. In the
implementation here, the 6-5 chord is prepared by holding the fifth while the sixth is
added (a sort of suspension below), then “resolve” the fifth by moving downward by
step.
]

IF SpeciessS

THEN
BEGIN
IF DissonancelIntl) AND Intlmfourth k-2
THEN ! must be a 6-5 cherd;
BEGINM

INTEGER ourLastint;
ourlastinte((LastCp-Bass (Cn-1,v)) NOD 12);
IF ourlastIntsunison ! if unison, 6-8 somewhers sise?;
THEN
IF (ourLastIntatifth)
THE

N

IF (ASkip(Cp-LastCp) OR Cp2iastCp)
THEN ValeValelnresolvedSixFivePenalty

ELSE

ELSE
IF (ASk ip(Other8-Otherl) OR Other820therl)
THEN Val«Val+lnresolvedSixFivePenalty;
END;
IF Dissonance(Int8) AND Int®sfourth RND IntBasssunison
THEN
IF (IntBasssfifth AND (Cp-LastCp)munison) OR

(IntBasswt | fth AND (Dther8-Otherl)munison)
THEN ValeVat+UnpreparedSixFivePenalty;
END;
! penalize direct motion to perfect pt at the cad $

IF NOT LastNote(Cn,v) AND
BirectfotionToPer fectConsonance (LastCp,Cp,0therl,Other®)
THEN VaieVat+lnnerVoicesInDiractToPerfectPenalty;

t if we have an unraised leading tone it is possible that some othar;
{ voice has the raised form thereof (since the voices can move at very
! different paces, one voice’s next to last note may be long before
| another’s);
IF ActPitch=18 AND I if 11 we’ve aready checked;
(Other$ NOD 12)=11 | They have the raised form;
THEN Val«Val+DoubledleadingTonePenalty;

| similariy for moition to & tritone;
IF NotionType (LastCp,Cp,0therl,Other8)sDirectfiotion RND Int8sTritone
THEN VaisValelnnerVoicesInDirectToTritonePenal ty;

Species Counterpoint 25

! look for a common diminished fourth (uhen & raised leading tone is in

| the bass, & "major third® above it is sctually a diminished fourth.
! Similarly, an augmented fifth can be formed in other cases;
IF ActPitche3 AND (Other® NOD 12)s11

THEN ValeVaisRugmantedintervalPenalty;

| try to encourage voices not to move In parallel too much;
IF MotionType(LastCp,Cp,0therl,Other®) xContraryfotion
THEN Val«Val+NotContraryToOthersPenal ty;
END;
t

Now we must check the current contents of the chord being formed:

! check for doubled third;
IF intervalsiithBass{3)>1 THEN Vai«Val+ThirdODoubledPenalty;

! check for doubled sixth;

IF IntervalsithBass(31=0 AND IntervaislithBass([6)>1 THEN Vai«Val+DoubledSixthPenalty;
! check for too many voices at octaves;

IF IntervaisiithBass[8)>2 THEN Val«Vai+TripledBassPenalty;

! check for doublied fifth;

IF IntervaislWithBess(S)>1 THEN Val«Val+DoubledFifthPenalty;

! check that chord contains at least one third or sixth;

IF vaNuwParts AND (NOT LastNote(Cn,v)) AND IntervalsHithBaszs(3]1=8 RND IntervaisilithBass(6)=8
THEN ValeVal+NotTriadPenalty;

! discourage ail voices from skipping at once; i d
IF v=NuwParts AND RIiSkip

THEN ValeVai+RiiVoicesSkipPenalty;
! except in Sth species, disallow 6-5 chords altogether; R d

IF IntervalsiithBass(51>0 AND IntervalsiithBass(6]>8 AND SpeciessS
THEN Vale«Val+SixFiveChordPenalty;

RETURN(Val);

END;

Searching Methods

There are many ways to search for acceptable solutions to a counterpoint problem.
The main constraint is compute time. If we make an exhaustive search of every
possible branch of a short (10 note) two voice first species problem, we have 16110
possible solutions. Even if we could check each in a nanosecond, an exhaustive
search in this extremely simple case would take 1000 cpu seconds (about 20 minutes)
on the F4. Because we hope to handle problems far more complex than this simple
one and hope to do it reasonably fast, we must find a smarter search method.

The underlying method is a recursive search. It starts from its current pitch and
tries in succession all possible melodic intervals from that pitch (if necessary), looking
for any such interval whose associated cumulative penalty is less than the current
best overall penalty. The cumulative penalty is the sum of all the penalties associated
with each of the notes in the counterpoint melody. The overall best penalty is the
lowest cumulative penalty of any complete counterpoint solution found to that point in
the counterpoint. At the beginning of time this overall best penalty is infinity (no
solutions have been found), but once any solution at all is found, the overall penalty
is reset to that new number. If a position is reached that makes further progress
impossible, the searcher backs up one note and tries some other interval. The
intervals are chosen in an order that maximizes the chance of finding a good

26 Searching Methods

interval quickly. If any solution at all exists, we are guaranteed to find it. Given
enough time, we are also guaranteed to find the “best” solution according to the
rules. By checking only those branches whose penalty is less than the current
minimum, we can drastically reduce the number of branches that must be checked,
but total execution times can still be high. For a two part counterpoint with a short
cantus firmus it is not unreasonable to carry out such a search, but more complex
cases drag to a halt. Since our initial goal was to write five to eight part mixed
species counterpoint, we obviously need more intelligence guiding the search.

The next method tried was inspired by an article in Science about computer circuit
design by simulated annealing. Like the other methods discussed below, this method
gains much of its efficiency by accepting less than optimal solutions — it is not
guaranteed to find the best solution, and may in some cases not find any solution at
all. In this algorithm, our initial counterpoint is just any random collection of notes.
Our annealing “temperature” is the number of semitones each of these notes can
move. Time is represented by successive passes over the counterpoint applying the
same rules as were applied in the recursive search case, but here we look for the
local minimum penalty (whereas in the recursive case we grabbed the first acceptable
branch and started down it). Each note independently moves to its local minimum
and the next pass is started. This method is extremely fast, and works well in first
species counterpoint. It does not always converge on a very good solution, but we
originally thought that we could run it across several random collections, and
thereby increase our chance of getting something reasonable. In practice, however,
these successive runs do not improve much. But more important, beyond first species
the annealing process sometimes cannot find any acceptable solution. This problem is
most easily observed in second species where a note can be dissonant if it is a
passing tone. As the rules are structured, we do not penalize a step to a dissonance
because one more step (if possible) will resolve the dissonance correctly. Nor do we
ever look ahead to see if such a resolution is possible. If there is no possible
resolution after all (if a passing tone is impossible at that point), the annealer has no
good way to back out. After many fruitless attempts to get around this problem we
finally jettisoned the entire notion.

Bernard Mont-Reynaud suggested changing the search to be a best-first search. In
this version we compute the penalty associated with each possible melodic interval
from the current pitch, then continue recursively using the best of these results first.
If forced to abandon a branch, we back up and try the next best interval until a
complete solution is found. The first such solution may not be a very good solution,
however, because a melody can be lead down a primrose path into a quagmire (by
accepting the smallest local penalty we risk falling into a bad overall pathway). If
the program is told to search every branch (as in the earlier method), we once again
get bogged down in long computations. So a new twist is added. Once we have a
solution we drop back to the very beginning and try a different beginning interval.
This rather odd looking practice grew from experience watching many hundreds of
runs — generally most of the wasted effort (branches checked that led nowhere)
seemed to be attributable to the fact that these new branches made no real difference
in the global appearance of the given melody — much time was being spent
optimizing something that had already given all it had to give. By trying a new
starting interval, we maximize the chance of finding a truly different solution. Once
again we abandon any branch if its accumulated penalty is above that of the best
complete solution found so far. Although first through fourth species are quickly
solved, fifth species is still a problem. The number of choices increases in this species
not only because it generally has more notes in the counterpoint melody, but also

Species Counterpoint 27

because we have a number of possible rhythmic values to assign each note. Several
optimizations were added to reduce this problem: we search only for those solutions
that are markedly better than the current one (as determined by the variable
PenaltyRatio), and once a solution has been found we don’t spend too much time on
any other single interval (controlled by the variables MaxBranch and Branches).
Compute times for multi-voice fifth species can be high even with all this machinery.

To illustrate how the rules help the program decide whether one melody is better
than another, take the following three acceptable counterpoints to the bottom line (the
cantus firmus). The number under each note is the penalty associated with that note.
Despite the fact that the first (top) solution starts out with a higher penalty, it ends up
with a lower overall penalty. This case illustrates that a simple best first search is not
entirely adequate in all cases.

e @ 3 e ¢ 35 ¥ ¥ ¥ ¥ o ¥ =2 1
0
E

O —— ¢y O —O0—O0— gy 13

e e

e & & 6 6 1@ B & ¢ 1 » 2 1 B
Jo)
¥

—

MGH-OHSG —()——-#n——@—-——

¢ & & & & 3 2 & 1 ' 3 1 & 1
/]
i

©
© ©

= = o o e U - =

v ° v 3 o & 3

28 Searching Methods

We can point out in detail how each note in these lines gets its penalty:

0
(o= 4

o ° — - o—ll-—#n——o—#;r—-—ﬂ——-

v] 3 [. . s 1 1 1 3 ° 1 3 L]
/ S | / / \
/ / - / ! / ! \

/ s 7 / / ! / | \
direct dirsct direct direct raepeated repeated skip repeated dirsct louer
motion wotion wotion motion pitch pitech folioned pitch motion neighbor
[$%) (8%) ($3]) 1) by same () () (the F-sharp

skip direction upper)

preceded 3 neighbor

by same (the G) tuo

direction () repsated

(1) notes
@)
perfect
consonance
Q)
repeated
pitch
@)

cf
Eg 1:_1:; T p— °—°—°—n::n_°__.“n__o_

) s . 1 ’ . . [)] 1 s
-~ ~
- -~ A A Y
~ ~ = 7
- 7/ / \
- - -~ s / ! |
- _ e ~ Ve / /) \
compound repsated repested repeated dirsct perfect direct direct perfect
interval pitch pitch pitch motion consonance motion motion consonance
(1) 1) @ ($8]) (1) (1))
skip skip perfect repeated repesated lower
folionwed folloued consonance pitch pitch neighbor
by same by same Q) () R 4 b (1)
dirsction dirsction repeated
(3) (&} pitch
tuo skips)
(1)
skip
preceded
by same
direction

In the first attempt at multi-part counterpoint we solved one voice at a time and built
up the entire ensemble by layering. This worked well for three voices because’ the
first voice added was always pretty good, and the second added voice still had
enough degrees of freedom to find an acceptable solution. As more voices were
added however, the later layers became less and less acceptable. It became clear
that the entire ensemble has to be calculated together, that all the voices must be
examined to decide the current overall best configuration. The search routines that
follow implement this form of search.

Species Counterpoint 29

First we need a place to save the last complete solution while we search for a better
one:

INTEGER RRRRY BestFit(liflostNotes,l:NostVoicesl;
!

and variables to hold the current maximum penalty (MaxPenalty), the current actual
best (lowest) penalty (BestFitPenalty), the ratio that determines how much better a
new solution has to be to be worth pursuing (PenaltyRatio), a flag to tell the
searcher when to quit (A4//Done), the current branch counter (Branckes), and the
maximum number of branches we are,willing to search before giving up
(MaxBranch).

INTEGER BestFitPenalty,MaxPenalty,Branches,NaxBranch;
BOOLEAN Al 1Done;
REAL PenaltyRatio;

!

We will examine only the best continuations from any given point, making no effort
to save every possible continuation. The macro NumFields determines how many
continuations we save at each branch.

i
DEFINE NuwFieidss16;

Each continuation consists of its associated penalty and the melodic intervals of each
voice that make up the next note of the continuation. At each branch we search for
the NumFields best continuations and save them in an array. The following code
implements this mechanism.

DEFINE Fiald="(NostVoices+l)";
DEFINE EndF="FieidsNunFields"”;

PROCEDURE ClearSpace (INTEGER ARRAY Sp);
RRRCLR (Sp, infinity);
INTEGER PROCEDURE SaveIndx (INTEGER indx; INTEGER RRRAY sp);
BEGIN I if INDX is less than current NUNFIELD-th worst,
t find its position in SP, insert space for its
| data, and return & pointer to the block. The
| blocks are stored “backwards® for ARRBLT;
INTEGER i;
FOR i~EndF STEP -Field UNTIL 8 DO
IF Splil>indx THEN DONE;
IF i>8 | 8 is the end of the list., If i>0 then we insert INDX;
THEN

BEGIN
ARRBLY (Sp(0) ,Sp(Fieldl, i);
Splilelndx;
t SPLilspanalty for block starting at 1. SPli-llsindex into
! melodic interval arrsy for voice 1, SPLi-2) for voice 2 and
| s0 on. The searcher starts at SP(EndF] and works backuards
| through the stored continuations as it searches for a satisfactory
| overail sotutiong
ENDy

RETURN(i);

END;

!

The next procedure takes a newly completed solution and saves it. At this time we
also check for problems associated with raised leading tones. If the musica ficta
rules were at all clear, we could also add them to the solution. The raised leading
tone code can run into problems — a future version may try to be smarter about
cadential passages.

30 Searching Methods

PROCEDURE SaveResul ts (INTEGER CurrentPenalty,Penalty,vl,Species);
BEGIN
INTEGER i,v,LastPitch,v,Cn,k;
FOR vel STEP 1 UNTIL vi DO ! check all voices for raissd leading tone;
BEGIN
CneTotalNotesivl;
LastPltche(Us(Cn-1,v) NOD 12);
IF (NOT InNode(LastPitch,Mode))
THEN
FOR k2 STEP 1 WHILE TRUE DO
BEGIN "outer®
INVEGER Pitch;
IF x2(Cn-1) THEN DONE;
Pitche(Us(Cn—k,v) HOD 12);
IF (Pitch<8 AND Pitchs8) OR
(RSk ip (Us (Cn-k+1,v) -Us (Cn-k,v)))
THEN DONE; s0 exit;
PitcheRBS (Us (Cn-k,v) -Us(Ca-k-1,v)}; | interval with raised leading tone;
IF pitchsFourth OR PitchsFifth OR Pitchsunison OR PitchsOctave THEN DONE;
| don’t create illegal meiody;
FOR i+«® STEP 1 UNTIL vi DO | do others have unraised form?;
IF imv AND (Dther (Cn—k,v,i) NOD 12)=11 THEN DONE "outer";
IF ((Us(Cn-1,v)-Us(Cn-k,v))=NinorThird) OR
((Us(Cn-1,v)-Us (Cn-k, V))=l inorSecond)

must be raised it any are;
it is & raised leading tone;

look backuards through voice’s notes;

ran off startll;

current pltchg

not €-7-1 scale degres anymcre;
skip breaks drive to cadence;

THEN 1 raise it and maybe Gth degrse too;
SetUs (Cn-k,Us (Cn—k,v)+l,v);
END “outer®;
END;
END;

Musica ficta are not entirely trivial to add to the program. If we were doing so, this
would be the place to do it. The ficta-finder would run through all the voices here
looking for tritones. If one is found a decision has to be made whether to alter
(fatten or sharpen) the current note, or leave it alone. In a simple version tried
during the development of this program, we used the following sequence:

Step through all voices
Step through all notes of each voice
If current pitch is B (11) and it is approached and left by either

a unison, a rising ma jor second, a rising ma jor second, a

descending minor second, or a descending minor third (to

avoid creating illegal augmented or diminished intervals

melodically), and it forms a tritone with some other voice,

Then

If melodic interval is not a unison
Then flatten the B

Else
While pitch is B, look to see if the flattened form will
create tritones (E in other voices), and check to see that
the interval on either side of the repeated B’s is the
correct form of interval. If all this is true, flatten all
the B's.

This algorithm is moderately conservative (it makes no attempt to sharpen F's for
example), but still makes a mess of certain passages. For example, take the simple
passage:

Species Counterpoint 3l

gt=

Here our algorithm flattens the second B but not the first (correctly avoiding a
tritone melodically), but perhaps the correct ficta is an F-sharp. The algorithm also
ignores the possible presence of the unaltered pitch in other voices as in:

0 [|
B ¢ E—
v ©
PEP—F —to——
s 1 1

In any case, since ficta are not a primary concern of the author, the entire problem
was shunted aside and left as an exercise for the interested reader.

H
BestFitPenal tyeCurrentPenalty+Penalty;
HaxPenal ty«(BestF i tPenal tysPenaityRatio) NIN NaxPenalty;
Al 1Done«TRUE;

!

We have now updated the value of the best fit penalty and the maximum penalty
that a new solution should have, and have signalled the searcher to back up to the
start again. Next we save the current state of the CtrPt array (which holds the
soution transposed to C) in the BestFit array, adding back the original transposition:

H
FOR vei STEP 1 UNTIL vl DO
FOR i) STEP 1 UNTIL TotalNotes(v) DO BestFit(i,vl«CtrPtli,vl+BasePitch;
!

Now we print out the results for debugging and what not.

PRINT(®
t (",BestFitPenalty,”) *);
FOR ve-1 STEP 1 UNTIL vl DO
BEGIN
PRINT(®

]
FOR i1 STEP 1 UNTIL TotalNotesivl DO
BEGIN

PRINT(BestFitli,v1,® ®);
IF im1 THEN PRINT('K',Ch.ck(I BestFitii,vl-BasePitch,v,vl,
(IF vevl THEN Spoel-- ELSE 1)) ‘1"
ELSE PRINT("(8) *);
END;
END;

PRINT("

%

END;

!

We need an array containing the legal melodic intervals in the order in which we
want them to be checked. Whether this order is of great importance or not depends
on how the searching is carried out. In the current scheme, the order doesn’t matter
much.

PRELORD_MITH
1,-1,2,-2,3,-3,0,4,-4,5,7,-5,8,12,-7,-12;

INTEGER ARRAY Indx(1:161;
!

32 Searching Methods

We need a procedure that examines the possible continuations and puts the best such
continuations in order in a local array (on the stack). Each time the searcher lurches
forward a note, a new recursive call is made allocating this and other arrays of local
data. We can back up without losing previous state merely by returning from a call.

H
RECURSIVE PROCEDURE Look (
INTEGER CurPen,CurVoice,NunParts,Species;
REFERENCE INTEGER Lim;
INTEGER RRRAY Pens,Is,CurNotes);
BEGIN
INTEGER penalty,Pit,i;
FOR isICurVoicelel STEP 1 UNTIL 16 DO
BEGIN
pitelndxlis{CurVoicell +Ctrpt [CurNotes (CurVoicel-1,CurVoicel;
!

Pit is the proposed new pitch for the current voice (CurVoice). For each such pitch
we check how it affects the global penalty of the rest of the active voices

3
penal tyeCurPensCheck (CurNotes [CurVoice) ,Pit,CurVoice,NusParts,
(IF CurVoicesNumParts THEN Species ELSE 1));
SetUs(CurNotes[CurVoicel ,Pit,CurVoice);
IF penaltyd.im
THEN

IF CurVoice<NusParts
THEN
BEGIN
!

We have a possible continuation for CurVoice. Now we need to find whether other
voices can continue also given this pitch. Since the voices may not be moving
together, we check new pitches only for those voices that are getting a new note at
the current time.

FOR ieCurVoices+l STEP 1 UNTIL NumParts 00
IF CurNotes(il=8 THEN DONE;
IF isNuwParts ! there is another voice needing & note;
THEN Look (Penaity, | ,NumPar ts,Species,L in,Pens, Is,CurNotes);
END
ELSE
!

If the current voice is the last voice, then we save the current proposed overall
continuation in the Pens array, and continue looking for more. When we finish this
loop we will have all the best solutions in order in the Pens array.

BEGIN
INTEGER x, I3
xeSavelndx (Penal ty,Pens);
IF x>8

THEN

FOR iel STEP 1 UNTIL NuwParts DO
Pens[x-ileisli)
ELSE Limelim NIN Penalty;
END;
END;
END;
!

Next we need a procedure that calls Look (given above), and coordinates all the
voices as the ensemble grinds toward the cadence.

H
RECURSIVE PROCEDURE BestFitFirst (INTEGER CurTime,CurrentPenailty,NunParts,Species);
BEGIN
INTEGER i, j,Curmin,Lim,Choicelndex,NextTime,O0urTine;
INTEGER ARRAY Pens (8:F ieldeNunfF ields] , Is(1:NusParts),CurNotes(l:flostVoices);
IF AliDone OR CurrentPenalty>NaxPenaity THEN RETURN;
'

AllDone is true after we have found a solution. At that point we exit all the calls

currently active and start afresh with a new maximum penalty.

Species Counterpoint 33

Choicelndex«EndF;
RI1Done«FRLSE;
ARRCLR (Pens, infinity);
ARRCLR(Is);
ARRCLR (CurNotes);
Branches+Branches+1;
IF Branches>HaxBranch THEN RETURN;
IF (Branches NOD 10) =0
THEN

NaxPena| ty-flaxPenat tysPenal tyRatio;
!

If we just let the searcher run until a solution is found, it happens quite frequently
that the search gets completely bogged down in a blind alley, spending immense
amounts of time beating up against an impossible cadence situation. The branch
counter gives us a way to jump out of such a situation. In addition, as we spend
more and more time on a given attempt, we gradually reduce the acceptable
maximum penalty somewhat like a person getting more and more frustrated as more
effort is poured into a fruitless search.

Curllineinfinity;
LineBestFitPanalty-CurrentPenal ty;
NextTimeeintinity;
FOR ie} STEP 1 UNTIL NumParts DO
BEGIN
OurTinecOnset [VIndex(CurTime, i)+1,i);
IF OQurTimesd
THEN NextTimeeNoxtTime HIN OurTime;
END;
!

We now know what the next note is overall. We set up the CurNotes array marking
all voices that have an onset at the minimum next time. Each of these voices will
then take part in the search for the best overall continuation.

FOR il STEP 1 UNTIL NuwParts 00
IF Ongetlj+Vindex(NextTime,i),il=NaxtTine
THEN CurNoteslile«j;
FOR i~1 STEP 1 UNTIL NuwParts DO
IF CurNotes{il»® THEN DONE;
Look (8, i ,NusParts,Species,Lim,Pens, Is,Curotes);
¥

Now we have the NumFields best continuations saved in the Pens array along with
the associated penalties. We go through these continuations one at a time, trying to
find one that will get us all the way to a cadence.

Curltin-Pens (Choicelndex]
IF Curllin2Intinity THEN RETURN;
WHILE NOT AiiDone 00
BEGIN
IF CurTime<TotaiTime
THEN
IF (curminecurrentpenal ty2faxPenatty) THEN RETURN ELSE
ELSE
IF (curminscurrentpenal tyzBestfitPenalty) THEN RETURN;
!

We are still below the global maximum penalties, so set up the next continuation and
give it a whirl.

FOR ie) STEP 1 UNTIL NuwParts DO
IF CurNotes(i)=8
THEN SetUs(CurNoteslil, indx{Pens[Choicelndex~i))+Us(CurNoteslil-1,1),i);
IF NextTime<TotalTime
THEN BestFitFirst(NextTime,CurrentPenal ty+Curllin,NuwParts,Speciss)
ELSE 1 ue’ve reached the end;
SaveResul ts (CurrentPenal ty,Curllin,NusParts,Species);

34 Searching Methods

The variable Choicelndex points to where we are in the continuations. By
decrementing it by field size, we move on to the next best continuation.

3
Choicelndex+Choicelndex-Fieid;
IF Choicelndex<® THEN RETURN;
CurflinPens [Choicelndex)
IF Curflinsinfinity THEN RETURN;
IF CurTimes$ THEN HaxPenalty-BestFitPenattysPenaltyRatio;
END;
END;

The only thing left that is of any interest is the code that decides what rhythms to
employ in fifth species. For simplicity’s sake, we just load up an array with the legal
rhythmic patterns and choose among them randomly. This approach obviously
leaves much to be desired. Musical styles are differentiated more by rhythmic
practices than melodic, and on a smaller level, it is the fluid handling of rhythm that
makes a group of sounds a piece of music rather than a pedagogical exercise.
However, this entire program ignores issues of phrasing or larger melodic and
rhythmic structures. If we decide to carry this effort further in that direction, a much
more complex decision and search mechanism will be required. Just as Fux’s book
was one step on the way toward Parnassus, this program, simple minded, even toy-
like in many ways, may lead toward good music somewhere down the road. In any
case, messing around with counterpoint is a pleasure in itself, so the author needed
no further justification.

i

INTEGER Seed; | random number sequence seed;
INTEGER ARRAY RhyPati@:18,8:8]) ,RhyNotes(8:18);

| array of legal rhythamic patterns;
SINPLE PROCEDURE Fi!iRhyPat;
BEGIN

INTEGER i3
RhyPat[8,1]) ~uholeNote; ! for first species “rhythms®;
RhyNotes (81«1;
FOR ie1 STEP 1 UNTIL 2 DO RhyPatll, i)«CASE i OF (8,halfnote,halfnote);
RhyNotes{1]+2;
FOR i~1 STEP 1 UNTIL 3 DO RhyPat(2,i1«CASE | OF (8,haléfnote,quarternote,quarternote);
RhyNotes (2] +3;
FOR i1 STEP 1 UNTIL 4 DO RnhyPat(3, i)equarternote;
RhyNotes [3) «4;
FOR il STEP 1 UNTIL 3 DO RnyPatl4,i)+CRSE i OF
(8, quarternote,quarternote,hal fnote);
RhyNotes [4) «3;
FOR i+1 STEP 1 UNTIL 4 DO RhyPat(S,i)«CASE | OF
(8, quarternote,eighthnote,sighthnote,halfnote);
RhyNotes (51«43
FOR i+l STEP 1 UNTIL 5 DO RhyPatl(8,i)CASE | OF
(8, quarternote,eighthnots,eighthnote,quarternote,quarternote);
RhyNotes [6) +5;
FOR i+1 STEP 1 UNTIL 4 00 RnyPatl7?,i)«CRSE | OF
(8,hal fnote,quarternote,sighthnote,sighthnote);
RhyNotes (7] «4;
FOR i~1 STEP 1 UNTIL 6 DO RhyPat(8,i]«CRSE i OF
(8,quarternote,sighthnote,sighthnote,quarternote,eighthnote,eighthnote);
RhyNotes (8] +6;
FOR i+l STEP 1 UNTIL S DO RhyPat(9,i)«CRSE | OF
(8, quar ternote, quarternote,quartarnote,eighthnote,eighthnote);
RhyNotes (9] «5;
RhyPat (18, 1) «uholeNote; ! for first species "rhythus”;
RhyNotes [10)+1; .

END;
REGUIRE FilIRhyPat INITIALIZATION;
1

Now a few simple procedures to clear and access the arrays associated with the
rhythm finder.

Species Counterpoint 35

PROCEDURE UsadRhy (INTEGER n);
RhyPat(n,8) RhyPatin,81+l;

INTEGER PROCEDURE CurRhy (INTEGER n);
RETURN (RhyPat{n,81);

PROCEDURE CleanRhy;

INTEGER i}
FOR i1 STEP 1 UNTIL 9 DO RhyPat(i,8].8;

END;
INTEGER PROCEDURE GoodRhy;
BEGIN

INTEGER i;

i«10sRAN (seed) ;

IF (CurRhy(i1)>CurRhy(l NAX (i-1))) THEN RETURN(1 MRX (i-1));
IF (CurRhy(i)SCurRhy(9 WIN Ci+1))) THEN RETURN(S HIN (i+1));
RETURN(i);

END;

he rest of the program merely stuffs the cantus firmus into the CzrPt array and sets
the starting points of the various voices. We append several examples of
counterpoint written by the program. Under each counterpoint note is the associated
penalty. Currently the program has no provision for starting a melody with a rest,
nor does it reward invertible counterpoint and imitation. It tends to let voices get
entangled in each other, and makes no decisions about overall melodic shapes.
Certain implied vertical clashes are not noticed (especially those involving tritones).
Given these caveats the program does quite well in a reasonably short time.

Acknowledgments

I thank Jonathan Berger for his very valuable advice and criticisms.

© £Y
XX O O — [4]
(4] [28 O g
L] [} 1 1 ° 13 L] o

0

M
= —a—9—o6—p

o O L © O et ©
Yo—=o — o “ © ™ X —6—fa——90——
. 1 1 ' s 3] 1 ' 1 »

Lo - 14 43 rey {4 o
1O [4) -‘4—0 XX O

Gb ’)

v 0 . ' ° N ° 3 ' 3 2 *

) o (¥) - €y) —

[4 1 Xy [] Q
O ©

36

_ﬂg o o o—o—%—o o 7

Brp==pr } e o mre— =

dﬁ—;f:%f&tgﬂ: - .d:lf::d:ﬁ_.at_' —{d=0-——
o ¢ u s] ¢ 1 T 12 o N [) s 1 1 n 3 [1 1

e op” T
=
? 3

1=

=1

-
=S
L]

>
| §
I
»

>
»-
1
i

[

R

Eerr-

¥

el

2 T o .F(_
i

» e on ”

1 1ss 3

« o 1

TR

. __ m_w_
il
| i

_ N
. gt
i i

- e

= 1

- lile

38

;@—e

S § Jagheiny - S—

O

e

[4}

—© 8—2“___50___“__.

T

©

" 4)

[§]

'
— _p;:&lf__t' ———

; <

u ¢ i ———_— puoniing

- -
b [§) — —
YO —O— g g —o—e ——o-—Q —a-o
[]] 1 2 1 3 1 1 1 1] 1 3

7
|

1 § 1 ©
-~ O
L ~s - rey o O 0]
-7 © © ¥ ¥ = —O—
[1] °] § 3] o S n
~
a 1 - -ﬂ"‘-ﬁ n ©
- #" pns l[l! Ftpl AP h) ¥ T = = "=
I = 11— 1 I T ; %?"I — . - -

 —
I
@ 3 B 4 5 3 18 W& 3 2 0 107 35 5§ 3 5 3 16 M 8 1 3 28

© o
L] [1 3 . T L] 3 »w L]) 3
0
w4
éb P S | —— SORE A
Jg o o L ' o © © °
9 ~ a) ~ s

T
Ny
I

o [4]
v . 3 s 3 s 3 1 1 * iy
f
f@\ . a L ety — { i
J o © i K3 o e

g) ‘_:_’: e TSy

40

¥ 1
Py 1 0
—r i o —prt I -
¥ I 1 » T —¥
I ~
1] 3 302 2 3 n 45130] 3 [] s
o © -
e
1 1
p— g .___.._‘,.:. s €¥.

I '::.:.";'_: Y-

+—Lop PPy
e o = L2 3 s

69 104 21 8 [10¢ 6 0208)

e
Eet =

L] L I

—a————o | o
. 3 1
[4]
7 gush— 4 pyseuns X

B
l
- " A Ri - e- |d|i =
il _
" i ud u -
-] 2 Q| = %I
- ¢~ [loll ~
- ™ « S - -
- gil » lof| - i6 g - ol e =i
|
- < @l ~ ¢ ¢ = 1B us_&
° 09 ln ! - ul - = %
-HERITER] -
- ul - l__o
21« Al « |1 - i
e e~ Jill 5
- . 10 - o «
- - 3 e .0
ol =oll[t - |ld -
- < 8l - e - " =le
- . ° -| ° lo_ o.m “o
o LAl sl

42

© (V) o 13 ©

~-7-0 © s
20 o T T e <
g o
o ' L] : 4 2 un L] " 1 "

43

,9:;.5.)_:'."‘ _...'.'()_ L e e gy &P~ =

(g crrasa=m=r: e
T ¢ o 1 6 ¢ B | T s M0 8 W § 13 9 & & M O L] ‘6
é & T —a——a—0— e oI

et T
. e e e ee—————— e —— ._;.___‘, —-————y — ———— ..0 m——
é o o ° o ©

44

ST

[

RPIYp——

-
L)
1

24!

<ER

T
)
o

L

“L
J

<©

L4

. .
e

CHIHES
i) !
Pu— 2
[VRIRRRRE |
5
[VI
i
il =
a...m. 2
Ll »
il 2
hiii|
il
.M,, :
3

=] ———1
|l A

1
) —

4 Jnas

LI)

T | as

1
) I §

a9 1385 B3

45

"

ik

100

¢l

L ¢)

X

5

8
_m

[BUI ¢ Jpwm

X

?

HO M 68

o F opf o

&
 oud
1

1

10 ue

18

us

4 {138
8)

- |
-
1

£

re—P—fpef—

3
=

-
i
_ |
" 2 1o _u
_nn....“— E X
L 8 TTH !
2 [l ¢
Hl 3 |
N = :
HER I I ”n
: f
. i

[S b Devpp——. 7

1
+
238 9 1352 10 3

:’-‘. O

n

47

