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by
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The computational modeling of natural signals has been a very active area of research
since the emergence of digital technology. One class of signal models consists of a linear
filter controlled by signals much simpler than the one being modeled. In this thesis,
such an approach is taken to the modeling of the violin. In the course of applying the
modern repertoire of techniques, various problems had to be surmounted to achieve a
musically useful violin model at a computational expense easily affordable with
present technology. As a first contribution, it was found that separate models are
desirable for the violin body, string, and bow-string interaction. Each of these
components presents a challenging problem in signal modeling.

The model for the violin body requires the solution of a very demanding digital filter
design problem. Given that one wishes to keep complexity down, how can the most
important features of the violin-body frequency-response be captured in a minimum-
cost digital filter? Several contributions to the design of audio digital filters were
developed to this end. For example, conformal mapping techniques are utilized to
“stretch” the important main air and wood resonances of the violin body over a larger
area of the frequency domain, so that they are easy to fit with a filter design algorithm,
Smoothing according to the critical bands of hearing is used to prevent the model from
trying to follow less important fine detail in the frequency response. The final model
for the violin body contains only eight "poles” and eight “zeros,” but its frequency
response (fitted to physical measurements) contains resonances at the main air and
wood resonances, and at the so-called "singing formant.” In addition, ancillary
contributions to digital filter design were developed involving the choice of error
minimized, Example areas include log-magnitude approximation and joint phase and
magnitude optimization for rational filters using the Hankel norm of the frequency-
TESpOnse error.

The vibrating string is in some ways more challenging to model then the violin body.
One source of difficulty is that the string “remembers” vibrational energy much longer
than does the violin body; also, the many "harmonics” of a vibrating string can each be
considered an important resonance of the linear filter which models the string. At the
complexity of the violin body, only four harmonics could be sustained. Nevertheless,
by constraining the string filter to an efficient recursive form, it is possible to obtain
hundreds of resonances with even less complexity than that of the violin body model.
Furthermore, methods for fitting such a model to recorded measurements of a vibrating
string are presented. A method for simulating the interaction of a bow with the string
model was developed based on the work of McIntyre and Woodhouse.
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Techniques for Digital Filter Design and System Identification,
with Application to the Violin
By
Julius Qrion Smith I

Information Systems Laboratory
Department of Electrical Engineering
Stanford University, Stanford, California, 94395

This thesis is about signal modeling. The signal which receives primary attention
is the sound of the violin. The model consists of 2 simple algorithm which can be easily
implemented in a computer or integrated digital circuit. The model produces a digital signal
(a series of numbers representing loudspeaker position, for example) from a set of natural
controls (such as bowing specifications). The modeling techniques, however, are not limited
to the violin. In other applications, the signal might represent speech, a radio broadcast,
seismic disturbance, light propagation, thermal gradient, structural stress, aircraft motion,
stock market level, weather patterns, or the sensation in a robot’s hand.

The model for the violin is based on underlying physics, with certain simpiifications.
The simplifications achieve two objectives. First, we desire a model which is computation-
ally efficient. This rules out, for example, the numerical integration of a large system of
differential equations. Second, the model is to be judged solely on the quality of the sound it
preduces. From this point of view, many aspects of the physical violin become unimportant,
and we wish to exclude them from the model whenever possible.

It was discovered that there are three important components of the violin which deserve
individual consideration. (1) The violin body contributes to the timbre of the sound by
shaping the spectrum in a fixed way. This function is analogous to the effect of the vocal
tract in speech production. In a sense, it determires the “vowel” which is spoken by the
instrument in each register. However, in the case of the violin, the “mouth” is always of a
fixed shape. The body of the violin is accordingly modeled as a linear time-invariant filter.
For this step, considerable expertise is required in digital filter design. Chapter 1 is devoted
to this aspect of the problem, and several new techniques in filter design are presented.
(2) The string of the violin has a “life of its own” which does not absorb gracefully into
the chosen model for the body. This is because the vibrating portion of the string changes
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Bouw Posgition

::::':::;{Control — String Body |—

Fligure 1. A schematic for the violin.

length during normal play, making it time-varying, and because the string has much greater
‘memory” than the body of the instrument. The string is still well-modeled as a linear filter,
but standard filter types are far too expensive to consider in this context. Consequently,
a special linear filter structure for the string is developed which maintains low complexity
while providing time-varying filters of very high order. Methods from Chapter 2 are used
to calibrate this model to recorded violin data, and the string simulator itself is derived
in Chapter 3 from basic physics. (3) The interaction of the string with the violin bow was
found to be a very important determinant of the sound of the violin, and a good model of
bowed-string behavior is essential. The bow-string interaction is nonlinear, and therefore
cannot be incorporated into the body or string models. Fortunately, since the string model
corresponds well to underlying physics, it is straightforward to add a bowing mechanism
which also mirrors the physics of bowed strings. The three basic elements of the violin
model, and their interconnection, are shown in Fig. 1.

It should be emphasized that this thesis concentrates on signal modeling techniques
rather than the violin per se. The violin problem provides motivation, focus, and a means
for measuring the benefit of one technique over another. While the violin model stands
alone as a practical contribution, the general techniques developed for its calibration to
recorded data are the main topics of research.

Itinerary of Topics

The flow of ideas in the dissertation is as follows. First, the rational filter design
problem is posed in a general yet wholly practical setting. The problem is examined
first from an “approximation theory” point of view, in which existence and uniqueness
of the solution are investigated. The approximation problem proves to be nonlinear and
difficult to solve, and a theorem is given indicating how difficult the problem can be in
the general case. Having laid to rest the possibility of a practical general solution, the
problem is modified in various ways to make its solution tractable. Some mcdifications
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are designed to retain properties of the original formulation as much as possible, while
others are based on dropping aspects of the original formulation which are not important
for certain applications. Still others stem almost entirely from the desire for a simple
robust solution, and the nature of fit with these methods is discussed. Next, the problem is
reformulated in the time domain, and generalizations made possible by this are introduced.
Finally we come to the violin. After discussing aspects of hearing which lead to a novel
adaptation of the filter-design error criterion, a selection of methods is used to obtain a
digital filter which simulates the-body-of the-violin: - Then a-parsimonious model for the
vibrating string is proposed, and its parameters are estimated from recorded data. As a
postscript, a method for “bowing” the artificial violin is described, and several directions
for improvement are suggested.

Summary

The two basic problems addressed are

¢ Obtaining a digital filter with a prescribed frequency response.

o Parsimonious modeling of nearly periodic signals.

The filters considered can be represented by a rational transfer function of the form

_B(z)_botbiz7l+ - +byyz™™

H(z) A(z) 1481271 4 -+an,z7 "’

having n; zeros and n, poles. The quality of fit is considered primarily in the frequency
domain, but some methoeds minimize time-domain errors. Methods are compared on the
basis of the error minimized and compatational robustness. The design of a model for the
body of the violin is considered as a practical example.

The class of time-series to be modeled consists of a quasi-periodic deterministic signal
plus noise. In this case, the deterministic part of the model transfer function locks like

B(z)

HO= Py

where P is the “period” of the signal. The periodic structure of the signal is “factored out”
leaving the remaining information to be captured by the model coefficients. The bowed
string is taken as an example to which this model is applied.

In Chapter 1, the filter-design problem is discussed. The desired frequency response is
assumed to be continuous and causal. The initial formulation produces filters whick match
both the magnitude and phase of the desired frequency response. Since this is relatively
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difficult for rational filters, a variety of compromise methods is included also. Finally,
various new ancillary methods for filter design are presented.

In Chapter 2, a more general formulation is treated wherein a filter is fit to given
input/output data. This is the “system identification” paradigm. The identification
algorithms are better suited to time-varying filter design than the methods of Chapter
1, and they are appropriate whken given input/output data. They also provide an error
signal which can be further modeled, and here statistical time-domain models begin to play
an important role. The added flexibility of the time-domain formulation is accompanied,
however, by greatly reduced flexibility in the choice of optimality criterion. For this reason,
the maximum amount of time-invariant structure is first extracted using Chapter 1 methods
when attempting to model the violin.

Chapter 3 is a case study in modeling the violin. The problem is divided at the
“bridge” into two parts: the resonating body and the bowed string. The body is regarded
as 3 linear time-invariant filter whose transfer function relates a force input to radiated
sound pressure at a point in space. Techniques from Chapter 1 are tried and compared
for this application. The measure of fit is designed to reflect the characteristics of human
hearing. The bowed string is modeled as a special linear time-varying filter producing a
force output in response to a simulated string excitation. The model developed for the
string achieves very high order with only a few degrees of freedom, and it is sufficiently
general to provide dispersive, frequency-dependent losses due to string stiffness and yielding
terminations. Techniques from Chapter 2 are used to determine the parameters of this
mode! from recorded data. Finally, refinements to the basic model are discussed, including
a mechanism for simulating the interaction of a bow with the string model.

The appendices contain technical reference material, such as long proofs, and Appendix
E gives some fundamental background including definitions of many terms not defined in
the main text.




Chapter 1

Methods for D;gita] Filter Design

1.1. Introduction

The problem of fitting a digital filter to a givenvspectrum may be formulated as follows:

1.1.1. Problem H*

Given a continuous complex function H(¢/¥), =7 < w < , corresponding to a causal*
desired frequency-response,! find a stable digital flter,! of the form ‘
- B(z)
H(z) & —, 1.1
where . .. N
B(z)Abo+byz7 ' + -+ + b,-,,z"i“

i A 1.2
AZ) Al +8127 4 oo +ig 270, (1.2)

with i, 25 given, such that some norm? of the error
J0) & | H() - A |
is minimum with respect to the filter coefficients

07 A (bobiyenbagsdn e, n, ),

which are constrained to lie in a subset € - RV ,where N A dig+ fip+ 1. When explicitly
stated, the filter coefficients may be complex, in which case © C ¢,

* H(&“) is said to be causal if h(n) & [T H(“)e“ g2 =0 for n < 0.

t Defined in Appendix E.
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The approximate filter H will be constrained to be stable, and since positive pcwers
of z do not appear in é(:), stability implies causality. Consequently, the impulse response
of the model iz(n) is zero for n < 0. If H were noncausal, all impulse-response components
h(n) for n < 0 would be approximated by zero.

The stability restriction on H(z) needs to be made more precise:

Definition 1.1. The circle of radius 1 — § in the complex plane is denoted by

Ts&{zeC|lz|=1-5}, 0Zé6<1.

Definition 1.2. The disk of radius 1 — § in the complex plane is denoted by
DsAf{zec|lz]<1-8}, o0<é<1.

The unit circle I’y and unit disk Dy are denoted more simply as T" and D, respectively.

For stability of the filter H,itis necessary to restrict the set of denominator coefficients
{é1,...,83,} %o that the roots of A(z) lie in . The filter is said to be marginally stable
when at least one root of A(z) lies on I and all roots are in D. When the filter is to be used
with a continuously supplied input, the roots of A(z) must lie strictly inside the unit circle
T for stability, with I’ excluded.

Definition 1.3. A rational filter of the form H(z) = B(z)//-i(:) is said to be strictly
stable of order 4 if the roots of .4(z) are confined to Dj for some 0 < § < 1.

Strictly stable filters are almost always desired in practice. However, for some applica-
tions, such as spectrum analysis applied to sinuscids in white noise, the poles of a good
model can be very close to the unit circle, and one is led naturally to chocsing the open unit
disk |z] < 1 as the aliowed domain for the poles. Even in these cases, however, the use of
finite-time observations (or finite energy signals) justifies a strict stability constraint. The
assumption that H{¢¥) is continuous on the unit circle is itself form of strict stability—for
it implies |H(¢’¥)| is bounded. Without strict stability, much extra work is required in
the theory, and numerical problems are more likely in practice. Since there seems to be
little motivation to the contrary, strict stability will be assumed in the sequel unless stated
otherwise. The stability margin § is an arbitrary £xed constant which will not be explicitly
mentioned in all cases.

Problem H" is then to find a (strictly) stable fgz-pole, #2j-zero digital filter which
minimizes some norm of the error in the frequency-response. This is fundamentally rational
approximation of a complex function of a real (frequency) variable, with constrzints on the
poles.
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1.1.2. Summary of Chapter 1

While the filter-design problem has been formulated quite maturally, it is difficult
to solve in practice. The strict stability assumption yields a compact space of filter
coefficients ©, leading to the conclusion that a best approximation H® ezists over this
domain. Unfortunately, the norm of the error J(f) typically is not a concave! function
of the filter coefficients on ©. This means that algorithms based on gradient descent may
fail to find an optimum filter due to their premature termiration at a suboptimal local
minimum of J(#). It is shown that this is a very serious difficulty which makes many (if
not most) of the currently available methods unreliable in general.

Fortunately, there is at least one norm whose global minimization may be accomplished
in a straightforward fashion without need for initial guesses or ad hoec modifications of
problem A" —the Hankel norm.! The CF method for digital filter design, described in this
chapter, is based on the Hankel norm. It does not suffer from non-concavity of the error
surface, and the approximation it finds is spontaneously stable without imposing coefficient
constraints in the algorithm. It appears that methods based on Hankel-norm approximation
are the only methods which can solve problem H' to within an arbitrary tolerance without
requiring exhaustive searching over the filter coefficient space ©.

An alternative to using Hankel-norm approximation is to reformulate problem H® s
that it can be solved by linear or concave techniques. Methods along these lines abandon
the use of a norm applied to the frequency-response error H — H as a quantity to be
minimized. Examples include

e Pseudo-norm! minimization: (Pseudo-norms can be zero for nonzero functions.) For
example, Padé approximation falls in this category. In Padé approximation, the
first #ig + fiy + 1 samples of the impulse-response h(n) of H are matched exactly,
and the error in the remaining impulse-response samples is ignored.

e Ratio Error: Minimize || H(e’“)/H(¢?“)|| subject to B(z) = 1. Minimizing the L?
norm of the ratio error yields the class of methods known as linear prediction
techniques. Since || e/?E(¢?“)|| = || E(¢?*)||, by the definition of a norm, it
follows that || H/H || = || |H|/|H|||; thus ratio error methods ignore the phase of
the approximation. It is also evident that they tend to make |H(e?“)| larger than
|H(e?)].* For this reason, ratio-error methods are considered most appropriate

t Defined in Appendix E.

*\H | cannot go to inflnity since the constraint B(z) = 1 and the stability constraint imply that
In [fI(e"“’)l is zero-mean by the argument principle [186,150].
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for modeling the spectral envelope of |H(c")|. It is well known that these
methods are fast and exceedingly robust in practice, and this explains in part
why they are used almost exclusively for some data-intensive applications such as
speech modeling and “modern spectrum analysis.” In some applications, such as
adaptive control or forecasting, the fact that linear prediction error is minimized
can justify their choice.

‘e Egquation error: Minimize | A(e7)H(e79) = B(e?@) || = || A(e?w)(H{e™)— H(¥)) |
When the L2 norm of equation-error is minimized, the problem becomes solving
a set of N = fig + #; + 1 linear equations. Equation error can be viewed as a
frequency-response error which has been weighted by |A(¢’“)|; thus large errors
can be tolerated where the poles of the optimum approximation approach the
unit circle. While this makes the frequency-domain formulation seem ill-posed,
in the time-domain, linear prediction error is minimized in the L? sense, and
in certain applications this is ideal. Equation-error methods can be viewed as
generalizing ratio-error methods to include zeros.

e Conversion to real-valued approzimation: For example, power spectrum matching,
i.e., minimization of || |[H(¢™)2 = |H(¢?“)|2|], is possible using the Chebyshev
or L™ norm.! Similarly, linear-phase filter design can be carried out with some
guarantees, since again the problem reduces to real-valued approximation on the
unit circle. The essence of these methods is that the phase-response is eliminated
from the error measure, as in the norm of the ratio error, in order to convert a
complex approximation problem into a real one. Real rational approximation of
a continuous curve seems to be solved in principle only under the L™ norm.

o Decoupling poles and zeros: An effective example of this approach is Kopec’s method
which consists of using ratio error to find the poles, computing the error spectrum
E=H /fI , inverting it, and fitting poles again (to 1/E(¢’“)). There is a wide
variety of methods which first fit poles and then zeros. None of these methods
produce optimum filters, however, in any normal sense.

In addition to these modifications, sometimes it is necessary to reformulate the problem
in order to achieve a different goal. For example, in some audio applications, it is desirable
to minimize the log-magnitude frequency-response error. This is due to the way we hear
spectral distortions in many circumstances. A technique which accomplishes this objective
to the first order in the L™ norm is presented in this chapter.

Sometimes the most important spectral structure is confined to an interval of the
frequency domain. A question arises as to how this structure can be accurately modeled

t Defined in Appendix E.
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while obtaining a cruder fit elsewhere. A technique based on conformal maeppingis presented
in this chapter. It is especially valuable in connection with methods which are intrinsically
unable to minimize a weighted norm of the frequency-response error, such as the Hankel-
norm method.

There are several methods which produce H(z)H{z™!) instead of H(z) directly. A fast
spectral factorization technique is presented which is useful in conjunction with methods
of this category. Roughly speaking, a size 271, polynomial factorization is replaced by an
FFT and a size fi, system of linear equations.

In the next section, some basic results on the general formulation of problem A * are
developed. Next, the possibility of solving the problem under specific norms is considered,
and associated methods are discussed. Finally, the auxiliary techniques outlined above are
presented.

1.2. Possibility of Solution to Problem H *

In this section, the basic issues of existence and uniqueness of a solution to problem
H"® are examined. It is shown that a solution always exists, but that uniqueness can be
guaranteed only in special cases.

Definition 1.4. The space of complex-valued functions continuous on the unit circle
T in the complex plane, is denoted Co(T"). The causal subspace of Co(I') is denoted CJ'(T),
and the anti-causal subspace is denoted Cg(T'). That is, if H(¢¥) € Co(T), then

H() = HY(JY)+ H™(¢¥),

where

H* (&%) = i h(n)e=7v" € ()

n=0

-1
H ()= Y Ka)e " ecg(M).

nax~—00
In problem H°, the desired frequency-response H(c’) is assumed to lie in C3(T") which is
regarded as a normed linear space,! with the scalzrs being complex numbers.

Definition 1.5. X3, 5, denotes the set of all rational functions of the form H(z)=
B(z)/A(z) as in (1.2) of problem H ®, where the roots of A(z) lie inside the closed disk Dj,
0<é<l.

t Defined in Appendix E.
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Proposition 1.8. X3, a, is dense in CF(T).

Proof. The Weierstrass approximation theorem states that polynomials in z are
uniformly dense in Co(T') [57). This theorem can be generalized to show that for each
fig 2> 0, the best approximation from X3, ;, uniformly approaches an arbitrary element of
C3(T") on the unit circle as fi;—co (Walsh [75]).

Note that X3, ;, does not form a closed subspace of continuous functions on the unit
circle, since if H(z), Ha(2) € X5, i, then

Az(z)éx(z) + Ai(2)Ba(z2)
Ar(2)Az(2)

in general. However, it is possible to reparametrize ¥a,,a,, for 1y > fig — 1, by means
of the partial fraction expansion such that for each set of fized poles in D5, a subspace
of C3(T) is generated by using the pole residues as basis-vector coeflicients. For the case
fip == ftg — 1, such a subspace will be denoted X7 :

Hy(2)+ Ho(z) =

€ Hipiia

Definition 1.7. X7  denotes the set of all rational functions from ¥;,—; 3, each
having the fixed set of poles {p;}7°.

fie
-~ > —R
A {H € Hy-1,5, | Hz) = g l—p:f‘ }
1

1.2.1. Existence

Lemma 1.8. For any set of fized complex numbers {p;}?* € D5, 0 < § < 1, the
function

B(e7¥)
A7)
where A(p;) =0,i = 1,..., /4, defines a norm on RA++1,

Proof. Since all roots of A(z) are in D5 (|z] < 1 —§), we have

b

|8, 8,

1) “E"AZO' lé"A=° & B(Y)=0 & b=0,i=0,...,7
@ Lol =[] - [2]-retbel,
(3) "Bl'*'ézn,;"' 81232 = %‘-+-§—2 Sll%“+"—§3[="1’31"A+"32L.

Thus the defining properties of a norm are satisfied. §
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Lemma 1.9. The domain of J(a) can be restricted, without loss of generality, to a
compact subset © of RN,

Proof. We must show that the minimum of Ji (8) = || H(¢?%)~ B(e79) ] A(e7%) || occurs
over a compact domain & C RV,

Since the roots of A(z) lie in Ds, the poles of FI(z) lie in a compact subset of R%s. The
coefficients of A(z) are a continuous function of the roots of A(z), and therefore they also
lie in a compact subset of ®%¢ (Rudin.[154], Thm..4.14). This set is also compact relative
to ®¥ [154, Thm. 2.33].

It remains to be shown that {50,...,5ﬁ.} can be made compact. Since § == 0 is
an admissible approximation, an optimum value 8" must satisfy J (3‘) < J(0). Let & =
{8 | J(8) < J(0)} (sometimes called the level set corresponding to # = 0). Then for § € 6,
we have

JO=la|2|H-&|2|&]-18]
- ||E||_<_2|;H1|.

Let ..
B(e")
Afeiw)

|5, 4|

By Lemma 1.8, this defines a norm on ®™+!. By the norm equivalence theorem, it is
“equivalent” to any other norm on R#+! (Gohberg [142], p. 197). Le., there exist positive
real numbers ¢ and C such that

d-W<l-la<ci-V,

for any norm || - ||, where || - || denotes || z|| for arbitrary z. Let |} - || =|| - ||1.} Then
there exist positive constants ¢ and C such that

2], <[], <],

The constants ¢ and C depend on A and the norm || - || used for problem H *. Since
1 Blla < 2||H]|, it foliows that c|| B|l; < 2||H |}, or

> [in] < 2fan]
nz=0 " T ) .

Thus the space {3,,}(",' ¢ of numerator coefficients is bounded. If it is also closed, then it is
compact [154]. Let 3 be a limit point of the sequence B, where || H—B,/A|| < || H|| for

t Defined in Appendix E.
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each n. Then limp—co || B = Bn || = 0 for any norm. Also,

-t o8-

2]t

0=nli_x:;°|lf?—£‘?nllA2"H-EIA-HHII

3)

"—!IHII

:!»IUJ'

Consequently,

- "H-Eﬁﬂ <|Hl= Beb.
A
Thus 6 is closed as well as bounded, and therefore compact. J
Lemma 1.10. The error measure J(#) is uniformly ccntinuous on 8.

Proof. Since © is compact, it suffices to show continuity of J at an arbitrary point
of & [154, Thm. 4.19]. Let

pa(pt)es, noi=

define an arbitrary direction in ©, and define

Dp(z)= 3_ dp(n)z™"

nu=0

D)= dz(ms,

where d4(n), dz(n) are the elements of D4, Dp, respectively. Then J is continuous at gif
for all such D, limyjq J(@ + tD) = J(#). We have

. B +tD; B+t
Jo+y= -2 Pe) |y B B_B+tDy
A+tDA] A A A+tDA
which implies
B+tD; 3 B+tD; BD, - AD;
g-Bts Ny Bl B _ Bl =y 2Pa=4Ds (1.3)
A+tDy A A A+tDy A? +tADA
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Since A is bounded away from zero on the unit circle, and since A, B,D A, D are continuous
bounded polynomials in ¢/, it follows that the last term above goes to zero with ¢. Hence,
J(8) is continuous. §

Dividing both sides of (1.3) by ¢, we obtain the following side result.

Corollary 1.11. The directional derivative of J at J in the direction D R2ll=1,
_ is bounded in magnitude by

20 <

This follows from the definition of the directional derivative

8J(0)(o DAL J(3+t‘gt)-q(b).
0

EDA -
Az

Corollary 1.12. The set of values assumed by the error measure J(#) on 6 forms a
compact subset of R!. (This follows from the fact that the image of a compact set under
a continuous mapping is compact [154, Thm. 4.14}.)

Theorem 1.13. Let S be a closed and bounded subset of R, If f : R%—R! is
continuous on S, then f has at least one minimizer in S.

Proof. See Rudin [154], Thm. 2.28.
Theorem 1.14. Problem H° has at least one solution.

Proof. In view of Thm. 1.13, it is only necessary to show that the domain 9 of
J(d) is compact, and that J(ﬂ) is continuous with respect to the coeflicient vector 9 =
(bo,---,ba,,81,..-,83, ) on 6. Lemmas 1.9 and 1.10 provide this information. §

1.2.2. Uniqueness

Proposition 1.15. If J(8") =0, then the optimum transfer function A ‘(z) is unique.

Proof. From the definition of a norm, we have j| H— H || = 0 if and only if H(¢/¥) =
H(e7) almost everywhere. With H(z) strictly stable, & (¢7*) cannot be modified at points
of measure zero,* and so it is uniquely determined. Since H(z) is rational and analytic for
[z] > 1~ 4, it is uniquely determined by H(e/¥). g

* In the case of nonstrict stability, a pair of poles and zeros can converge toward cancellation at
the unit circle in such a way as to leave one arbitrary point in H(¢’*) (Rice I57]). This is the basis
for ARMA modeling of sinusoids in white noise.
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Proposition 1.18. H* is unique under the L no‘rmt whenever £°(¢¥) A H(¥) -
H'(¢™) is uncorrelated with H{e™) A H* (/%) — H(¢/™) for all H £ H°.

Proof. Let {X,Y) denote the inner product! of the functions X(¢#¥) and Y(e#) on
the unit circle. Then

SO = |H=Hf = | A"+ E =B = ufz+E‘u§=(ﬁ+E‘,é+E‘>

=11+ (&, 8°)+ (B )+ 1B
= IE G+,

which is minimum if and only if || H || =0 = H(c™)=F"(c). §

Note that uniqueness of the approximate transfer function does not imply uniqueness
of the parameter vector §° = (b;, cees b,‘-“, &y,...,43, ). If, however, A’(2) and B*(z) have
Do common roots, then uniqueness of A implies uniqueness of .

Proposition 1.17. 1§ the poles of H(z) in problem A* are fixed, or if fig = 0 {no
poles), and if a strictly concave norm! is used for the error measure, then the solution & (z)
is unique.

Proof. Suppose there are two best approximations H () = B°(z)/A*(z) and H*(z) =
B‘(z)/A'(:). Then by strict concavity,

|

Thus,

B +H

H=-—

7 T3

H-H H-H u<%l

a7 =] a-

Py

g+ B'+B
2 94"
is a better approximation. This contradicts the assumed optimality of B° and B*. §

Corollary 1.18. If there are two solutions to problem H® with pre-assigned poles
then there is an infinite number of solutions.

Since all L? porms are strictly concave for 1 < p < co, we have the following.

Corollary 1.19. The solution to problem H° with pre-assigned poles is unique under
all 7 norms for 1 < p < oo

t Defined in Appendix E.

t Defined in Appendix E.




1.2 POSSIBILITY OF SOLUTION TO PROBLEM H"® Page 15

Walsh {75] has proved the above corollary for p = co also.

For the case where poles and zeros must be optimized, i.e., for problem H°, the solution
13 not unique in general. This result was established for the L* norm by Martin Gutknecht
and Lloyd Trefethen in the summer of 1982 [39].

1.2.3. Approximation over a Discrete Set of Frequencies

So far, only continuous frequency has been considered. In practice, however, it is often
necessary to work with discretized frequency. Below it is shown that problem H * is not
fundamentally altered by replacing the unit circle with a dense set of points on the unit
circle.

Discrete-frequency approzimation is defined as minimizing
J() = | H(eFr) - A(en) |,

where wp,k=1,..., N form a discrete set of frequencies on which the error is measured.
Note that under these conditions, we are really dealing with a pseudo-norm since the error
could have zero-crossings at each wj without vanishing identically.

Lemma 1.20. A best discrete-frequency approximation always ezssts.

Proof. The proof of Thm. 1.14 goes through with minor modifications. In essence,
working over a discrete set of frequencies does not alter the compactness of 6.

Note that in [3] the opposite is claimed, i.e., that solutions need not exist over a discrete
frequency grid. Since this is not shown in the paper, I can only suspect that the reason has
to do with a lack of strict stability. A counter-example to existence due to Walsh involves
an isolated point at z = 0, which does not apply to problem .

The following is similar to a theorem of Cheney [13] for real approximation in the L™
norm. However, it is much stronger thanks to the strict stability assumption.

Theorem 1.21. Let H(c¢’“) be continuous and let f{;(z) € Ha,n, be a best ap-
proximation to H over the set of % points uniformly distributed over the unit circle T.
Then

lim A Z =",

k—co
exists and is 2 best approximation to H on I'. The distribution of discrete points on the
unit circle may be arbitrary provided it becomes dense in I’ as k—co.

Proof. Let 8 denote the vector of filter coefficients corresponding to each H}. By
Lemma 1.9, these vectors lie in the compact set 6. Consequently, the sequence 9; has a
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subsequence which converges to, say, §° € 6. By Lemma 1.10, J(;) = ||H - H} || is
uniformly continuous on © which implies limy_.o J(8%) = J(8°).

Suppose H * is not a best approximation. Then there exists 8" € & such that J(@') -
J (5 ) = ¢ > 0. By the asymptotic density of the polnts wg, and by continuity, there exists
an integer K sufficiently large so that IJ(O,,) J(D )I < ¢/4 for all ¥ > K. Similarly,
there exists a sequence 01, € © such that limg_o, 0;, = §" and an integer K for which
IJ(O,,) J(& ) < €/4 for all k. > K, Let M = max{K, K}. Then for all k> M we have
J(83) - J(82) > ¢/2 > 0. This contradicts the assumed optimality of 9;. §

1.2.4. Feasibility of Gradient/Newton Descent for General Norms

The applicability of algorithms based on gradient descent is governed by the nature of
the error surface J (5). All gradient-based methods are “local” in the sense that they only
measure “slope” and perhaps “curvature” at the point of the error surface corresponding
to the current parameter estimate # (cf. Appendix E). Thus the gradient methods tend to
terminate at the bottom of the first “valley” of the error surface encountered. If the error
surface has many valleys, there is usually no guarantee that the first one encountered has
the deepest bottom. This is why concavity is important for gradient algorithms—concavity
guarantees that the entire surface of J(a) over © is one big valley.

In the case of linear approximation, every norm is concave with respect to the para-
meters. For problem H ', H — H is linear in the parameters when fi; = 0, i.e., when the
filter has a polynomial transfer function H(z) == B(z). To see this, note that for X\ € [0,1],
A=1-),

J(ABi+XB2) A | B = (B +XB2) | < M| & - By | +X] - B2 | ANs(B)+5u(B,).

This proves the following:

Proposition 1.22. Problem H * is solvable by gradient methods when there are no
poles in the approximation, i.e., when 7, 0. In other terms, finite-impulse-response
(FIR) filter design can be carried out under any norm using gradient methods.

For the case of rational approximation, concavity is another story. In fact, most results
along these lines are negative. For example, we have the following.

Theorem 1.23. Let K be a positive integer. Then for any discrete-frequency norm,
there exists an order 8K FIR filter H(z) and a frequency-grid size IV such that the one-pole
approximation-error norm

rz—1

7o) = | e - == |
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has K local minima.
Proof. This is the subject of Appendix A.

Corollary 1.24. Problem H" is not concave under any discrete-frequency norm, and
there is no upper bound on the number of locally best approximations. Consequently, no
gradient-based method can be guaranteed to converge for a filter-design problem with one
or more poles in the approximation.

It is worth noting that for all practical purposes, problem A" is not solvable by gradient
techniques under any norm whatsoever, since any computer implementation must use
discretized frequency. The result can also be extended to most continuous-frequency norms,
due to strict stability. These results imply that when modeling spectra with poles and zeros,
gradient-descent, Newton-descent and any other algorithms which require concavity cannot
be relied upon unless further restrictions on the desired spectrum are possitle, or unless
good initial estimates are available. Yahagi [79] has found empirically that rational filter
orders above 6 or 7 are difficult to design with L norm criteria. Box and Jenkins [135] (in
the maximum likelihood ARMA modeling context) recommend “extensive” plotting of the
error surface J (5). This of course approaches exhaustive search of the parameter space.

1.2.5. Computational Methods

Some generally useful Fortran programs for filter design are available in the IEEE
Programs for Digital Signal Processing collection [189]. The program for “Least-P IIR
filter design” by A. G. Deczky comes closest to solving problem & * as defined. It allows the
design of recursive filters with arbitrarily specified magnitude frequency response and group
delay. A weighted sum of weighted L? norms! of errors in these two quantities is minimized.
While this is not precisely a norm on H — H, it has the basic property of matching both
phase and magnitude of the desired frequency-response. The Fletcher-Powell algorithm
{171], a popular general-purpose gradient-based nonlinear optimization procedure, is used
to search for the best approximation to the desired frequency-response. The poles and zeros
of the filter are the parameters which are explicitly optimized by the algorithm—hence &
is concave. Because the optimization is ponlinear, one is not guaranteed that the best
solution is always obtained since the error norm may exhibit local minima which will halt
the gradient descent. Therefore, the initial pole and zero locations, which the user must
provide, can be crucial to the quality of the design. Consequently, it is advisable to obtain
an initial approximate filter design by the more robust methods discussed later in this
chapter.

t Defined in Appendix E.
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In Appendix A, it is shown that one-pole approximation to a length 2N +1 FIR filter
has at most N local minima. Similar upper bounds can be obtained when the desired
frequency response corresponds to a rational filter, or some other convenient analytical
expression. In such cases, it may be feasible to carry out a limited-resolution exhaustive
search of the error surface. If the parameter space © can be partitioned into a set of
domains on which the error J is locally concave, then gradient methods can be initialized
in each of these regions, and the results for each region may be compared to find the global
minimizer. Methods for nonlinear.optimization can_be found:in.[161,183,174,179].

1.3. Minimization of the L2 Norm
The L? error norm,

2d
2x

=] e -a@|, & [ |- )|
= 2'::0 |4my =i [* & ] b = him) ],

is a common choice for general filter-design algorithms. It can be interpreted as the square-
root of the error energy. Most such methods are based on gradient descent [20,64,79]. In
this section, some properties of problem H * under the L2 norm are developed.

1.3.1. Least-Squares FIR Filter Design

The first case considered is finite impulse-response (FIR) filter design, i.e., ig =01in
(1.2) and the filter is of the form

ﬂ(Z) = E(Z) = by + b,z" LR bﬁ.:-ﬁ‘ .
The error measure becomes
2,4 - n2 '.“
JH0) = |H- B[ = 3 (h(m) - 8.7,
n==0
and the unique minimum is given by
by =h(n), n=0,1,...,7,.

Thus FIR filter design under the L2 norm reduces to Padé approzimation (see §1.8.7). It
can be viewed as a consequence of the orthogonality of the functions ¢/“",n = 0, 1,...
under the inner product.
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1.3.2. Least-Squares Recursive Filter Design with Fixed Poles

Suppose fiy = fig—1 = HE H3,, and that the roots {p;}3* of A(z) are distinet.
(As usual, |p;] <1 -6 for some 0 < § < 1.) Then F(z) can be written

B =55 B
(&)= (1.4)
1wl i

and the values R; are the residues of the poles of H{(z).

Approximation with fixed poles amounts to optimizing the residues in (1.4) when #; =
fag — 1. For fiy > fi4, the problem is similar except that the first fiy — fig + 1 samples of
the impulse-response will be matched exactly (by the FIR quotient).

Definition 1.25. The space of all functions analytic in |z] > 1 is denoted H~.
Definition 1.28. Let H(z) L G(z) denote crthogonality on the unit circle, i.e.,

HELGE) » WH@)=0 w» [ HMGEYL =o.

The followirg lemma is adapted from Walsh [75].
Lemma 1.27. If H(z) € H™*, and if H(1/d) =0, where |a] < 1, then

H() LG() & ———.

Proof. We must show (G, H) = 0. Assume a 5 0. Since H(1/3) =0, let H(z) =
(1—a37'27Y)H'(z). Then

x H(edw) i“i—

1-a"'d¥ dw
-1 1 —ge~iv 2rx

1—ge—dw 27

(G,H)& -/:r G(cj”)H(cJW):—: = ‘: ()

gl . . ge~iW —_1d , . d

— —-Fwy, =1 u‘_"___l_“_’ — _f —jwy,—1 jw ¥

- Hl(e™3%)e ™1 PR - Hi(e™39)a™1e 3
1

27ja

f;H’(:"‘)d: =0

by the Cauchy residue theorem [138] since H'(z™!) is analytic for |z| < 1. If a = 0, then
H(co) = 0 = h({0) = 0, and we must show (1,A(1)z=! + A(2)z"2 +.--) = 0 which
follows immediately from the orthogonality of distinct powers of z on I'. (Alternatively,
note that {H(z), 1) = A(0) by the definition of the Fourier transform.) §
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Lemma 1.28. If H(z),G(z) € H™%, then for all F(z) € H~%°,

H(z) L G(z) = H(z) 1l F(2)G(z).

Proof. If H(z) L G(z), then

0= [ et = ~5; FHGEHE,

which implies the integrand has no poles in D. But this remains true if G(z) is replaced by
F(2)G(z) since F(z™!) has no poles in D. §

Theorem 1.29 (Walsh [75]). Let H(z) be analytic in |z{ > 1, then the solution
to problem H® with #, fized stable poles and fi; — 1 zeros is the member of ¥ ¥, Which

interpolates H(z) at the points 1/pg, k== 1,...,n,, where {p;} are the pre-assigned poles
of H.

Proof. This is a direct consequence of the orthogonality relations developed in
Lemmas 1.27 and 1.28. §

The above theorem is readily extended to the case iy > ;. When the pre-assigned
poles are not distinct, the interpolation applies to successive derivatives of H(z) at 1/p; for
each non-simple pole p;. See Chapter 9 of Walsh [75] for a more complete discussion.

1.3.3. Least Squares Recursive Filter Design

This section addresses the solution of problem A° under the L2 norm. It is shown that
there is no upper bound to the number of locally best approximations, and a construction
is given exhibiting an arbitrary set of local minima in the one-pole case.

Theorem 1.30. Given any set of K distinct stable one-pole filters,

I‘.{{(Z)-i—ﬁ, 0<f,'<1, 8.=1,2,...K,
1

there exists a bounded causal filter H(z) having each H{z) as a locally best approximation
under the L? norm. If H(z) is taken from the set of order 2K FIR flters,

H(z) = h(0) + h(1)2™* + .- + h(2K): 2K

and if the curvature of the squared L2 error norm

82 J3(r)
¢ & or?

(r;)>0, i=1,...,.K,
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is specified for each H;, then H(z) is unique and is given by

K1) 1 2 32 ... oK ey
H2) 0 2 6r, -- 2K(2K —1)2K-2 /9.1

. =|: : : : I B (1.5)
h(2‘K) 1 2rg 3tk .- 2KrT! oK
0 2 6rx --- 2K(2K —1)r2K-2 Bx

with 2(0) =1, and

) r

a; & Z"'?n-l= i
nm0 (1 - f’,')
)

€ 1+3r2 e:
ﬂié Zn(Qn—l)f?ﬂ-z___i_= N
NnaxQ * 2 (1 - r?)3 2
The proof is given in Appendix A. An immediate extension is the following.

Theorem 1.31. Let K be a positive integer, and i, 4 be given with fiq > 1. Then
there exists an H(e’*) with finite L2 norm so that || H — H ||z has at least X local minima.

The existence of multiple local minima in the general case was stated without proof
by Chui, Smith, and Su in [15]. The explicit construction (1.5) can be used to extend to
arbitrary norms, as discussed in Appendix A.

1.4. Minimization of the L>° Norm

1.4.1. Chebyshev FIR Filter Design

The design of FIR digital filters can be treated as a special case of designing recursive
filters with fixed poles. (The poles are simply fixed at z = 0). Since the theory for
preassigned poles is essentially the same, there is little reason to consider FIR design
separately.

1.4.2. Chebyshev Recursive Filter Design with Fixed Poles

Suppose again that #; = #; — 1, and that the poles p;,§ = 1,...,#g of H(z) are
distinct and fixed. In such a case H € ¥ _ can be expanded as

H(z)= i: B (1.6)

k=1 l_pkz-l ’
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Problem H° then reduces to finding the residues R; which minimize HH = Hlloo. It is
convenient to define the following basis functions for ¥7 :

1 .
G,‘(Z)zl—_.p;;:_?,$=1,...,ﬂa.

Definition 1.32. An Nth order Chebyshev set on the unit circle I' is a set of NV
functions for which.every linear.combination has.at most. V.~ 1 zeros on the unit circle.

The span of such functions is sometimes called a Haar subspace.

An important feature of Chebyshev sets is the interpolation property. The #ig X fig
matrix [G/(¢?“*)] is guaranteed to be nonsingular for every set of distinct points Wi, k=
1,...,7q when {G/} is a Chebyshev set [57). This fact allows H(¢’“) to interpolate through
arbitrary values over any fi5 points of the unit circle.

Lemma 1.33. The functions G;(ej“’),i = 1,...,fiq form a Chebyshev set of order
fig on the unit circle.

Proof. This is immediate from the one-to-one correspondence between the form (1.8)
and rational filters with 4 poles and 5 — 1 == i1} zeros. §

Theorem 1.34. The solution to problem H* with #, fixed poles and #; — 1 zeros is
unique.

Proof. See Chapter 2 of Lorentz [49] where it is proved that if a best approximation
with a linear combination of functions from a Chebyshev set exists, then it is unique.

An interesting characterization of the L® solution, which connects it with least-
squares, is given by the following.

Theorem 1.35 (Kolmogorov, Rivlin, Shapiro). A filter H(z) € X%, with fixed
poles is a best Chebyshev approximation to H(z) € Co(T') if and only if there are r points
{¢’“*}7 on T and r numbers w; > 0,...,w, > 0, with 3" 1wy, = 1, such that

' 3 rs - —————
Y w[H(r) - H(eM)G{ed™r) =0, i=1,...,%, (1.7)
[ = .

where

fia
H(z)= ) RiGi(3),
k==1
and {p;}7* C Ds are the fixed poles of H(z). We have also that fig+ 1 <r < 2ic;—1and
that
B = Edn | = |E-F| . k=10
[ <]
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Proof. See Rivlin and Shapiro [59] or Lorentz [49], Chapter 2.
In the case of real-valued approximation, there are r = fig + 1 “extremal points™ [29].

The characterization above can be viewed as a weighted least squares solution where the
weight function consists of an impulse at each extremal point ¢/“k. If the weights w; and
their locations e’“* were known, then the optimal approximation could be easily computed
by solving the “normal equations” (1.7). This is the basis of Lawson’s Method [29,30]. The
method is guaranteed. to.converge.[58},.and its.rate of convergence is approximately linear.

1.4.3. Chebyshev Recursive Filter Design

In the case of trying to minimize the Chebyshev (L) norm of the complex spectral er-
ror || H(¢?“)—H(¢“)||co, multiple local minima and saddle-points may arise [33,34,3,78,30].
(See also Appendix A). Consequently, there seems to be no “local” algorithm (e.g. gradient
or Newton method) which is guaranteed to find an optimal A from an arbitrary starting
point. Moreover, it has been recently established by Gutknecht and Trefethen that L*®
rational approximation on the unit disk does not have a unique solution [38].

However, when good initial approximations are available, there are algorithms for
finding a locally best approximation. A descent method has been developed by Gutknecht
[33], written in Algol60 for the CDCB500. A version of Lawson’s algorithm for complex
rational approximation developed by Ellacott and Williams is presented in [30]. Also,
Alliney has implemented Lawson's algorithm in CDC CYBER-76 Fortran [3], and his paper
is written from a filter-design point of view. In spite of the lack of theoretical guarantees,
the method has been reported to give satisfactory numerical results in some circumstances
[3]. Further information on this technique is given in {34] and [78].

Though complex rational approximation on the unit circle has theoretical difficulties,
it will be shown in the next section that it is possible to find the unique optimum complex
Chebyshev approximation to H(e/*) out of a larger class of rational functions which consists
of functions from ¥j, 5, augmented with poles from outside the unit circle. If H € CF(T)
(causal), and if the approximation error is small, then these unstable poles (which can be
considered as generators of the noncausal part of H) can be deleted with little effect on the
error. Such an approximation happens to minimize the Hankel norm.

1.5. Minimization of the Hankel Norm

In contrast to all norms thus far considered, the Hankel norm leads to a satisfactory
solution of problem A * under general conditions. The material presented below is adapted
from a paper coauthored with Martin Gutknecht and Lloyd Trefethen [36].
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1.5.1. The CF Method icr Hankel-Norm Minimization

The algorithm we have developed based on Hankel norm minimization is called the CF
algorithm. The CF method minimizes the Hanke! norm! of the frequency-response error,

(@) = | H(*) - A |,

when #ij > fig'~'1. The resulting-filter-is-always-stable,-and it-typically closely approaches
the optimum rational Chebyshev approximation when H(¢/%) € CZ(T"). Another advantage
of this method is that the error associated with all filter orders up to a desired maximum are
available with no extra computation (with #i, — 7t fixed). Thus, when order identification
is required, or when very efficient designs are called for in terms of order versus error,
the CF method is well suited. Perhaps most important, however, is that the CF method
does not suffer from the non-concavity of the error surface JH(a). Unlike gradient and
Newton descent methods, it goes directly to the unique optimum soluticn, to within
computational errors which can be made arbitrarily small by increasing various array sizes
in the implementation.

The CF method uses the desired impulse-response h(n) and therefore classifies as a
time-domasin filter-design method. It is based on an extension due primarily to Takagi [67]
of a classical theorem in complex analysis of Carathéodory and Fejér [10).

Techniques related to the CF method are used in the model order reduction protlem.
A presentation of some of this work may be found in [43,44,31,32,198]. Note that in these
works, the starting-point is a known rational digital filter H(z) = B(z)/A(z) which is to
be approximated by a lower-order rational filter. In the special case of starting with an
FIR filter (no poles), their problem reduces to the one solved by the CF method. From
this point of view, the CF method may be considered to offer two advantages relative to
previous work. First, it is formulated so as to yield filters with an arbitrary number of
poles and zeros; i.e. the restriction that there be fi; — 1 zeros when there are 715 poles is
removed. Secondly, the above references propose methods which include a partial fraction
expansion. Experience has shown that this can severely limit the length of the original
impulse-response which can be used, since this length is the size of the polynomial which
must be factored.

The present method circumvents partial fraction expansion by means of the fast
spectral factorization technique of §1.9.2, applicable whenever the number of poles and
zeros inside the unit circle are known @ priori. As a result, the CF method can typically be
applied to a much longer impulse-response given equal computational environments. Most

t Defined in Appendix E.
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of the computation time (about 90%) is spent in tri-diagonalizing the Hankel matrix of the
impulse-response. Since the Hankel structure of the matrix is not exploited in this step, it
is felt that very significant speed increases are possible.

It appears that the CF method provides an excellent means of initializing L™ ap-
proximation schemes, since the nature of the approximation tends to be nearly “equal
ripple.”

1.5.2. Theoretical Basis of the CF Method

Assume an ideal causal impulse-response h{n) (n = 0,1,...) is given, corresponding
to a stable ideal transfer function

H(z)A Y hn)™™,  H(J¥)e C3(T).

n=0
Stability implies that this series converges uniformly, so FI(z) can be approximated ar-
bitrarily closely by taking a partial sum of sufficiently high order. In practice, it may
be preferable to apply a bandlimited window [196] rather than truncate, and the possibly

modified impulse-response values are denoted by {kx(n)}& and the corresponding transfer
function by Hi(z), '

K
Hi(2) A Y hg(n)z™".

Problem A" under the Hankel norm is then to find the stable rational digital filter

i iy 7 =k
H(z)= {?(z) = 2’37‘0 b"f -
Alz) 1+378, de2™
which minimizes ) )
Juld) = | B - ()|,
where the Hankel norm is defined in Appendix E.

The key to Hankel-norm minimization is that it is easy to determine the best Chebyshev
(L) approximation H * out of the larger class ¥4, 4, of functions which are of the form

z A 1 .-
H(z) A B(z) A k;Too biz=*
30 4T o,

(1.8)

where the zeros of z%sA(z) still lie inside the unit circle I'. The class 5(,-,,',-,6 may be
regarded as an extension of the filters in X3, s, to include noncausal impulse-response
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components The CF method consists of computing this extended best L™ approximation
H®, and truncating it to obtain the CF approximant H ¢ Xa,ae- The truncation of
the noncausal part produces a filter which minimizes Jp, as discussed in Appendix B. One
way to perform this truncation is to express H® in the parametric form (1.8) and delete
the terms with negative k in the numerator [37]. A better method, which is employed here,
is to compute the impulse-response (Laurent series on I') for (1.8). If 1y > 35 — 1, then
one simply truncates all noncausal terms, and what remains is the impulse-response for a
function in X3, a,. For fiy < fig — 1, a slight modification.of this procedure is necessary,
as described in the next section.

In our experience, the resulting approximations are quite close to optimal in the
Chebyshev sense, especially when H(¢’“) is smooth. Because the complex Chebyshev
measure-of-fit is sensitive to both phase and magnitude errors, the noncausal part of the
Chebyshev approximation is small when the optimum error is small. Indeed, if || Hx(¢7%)—
H(+7)|loo = , then

| x(m) = B"(m) | & l f (Hx () - B (e))eim Tl
</ | Hxcle) - H(e’”)l—<x

where l-z‘(n),n € (—o0,0) is the impulse-response of the Chebyshev approximation g
Thus X is an upper bound on the error of each individual sample of the impuise-response
error, implying, in particular, [A*(n)] < A,n < 0. Moreover, A’(n) tapers ezponentially to
zero as n— — c0. However, the truncation error is often much smaller than this. For some
estimates on its size, see [71] and (72].

Since the CF approximant and the ideal filter are both stable, the time-domain error
approaches zero exponentially. However, by the above inequality, at no time sample can the
error in the impulse-response ezceed N, the optimal Chebyshev spectral error. In general,
problem H * must provide fits both in the time-domain and the frequency-domain, since
frequency-response phase corresponds to relative time information. However, the above
bound on the impulse-response error is better than one normally sees.

The method for computing H * is based on a theorem developed by Takagi [67], Achieser
[1], Clark [17], and Adamjan, Arov, and Krein 2], for which an elementary proof is given
in [72]. Appendix B gives a simplified derivation of the main results for the case of real
finite-order filter design. For a detailed presentation of the Takagi theory, see also [35].
The polynomial case (is = 0) was settled earlier by Carathéodory and Fejér [10].

The theorem makes use of the singular value decomposition of the Hankel matriz
formed from the windowed impulse-response {hg(n)}X_,. The values hg(n) may be com-
plex. By definition, the Hankel matrix corresponding to an impulse-response {Ag(n)}5%. is
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the infinite matrix having Ag(i-+7) at the intersection of the ith row and jth column (s, 5 =
0,1,2,...). To obtain general type (i}, fia) approximations, we introduce the parameter

14 é 7‘35 - ﬁa +1
and define the Hankel matrix entry (4, 75) as hg (s + 5 + v),

hg(v) hglv+1) - - - hg(K)

hg(v+1) .0
A . .

HV.K = . hK(K) . ] (1.9)
hx(K) 0 e 0

where hg(k) 20 for k < 0.

The singular value decomposition of H, g may be expressed as
H, g =UIV®, (1.10)

where U,V are unitary matrices, and ¥ is a diagonal matrix with nonnegative diagonal
elements oy, . ..,0x—, arranged in order of decreasing magnitude {202]. These elements of
T are called the singular values of H, k. (Note that it is customary to number the singular
values from 1 rather than 0. Our choice is made to simplify notation. Also, we refer to o,
as the n4 singular value, although it is the (n+1)st element of the sequence.) The left and
right singular vectors corresponding to on are the nth columns of U and V, respectively,
and we denote them by

Upn A (un(0), ..., un(& — )T,

Y a ("n(o)r oo On(K = ”))T .

If 75 is not a simple singular value, then U, and v, are not unique, but this does not
matter in the theorem below.

When the impulse-response is real, H, g is a real symmetric matrix, and in this case
On = |An |, where \, is the n*? eigenvalue of H, x by magnitude (Ao = M| > ... >
Ak =»|). Moreover, in this case one may assume

Y-'_x = U, sign(\s).

Thus in the case of a real impulse-response (i.e. for real symmetric matrices), each singular
vector is also an eigenvector and vice versa.

The basic result on which the Hankel-norm methods are based is the following {72].
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Theorem 1.368. Hx has a unique bat; Chebyshev approximation H® out of ;l,;‘,,;.,
and the error function E(z) = Hg(z) - H'(z) is an allpass filter whose gain at each
frequency is equal to the #1ath singular value of the Hankel matrix H, g, i.e.,

-] =on.
where 05, &0 for g > K —v. H" is given by

f-I‘(z)=HK(z)—a,;.z-"Vi-fﬁ(‘—z(%)-, (1.11)

where Ua,(z) and V3,(2) are formed from the fia*h singular vectors of H, x as

K-y K-v
Ua2) A Y ua(m)z™,  Val2)& > va(n)s".
nw=0 na=0

This remarkable theorem implies that every stable linear system (even infinite-order)
admits a decomposition into the sum of a3 noncausal filter from the class ¥3, 3, plus an
allpass filter, i.e.,

Hg(z)= H(2)+ 05.2—”%%% .

In the proof of the theorem, this equation follows immediately from taking the z-transform
of the equation H, xVa, = oa,Ua,, Which follows from (1.10). (See Appendix B.) What
is nontrivial to show, however, is that the number of poles of H® inside the unit circle is at
most #4. This key step was apparently first taken by Takagi [67] using a result of Schur.

For systems having a real impulse-response, the decomposition may be written
; Va (2)
= g . =y __falf)
HK(:) H (2)+>‘n.z V,‘..(Z-l) ]

where V;,(2) is formed from the eigenvector V3, as above.

1.5.3. The CF algorithm

Given a finite-length impulse responsé hg(n), the CF method consists of the following
steps. For simplicity, we assume in this description that hg(n) is real.

(1) Compute the #ig + 1 smallest and the fig + 1 largest eigeavalues of the symmetric
Hankel matrix H,, g of (1.9). This can be accomplished by tridiagonal reduction
followed by Sturm sequencing, and routines are provided for this in EISPACK
[199, subroutines Tredl and Tridib].
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(2) Order the eigenvalues so that [\o| 2> [\1] 2 ... 2 |A\g—,|, find M., and compute
a corresponding eigenvector V;,. This can be done rapidly by inverse iteration
(199, subroutines Tinvit and Trbakl].

(3) Evaluate the frequency-response of the optimum (noncausal) Chebyshev approxima-
tion (1.11) at L >> #i + fig + 1 equally spaced points along the uait circle,

H*(59%) =-Hpc (e7h) — \g e300 Va ()

Vad(e774%)
W = 'i’—:rL—k, k=0,1,...,L-1.

It is preferable to choose L equal to a power of 2 to allow the use of the Fast
Fourier Transform (FFT) for this and the next step. Note that since hg(n) is
real, H"(c7%) = H (¢=7*), so that only L/2 + 1 values need to be computed.

(4) Inverse Fourier transform H'(¢7**) to obtain the impulse response of the extended
rational Chebyshev approximation,

h'(n) = FFT-Y{H ()} = = Z H (Ir)ewin |

kao
The first L/2 samples, n =0,...,L/2 ~ 1, correspond to the causal part.
Forv2>0 (ay 2 fg—1):

(5) Window B°, selecting the causal part, to obtain the impulse response of the Hankel-
norm approximation,

,;(cr)(n) - {I.z'(u), n=0,...,Lf2—-1
0, n=L/2... L-1.

(8) Convert the nonparametric impulse response A7 to parametric form {a;, 3,-},
i=1,...,Rq, ] =0,...,7 by Prony’s method (defined in §1.7.2).
Forv <0 (fy < fg—1):
(5') Window k" as

h(ct)(n)= {h (no+”)’ ::2”/'2“’13/2:1

(68') Coanvert the nonparametric impulse response h(°F} to parametnc form {a;,¢;},
i=1,...,8, § = 0,...,¢ =1 by Prony’s method, and setb = €juy,J =
0,...,7.
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1.5.4. Practical Considerations

The CF algorithm is defined on the basis of a prescribed order (#;, fi5), and in step 2
above, an error measure |\, | associated with this order is revealed. An alternative is to
prescribe only the difference between the number of poles and zeros (v), and then decide on
the final order after the eigenvalues of Hy,  have been inspected. This alternative can lead
to the most cost-effective filter designs. For many desired filters, the sequence {|\;|}X
drops sharply in magnitude over some small interval, and values of #4 in this vicinity give
efficient designs in terms of order versus error.

A related consideration is that one should ensure |\;,| < |\ -1, since otherwise
a degeneracy will occur in which H° has fewer than #, stable poles (in the quotient of
(1.11), poles and zeros coalesce on the unit circle). This problem often comes up when
Hg(2) is an even function (kx(n) = O for n odd) or is an odd function (hg(n) = O for
n even). It is easily circumvented by taking (#3, 1) of the form (odd, even) if Hg is even,
and (even, even) if Hx is odd [70]. There are also instances in which A" has reduced order
due to the extreme elements of the eigenvector being zero (v;,(0) = v;, (K — v) = 0). For
a complete treatment of possible degeneracies, see [67,35].

Due to the sampling of the frequency axis inherent in the FFT, the nonparametric
impulse response obtained from H (¢¥) is really proportional to TR o h(n + IL).
Therefore, in steps 3 and 4, it is necessary that the FFT size L be sufficiently large that
time-aliasing is negligible. Since the poles of H* do not lie on the unit circle, increasing
L sufficiently will reduce the time-aliasing error to any desired level. If d is the smallest
distance from a pole of H* to the unit circle, then we desire (1- d)‘z‘ = 0.

Since the pole radii are not known in advance, it is useful to estimate the amount of
time-aliasing after the fact by means of the formula

~22
L T ()
m+1 Lot 3*(n)

maé

where m is a positive integer less than L/2. (The value m = L/16 works well.) This is
a normalized ratio of the energy where zero is expected and the total energy. We have
0 < pta £ 1. When peq =~ 0, the amount of time aliasing is negligible.

In step 6, if the eigenvector is numerically accurate, and if p;4 is small, then AT s
by construction the impulse response of an fia-pole #ij-zero rational filter (and simliarly for
AP in step (8')). In this situation, it does not matter very much what norm is minimized
in obtaining the parametric form of the filter. For this purpose we have chosen Prony’s
method [8,61,188], in which the A and B coefficients are obtained separately by solving two
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systems of Toeplitz equations of order fi; and 7 + 1 respectively. Code for the solution of
Toeplitz linear equations may be found in [208}.

Note that steps 3-8 perform the spectral factorization needed to select the causal
part of H°(z). This approach can be applied to any spectral factorization problem where
the number of poles and zeros of the causal part is known in advance (see §1.9.2). An
alternate method for fast spectral factorization (based on the FFT and properties of the
ramp cepstrum) has been proposed by Henrici [178] and was used in [37]; however, Henrici’s
method suffers from time-aliasing generated by zeros near the unit circle in addition to that
due to poles. Our method is only sensitive to poles near the unit circle.

1.5.5. Weighted CF Approximation

It is possible to introduce a limited complez weighting function on the frequency-
response error of the CF approximation. Let the desired weight function be W(e?“), where
W(z) is a low-order rational transfer function with M zeros and N poles. Then a weighted
approximation to H(¢’“), having #; zeros and #, poles, is found by the following steps.

(1) Divide by the desired weighting to produce Hy/(¢’%) & H(e)/W(e7¥).

(2) Apply the CF method to obtain Hyy, an approximation to Hy(e’“) consisting of
fiy — M zeros and #ig — IV poles.

(3) Multiply Hyw/(z) by W(z) to obtain H(z), the final type (#3, t4) weighted approxima-
tion.

Since the error Ew(c?™) = Hy(c™) — Hy(c™) is uniformly weighted by the CF
algorithm, the final error E(¢’¥) = H(e¥) — H(e7%) = W(e’¥)Ew(¢’¥) is weighted by the
complex function W(e™).

One use of such a weighting strategy is in preserving deep spectral nulls, which tend
to fill in (on a dB scale) when the impulse-response corresponding to H(z) is windowed.
Similarly, any “known” rational structure may be factored out, leaving the CF algorithm
to “fine-tune” the frequency-response fit in a2 near-minimax sense.

Another reason to consider rational weighting is that the CF algorithm performs par-
ticularly well on smooth frequency-response functions: If a low-order rational modification
exists which significantly reduces the spectral dynamic range of the desired frequency-
response, it will most probably result in a more efficient design.

A completely different approach to imstalling an error weighting feature is givén in
§1.9.1.
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Figure 1.1. Ideal lowpass filter magnitude frequency response.

1.5.8. Computed Examples

In this section, the CF algorithm is used for recursive lowpass filter design. The first
example is the design of a minimun-phase recursive lowpass, and the second example is for
linear-phase.

While classical methods are typically best suited for IIR lowpass design [196], the
nature of the approximation at a discontinuity in the frequency domain gives an important
benchmark in the behavior of any general filter-design algorithm. A spectral discontinuity
is somewhat pessimal for the CF method, however, for the method is most effective with a
desired frequency response which is smooth. We also use this example to illustrate in detail
the various steps of the CF algorithm.

Minimum-Phase Recursive Lowpass Filter Design

In Fig. 1.1 is shown the ideal lowpass filter magnitude frequency response for a cutoff
frequency of one-fourth the sampling rate.

In order to obtain a practical “ideal” minimum-phase impulse response corresponding
to Fig. 1.1, we begin with the function

0dB, 0<w< /2
Hw)={-30dB, w=mn/2
-80dB, r/2<w<=

as the desired magnitude frequency response. Thus, we replace the ideal transfer charac-
teristic by ome which steps down 60dB in the frequescy domain. This function is then
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Flgure 1.2. Minimum-phase ideal lowpass fllter obtained by
windowing the real cepstrum of the impulse response.

a) Impulse response.

b) Magnitude frequency response.

sampled at equally spaced frequencies. For this example, 129 points are used, correspond-
ing to an FFT of length 256. Next, the real-cepstrum method [169,191] is used to create
the minimum-phase complex spectrum exhibiting this magnitude curve. The use of two
samples rather than one in the discontinuity serves to reduce time-aliasing. The inverse
FFT of the spectrum so obtained yields the initial desired impulse response, and this is
shown in Fig. 1.2a. The magnitude spectrum of Fig. 1.2a is shown in Fig. 1.2b, illustrating
the fact that little distortion is incurred at the sample points during the conversion from
zero-phase to minimum-phase.

The next step is to window the “ideal” impulse response to the length K desired for
use in the CF algorithm. In this case, we choose K = 79. The method selected for this
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Figure 1.3. Hamming-windowed minimum-phase lowpass fllter.

a) Impulse response.
b) Magnitude frequency response.

windowing coasists of multiplying the function of Fig. 1.2a by half of a Hamming window.
The resulting impulse response and corresponding magnitude spectrum are shown in Fig.

1.3.

We now use the CF method to obtain a 7-pole, 8-zero digital filter which approximates
the filter of Fig. 1.3. First, the 80 by 80 Hankel matrix is formed, and its 18 extreme
eigenvalues are computed. The magnitudes of all 80 eigenvalues are plotted in Fig. 1.4.
The seventh eigenvalue modulus is [A\7| = 0.019. This number provides the magnitude of
the allpass error in the optimum noncausal Chebyshev filter, and equals the Hankel aorm
of the final approximation error. Thus we expect about two percent error in the magnitude
of the passband. The internal FFT size was chosen to be L = 512.
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Figure 1.4. Singular values of Hankel matrix Ho g0 of win-
dowed minimum-phase filter.

a) Linear scale,

b) DB scale.

Figure 1.5a shows the magnitude error |Hyc(e/“%)| — [H (e7“*)] in the optimum ex-
tended r:monal Chebyshev approximation. When the noncausal part of A° is dropped to
obtain 4°" , the magnitude error becomes that shown in Fig. 1.5b. Note how slightly the
magnitude error for the optimum Hankel approximation extends past the bounds for the
optimum Chebyshev error.

The causal impulse response A" of the optimem Hankel approximation is finally
converted to a set of recursive filter coefficients, via Prony’s method applied to the first
80 samples of h°®’. The error due to this conversion is |lh‘ T _ peen lla = 0.00012,
where A" denotes the impulse response obtained nonparametrically, and AT} denotes
the impulse response of the filter computed by Prony’s method. (The norm is measured
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over the first 512 samples of each impulse response.) The good mateh by Prony's methed
indicates numerical success of the preceding steps, and that L is sufficiently Jarge.

The final frequency response, overlayed with the desired frequency response, is shown
in Fig. 1.8a. Notice that the error is nearly equal ripple at about two percent in the
passband, as expected.

The filter obtained using equation-error minimization on the same target spectrum
Hpy(¢?¥) as for the CF method is shown in Fig. 1.8b. We chose the equation-error method
as a standard for comparison because algorithms in this class (such as Prony’'s method) seem
to be the only other way to obtain unique rational approximations which fit both phase
and magaitude and which do not suffer from the possibility of convergence to suboptimal
solutions. The equation-error algorithm used is a fast version of the one outlined in [77],
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Figure 1.8. Magnitude frequency respomse fit for the minimum-
phase case.

a) CF.

b) Equation error.

Note that there is more error near the passband edge with equation-error minimiza-
tion, due to the presence of poles nearby. (The equation error is defined as A(cjw)(f? (e?¥)—
B(&/¥)/A(e?)), which gets weighted toward zero near roots of A(z).) On a Foonly F2 com-
puter, in single precision floating point, the equation-error solution required approximately
2.5 seconds of CPU time, while the CF algorithm took approximately 70 seconds (with 60
seconds spent in the tri-diagonalization of the 80 by 80 Hankel matrix).

Although the CF method does not attempt to minimize any kind of log-spectral error,
it is often the case in filter design that such an error is most appropriate. For completeness
we show the CF and equation-error magnitude £its on a dB vertical scale in Fig. 1.7. On a
log vertical scale, the equation-error method may be preferable to the CF method due to
better stop-band rejection.
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Figure 1.8 compares the pole-zero plots for the CF and equation-error methods. The
large difference between the two plots suggests that use of the equation-error solution as an
initial guess for a gradient-descent algorithm, which explicitly minimizes || H(&/“)—H () ||
with respect to pole positions, may not be effective in general.
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Linear-Phase Recursive Lowpass Filter Design

In this example, the goal is to design a linear phase recursive lowpass filter. Since
the CF method requires a finite impulse response as a starting point, it is good to have
an initial target impulse response which is optimal in some sense. The Parks-McClellan
algorithm [52,196] provides optimal FIR filters in the sense that the Chebyshev norm of the
spectral magnitude error is minimized over filters with exactly linear phase. Since the CF
method takes an FIR filter into an IIR filter, preserving the spectrum in a nearly optimal
Chebyshev sense, the Parks-McClellan algorithm provides a good initial condition for this
problem. Furthermore, our experience indicates that the amount of computational effort
in the two methods is comparable, with the CF algorithm being somewhat more expensive.
Thus the Parks-McClellan algorithm is a well-matched supplement to the CF algorithm.

We begin with an optimum FIR lowpass filter of length K = 21. The passband ranges
from f = 0 to one-tenth the sampling rate f = f,/10, and the stopband is defined from
f = f4/5 to f = f,/2. The singular values of the Hankel matrix for this problem are
plotted in Fig. 1.9. In Fig. 1.10, a comparision between the CF method and the equation-
error method is given for the case of a 7-pole, 8-zero approximation to the optimum order
20 FIR filter. The FFT size used is L == 258. Figure 1.11 gives the same comparison on
a dB vertical scale. The impulse response fit for the two methods is shown in Fig. 1.12,
and the poles and zeros are displayed in Fig. 1.13. In this example, the CF method clearly
out-performs the equation-error method.

The CF method, unlike equation error, does not in principle suffer from desiring a non-
minimum-phase impulse response. In practice, however, there can be problems. The most
obvious reason to prefer minimum-phase designs is that the order K of the target impulse
response kg must in general be larger in the non-minimum-phase case, for a given spectral
magnitude resolution. Also, in the specific instance of linear-phase design, the nu:zerical
behavior of the CF algorithm is poor. This is why only a length 21 target impulse response
was selected (with the CF algorithm implemented in 368-bit single precision). Nevertheless,
high quality recursive linear phase filter design, as illustrated in this example, is possible
with the CF algorithm, although high-precision calculations are called for. We do not fully
understand the nature of the numerical difficulty, and perhaps the problem can be recast
to avoid it.

It should be mentioned that the equation-error method would perform better if a
fortuitous amount of negative bulk delay were added to the desired impulse response [278].
In other words, the target impulse-response should be shifted left to make it nonczusal. At
some point the design would go unstable and phase linearity would be lost in reflecting the
unstable pole back inside the unit circle. However, there would be some optimum amount
of time shift for the impulse response.
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This marks the end of discussion of methods which attempt to solve problem H*. The
remaining methods solve a modified version of the problem.
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3) CF.

b) Equation error.
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1.8. Minimization of the L? Ratio-Error Norm

As we have seen, problem & * is a difficult problem in its general form. It is not always
Decessary to obtain all of the features provided by a solution to problem A *. For example,
there are applications in which the phase of the approximation is not important. Also, it
is not always essential to have both poles and zeros in the filter. For these situations, it is
advantageous to reformulate the problem in order to relax the requirements and facilitate
computational methods.

A class of techniques for fitting an only poles H(z) = 1/A(z) to a desired H(z), ignoring
the phase of the approximation, can be classified as ratio-error methods. The L? norm is
typically used for this error, yielding linear prediction methoda [186,185]. The error measure
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to be minimized is

fwy I o0
JR(4) gﬂ e ’ﬂ A sl | =1amiz = 3 @m). (112)
2 na=l

H(edw)

1.8.1. The Autocorrelation Method

Since
é(n) = a » h(n) = h(n) + a1h{n — 1) + G2h(n = 2) +--- + 45 h(n — fig),
the time-domain ratio-error é(n) can be viewed as the error in linearly predicting A(n) from

the past fi; samples of A(n). Since the norm sums all the squared prediction errors é(n),
this amounts to the autocorrelation method of linear prediction [188,185).
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1.8.2. The Covariance Method

Suppose H(z) is a sum of complex exponentials,

[
~ R B(z)
H(z)= =) ,
(<) ,,;, l-pez=t  A2)

where B(z) is of order fig — 1 and A(z) is of order fi;, and that the problem is to fird the
poles pp of A(z) given either H(¢’¥“),~xr < w < «, or h(n),n =0,1,2,.... This is a basic
problem in system identification which has its roots in a problem posed in 1795 by Prony
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[53]. Let G(z) = 1/A(2), and denote the corresponding impulse-response by g(n). Then
H(z) = B(z)G(z), and (1.12) becomes

@) A Ame)|) & | e aeE) . (113
At the answer A = 4,
Jr(4) = " B() H: =f: 82 = "Z-: 2. (1.14)
fiw=Q Nas

We see that A* will not generally be equal to A since other values of A may reduce J, r below
|| B{|3. However, if the time summation in (1.14) is taken from n = fq, then Jg(4) =0,
i.e., the error measure goes to zero at the true solution. l.e., we minimize

o0
JR(A A 3 (@+hP(n).
Na=fig
It is easy to show that if B 5£ 0, and if A(z) is not constant, then Jp, can be zero only at
the true solution. This is the covariance method of linear prediction, having the well-known
property of being able to exactly model a sum of decaying complex exponentials [186]. A
class of methods which computes the residues B; in addition to the poles is called Prony’s
Method (discussed in §1.7.2).

1.6.3. Kopec's Method

A nice method based on linear prediction for finding poles and zeros is one apparently
first proposed by Kopec [188]. Kopec's method consists of the following steps:

e Given H(z), compute an allpole model 1/A(z) by minimizing || A(¢”*)H (/%) 2.
e Compute the error spectrum E(e¥) & A(c#)H(c™).

o Compute an allpole model 1/5(z) for E'-l(ej“’) by minimizing
B(ev -
‘( - )H-‘(CJU)
Ale?¥)

The basic definition of ratio error implies that the model will tend to fit the spectral
envelope of the desired frequency-response. Since the first step of Kopec's method captures
the spectral envelope, the “nulls” and “valleys” are in some sense “saved” for the next
step which computes zeros. When computing the zeros, these “dips” in the spectrum have
become “peaks”. Thus, in Kopec’s method, the poles mode! the upper spectral envelope,
while the zeros model the lower spectral envelope.

a -1

"B(a'w)z (&%) ||2 -

2
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1.7. Minimization of the L2 Equation-Error Norm

We have seen that minimizing ratio error leads to a simplified filter-design formulation
at the price of (1) losing the ability to match phase, {2) having to accept a fit to the spectral
envelope, and (3) allowing only poles in the approximation. A different simplification of
problem H *, which allows pole-zero modeling and simultaneous matching of spectral phase
and magnitude, gives the equation-error methods [8,7,14,20,54,68,9,77]. Most of these
can be classified as variations of .Prony’s method.[53;188):- Equation error is used almost
exclusively in the system identification context [99, 95] (see Chapter 2).

In this case, we minimize the L? norm of the equation-error
Je(d) A || A()H () - B(¥) "2 (1.15)

Since equation-error is linear in the parameters, it presents a very simple optimization
problem, resulting in a set of 73 + #i; + 1 linear equations to solve. A complete derivation
is given in Chapter 2.

Note, however, that (1.15) can be expressed as
Ip) = | | &) || ) - )|, (118)

Thus the L? equation-error norm is the same as the L? norm for problem A", viz. || H(e¥)—
H(e) |l2, with a weight function given by the poles of the filter to be designed. Since the
the poles of a good model tend toward regions of high spectral ercrgy, or toward “corners”
in the spectrum, it is evident that the equation-error criterion assigns less importance to
the most prominent or structured spectral regions. On the other hand, far away from the
" roots of A(z), good fits to both phase and magnitude can be expected.

A problem with equatiop-error methods is that stability of the filter design is not
guaranteed. When an unstable design is encountered, the standard remedy is to reflect
unstable poles inside the unit circle, leaving the magnitude response unchanged while
modifying the phase of the approximation in an ad hoc manner. This requires polynomial
factorization to find the filter poles, which is typically much more work than the filter
design.

An alternative to pole-reflection in unstable designs (which destroys the phase-response
fit) is to repeat the filter design employing a bulk delay. This amounts to replacing H(e/¥)
by

H{e¥) A 7T H(Y), >0,
and minimizing || A(¢7Y)H-(e?¥) ~ B(¢’“)|lo. This eflectively delays the desired impulse

response, i.e., h-(n) = h(n —r). As the bulk delay is increased, the likelihood of obiaining
an unstable design decreases, for reasons discussed in the next paragraph.
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Unstable designs are especially likely when H(ej"’) is noncausal Due to the form of
H, the only way noncausal impulse-response components can be generated is by means of
unstable poles. In the case of noncausal H, the equation error method is faced with either
suffering the entire desired impulse-response for n < 0 as error, or moving poles outside
the umit circle to obtain a nonzero approximation there. Since there are no constraints
on where the poles of & can be, it is perfectly reasonable to expect unstable designs for
noncausal desired frequency-response.functions... ..... .

In the other direction, experience has shown that best results are obtained wk2n H(z) is
minimum phase, i.e., when the analytic continuation of H (e-"‘") has all zeros inside the unit
circle. For a given magnitude, |H(¢’*)|, minimum phase gives the maximum concentration
of impulse-response energy near the origin n = 0. Consequently, the impulse-response
tends to start large and decay immediately. For non-minimum phase H, the impulse-
response k(n) may be small for the first several samples, and the equation error method
can yield very poor filters in these cases (see §1.5.8). To see why this is so, consider a desired
impulse-response A(n) which is zero for n < i, and arbitrary thereafter. Transforming
J% into the time domain yields :

(D) = [+ bm) = bm) |

=Y (& + h(n) - b(n))’

nm0

=Y i+ X (a+hn),

n==0 Namy 41

where “s” denotes convolution,! and the additive decomposition is due the fact that &
h(n) = 0 for n < #p. In this case the minimum occurs for B(z) =0 = H(z) = 0!
Clearly this is not a particularly good fit. Thus the introduction of bulk-delay to guard
against unstable designs is limited by this phenomenon.

It should be emphasized that for causal minimum-phase H(c’“), equation-error methods
are very effective. It is simple to convert a desired magnitude response into a causal
minimum-phase frequency-response by use of cepstral techniques [169], and this is highly
recommended when minimizing equation error.

1.7.1. A Fast Frequency-Domain Equation-Error Method

The algorithm below is a frequency-domain equation error method. The particular
implementation is a fast version of the one outlined in [77).

t Defined in Appendix E.
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Given a desired spectrum H(¢'“*) at equally spaced frequencies wy, == 2xk/N, k =
.., N~=1, with N a power of 2, it is desired to find a rational digital filter with fi; zeros
and 714 poles,

Hz) A i( A )::':a,,z = (1.17)

normalized by ao l, such that

B3 | ateerymreon) - Beom [

k=0
is minimized.

Since J% is a quadratic form, the solution is readily obtained by equating the gradient
to zero. An easier derivation follows from minimizing equation error in the time domain and
making use of the orthogonality principle. This may be viewed as a system identification
problem where the known input signal is an impulse, and the known output is the desired
impulse response (cf. Chapter 2). A formulation employing an arbitrary known input is
valuable for introducing complex weighting across the frequency grid, and this general form

is presented. A detailed derivation appears in Chapter 2, and here only the final algorithm
is given:

Given spectral output samples Y(cj“”') and input samples U (cj“’* ), we minimize

N-1
E=3 IA(a“*)Y(a“n B(enu(e) [

k=0

If [U(e79%)|2 is to be used as a weighting function in the filter-design problem, then we set
Y (W) = H(cHWk)U(I¥*).

Let z[n, : np] denote the column vector determined by z(n),n = n,,...,n, filled in
from top to bottom, and let T(z[n; : n2]) denote the size nz — n; + 1 symmetric Toeplitz
matrix consisting of z[ny : n2] in its first column. A nonsymmetric Toeplitz matrix may be
specified by its first column and row, and we use the notation T(z[n, : na}, gT [my :m2)) to
denote lhe n2 — n; +1 by ma — m; + 1 Toeplitz matrix with left-most column z{n, : ny}
and top row gr[ml :ma]. The inverse Fourier transform of X(c/“*) is defined as

N-=1
2(n) = FFT~! { (a“'-)} al % 3 X(ur)eann,

E-O

The scaling by 1/XV is optional since it has no effect on the solution. We require three
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correlation functions involving U and Y,
Buu(n) & FFT“{I U(d%) iz}
Byy(n) AFFT™! {I Y(*) Iz}
Byy(n) & FFT“{Y(JW».W;:)} L
n=0,1,.,N-1,

where the overbar denotes complex conjugation, and four corresponding Toeplitz matrices,
RWI é T(Eyylozﬁd - 1])
Ruy é T(Euu [0 : ;'b])
Ryu a T(Eyu[—l 1ay— 1], 33;[-1 : = fig))
Ruy =A= R?:y ’

where negative indices are to be interpreted mod N, e.g., ryu{—1) == ryu(N — 1).

The solution is then

el
a’ Ruy Ryy Byyll:4a])’

where e
| 8 a3
5 A , aa
3;. &;!c

1.7.2. Prony’s Method

There are several variations on equation-error minimization, and some confusion in
terminology exists. We use the definition of Prony’s method given by Markel and Gray
[186]. It is equivalent to “Shank’s method” [81,8]. In this method, one first computes the
denominater A'(z) by minimizing

JE@) = Y (a*h(n)~Hn))®
n==fy+1

= > (a+hn)".

Ramfip41




1.8 OTHER CHOICES OF ERROR Page 51

This step is equivalent to minimization of ratio error for the all-pole part A(z), with the
first 735 + 1 terms of the time-domain error sum discarded. When i) == fi; — 1, it coincides
with the covariance method of linear prediction {186,185]. This idea for finding the poles
by “skipping” tiae influence of the zeros on the impulse-response shows up in the stochastic
case under the name of modified Yule-Walker equations [9,92,93].

Now, Prony’s method consists of next solving problem A" in L? with the pre-assigned
poles given by A*(z).. In.other words;. the numerator.B(z) is.found by minimizing

H(cju)_ é(ej"') ﬂ
T,

where A*(¢"“) is now known. This hybrid method is not as sensitive to the time distribution
of h(n) as is the pure equation-error method. In particular, the degenerate equation-error
example above (in which H = 0 was obtained) does not fare so badly using Prony’s method.

1.7.3. The Padé-Prony Method

Another variation of Prony’s method, described by Burrus and Parks in [8] consists
of using Padé approximation to find the numerator B® after the denominator A” has been
found as before. Thus, B® is found by matching the first iy + 1 samples of k(n), viz.,
b, = 4° + h(n),n = O...,#;. This method is faster, but does not generally give as good
results as the previous version. In particular, the degenerate example h(n) = 0,1 < #@;
gives H"(z) = 0 here as did pure equation error. This method hes been applied in the
stochastic case by Cadzow [9].

On the whole, when H(¢’¥) is causal and minimum phase (the ideal situation for
just about any stable filter-design method), the variants on equation-error minimization
described in this section perform very similarly. They are all quite fast, relative to algo-
rithms which attempt to solve problem H ‘, and the equation-error method given in §1.7.1
is generally fastest.

Chapter 2 is almost exclusively concerned with generalized equation-error methods.
They are important because of their simplicity and robustness, and are ideally suited for
time-varying signal modeling and on-line signal forecasting.

1.8. Other Choices of Error

In this section, other special error criteria are considered. After a synopsis of methcds
considered up to now, techniques for linear-phase filter design, linear and log power-response
matching, phase-only approximation, Padé approximation, and classical analog filter design
will be discussed.
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1.8.1. Summary of Methods So Far

We have seen that problem H"® is difficult to solve, mainly because all norms of the
frequency-response error,

J(0) = | H() - ()| = IH(JW)- %

lead to a highly nonlinear optimization probleém with respect to A. The one exception to
this general rule is optimization under the Hankel norm, but here the known methods are
limited to desired functions H corresponding to a finite-order rational transfer function.

By limiting the set of filters to those with no zeros, and by modifying the error criterion
considerably, the ratio-error methods, minimizing

H(¥)

Jrla) = o)

= |adaE],

were obtained. However, in addition to being limited to minimum-phase (and therefore
phase-insensitive) all-pole filters, the magnitude of the approximation tends to be biased
upward such as to follow the envelope of [H(e?)|.
By introducing the unseemly weighting function |A(¢/*)| into problem A", thus mini-
mizing
Ip(0) = | | At () - ) | = | A - B |,
we obtained the highly practical equation-error methods. However, these methods do not

generally yield stable approximations, and they can give poor results when H (¢?“) is non-
causal or non-minimum phase.

We turn now to another class of modifications to problem H*® which are based on
phase-insensitive L™ approximation.

It is an important fact that real rational L™ approximation is essentially a solved prob-
lem. There are at least four different types of algorithm which are all guaranteed to converge
monotonically to the solution. These are the Remez multiple exchange algorithm [58,21],
simplex-type methods [4,40,54], the differential correction algorithm [6,28,11,12,42,50], and
Lawson’s algorithm [3,58]. One might ask how problem A" can be modified to yield a real
rational approximation problem. There are at least two ways: linear phase filter design
and power frequency-response approximation. Applications of rezl rational approximation
to these two cases have been pursued in [52,27,21,4,40,54]. In addition, it is possible to fit
group-delay! disregarding magnitude using real rational approximation methods [22,18].

t Defined in Appendix E.
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1.8.2. Linear-Phase Filter Design

Linear phase filters are considered very desirable in many situations because they have
constant group delay. This means that the time delay of each frequency component of
the input signal, due to filtering, is identical for all frequencies. In waveform coding, for
example, it is sometimes important to preserve wave shape as much as possible, and in
these cases phase linearity.is.needed..._. .

If H(¢'™) is linear phase, then it can be expressed as
H(dY) = 97G(),

where 7 is the bulk delay of the filter, and G(e7*) is real (zero-phase). Assuming a real
impulse-response h(n) is desired, H(¢’¥) = H(e=7«) which implies G(¢’%) = G(e=7v)
which, in the time domain, gives

ima [ genss
= 2/0 G(e"‘“)cos(wn):—: (1.18)
= g(n)=g(~n).

Thus the zero-phase part must have a symmetric impulse-response. (A purely imaginary
impulse-response is equivalent in practice to a real impulse-response, in which case G(¢/%) =
—G(e™) = g(n) == —g(—n). An example of this case is given by Hilbert transform filters
[169,52,196].) For stable filters, this symmetry (or anti-symmetry) can only be had with
finite-impulse-response (FIR) filters. Thus stable, recursive, linear-phase filter design is a
contradiction in terms! However, it is reasonable to ask for the stable recursive filter which
approximates |H(¢’*)| closely and is approzimately linear phase. In §1.5.6 an example of
this type is carried out using the CF and equation-error methods. For this purpcse, the
CF method appears to be the best known method. There does not seem to be a literature
on this application, perhaps because it is very difficult without Hankel-norm methods, and
even then there are numerical difficulties (see §1.5.6).

Linear phase FIR filter design under the L™ norm has been available for a long time.
Of the four approaches that could be used, the Remez multiple exchange algoritbm seems
to be the most widely used at present {169,52,196].

1.8.3. Approximation of Power Frequency-Response—Problem |H ‘lz

The other natural conversion of problem A’ into a real rational L® approximation
problem is as follows:




Page 54 METHODS FOR DIGITAL FILTER DESIGN 1.8

Problem |H'[?

Given a continuous real non-negative function G(¢/¥) & lH(ej"’)]z, -r<w<m,
corresponding to a desired frequency-response magnitude squared, find a strictly stable
digital filter, of the form X
" B(2)

H (2) é EYIE
| 1)
such that some norm of the error o '

B A | 6() - &) |

G(c¥) - 2(_‘_]:')
Cleiv)

>

>

e - 1o |

is minimum, subject to the polynomials D(¢’*) and é'(cj“’) being real and non-negative.

Thus we obtain an optimum power gasn in the resulting filter. In many applications,
this is not a compromise. As in the ratio-error and linear-phase methods, phase is com-
pletely eliminated from the error criterion.

Problem |A"|® is solvable using the L® norm, since it reduces to real rational ap-
proximation. Most formulations of real rational approximation apply to rational functions
over the real interval [—1, 1] rather than the unit circle. This is not 2 source of difficulty
since all type (#g4, ;) rational filters have power frequency-response functions which are
type (g, 15) rational functions of cos{wn). (Just use the “folding” technique of (1.18)
on the numerator and denominator separately.) The substitutions Ti(z) = cos(kw), w =
cos~Y(z),z € [—1,1] convert the rational function of cos(kw) into a (nom-negative real)
rational function of z in the real interval [-1,1] {by way of the Chebyshev polynomials
Ti(z) [132,155]). Alternatively, the optimization can be carried out explicitly in terms of
the rational function in cos{kw).

In problem IH ‘I"’, the parameters # become the coefficients of the “squared” filter
transfer function

é(a«l) é l H(c’w) lz = ﬁI(‘ju)E(‘-jw) = H(:)H(z_l)lz-ej” )

This representation (obtained by analytic continuation) shows that all poles and zeros of
G(z) occur in reciprocal pairs, e.g., a pole at z = p implies a pole at = = 1/p. To obtain a
stable filter H(z), the poles must be inside the unit circle, thus specifying which half to select
in the factorization H(2)H(z™1). A method for performing this factorizaticn efciently is
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given in §1.9.2. The zeros are not so constrained, but they are generally chosen as the half
inside the unit circle to provide minimum phase. This allow a (2) to be causally invertible.
(Once the poles have been found, however, one is free do compute the zeros by any of a
wide variety of methods, since this is an easy problem.) Zeros on the unit circle must be

of even order, for otherwise points of negative magnitude frequency-response would ensue,
and half of these are selected for H(z).

Expanding G(z) = H(z)H(z7!) into.a Laurent.series converging on the tnit circle
yields a polynomial

Glz)=---+5k)zF+ -+ 5(1)z7 + §0)+ §{1)z +- - + §(k)2* + -+

which is “mirror symmetric,” i.e., the coefficient of z* equals the coefficient of z~*. Converse-
ly, every mirror-symmetric polynomial has roots in reciprocal pairs (since substituting z —
z~1 in G(z) yields G(z™!) = zG(z) for some »). It is generally not difficult to enforce this
symmetry in specific algorithms, for we can use expression (1.18) to halve the size of the
coefficient space and force symmetry (as is done in FIR linear-phase filter design [52,196]).

Unfortunately, mirror symmetry is not sufficient for non-negativity on the unit circle.
To see this, note that on the circle,

G(e™) = -+« + k)™ 9E 4 oo 4 §(1)e™ + §(0) + (1) + -+ + GR)E 4 -

1.19
= §(0) + 23(1) cos(w) + - - + 2§( k) cos(kw) + - --. (1.19)
Clearly, symmetry forces é‘(cj”) to be real. However, it must also be non-negative, a
condition which is not guaranteed by the form of the expression. Consider the function

X AH0) + ()t + o+ (R e, (1.20)

which we call the causal image of G(z). Non-negativity implies (1) G(e?¥) = Rc{é+(ef”)} >
0. Since é+(z) must converge on the unit circle, it converges outside the unit circle.
Therefore, (2) é+(z) is analytic outside the unit circle. These two conditions are equivalent
to é+(z) being positive real. Appendix C proves this and other facts regarding positive real
functions.

While enforcing symmetry is not difficult, there remains the problem of enforcing
non-negativity of G(e?¥) = |H(¢“)|?, or, alternatively, constraining G‘+(z) of (1.20) to be
positive real. Since the fit we can obtain is of the L™ type, G(e?%) will oscillate uniformly
about G(¢™). Consider that often in practice the desired squared-magnitude G(¢?) is
close to zero for some frequencies. It is therefore likely that G(e’*) will “ripple through
zero” in these frequency regions; unless G(¢’*) > 0 for all w, it is highly likely that we
will obtain G(¢’“) < 0 for some w. If we proceed with the factorization (which still works
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in principle), we obtain a filter H(z) with complex coefficients. But then H(z)H(z™Y) is
no longer the squared modulus of H(z) on the unit circle. (Complex filters have power
gain given by H(¢%)H(e/w) which analytically continues to H(z)H(z=T).) Consequently,
|H(e7)|2 need bear no resemblance to |H(e?“)[> when G(¢?*) < 0 for some w.

One way to restore the positive real condition (non-negativity of [H(e7){2) is to replace
#(0) by 3(0) — min, G(e9). This lifts the approximation uniformly until it becomes non-
negative. Of course, a reasonable-fit' remains-only-wher a-good fit was obtained initially.
In section §1.8.5, another method for avoiding negative squared-magnitude approximations
is given.

Of the four basic techniques mentioned for real rational approximation, the simplez
method seems to be best suited for problem |H |2, since imposing the constraints D(e/¥) >
0,C(e7%) > 0, where G(¢7¥) = D(e¥)/C(e7¥), is very natural in the linear programming
context [54,26]. *

1.8.4. Mapping problem |H*|? onto problem &°

Given G(¢¥) = |H(¢/¥)[?, one can form G*(e’“) (cf. (1.20)) using the spectral fac-
torization method of §1.9.2. This is then a causal continuous function which can be directly
approximated by the techniques given previously for problem H®. The question arises as to
what relationship the optimum solution G** of problem H* has with the desired solution
G* for problem |H"[®. It turns out that the solutions are essentially equivalent for the
Hankel norm and the L? norm.

For the Hankel norm, we have the error measure
Ju@) =] 6*) - &T (|,

By definition, the Hankel norm is invariant with respect to non-causal modifications (see
Appendix E). Thus if we define

Ghlz)= Y a(m)e™®™,  Ghlz)=_ j(n)e",
nm=0 n=0

where G(¢/¥) = 2Re{G}";(cj"’)} — ¢{0) and where G(e¥) = 2Rc{é}}(cj“")} ~ 3{0), then
(@) = | et = G | = | ate) - G |, = Jutd).

* A method for magnitude approximation based on Fletcher-Powell descent (which is said to work
successfully for filter orders as high as 24 and which is also said to perform better than the one in
{26} for simple filter types) is given in [47,24].
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Thus with G'}‘I(cj“' ) defined as above, the CF method can be used to obtain a solution to
problem |H"[2. However, we have not constrained G};(z) to be positive real.

For the L? norm, a similar relationship occurs. However, in this case, we define the
causal image of the power frequency-response by

(=] o0
GH(™) =23g(0)+2 3 ofm)e™",  G3(F)=235(0)+2 Y glm)eim.
Nnaxl Naxl
In this case, G(¢7%) = Re{G{ (¢7“)} +(1-23)g(0) and G(c?¥) = Re{G5 (¢™*)} +(1-23)3(0).
By the orthogonality of distinct powers of z on the unit circle, we have

7% = | et - &3 |

2

23g(0)+2 Y g(n)e™7m —235(0) =2 3 j(n)e™un

fasl naxl

2

= 2(9(0) = §0))° + 4 3_ (s(n) = §(n))*

na=l
=2 Y (g(n)-i(n))’
o0 00 2
=2l Y gn)em- Y j(n)ein
7 =00 N =00 2
~sfo) - e
= 2J3(9),

thus solving problem |A°|? under the L? norm. Again, the positive real condition is not
guaranteed. Furthermore, in this case, there seems to be no known algorithm which is
globally convergent (cf. Appendix A).

1.8.5. Approximation of Log-Magnitude Frequency-Response

The human ear can be effectively modeled as a spectrum analyzer, and this spectrum
analyzer seems to measure the wesghted log-magnitude spectrum of sounds, to a first-order
approximation (see Chapter 3). Similarly, the eye is sensitive primarily to the log of light
intensity. In most perceptual phenomena, subjective scales tend to be logarithmically
related to the associated physical quantities { “Weber’s law”).

In view of these observations, it is natural to desire a filter-design method which
minimizes some norm of the weighted log-magnitude spectral error. Since the log of a
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spectrum admits the decomposition
In H(e™) = In| H(e) | + j2B(),

it follows that such a method should be applicable to designing filters with a prescribed
phase-response or phase-delay (with the latter being simply the linear weighting of the
~ former by the function —1 Jw, as discussed in Appendix E).

The problem is then to find the filter & '(z) which minimizes
Ji(d) & |10 G(e) - ln G(e) [|m
A [ E(E)E - i) |
o0

H(ev)
H(cw)

(1.21)

=2} In

” (Log Ratio Error),
oQ

Note that this is equivalent to minimizing || In |H(¢/%)]P — In |H(c“)|P || for any p > 0.
In view of previous discussion, since the log-magnitude error is real the L*® norm or

Hankel norm (73] should be considered good candidates for obtaining a globally convergent
algorithm.

Log—magnitucie approximation under the L° norm has been investigated by Deczky
[21], where he also applies the same method to approximating group-delay. This necessitated
some generalizations of the L™ approximation theory. The characterization theorem for
real rational Chebyshev approximation states that a type (fig, ;) rational function is a
best approximation if and only if there are N + 1 = #i, + #i; + 2 points in the interval of
approximation at which the error achieves its maximum, and if the error has alternating
signs on these points. Thus the “equiripple” property of Chebyshev approximations is
fundamental. (In the complex case, the rippling translates to “winding” of the error function
around zero.) Essentially, Deczky showed that the characterization theorem for Chebyshev
rational approximation holds without modification for approximation by the log-magnitude
of rational functions. (This is not the case for group-delay approximation.) More generally,
he showed that the characterization theorem holds for magnitude-approximation by any
continuous monotonic function of real rational functions.

For obtaining a Chebyshev approximation to the log-magnitude frequency response,
Deczky chose the Reme: multiple ezchange algorithm [58]. The Remez algorithm consists
basically of finding V + 1 points of maximum error, and interpolating to produce an error
on these points which alternates in sign with a constant magnitude. The error between
these points may jump to wild values, and so this process is repeated. (In the real rational
case the alternating error is guaranteed to decrease monotonically.) It is straightforward
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to find the extrema of the error curve in order to find the points where error alternation
will next be forced. However, the interpolation problem is another nonlinear and difficult
step. Deczky recommends the use of Newton's method for the interpolation process. Even
if the interpolation step is always successful, there does not appear to exist a proof of global
convergence, as there is in the case of ordinary real rational L approximation.

A method which retains the theoretical guarantees is based on a first-order approxima-
tion of the logarithm itself. Equation (1.21) can be written

- 12
Ty (3) = lng-
00
‘a N 2 - 3
I (LAWY (L (A W V(] (i
H 2\ |7 3\ |H (1.22)
w .
- 12
tEp_ _hEe-lal
H - |H] ’
[+

when |H(/¥)? ~ |H(¢?)[?. Thus when good fits are possible, (1.22) closely approximates
the log spectral deviation at the optimum solution. Also, the problem is reduced to the
previous case of power approximation with the linear weighting by the known function
|H(e?)2. Thus any real rational L approximation method which allows a linear weighting
on the error, such as the Remez exchange algorithm [58], can be used to solve thi; problem.

This method has been tried in the polynomial (FIR) case, using code for the Remez
exchange algorithm adapted from [52,196}], and has been found to perform satisfactorily in
practice (see Chapter 3). The nature of the weighting makes it unlikely that a negative
magpitude spectrum will occur in the computed filter. Note, however, that we must have
H(e?) 5 0 for all w. If H(e?“) ~ 0 for some w, then we can use the weighting 1/(|H|?+¢)
in place of 1/|HJ2. ‘

1.8.8. Phase Approximation

As has been shown, a variety of possibilities appear when phase is ignored in the
approximation. A natural complement to such techniques is the ability to design an allpass
filter with an optimized phase, phase-delay, or group-delay. (These terms are defined in
Appendix E.) An allpass filter in cascade will not alter the magnitude approximation. The
phase of the allpass is fit to the desired phase minus the phase response of the phase-
insensitive approximation. The overall resulting filter design cannot be optimal, in general,
since phase and magnitude approximation have been decoupled. There are numerous
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methods for the design of filters with a prescribed phase-response (usually in the form
of group delay), e.g., [5,20,21,56,74,80].

It should be noted that none of these methods is guaranteed to provide an optimum
phase-response approximation. The closest approach to this goal is given by Deczky [21],
in which the L®-type theory is extended as far as possible.

Two general and apparently effective methods are those by Bernbhardt {5] and Yegna-
narayana [80]. Yegnanarayana.obtainsa.more uniform error.in.group-delay approximation,
especially near 0 Hz and half the sampling rate, than that in [5]. Also, his method is
much easier to program, and lends itself to implementation on array processors (requiring
only the commonly available modules DFT, array exponentiation, and Durbin's recursion.)
While Yegnarayana's method is only defined for group-delay approximation, it is simple to
generalize to phase and phase-delay approximation.*

1.8.7. Padé Approximation

Another class of methods which do not minimize a true norm of the error || H(c¥) —
H(e79)|| is based on Padé approzimation. In these methods, a “pseudo-norm!” of the error
H(e’%)— H(&¥) is minimized, which is given by

. hc*ﬁ‘ . 2
JPB) & 3 (hn)= k(m)’.
Na=0
This is then a truncated /* norm in which the first 4 + fi + 1 samples of the impulse-
response are matched exactly. From this point of view, Padé approximation provides a
time domain method.

Padé approximation is also the best approximation of the transfer function H(z) at
z = 0 in the L™ sense. This is because it matches the maximum number of Taylor
expansion coeflicients about z == 0 (the first fig + 713 + 1 impulse-response values). There
is a theorem on real rational approximation [14,16,78] which states:

Theorem 1.37. If H(z) is any continuous function in a neighborhoed [0, 6}, for § > 0,
and H, is the optimum L™ (#;, 45) approximation of H(z) on [0, ¢], then {H ¢} converges
uniformly to the (fi,i4) Padé approximation of H{z) as ¢—0.

* In the algorithm described in [80], replace equation (21) by equation {20) for phase approxima-
tion, and for phase-delay approximation do the same except mutiply through (20) by 1/w. Division
by zero does not occur since (20) is a sum of sines. Both these modifications lead to replacing the
initial cosine transform by a sine transform (thus to use the FFT, an anti-symmetric function is
prepared for the first step rather than a symmetric one).

t Defined in Appendix E.
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1.8.8. Classical Digital Filter-Design Techniques

There is a body of filter-design techniques based on analog methods [196]. These
methods include filters of the type Butterworth, Chebyshev, inverse Chebyshev, and Cauer
(or elliptic function) filters. The bilinear transform (s «— (z—1)/(z+1)) is used to map the
analog design from the s-plane onto the z-plane, thus converting the analog filter coefficients
to those of a digital filter.. Since the bilinear transform maps the frequency axis without
modification of the spectral values, equal-ripple filters map to equal-ripple filters, and the
optimality of L™ designs (elliptic and Chebyshev) is preserved. However, the classical
design methods provide only a prototype lowpass filter, and are not intended for general
spectral curves. Moreover, it is not preferable to carry out general filter design in the
s-plane because there the frequency-response is defined over an infinite frequency interval.
Apart from this consideration, approximation over the s-plane is essentially equivalent to
approximation over the z-plane (except in some specialized cases). Thus, the classical analog
filter-design techniques do not seem to offer any new methods for solving problem A",

1.9. Special Tools and Techniques

As a final topic in digital filter design, some techniques which are often needed for the
effective application of a design method are presented. The first is a conformal-mapping
procedure which can be used to enlarge the domain of applicability of some filter-design
methods, and the second is a new method for spectral factorization which has been found
to be faster and more reliable than polynomial factorization methods.

1.9.1. Applications of Conformal ivapping

Conformal mapping techniques canr be useful for
(1) Scaling a filter to be used at a different samplizg rate.
(2) Providing a spectral weight-function for filter-design methods lacking this fexibility.

For adapting a digital filter to a new sampling rate, linear stretching of ti:¢ frequency
axis, or frequency scaling, is required. Frequency scaling is simple for analog filters [198):
Substituting sws/w; into the analog transfer function H(s) maps the frequency w; to the
frequency wa. Elsewhere, the frequency axis is linearly stretched by the factor wo/w; as
desired. For digital filters, however, the analogous substitution zez¥2/%1 produces an
irrational filter. Thus some other method must be found.

There is a class of transformations from the unit circle to itself which preserves the
order of a rational function. These are known as the bilinear transformations, having the
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form
z2+p

pz+1’

2=Sy(z) & PER, o<1, (1.23)

The variable z in a rational transfer function H(z) is replaced by the first-order allpass
filter S,(z). The restriction to real p is necessary to yield real coefficients when mapping a
real filter H(z) to H(S,(z)). The restriction to |p| < 1 ensures that the unit disk D maps
to itself. (For |p| > 1, D maps to the region |z| 2> 1.) Thus |p| < 1 is necessary to preserve
stability of the mapped filter: In such a-case; Sy(z) is analytic-in D, and on the boundary
I' we have

PP P PP Y I
pei¥ +1 p+emIv v +p

Thus S,(2) is a Schur function.*

A plot of the frequency-mapping behavior of S,(z) for several values of p is shown in
Fig. 1.14.

Relation to s-plane Frequency Scaling

If the bilinear transform is to be used for frequency-scaling, it is useful to relate it
to the s-plane frequency-scaling formulas. The standard mapping from the z-plane to the

s-plane is given by
] w; T
F——, a==w.cot( 22 ), (1.24)

where T = 1/f, is the sampling period, w, is “digital frequency” and w, is “analog
frequency.” l.e., the point z = ¥t in the z-plane maps to the point & = jw, in the
s-plane. This is the most general first-order mapping which takes w; = 0 to we == 0 and
wz = 7fy to ws == oo [150]. le., 0 Hz maps to 0 Hz, and the highest digital frequency
is mapped to the highest analog frequency. (This mapping is discussed in more detail in
Appendix C.)

Having mapped the digital frequency domain onto the analog frequency domain, giving
us the transfer function H{(a + s)/(a — &)), we can apply the frequency-scaling formulas
for analog filters to obtain

s—cd , ‘
thus arriving at the filter H{(a + ¢#')/(a — ¢&’)). The constant ¢ is a convenient frequency

scaling parameter. The value ¢ = w;/we maps wp to w;. Finally, we map back to the

* A Schur function is defined as a complex function analytic and of modulus not exceeding unity
in D.
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NCRMLIZED FRESUENCY

Figure 1.14. Frequency-mapping curves generated by S,(:) with
ranging from —0.9 to 0.9 in steps of 0.2. The top curve corresponds to p =
0.9, and the bottom curve corresponds to p = ~0.9. The functions are
generated using the expression p == tan™ {{1~p?)sin{w)/[(1+ #°) cos(w) -
2o]}, where w is radian input frequency (0 to ), and ¢ is the image of w
under the mapping S,(¢™). The plotted values are divided by 2.

" z-plane using the inverse of the mapping (1.24),

"’_az"l
z+1°

The combined effect of the mappings is of the form S,(z) in (1.23) where

l—¢
1+¢’

pﬂ

The stability constraint translates to ¢ > 0, which can be interpreted as requiring each
frequency to map to a frequency of the same sign. The resultant flexibility obtainable with
the mapping S,(z) is the mapping of any frequency in the open interval (0, f,/2) to any
other frequency in that interval. (The points f =0, f = f,/2 are fixed-points of the map.)
The upper unit semi-circle and the lower unit semi-circle are compressed and stretched
together to maintain conjugate symmetry in the frequency response H(e’“) so that the
filter coefficients remain real. :
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Specific Frequency Mapping

In other situations, one may need to know the mapping S,(z) which takes a particular
frequency® ¢ to the frequency 4. If these frequencies lie in (0, ), then the mapping constant
is found, after some manipulation, to be given by

sin _6_-2_2)
()

For low frequencies, we have the approximation

p== (1.25)

0-¢
’~0+po

The frequency-scaling constant for this mapping is found by solving p = (1 — ¢)/(1 + ¢),
whick, for low frequencies, gives ¢ ~ @/, or ¢ = cf. Thus at low frequencies, the
frequency-scaling formulation is an accurate way to map specific frequencies. This is not
the case at high frequencies.

To map the other way from 6 to p, we interchange these frequencies in (1.25), and
evidently the inverse map is obtained by negating p. In general,
p>0 = Stretch(d > )
p <0 = Compression(d < p)

in the low-frequency region.

In practice, the mapping may be implemented by substituting

-y p+ z~1
2T l—
14 p2-1

into the transfer function H{z) which is conventionally a function of z~!. The inverse
transformation is given by

- 1)
- !..__....__.1 T _ (1.26)

i.e., p is simply negated.

* The term “frequency” is used loosely here to mean the angle in the z-plane corresponding to
that frequency. Thus if the sampling rate is f, Hz, the true frequency f in Hz corresponds to the
angle 8 = 2xf/f,, and here 4 is referred to as the frequency.
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Application to Filter Design

In some filter-design methods, such as those based on the Hankel norm, it is difficult
to introduce a weighting function on the error. In these cases an effective error weighting
can by provided by the conformal map S,(z) given in (1.26).

Consider the situation in which the most important structure in the frequency response
is at low-frequencies. This arises quite often in high-quality audio work, where the sampling
rates are large. For eiample, it has been observed that the most important information-
carrying regions of the spectrum of speech vowels are the first three or four formants [186}
which tend to lie largely below 4dKHz. If speech is to be modeled at audio-quality sampling
rates, such as 40KHz, it is very difficult to get a low-order filter whose frequency response
closely follows the first four formants. Markel and Gray [186] give the rule of thumb that
for speech one should take the sampling rate in KHz and add five or so. At 40KHz this is
an order 45 filter. By using the circle-to-circle transform S,(z), the first four formants can
be nicely modeled with a filter of order 8. An example of this nature is given in Chapter 3
where conformal mapping is used to model the body of the violin.

The basic procedure is the following:

(1) Map the desired spectrum via the substitution ¢/ «S,(¢?%).
(2) Design a filter.

(3) Map the filter to original frequency coordinates via z — S_,(z).

More specifically:
(1) Replace the target spectrum H(e’“*),k =0,...,N by

. i
Hp(cjwk)éH(i_ie.), k=0,...,N.
pelvk + 1

The value of H,(¢’“*) is assigned the value of H at

duer A FHe
= pedun + 1

(1 = p?)sin(wi) )é 27k,

— —1 .
= pp=tan (2p+(l+p2)cos(wk) N

Thus the kth element of the H, array is assigned the k,th element of the H
array. Since k, is not an integer in general, one may wish to do some type of
interpolation on the values of H for better accuracy.

(2) Fit a digital filter to H,(¢?*) to obtain H ,(z).
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(3) Compute

Bz =4, ( lz: :Z)

as the final approximate filter.

Note that if the number of zeros does not equal the number of poles in step (2), the
iinal filter H(z) will generally have the same number of poles and zeros. For example, if we
fit an all-pole filter,. ’

1
14 8,(1)2=1 + -+ + 3 (fag)z=s

I?,(z) =

with fig poles, then the i, “implicit” zeros at z = 0 will move away from the origin under
the mapping S-,. Since the numerical conditioning of the mapping is poor when all roots
are at one point, it is best to fit filters with an equal number of poles and zeros unless there
is a good reason to do otherwise. Experience has shown that the multiple roots tend to map
to a small circle about the point where they would go given perfect numerical precision.
The phenomenon appears similar to the cne observed when factoring polynomials with
repeated roots. It is said in this case that the radius of the circle is of the crder ¢!/™, where
¢ is the machine epsilon and n is the number of repeated roots (see also Ortega [192] po.
43-44). Indeed, even if the mapping does not cause this problem, the root-finding necessary
to look for it may well introduce it. (The frequency response gave direct evidence, however,
in the computed examples.) One scheme for dealing with spreading repeated roots is to
take their average (center of the circle) and recompute the associated polynomial since this
is evidently a good estimate of where they belong. Another possibility is to implement the
filter in mapped form; this entails replacing delay cells in the filter structure by first-order
allpass filters.

The inverse mapping is numerically poor in the case of multiple roots as discussed
above, and also for high order filters (say above 15th order in 36-bit floating point), especially
when the poles of the filter are clustered and/or near the unit circle. It was found that
best results are obtained by performing a partial-fraction ezpansion on the mapped filter
prior to undoing the map. This allows the numerical behavior for an arbitrarily large filter
to be the same as for second order. Since the poles and zeros of the filter are typically well
separated in the mapped domain, the partial fraction expansion is rarely troublesome.

In Chapter 3, the first-order conformal map is applied to audio filter design. It turns
out that this mapping can be used to obtain a very close approximation to Bark frequency
units. The Bark frequency scale has the property that the critical bands of hearing are
made to have the same bandwidth throughout the spectrum. Thus the conformal mapping
device provides a means for making the “variability” of a filter frequency-response uniform
with respect to the frequency-resolution of the ear.
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Finally, note that filters can be designed at a reduced sampling rate (so that low-
frequency spectral structure is easier to model), followed by frequency-scaling back to the
original sampling rate (using conformal mapping). This is in some sense the “dual” of the
filter-design technique discussed above.

1.9.2. Fast Spectral Factorization

Spectral factorization is-needed in the identification methods which match spectral
power and also in the Hankel-norm method. In this section, a3 method based on the FFT
is described.

Problem Statement

Given {G(¢7“*)}3 ! or {dn}o* and {en}]*, Where

D(z) nteo dn (2" +27")
G(z) & C(z) & 1+ E;‘::_l en(z" +271)

1y a BRBEY ™ bpa ™" " b?
AH(H(T) & A(2)A(z™?) "'é"(l + 222-1 apz—" )(1 + E“E a,.z")

]

and upper bounds for ng,n;, find {bn}3*, {an}7* such that the roots of A(z) and B(z) lie
in the region D = {z € C||z] < 1}.

Solution

If D(z) and C(z) are given, an accurate and straightforward solution to this problem
is simply to find their roots. The roots of A(z) are the roots of C{z) inside the unit circle,
and the roots of B(z) are those of D(z) inside the unit circle. However, root-finding is
a computationally expensive operation, and it does not apply when G has been obtained
nonparametrically as a sampled spectrum. A more economical solution can be based on
the additive decomposition

63 = G*a)+ a1 = L A,

where - o
Q(z)A g+ q12 +-+gn 2", ng < max{ng; —1,n}

G*z) A 2(21) + Z g(n)z™".

Naml
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Given G*(z), the problem factors naturally into two parts: the determination of A(z)
followed by solving for B(z).

The proposed approach to solving the spectral factorization problem is based on an
spprozimate nonparametric method for obtaining G*(z) in time domain form. This is
accomplished by means of the inverse FFT applied to the function D{(e/“*)/C(c7¥k) to
obtain g(n),n = 0,1,2,.... Once G*(z) has been obtained in this form, a naturz! choice
for finding A(z) and Q(z) is Prony’s method (described in §1.7.2). Note that only an upper
bound for n; need be specified, and this is known from the problem specification. In the
case where G(¢7¥*) is given, we can compute

D(e#*) = B(e™*)B(e ™) = A(THJA( )G ()
by point-wise multiplication in the frequency domain.

The problem is now reduced to polynomial spectral factorization. A solution to this
sub-problem which actually carries out the nonlinear optimization necessary to factor D(z)
into the form B(z)3(z™!), and which converges quadratically, is given by Wilson’s method
[204, 205).

In the stochastic case, the polynomial D(z) arises as the autocorrelation of a moving
average process. The semi-infinite covariance matrix R of this process is banded and
Toeplitz, with the entries R[i, j] = d;_j, §,5 = 1,2,.... Thus the coefficients {d(n)}2},,
define each row (centered about the main diagonal). The Cholesky factorization R =
UUT [168] of this matrix yields {b,}3* on each row of the matrix square root U. U is
Toeplitz with the top row being (bo, b1,...,0n;,0,...). A fast algorithm based on this fact
was developed by Friedlander [172] using a square-root normalized lattice-filter estimation
algorithm to perform a fast Cholesky decomposition of the finite-data covariance matrix
Ry (N X N) which approaches R as N—co. The algorithm requires IV iterations to find
the nonzero coefficients of the bottom row of Uy where Ry = UnU {, The rate at which
the algorithm converges is tied to the rate at which the partiai correlation function [135]
approaches zero. This rate is asymptotically of the order (1 =)V, where p is the minimam
distance of a zero of D(z) to the unit circle [135]. In practice, the approximation error
tends to approach zero somewhat linearly with [V initially [172], and after a large number
of iterations, the error stops decreasing due to accumulated round-off errors.

The proposed approach consists of applying the same nonparametric technique used
to obtain G*(z). By taking the inverse FFT of

1 - 1

F(evn) A — . —,
C(ch) B(chxz ) B( ¢-th)

we obtain the autocorrelation f(n) of a purely autoregressive process. The normalized AR
coefficients {6, }7® can be efficiently computed by means of the Durbin recursion {186], and
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we have §2 = zif(o)/o'z, where o®* =1+ S'f +oee st Zi. In this method, zeros close to the
unit circle give rise to time aliasing in the AR autocorrelation (see §1.5.4). The amount of
this aliasing is asymptotically of the order (1 — p}V, where N is the FFT length, and p is
the minimum distance of a zero of D(z) to the unit circle. Thus the approximation error
is similar in principle to that in the Cholesky method.

Algorithm Summary

The FFT-based spectral factorization technique, for the case where G(z) is given, is
accomplished by the following steps:
(1) Evaluate the initial power spectrum G(z) at N >> ny+nq + 1 equally spaced points
along the unit circle to obtain G(¢’“*), where

A 2nk
] N ?
It is preferable to choose N equal to a power of 2 to allow the use of the FFT.
Note that since g(n) is real and symmetric, G(¢’“*) == G{c¢™7%k), so that only
N /2 +1 real values are needed.

(2) Inverse Fourier transiorm G(e’“*) to obtain the autocorrelation function g(n),

Wi k=0,1,...,N—1.

. 1 N . .
¢(n) = FFT“{G(:"“" )} Ag > Glefwr)ednn
k=0

Since G(n) is real and symmetric, a special version of the FFT can be used [169)].

(3) Window g(n), to obtain the causal image g*(n),

9(”)/2: n=0
a"‘(ﬂ)={ 9(»), n=1,...,N/2~1
0, n=N/2..,N-1.

(4) Convert the nonparametric impulse response g+ to parametric form {a;,q;}, i =
1,...,m4, 5 =0,...,nq by Prony’s method (defined in §1.7.2).

{5) Compute .

A(cj“’h ).A(g“jwk )G(cjwk)
at N > np + 1 equally spaced points along the unit circle as in step 1.

F(d“) A

(8) Evaluate the corresponding autocorrelation function .

f(n) = FFT"{F(J“*)}
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as in step 2.

(7) Convert the autoregressive autocorrelation f(n) to parametric form {;}, i =
1,...,n, by the Durbin recursion [186].

In the case where C(z), D(2) are given, steps 5 and 8 can be applied twice with F =
1/C and F == 1/D respectively.

Computed Examples

Two test cases will be presented to compare the performance of the FFT-based spectral
factorization method to the Cholesky-type method proposed in [172] for the polynomial
case. All computations were performed in single-precision 36-bit floating point on a Foonly
F2 computer emulating a PDP10. The mantissa size is 27 bits.

In the first test, we have
G*(z) = 8004 + 2451z~ + 622272 48523

B(z)=85+272"'+7:72+ 273

This example is also computed in three other papers [182,172,205]. Table 1.1 gives a
comparison of the two methods for this example.

Cholesky - FFT
Steps Error Time Size Error Time Aliasing
16 4.05 X 10~7 0.20 16 | 3.33X10~7 | 0.08 | 5.46 X 10~°
32 4.05 X 107 0.27 32 | 974 X10™% | 0.10 | 2.46 X 10™8

Table 1.1. Comparison between the Cholesky and FFT factorization methods for example 1.
In the Cholesky method, the Steps column gives the number of iterations and corresponds to the
effective size of the covariance matrix which is factored. In the FFT method, the Size column gives
the FFT length V. In both cases, the error is computed as the s2mple standard deviation (root
mean squared error) between true and approximate factorization parameters dn,n = 0,...,n;.
The computation time is in seconds, 2nd it is accurate only to a few 60ths of a second. The time
aliasing measure, defined in §1.5.4, is based on the middle 10% of the FFT buffer (square-root of
the relative energy in F(e/“*) for k € [N/2 + N/20]).

This example is very easy for both methods since the zeros of G*(z) are far from the
unit circle.
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The second test involves a zero pair very close to the unit circle. The zeros are at
radius 0.992 and angle +x/4. We have

G*(z) = 3.9401 — 2.7882™" + 0.992™2
B(z)=1-14z"" +0.99z72

Table 1.2 gives the results for this test:

Cholesky FFT

Steps Error Time Size Error Time Aliasing
32 0.0204145 0.40 32 0.0350000 0.07 0.998
84 0.0087874 0.85 64 0.0028618 0.17 0.905
128 0.0030524 1.50 128 0.0016984 0.32 0.965
256 0.0006634 3.33 256 0.0002847 0.60 0.860
512 0.0000470 8.55 512 0.0005897 1.38 0.282
1024 0.0000023 12.47 1024 | 0.0000285 2.53 | 0.203
2048 0.0000022 25.27 2048 | 0.0000263 5.37 | 0.019

4096 0.0000275 10.78 0.000709

8192 0.0000295 22.63 0.000760

Table 1.2. Comparison between the Cholesky and FFT factorization methods for example 2.
The columns of the table have the same meaning as described in Table 1.1.

Table 1.2 shows that the error levels off in each method as the computational effort
is increased. The Cholesky method reaches an asymptotic error which is an order of
magnitude smaller than that for the FFT method. This may be due to the square-root
normalization employed in the Cholesky method. However, the FFT obtains its final error
of 3 X 107° with a compute time of 2.5 sec., while the Cholesky method requires more
than 7 seconds to achieve this error. Since the Cholesky method has complexity of order
N while the FFT method has complexity of order N log N, the relative efficiency of the
FFT method cannot hold as N becomes arbitrarily large. It should be noted that on the
F2, the square roots in the Cholesky method add significantly to the coefficient of NV in its
complexity.

Although the details are not presented here, an example was tried using an order eight
B(z) (example 2 of [172]). In this case, the asymptotic error of the Cholesky method was
near 0.002 while the FFT method achieved 0.0009 for size 1024 (in spite of a time-aliasing
level of 0.6!). Thus the relative numerical performance is problem dependent.

In conclusion, the FFT method appears to be more cost-effective for rough approxima-
tions in a typical general-purpose computing environment (when storage minimization is




Page 72 METHODS FOR DIGITAL FILTER DESIGN 1.9

not an issue), giving about an order of magnitude smaller error for a given computation
time. Also, the FFT method is probably the best choice for minicomputer/array-processor

-----

algorithm such as Wilson’s method. For hardware systems, the Cholesky method with
square-root table look-ups is probably the best choice, unless an FFT facility is available
for other reasons.

Sharpening the Factorization

In this section, a method for sharpening the precision of a polynomial spectral factor
is given. This is needed when spectral factorization methods, such as these of the previous
section, reach an asymptotic error level which is too high above machine precision to be
acceptable.

There is an iterative algorithm for computing the square root z of a positive real
number £ = 22 which proceeds as follows:

Given z9 > 0, compute z; as

1
Tipr E(zk + i) .

Tk

It is known that
lim zp=2=¢§ 3,
k=rco

and that the number of correct significant digits doubles each iteration [168).

The obvious generalization of this recursion was applied to the spectral factorization
problem:

Given Bg(z), compate By(z) as
Biyi(2s) — %(Bg(z) + ;;gj;;((?:,—)') . (1.27)

For example 2 above, this algorithm gave about an order of magnitude improvement
in the error, but it too suffers from slow asymptotic convergence (i.e., the error did not
approach the machine epsilon even with 10000 iterations). For the order 8 case of [172),
used to sharpen the resuit of a size 1024 FFT method, it gave only about a factor of 3
improvement in the error after 1024 iterations. Thus the convergence is worse than linear
(according to empirical observations). However, it is about twice as fast per iteration as
the Cholesky method for low order B(z), and it can be used to obtain better results than
can be had with the FFT or Cholesky method alone in these cases. Note that the recursion
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(1.27) cannot be used without a good initialization since it has no means of placing all the
roots inside the unit circle in one factor. A fixed-point of the recursion is obtained for
any factorization of the form G(z) = B(z)B(z™!), and there are 2" such factorizations,
corresponding to different groupings of the roots of G(z) inside and outside the unit circle.

1.10. Summary and Conclusions

The rational filter-design problém, for general continuous desired spectra, has been
examined in the frequency domain. The initial goal was to minimize some norm of the
frequency-response error || H(¢?¥) = H(e?)||. It was demonstrated that a best solution
always exists (provided that the filter poles be restricted away from the unit circle), but
that the solution is not generally unique. The general problem was shown to be difficult to
solve due to the existence of an arbitrary number of locally best approximations. In spite
of this discouraging property, a stable, unique solution can always be computed when H{(z)
is of the form Y(2)/U(2) (i.e. rational) using the Hankel error norm.

Several sub-optimal formulations were described. The minimization of L? ratio-error
led to exceedingly simple “linear prediction” algorithms whose solutions are unique, robust,
and useful in practice. They tend to model the spectral envelope, disregard phase, and are
not optimum in any normal sense when both poles and zeros are designed. In certain
contexts they minimize linear prediction-error energy.

The minimization of equation-error also gave a simple method which designs poles
and zeros, and fits both phase and magnitude. Drawbacks to equation-error design include
(1) weighting of the frequency-response error by [A(¢’“)|, the denominator of the designed
filter, (2) extreme sensitivity to excess phase in the desired impulse response (i.e., minimum
phase is almost required), and (3) lack of assured stability; when the design is unstable,
one must reflect poles inside the unit circle and give up the phase fit, or the filter must be
re-designed after adding a linear-phase term to the desired phase response.

The fact that real rational approximation is solved for the Chebyshev error norm was
exploited to obtain a method for power frequency-response approximation. This method
dovetailed nicely with an approximate log-power approximation scheme which is valuable
for audio and video applications.

Various other techniques were mentioned with the intent of classifying them within
the general framework adopted here. The use of first-order conformal maps for frequency-
scaling and error-weighting in digital filter design was described. Finally, a fast spectral
factorization method was presented.

As is usual in 3 general setting, there is no one method which out-performs the others
for all problems. As a general rule, if one requires a uniform fit of both phase and magnitude,
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the Hankel-norm method shounid be considered. While the Hankel-norm method is the
strongest in the sense of solving the ideal filter-design problem defined in the introduction, it
is the most computationally expensive and numerically demanding. If the desired frequency
response is close to minimum phase, and smooth, then the equation-error method may be
an adequate choice. If phase is irrelevant, then high-quality magnitude fits can be obtained
using the Chebyshev methods (or equation-error method with constructed minimum phase).
For audio applications in which phase is unimportant, weighted conformally-mapped log-
magnitude approximation may be the most desirable {(cf. Chapter 3).

In principle, rational filter design is still an open problem when the desired frequency
response is allowed to be an arbitrary continuous complex curve. By this is meant there is
no algorithm which is guaranteed to find an optimum solution without exhaustive search
over all possible filter coefficients. In practice, however, the Hankel-norm method has
essentially solved it, albeit with relatively cumbersome computations. A practical solution
of the problem under other (perhaps more desirable) norms, is still outstanding. Also,
there probably exists a significantly more efficient Hankel-norm method, for there is much
structure as yet unexploited in the currently existing algorithms.




Chapter 2

Methods for System Identification

2.1. Introduction

In this chapter, several prevalent identification algorithms are derived and compared in
a unified way. The point of departure will be a time-invariant flter-design problem which is
adapted to the time-varying case by casting the design algorithm into time-recursive form.
The necessity of time-recursive form severely restricts the choice of error minimized by the
algorithm. In the terminology of Chapter 1, only the L? norms of equation error and ratio
error will be employed.

In the previous chapter, the filter design problem was discussed almost exclusively in
the frequency domain. This allowed maximum flexibility in minimizing frequency-response
error. In other ways, however, frequency-domain design is restrictive. For example, it
may be desired to represent a system which changes over time. In these cases it is more
effective to ascertain the model from time-domain input-output data rather than from
the frequency-response (which, strictly speaking, no longer exists). Even for the case of a
time-invariant filter, a specification in terms of input-output data may arise in practice,
such as when the spectrum of the input signal is not invertible. Another advantage of
time-domain formulation is that the modeling error appears as a signal which itself may
be further explored for structure, or statistically summarized and included in the model.

The present chapter discusses filter design in the time domain from the system iden-
tification point of view. System identification is broadly defined as the determination of a
mathematical model for a dynamic system on the basis of input-output data. The majority
of activity in this area, however, is concerned with fitting rational linear filters—the same
as in Chapter 1. The main difference is that they are formulated exclusively in the time
domain to allow tracking of time-varying systems. Nonetheless, in system identification
theory, systems are modeled as slowly changing time-invariant filters, and the analysis is
carried out for constant parameters. Thus the general principles discussed in Chapter 1
still apply. An elementary introduction to system identificaticn is given in [99,81). The
book by Goodwin and Payne [95] gives a wide-ranging overview of the field and contains
250 references to the literature. The very recent book by Ljung and Soderstrom [111] gives

75
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extensive information on the formulation and analysis of recursive-in-time identification
algorithms.

Another aspect of the system identification approach is that it is usually concerned
with modeling stochastic processes. The measured input 2nd output signals are typically
assumed to be correlated Gaussian noise, and the error signal in the time domain is in-
variably some form of prediction error. The ultimate goal of the model is to decorrelate,
or “whiten” the prediction error, for the best that can be done is to “explain” all correla-
tion structure in the input-output data with the model. Wiile this setting has extensive
application in practice, it will not be pursued in this chapter. The reason is that a some-
what deterministic approach will more clearly bring out connections between identification
algorithms and the methods of Chapter 1.

It should be noted that this dissertation is concerned with the quality of the model and
not its performance in-context. For example, identification algorithms are used in adaptive
control to adjust the parameters of a controller in real time. In such a situation, the error to
be minimized is a control performance error, and this can be quite different from minimizing
3 norm of the frequency-response error. Thus the full capability of identification algorithms
will not be utilized in the context of time-domain filter design.
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2.2. Summary of Chapter 2

First the basic system-identification problem is defined, followed by its solution in a
simple case. This solution is equivalent to the equation-error method discussed in Chapter
1. Next the model is extended to allow further modeling of the equation error as linearly
filtered white noise. This extension gives rise to almost all of the different identification
algorithms, and their often subtle distinctions, for it poses a new and difficult nonlinear
optimization problem. As we saw in Chapter 1, choice of equation error leads to a simple
solution. The further modeling of equation error as an ARMA® process makes the problem
difficult again. The error criterion is examined in the frequency domain to illustrate
connections with the methods of Chapter 1. Some issues in “reduced-order” modeling are
also considered.

Two main problem formulations are discussed, based on linear regression and gradient
descent techniques. The regression formulation is used to derive the well-known methods of
Instrumental Variables, Weighted Least Squares, Generalized Least Squares, and Extended
Least Squares. In addition, the regression formulation is given for the multi-input, multi-
output case since it is almost no extra work to do so. Next, the Gauss-Newton optimiza-
tion method is applied to yield a generalized identification algorithm which reduces to the
methods of Maximum Likelihood, a new form of Instrumental Vzriables, and Extended
Least Squares, when certain approximations are applied to quantities in the general algo-
rithm. To round out the picture of identification methods for system modeling, a com-
parison is given between the robust equation-error method and the nonlinear output-error
method represented by the Steiglitz-McBride algorithm. The algorithms are converted to
time-recursive form by a single substitution in the exact recursive “off-line” algorithm. This
is believed to provide a simpler derivation of the recursive identification algorithms than was
previously available. Furthermore, the derivation is applied to a generalized identification
algorithm, givicg a new class of recursive methods. Finally, methods for reducing the com-
putational complexity of the recursive updates are reviewed, and convergence acceleration
schemes, based on improving the recursively estimated gradient, are discussed.

2.3. The Identification Problem

* “Autoregressive moving average” meaning “rationally filtered white noise.”
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ut) — S | yw

Figure 2.1. General schematic of the system identification problem. The system J is identified
given input signal ¥, and output signal y..

Figure 2.1 gives a conceptual schematic for the system identification problem. We have
a system $ with input signal u;, and output signal y;. Given u; and y;, for some range of
time ¢, we wish to deduce §.

2.3.1. Choice of Model Structure

We consider only the class of stable, linear, time-invariant models which can be repre-
sented by a difference equation of the form

o fythpey + o0+ by U
ye 1Yty nyYt—n, (2.1)
=G1Yt=l " *°° —On Yt-n,

This is a set of causal digital filters with n, poles and n; — 1 zeros. The input and output
signals u,y; are considered to be real-valued scalar processes, unless otherwise noted, and
the discrete-time index t is always taken to be an integer. The methods to be discussed can
be extended to the multi-variable case without essential difficulty. The absence of a direct
path from u¢ to y; is not necessary for identification, but is customary in control to avoid
feedback degeneracies when u; is made a function of y;. This convention will be observed
in this chapter since it is ubiquitous in the identification literature. To connect with the
notation of chapter 1, a one-sample shift of the time origin of the input signal u; is all
that is required. We assume n4 and n; are known, since order identification is typically a
by-product of parameter estimation for a variety of orders.

Denoting the unit sample delay operator by 4, ( d*y: = yit-n), we may rewrite (2.1)

A(d)ye = B(d)u, (2.2)

where
Ald)=1+ad+ -+ +3,,d"

B(d)=byd + -+ + bn,d™ . (2.3)
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Note that the delay-operator polynomials A(d) and B(d) are closely. related to the z trans-
forms of the coefficient sequences. If the z-transform of the time-series z; is defined by

X(z)= Z izt (2.4)
tam =00
then in the frequency domain,
A(z7Y(2) = B(z"")U(2), (2.5)

where U(z) and Y(z) are the z-transforms of the time sequences u; and y;, respectively.
The model is stable when all roots of A(z™!) lie inside the unit circle of the complex plane.

The model equation (2.2) may also be written
——=tug (2.6)

where the meaning of division by a delay-operator polynomial may be defined by polynomial
“long division,” or by the equivalence to z-transforms.

Yet another representation of the difference equation (2.1) which allows application of
linear regression techniques is given by

ye =170,

where r
Pt = ( =Yt=1y:c0; ~Yl—ng, Yt—=1,..., Ut—n, )

o7 (2.7)

=(01;---y¢n.:bly---,bm)-

The linear regression formulation will be used extensively in deriving various identification
algorithms.

2.3.2. Error Criterion

Now that a class of systems is specified, a criterion for judging model quality is needed.
Let A(d) and B(d) denote the estimates of A(d) and B(d). Then given these estimates
and the known input u;, we can compute an estimate of y; (denoted §,) by means of the
difference equation (2.1). From this model output, we can form an error criterion in a
number of ways. Two prevalent error definitions are the output error and equation error.
Qutput error is defined by A
. B(d)

"t=m“z(—d')'ut-
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Cutput error is the same error as minimized in problem H of Ckapter 1. Equation error
is defined by

& =A(d)y: - B(d)ug =y, — 97 0, (2.8)
where 87 = (d1,...,4nas b1,y )-

In addition to being linear in the parameters {a;, 5,-}, equation error has the inter-
pretation as a linear prediction error, and this is appropriate for some applications such
as adaptive control. On the other hand, when the model is to be estimated separately and
used as a prozy for the true system, as opposed to a real-time signal-tracking situation, then
output error is typically a better error measure. For example, consider the simple example
where B(d) = 1, A(d) = 1 — &d, and u; = §;, where §; is the Kronecker delta function.!
Then for t > 0, ¥y = y; — &° and é = y; — 3y;—;. Minimizing equation error cbtains the
value of & which is good for predicting a sample of y from the previous sample; it does
not necessarily find an @ which when raised to the power ¢ provides a good approximation
to y;. Thus, equation error is desirable for tracking and predicting the output of systems
in real time using the true past outputs, while output error is desirable for modeling the
transfer function of the system.

In the algorithms to be discussed, the L2 norm of the equation error will be used
exclusively as a quantity to be minimized. This is due mainly to the fact (as discussed in
Chapter 1) that output error is rarely solvable by gradient techniques. It is also due to
the relative ease with which the equation error L? norm can be minimized recursively for
time-varying applications. Near the end of this chapter, however, the Steiglitz-McBride
algorithm for output-error minimization will be described.

Given data from time ¢ = 1 to NN, the estimate of # is obtained by minimizing J(dx')
with respect to 8y, where

N
JON)=D_ &. (2.9)
tme1
Note that in Chapter 1 notation, we would write J% for this loss function. In this chapter,

however, J will suffice to denote the squared L? equation-error norm since a variety of
norms will not be considered.

2.3.3. Least Squares Solution for the Noiseless Case

Using equation error, J(aN) is a quadratic form in the parameter estimates éN.
Quadratic minimization problems are readily solved by a linear system of equations. Com-

t Defined in Appendix E.
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puting the gradient of J(8v) with respect to &, and equating to zero gives

N .
o aJ(aN) Z 22%“_22(-99:)@: o7 0n)

t-l tm1 00 tem1
N (2.10)
= Y pwpiin= Z Pyt
tam=1l tam]

The solution is then-

X N -t N
oS) = (: so:sa;‘r) E Peye. (2.11)
ta1

tam1l
The solution exists and is unique whenever the above matrix inversion exists, and the
solution is a global minimum of J(8,) if the second derivative matrix is positive definite.
The second derivative matrix (or Hessian) is given by

tusl

Since the Hessian is a sum of outer products (which is always positive semi-definite), we
have that the solution #/“* is a global minimizer of J(8,y) whenever it exists.

If there are no errors in the measurement of y:, no disturbances in the system except
u¢, and if the true system $ is exactly represented by the difference equation (2.1), then &;
can be made identically zero by taking IV sufficiently large that the Hessian is invertible in
(2.11). When u; is such that the vectors {¢:,t =1,...,n4+ 3} are linearly independent,
then N = n, + nj produces the solution. For example, u; could be an impulse or white
noise, or any other waveform which generates ng4 + n; linearly independent ¢ vectors. In
the identification literature, the condition that u; be persistently ezciting of order nq + ny
is imposed to ensure invertibility of the Hessian matrix [95].

2.3.4. Modeling Stochastic Input Components

In practice there are always some sources of inaccuracy such as instrumentation errors
in the measurement of y; and thermal or load disturbances in the system. In addition,
most systems are not exactly representable by (2.1) due to nonlinearities, higher order than
‘provided by the model, and/or the presence of essentially distributed parameters. Thus
the set of equations generated by (2.1) for N > n, + n; is inevitably inconsistent for a real
problem.

Figure 2.2 gives the schematic for system identification in the presence of disturbance
noise. In addition to ug, S, and ¥, there are unknown disturbances which may or may not
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~

———

() S | y ()
(1213

Figure 2.2. System Identification paradigm when noise is included.

be random in nature. Given u; and y;, we wish to deduce § in a way that is insensitive
to the sources of noise. Simce we are considering oaly licear time-invariant systems, it is
meaningful to redraw Fig. 2.1 as shown in Fig. 2.3.

e (t) C(d)

u(t)-—)Ir B (d) 1/7A(d) =y

Figure 2.3. Implicit model structure assumed when minimizing equation-error to identifly 3.

Here the net disturbance is taken to be a single white noise source ¢; which arrives
at the output via the transfer function .A(d)H{d). This figure is drawn according to the
definition of equation error, i.e.,

Ald)y: = B(d)ue + He(d)e; . (2.13)
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If H,(d) corresponds to a linear system of the form
C(d)

where
Cld)=1+c1d+ - +cp d™*

Fld)=1+ fid+ - + fa,d™, (2.15)
then we can represent random equation-error disturbances with rational power spectral

- densities [83].

Interpretation of the Generalized Error

A unifying characteristic of all identification algorithms to be discussed is that
, o Ald)y: = B(d)us
H(d)
is made to approach a white noise sequence. In other terms, the power spectral density of
¢ is “fattened.” Letting H(d) = B(d)/A(d) and H(d) = B(d)/A(d), we find

. A(d) f Ald) A A(d) H{d)
= —{y; = H{d)u; | = —{ H(d) = H(d) Jus + ————¢; .
te= g o (v~ H@we) = Z0(B(D - Hd))ue+ G5 200
If ¢ is uncorrelated with u¢, as is commonly assumed, then the error functional minimized
is given by
_ "] A& :
He(ew)

A(e7v)
Ale?v)
where U(¢'“) is the power spectral density of the known input u;, and o2 is the variance
of €¢.

H(c)
I‘{e(“"w)

2dw
2x’

2 » a fw 2 W dw 2 x
|E) - e [ue) i + o2 [

-

-

From this expression, we see that the frequency-response error H — His weighted by
UJAl/|H ], similar to the equation error formulation of chapter 1, and the noise path is
modeled by minimizing a form of ratio error. By defining the noise transfer function in the
“output error” sense,

H{(d
e = B(due + Hldye = ) & 5000,
the error criterion appears as
. . . jw Jw 2
Jaf IH(cJ“)_H(cJW)Iz_.Z‘_{.(_‘_J_)Ed_wq-aEf }_Iv(e. ) i“i,
- | (i) [ 27" Imr [ Holei) | 2

and in this form, the weighted-output-error and ratio-error components are simplified.
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Special Cases

For example, if the only significant uncertainties arise from measurement errors in y;
which are uncorrelated, then the appropriate form of H(d) is

He(d) = A(d). (White Measurement Error)

This case coincides with problem H"* of Chapter 1 for the L? norm.

Internal disturbances may enter the feedback loops of the system through paths
different from the input u;. If there are no resonant modes other than those of the system,
and if the internal noise source is white, equation (2.14) reduces to

H(d) = C(d). (White Internal Disturbance)

Thus the noise transfer function H(d) is a polynomial. When this is not the case, we
may estimate H{(d) as a polynomial as long as the orders of A(d), and B(d) are sufficiently
augmented. That is,

A(d)ys = B(d)u: + C—(d)-u

F(d)
=  A(dF(d)ye = B(d)F(d)ue + C(d)e: (2.18)
= A’(d)yg = B’(d)llg + C(d)es,

and the poles belonging exclusively in the noise transfer function appear as common factors
in A'(d), B'(d), or “pole-zero cancellations.” In practice, this will occur only approximately,
and common factors must be defined in terms of closeness of the poles and zeros. A different
phenomenon which complicates this procedure occurs when the model is of larger order
than the real system; superfluous poles and zeros in the identification process also tend to
cancel each other, although they have been observed in practice to do so near the origin in
the z-plane.

In the event that the equation error Ay — Bu is itself a white noise sequence (i.e.
H{d) = 1, corresponding physically to white noise injection at a single feedback summation
node or similar special circumstance), then minimization of J(a N) to obtain the solution
=) given by (2.11) results in a atrongly consistent estimate of the true parameters 4 [106];
that is,

LSy _,
0N N oo w.p.l.

In contrast, correlated equation error (H(d) 5¢ 1) causes asymptotic bias in the parameter
estimates; (§'“S) will not approach 4 as the measurement time span is increased, and is said
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to be an inconssstent estimator). Thus it seems best to include some modeling of the noise
in order to guard against bias in the model-complete case.* The remainder of this chapter
will discuss a class of techniques for identifying parameters of the model

A(d)ys = B(d)u; + C(d)es (2.17)

which allows for the possibility of correlated noise. The symbol ¢; will always stand for an
uncorrelated sequence, and correlated equation error will be denoted by e;.

2.3.5. Reduced-Order Identification

There is one particularly likely case in which Fig. 2.3 is misleading, and that is when
the model cannot represent the true system. In this case, ¢; is very much a function of ue,
and even when ¢; can be made pseudo-uncorrelated by some choice of H¢(d), the results
are u; dependent. To see this, consider the system given by

A(d)ye = B(d)u: (2.18)

and the model
A(d)yy = B(d)ue + & (2.19)

Then we can solve for é; as

G = A(d)(%-% - %%)ut' (2.20)

Hence, minimizing the enérgy of ¢ depends heavily on the input u¢, unless it is possible to
obtain 8(d)/A(d) = B(d)/ A(d).

In the case of a reduced-order model, it is not likely that minimizing equation error
will recover any true system parameters, since the reduced-order poles and zeros must
distribute between the actual poles and zeros in a compromising fashion. In some cases,
such as in problems of control, one does not require physically meaningful model parameters
but rather the best simulation of the system in terms of output prediction. In this case, ¢;
may be viewed as a prediction error, and the minimization of its energy is still optimum,

* The model-complete case is defined as the situation in which the true system is representable
by the model in the absence of noise, i.e., there exists some & such that when § = 8 the model
is exact. This is a ubiquitous assumption in the analysis of identification algcrithms, especially
output-error methods. It is not, however, often realistic. When the model set is not complete, the
problem is sometimes called the “reduced-order modeling” situation.
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from a linear prediction point of view, even when the model cannot represent the system.
In addition, the prediction error paradigm can be applied to a much larger class of systems
than we consider here, such as nonlinear and distributed systems [82,85,86,87,108,95].

With extra care, it is still possible in some cases to identify true system parameters with
a reduced-order model. The essential idea is to eliminate influence of some system modes
from the measured input-output data. For example, suppose the system has an indefinite
number of resonances in its frequency response, and identification of only the center fre-
quency and bandwidth of the first few resonances is desired. Examples of such systems
include vibrating strings and reverberant rooms. The object is to perform identification
in the frequency band of interest without semsitivity to high-frequency characteristics of
the system. If the input u; is at our disposal, then we may select u;, to be bandlimited
such that only the first few resonances are excited. The level of disturbance noise present
and the accuracy of identification desired determine the energy of u; required [95]. If the
disturbance noise is too strong to be dominated by a large input signal, or if the input signal
cannot be chosen to be bandlimited, then the nearly same effect may be had by Jowpass
filtering the input and output signals u¢,y:[97]; in this case the high-frequency disturbance
noise is removed from y: as well as the high-frequency system dynamics.

While lowpass filtering u; and y; may serve to enable identification of the low-frequency
system poles, the low-frequency zeros are not generally found. For example, suppose the
system is given by

8d) . C(d)
=z20"* 70"
_Bawd) | s
= @V " T Far@) (2-21)
B W@, @), S,

a:A(d) +—‘;(—47 ¢+F(d) ¢+T(d) ty

where the low-frequency poles are contained in the polynomials A(d) and F(d), and the
low-frequency zeros are grouped in B{(d) and C(d). Then linearly lowpass filtering y;,u; to
obtain ¥, @¢, such that the high-frequency modes are suppressed, gives

Bl), , ),
=M T

where 7, is defined by the above equation. If this reduced scenario can be exactly identified,
then the poles are correct but the zeros have moved such that

—Tp + — (2.22)

8(d) = BU(d)V(d) + W'(d)A(d)
¢(d) = C'(d)T(d) + S(d)F(d).
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The filtering of the measurements has caused this apparent change in the zeros of the
system, for each zero is a function of all resonances present. The benefit of pre-filtering
is providing that the system lie in the model space, which allows &; to be meaningfully
assumed uncorrelated with @;.

In summary, a reduced-order model may be fit to “reduced-order measurements.” By
identifying system poles in relatively narrow frequency intervals, the modes of a large system
can be found using only low-order identification algorithms. This is an important option
to keep in mind because numerical experience indicates that large order systems (greater
than say 25 poles with 36-bit floating arithmetic) can be difficult to identify recursively
(described later) due. to round-off error.

2.4. The Regression Formulation

In the following section, we treat the multi-input/output case, since it is formally so
similar to the single-input/output case. If there are p outputs and ¢ inputs, it is useful to
set up the quantities such that y;isp X 1, u;isq¢ X 1,a;isp X p,and b;isp X gq.

Consider the equation error formulation
Ald)ye = B(d)u, + e; (2.23)

where ¢; may be correlated even when A(d) and B{d) are correct. Given estimated quan-
tities, we will write_ this equation as

A(d)ye = B(d)us + . (2.24)

Casting (2.23) in the regression form as before in equation (2.7) gives

=@t 0 + Cg , (2-25)
where
5’{ = ( _y:tr—v cees _y:tr-n.i ug;ls oo :u{—n. ) (1 X png+qny)
T =(61,..18ng,01,---,bny) (p X pnq + qny)
{(2.26)

and ¢; may be correlated. Let N, = png + qn; denote the number of elements of ¢:.
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Writing out (2.25) for N successive samples beginning with ¢ = 1 gives a system of N
linear matrix equations in 4, viz.,

o =pl0+e
vi=pl0+e]
(2.27)
vn =eN0+ el
or
Yn=9%N0+EN, (2.28)
where
YR =(y1,.-0,0n) (> X N)
ER =(e1,...,en) (p X N)
% =(p1,.-,0N). (Np X N)
(2.29)

Since we wish to solve for 8, we convert to a square system of equations by premul-
tiplying both sides of (2.29) by an Np, X N matrix which we denote by Z {v

2% Yy =2%on0+ ZLEN, (2.30)

with
25 =(21,...,2n). (Np X N)
(2.31)

Now, if Z{,dﬁv is invertible, which is possible for N 2> N,, then we can write
-1 -1
0 = (z,{,cb ~) ZRw- (z{,%,) ZLEy. (2.32)
Since Ej; is unknown, it is natural to define the estimate of 4 bj

- N -1 N
iy = (zﬁdw) 'Z}C,YN - (Z :,gp{) Y nl. (2.33)

t==1 toml

The error associated with this estimator is then

- - -1
by =by-0=(2Fon) ZLEN. (2.34)
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The parameter estimate is perfect whenever
ZNEN =0. (2.35)

Geometrically, this condition may be interpreted as the requirement that each column of
Ep (i.e., the sequence of equation errors for each component of y;) be orthogonal to all Np
rows of Z%}. It can be shown that ZEE’N 0 always holds, where E'N = YN“”{JN: and
that E’%E‘ ~ is minimum for Z%, = &%. In this solution, Zy “steers” the projection onto
the rows of ®x such that the line of projection from Yx to ¥y = d>§3 N is orthogonal to
ZN.

2.4.1. The Instrumental Variables Technique

Above, we showed that §y = 0 whenever Z%EN == 0. Less stringent conditions
which ensure that @ N asymptotically approaches # are

N
. 1
1) Nli-imoo det(—ﬁ E zmg‘) #0

LN (2.39)
D w2 nd =0

Since we may interpret the normalized sum of ztgpg' as the sample correlation of z;
and ¢;, condition 1) requires that the vectors z; and ¢, be correlated in all components.
Similarly, condition 2) states that the vectors z; and e; must be uncorrelated.

Any matrix Z % satisfying 1) and 2) above is called an instrumental variables matriz,
and the N, elements of z; are called the instrumental variables. We denote estimators of
the instrumental variables class by §7V).

2.4.2. Choice of Instrumental Variables

When the identification is performed open-loop, and when the model can represent the
true system, then it is reasonable to expect that the disturbance ¢; is uncorrelated with the
input. (If the model cannot truly represent the system, then ¢; must contain modeling error
as well as disturbance noise, and the modeling errcr should not be assumed independent
of the input.) In this case, a plausible choice for the instrumental variables is u; for an
appropriate range of t. E.g., set

T T T T T
2 = (ut—ﬂb"'l’ ) ut_m__,,., Btepreooy ut_,,b ) y (2.37)
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and for “almost all ue,” (2.38) is satisfied [88]. If u; may be chosen arbitrarily, then a
good choice is independently generated white noise. This has the two-fold advantage of
persistently exciting all system modes [95], and of being uncorrelated with e;. This special
case of instrumental variables is often called a correlation method [99].

The choice of z; most commonly associated with the instrumental variables method is

z{ = (ﬂ?—t:.- . ﬁti:—n.,: ,ug;h,,' LE ] .ug'—n; ) (2.38)
where . -
Je =bjupy + - + by titup,
. s S (2.39)
=81Yt—-1 = *°° T On Yten,
The idea here is to produce a §, which is uncorrelated with e; yet correlated with y;, thus
satisfying (2.36). Since u; is already presumed uncorrelated with e;, we simply derive §,
from u; in some reasonable fashion, in this case from an a priori model estimate such as
might be given by 8¢,

In the case of recursive instrumental variables, in which model estimates are updated
for each ¢, one may calculate ¢, via

1y =by(t = re)ue—y + - + 3,..(: = Te)tpmn,
. . . N (2.40)
- 01(‘ - Tc)!lt-z - tre = “n.(t - fe)yt-n. .
The delay parameter 7. is chosen sufficiently large so that the parameter estimates from
time ¢ — 7, are not significantly correlated with ¢;. For example, when it is assumed that
et = C(d)e:, where ¢; is white, and C(d) is a filter polynomisl of order n., then we set
Te > nc. Another strategy for suppressing the fact that 8 is a function of ¢ is to lowpass
filter & to make it somewhat constant relative to ¢&. Further aspects of the instrumental
variables method may be found in [130,131,88,99,95,81]. The form (2.38) is also the basis
for Landau’s “output error” method [102]; note, however, that our definition of output
error is very different from that used in the model-reference control literature.

2.4.3. Return to Least Squares

If the equation error at time s for the optimum model is uncorrelated with u; and
for ¢ < s (or more generally, for 8 — max{ng,n3} < t < 8), then it follows that ¢, is
uncorrelated with e;. Also, the vector “most correlated” witk ¢ is ¢, itself. Thus in the
case of uncorrelated equation errors, we may satisfy (2.38) by choosing Zpy = &, and the
resulting estimator is just

- N -1 N
i = (e o) ‘oL Yy = (Z som?') D o (2.41)

taml tam]
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which is the least squares estimator (2.11) obtained in the noiseless case.

2.4.4. Weighted Least Squares

Suppose the equation error ¢; is correlated, but the covariance is known, i.e,
€ {ENEI\}} = Regy = ENEY, (2.42)

where Iy is the matriz aquare root of the covariance Rgg,, (obtainable by the Cholesky
decomposition [168]). Then pre-multiplying both sides of the regression equation Yn =
dn0 + En (2.28) by R}, we obtain
LN YN =ZR'on0+ N EN

or _ ) A

Yn=®dN0+Epn. (2.43)
Now, since

a{ENEf,} = e{zg‘ENE,QE;T} = Eg,'e{ENE}{,}z;,T =SHENERET =1,
(2.44)

we may apply plain least squares (2.41) to the pre-multiplied regression equation (2.43) to
obtain the consistent estimator

. -T=- \1:T= e -t e
i=(bydy) dnTn = (eFsiTenten) eRERTER YN

_ -1 _ (2.45)
= (4’17\}33}5" 4’N) SN REEYN -
This is therefore an instrumental variables method with
z% = 9L REL,, - (2.46)

It is also the optimal form of weighted least squares (WLS) [95]. In general, the weighted
least squares technique allows an arbitrary matrix to replace Rgg,,. In the deterministic
formulation of WLS, we have

Yy = dN0+ WNEN,

where W) is an arbitrary positive-definite weighting matrix. The general weighted least
squares solution is given by

A -1
10 = (el witen ) OEWR YN
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When W)y is diagonal, it has the effect of modulating the weight of the individual error
samples ¢;, yielding the weighted least squares of Gauss [173].

Note that multiplying through the regression formula by ZK(‘ above corresponds to
pre-filtering y: and u; with linear time-varying filter which depends on the correlation
function of ¢; and on N. If Rpg,, is chosen to be lower-triangular, then this filtering is
causal.

If ¢; is stationary, then Rpp,,.is Toeplitz in. which case. .
Rpl, =Ll + LU (2.47)

where L;,Lp are lower-triangular Toeplitz matrices, of order N, and U;,Ua are upper-
triangular Toeplitz matrices [114].

'Thus, for stationary equation error ¢;, the instrumental-variables pre-filtering by REE-N
may be accomplished by two time-invariant filtering operations in parallel, each the cascade
of a causal and anti-causal section.

If Rggy, is banded of order n, (i.e., REgy, [i,5] = 0for |i = 5| > n¢), then for N > n,,
it is the case that REEN is approximately Toeplitz [144]. In this case, }.,"Iv" is asymptctically
Toeplitz, and therefore the pre-filtering for the least squares method (2.43) is ultimately
time-invariant as N goes to infinity.

An explicit form for the time-invariant pre-filtering which asymptotically decorrelates
¢; is available from the model when the model is assumed to represent the system. If we
assume the model (2.13) where ¢; = H,(d)e;, then we have, in the scalar case,

A(d)H—%d)yg = B(d)E-:(T)ug +e (2.48)

or .
A(dy! = B(dy! + e (2.49)

where y{ and u{ are the pre-filtered data samples.

2.4.5. Generalized Least Squares

If we assume H,(d) = 1/F(d), then we have the relation F{d)e; = ¢;, which allows
estimation of F(d) from ¢; by means of an autoregression. This is the basis of the method
called generalized least squares [98,99,95,81]. We use the following loop of equations to
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estimate §: o
1) il =Fdu
il = Fldy:
9)  Ad)y] = B(dya] + 4 (2.50)

3) &= A(d)yg - .é(d)ue
4) P =¢é

The initial value of /(d) is chosen arbitrarily (usually 1, ie., f; = 0,i = 1,...,np).
Equation 1) is the pre-filtering step, 2) estimates A(d) and B(d) using the formula for 85
(2.11), 3) computes the correlated equation error implied by the current estimates, and 4)
estimates the '(d) corresponding to the current &. These steps are then repeated until
convergence is obtained.

2.4.6. Extended Least Squares

In the case of H.(d) = C(d), the pre-filtering is computed via

¥ SR S
t C(d)”‘ Yt 1Vi—1 ne¥t—n,

1 (2.51)
u{ = W"‘ = ‘“‘{-1 - - Cne“{-n. ’
or equivalently, 1
o = c@t = cna{.; - = cu.xo{.,.,- (2.52)

Thus if C(d) can be estimated, we can apply standard least squares to the pre-filtered
signals u{ , y{ in order to obtain a consistent estimate of A{d) and B(d).

Estimation of C(d) may be accomplished by augmenting the regression formulation
(2.25) such that

2T T T T T 2T 2T
Pt = (-yt-—l’ cooy Yt Ut—=1r 1 Btonyr Ctmts e oy €ty )

-T . . s A . (2.53)
0 = (alv"-’cn.’bh"'ybﬂvcl:'“ycﬂg)-
in which case we again have the model
T -
ye=10"pr+e (2.34)

where the error ¢, is white, thus making it is permissible to “whitea” é. However, we find
that in this formulation the matrix &y == ($;,...,$N ) contains & through é¢x—,, and
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these values are determined by 3N which is what we are trying to compute. Thus we are
forced into some sort of iterative or relazation method [95] where we alternately compute
#n given Ex and En given 8. A number of options exist as to how this augmented
estimation might be carried out, and the gradient descent formulation, to which we now
turn, is most helpful in providing insight into the alternatives.

2.5. The Gradient Approach for Offline Identification

The derivations given above for the Instrumental Variables, Correlation, Weighted
Least Squares, and Generalized Least Squares methods were all based on the regression
formulation. An alternative approach to least squares identification is direct minimization
of the cost function

Jn)=> e (2.53)

using gradient descent techniques. This was done previously to get (2.11) for the scalar
deterministic case. With this approach, we will obtain a simplified derivation for recursive
Maximum Likelihood, Extended Least Squares, and Instrumental Variables.

In the case of white equation error (¢ = ¢; = n. == 0), the gradient calculation
proceeds exactly as in the case (2.10) for deterministic least squares, and the resulting
estimator is 85 given by (2.11). As shown previously, if ¢; is correlated with p;, then
8%5) gives an inconsistent estimator for .

The more interesting case which we examine now is where ¢; = C(d)e;. Consider again
the augmented regression (2.53) in which C(d) is appended to 9 and ¢ is included in ¢ to
give @. In this case, the minimization goes as in (2.10) except that the gradient of é; with
respect to 3N, which we denote by ir,, is more involved.

2.5.1. Computing the Gradient

For simplicity, we give the derivation of 12;; for the case of scalar é;. We use the
convention that the gradient of a scalar with respect to a vector is a column vector. Thus
Y, = 0¢;/38 is N, X 1 where now Ny = ng + ny + n.. We have

. _ 9 _ 2 AT agfe _ . 3¢l
ve=2; aé(m Pt ) Y] br-—2 (2.58)
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where
0T 8 . .
= (=Yl e ey =Ytongs Yt=1). sy Utmpyy €y ooy Etmn, )
LT
=(o,...,o,o,...,o,a".“,...,a“t"') (2.57)
aé a6
=(0,+-,0,0,0.,0, 9y, $en, )
Therefore, o
37 - . ‘
70-9 =t + o +EnPron, (2.58)
which implies
A - - 5 a Y —¢t -f
Y S S NP S s J Y 2.50
¥e Pt — 81¥:—y Yine &@ Pt (2.59)
or
Cld)y, =—p,. (2.60)

Equation (2.59) gives a recursion for ¥, using C(d), and we are now in a position to
compute the gradient of J(0y).

\ N
9J(0N) _ E ae _ Z aﬂfg = 2 21/:,(:1: - & UN) =2 ): Ve —2) $dloN
30 -y 89 t==l tanl
——22 ﬁ’eyt'l'?Z‘PzS’:TaN
taml

(2.61)

2.5.2. The Second-Derivative Matrix

A derivation similar to that of (2.81) gives the second derivative to be

2
___8 Jix) =2 z (14':4’: + q_ﬁ_e_g)

where
= (01-":0101"':ox'z)t—ly'”;a)t—n,)
1 (2.83)
-m—)(o,...,o,o,...,o,ga,_,,...,ga,_,,c).
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2.5.3. Solving for Extreme Points

Equating (2.61) to zero and solving for 8 gives

N -1 N -1 N
In= (2 V&7 ) D b= (E #le ) > &y = (Zgr‘?’zv) lZz’GYN )

tmel tami tam1 (284)
with 2 ,7\} = 12;1, e N ) Thus the solution obtained by taking the derivative and setting
it to zero is simply an instrumental varicbles form in which the instrumental variables are
given by the derivative of & with respect to 4. Furthermore, we see from (2.59) that the
explicit formula for the negative gradient is exactly the pre-iiltered data vector we used
previously as a means for decorrelating the equation error in the case of optimally weighted
least squares. However, in this instance the parameter vector # has been augmented
to include the unknown pre-filtering coefficients {¢;,...,¢n,}, and it may be somewhat
surprising that the pre-filtering is also applied to the values of ¢; stored in &,.

From inspection of the Hessian (2.82), assuming J(8) to be sufficiently smooth, we
see that if C(d) is stable and [|é[] « || 2 ||, then a local minimum to the loss function is
obtained by using (2.64). This suggests using 8*° to obtain an initial estimate.

The solution (2.84) is only formal, however, since C(d) appears explicitly in the left-
hand side, and is required to compute ¢, in the right-hand side. Therefore, it is still

necessary to employ an iterative strategy for obtaining 8. The most straightforward
procedure is to iterate (2.64) such that each solution is used in calculating the next, i.e.,

G +1) = (Z De(3)p7 ( ) E ALY (2.65)

fam]

This is a relaxation method resulting from equating the grzdient to zero. Each iteration
coincides with a weighted least squares method in which the optimum weighting matrix
has been estimated.

2.5.4. An Approximate Newton's Method

It is also possible to directly apply Ncwton s Method [181,163,174,143,179] (derived in
Appendix E):

-1
IN(Gi+1)=dn()— (a =( N(*))) ?’90( (1))

N -1
=dn() - (Z &)’ + e':(i)é'z'(i)) 2 i),

tam]
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where &(i) is the model error at time ¢ given parameters dx(i), and the prime denotes
differentiation with respect to the parameters 8y(s). This is a second order gradient descent
method for nonlinear optimization, and it converges to the answer in one step of § for
the case of quadratic J(fx) (as happens when C(d) = 1). The parameter estimate &
is incremented in the so-called Newton direction for each i. In the case of uncorrelated’
equation error, for which C(d) = 1, we have exact equality above since the Taylor expansion
of J(8) is truly secord order in 8. In the present circumstance, the change in succesive
estimates 9 (i) gives some measure of-the higher order terms and hence a measure of the
non-quadratic nature of the loss function J(fy).

For this method, we need explicit calculation of the second derivative matrix which
was given by (2.62). When @ is close to 4, the last term in {2.62) may be neglected to give

a’«’J(oN ) o E bebr (2.67)

fam}

Using this approximation, the Gauss-Newton Method is obtained [174],

- % N o) .T - N J
B + 1) = BOG) - ( Y Y (-')) 2 Velifeul) (2.93)
taml

tam]

where ¢,(i) and ¢,(i) are computed using #(s). That is, on each batch iteration, the
C(d) polynomial from the previous iteration is used to perform time-invariant pre-filtering
throughout the current iteration. It turns out that this same algcrithm can be obtained
from the maximum likelihood point of view for both the case of known and estimated
error covariance Rpg,, [95, p.93]. For this reason the superscript “ML” is used to denote
the estimate, and we call it the Mazimum Likelihood Method [82, 95]. The Gauss-Newton
method also arises in the context of the prediction error formulation [82,85,86,87,108,95].

The approximate algorithm (2.68) is widely recommended (see e.g. [95]) over the more
precise version (2.66) for two reasons. First, since the cost surface is not actually quadratic,
the true Newton direction is only accurate near the optimum ¢; the quality of approximation
(2.67) is greatest near the optimum also. Second, it is important (especially initially in the
search) that the matrix alteration of the gradient be positive definite in order that the
adaption step always be “down hill,” and the proposed approximation guarantees this since
it forces symmetry in the matrix (of course there must be at least as many ¢, vectors as
there are parameters). Thus using the approximate form of the second derivative (2.67)
guarantees a positive definite gradient transformation and provides the Newton direction
in the final iterations to give “quadratic convergence” [181].
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2.5.5. Further Approximations

When the noise ¢; is not very correlated, then C(d) = 1 in which case a sensible
approximation to the gradient ¢, is the vector —@; (see (2.59)). This gives the so-called
Eztended Matriz Method or Eztended Least Squares [99,95,81]:

N =l N
FES i +1) = 45 (0) + ( 2 sat(i)saf(f)) BuliNeld) (2.69)
tmel tam]

This is the same form as ordinary least squares but with # augmented to include C(d) and
© augmented to include . It is the same as /™% except for the absense of pre-filtering by
1/C(d). By expanding é:(s) as ye — &7 (1)0n(4), we have

N "IN

N+ 1) = (Z ii’:(")‘ra{(")) > ol (2.70)
tam1 tame]

This form shows that %7 (as well as §™%)) reduces to §**>) when the gradient approxima-

tion ¢ = —y is employed.

2.5.6. Convergence of the Offline Identification Techniques

A principal advantage of the gradient formulation is in knowing that the estimate will
always be improved by moving some amount in the direction of the negative gradient.
However, since the higher order terms of the Taylor expansion of J(éN) are nonzero,
the optimal step-size to take in this direction is not clear. The step-size used in many
nonlinear optimization schemes is that which reaches a local minimum of the loss function
in the search direction. The solution §¥ above conforms to this policy by finding a local
extremum of J(8y), conditioned on C(d). The solution #*% also takes this approach to
step-size determination, but by finding a point where the “local quadratic approximation” to
J(n) reaches a minimum, also conditioned on C(d). If the loss surfacé J(#n) is reasonably
smooth, then each iteration will result in an improvement of the parameter estimate.
Finally, since 5“5 may be interpreted as a version of #™%) in which the gradient be
is approximated by —¢@;, its adaption policy may be seen as equivalent, using an inferior
quadratic approximation relative to §*%,

In addition to the possibility of having au improper step-size, there is the danger that
any of these schemes may halt prematurely due to a local minimum in J(#) which is not
a global minimum. When C(d) =1, this is not possible since the error is then linear in the
parameters, and the solutions §¢¥?, §M%) and §'®*5) give the ::nique optimum parameter
estimate in one step. For each fixed value of C(d) used in each iteration, the error is linear
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in the parameters so that the minimum of J (31«;) is again unique and therefore global.
Thus the primary question left undecided is whether or not £(d) itself will converge to the
globally optimum polynomial C{d), and this depends on the concavity of the cost surface
J(0x') with respect to ¢;. There seem to be no general results concerning the existence of
sub-optimal local minima in J(aN) for the general ARMAX model (2.17). However, if there
is no u; input (n; = 0), in which case we are fitting an ARMA model, then it is known that
all local minima of J(#) are global minima when the model can represent the true system
[119,84]; when ng and n. in the ARMA model-are correct, then there is only one minimum
of J(? N), and for excessively high model orders, the extraneous local minima correspond to
pole-zero cancellations in C(d)/A(d). These remarks for the model-complete ARMA case
apply only to unconstrained local minima. Sub-optimal local minima can still appear at
the boundary of the stability domain.

Convergence may be aided in practice by the following measures. First, it is necessary
that C(d) have a stable inverse at all times since otherwise ¢, grows exponentially. We
factor the C(d) polynomial after each iteration and contract the zeros to lie inside the unit
circle if necessary (this may be done in a way that preserves angles in the complex plane
by exponentially weighting the {c;} coefficients via ¢; — M¢;, for some fixed X\ € [0,1]).
Second, a good initial value for C(d) is C(d) = 1 (i.e., & == 0,§ = 1,...,m¢), and a
good initial value for 4(0) is that obtained by the more robust least squares method §“
{which always gives the smallest value of I:J'TE possible using A(d), ﬁ(d) alone). Finally,
Box and Jenkins [135] recommend that the loss function J(y) be plotted “extensively”
as a function of the various components of 8. In this way, sub-optimal local minima and
convergence against the unit circle may be detected.

2.5.7. Output Error Minimization

The output-error algorithms estimate the parameters of a rational linear time-invariant
system given input-output data in the presence of uncorrelated measurement noise. Thus
the measured output y; is assumed to be of the form

_ B(d)
yt A(d)
where u; is the input signal, v; is stationary white noise uncorrelated with u, for all s, and

the unknown linear system is representable by finite order polynomials in the unit-sample
delay operator d:

ug + v, t=12,... (2.71)

Ald)=1+ayd+ - - +apd"*
B(d)=byd+ -+ +b,,d™. (2.72)

We assume that the system is stable, i.e., that all the roots of A(z™!) lie inside the unit
circle in the complex plane. It is also assumed that system observations y;-and u; are
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available for an arbitrary length of time. Accordingly, the analysis will be given for the
case of infinitely long data records.

The model is written as B(d)
Yp == ———uy + f)t , (2.73)
A(d)
where .
A(d)=1+ayd+ - +aa,d -
Bld)=byd+ -+ +b5,d™,
and we deﬁne

ﬂ‘ == min{;lq - g, ﬁb - ﬂb} .
In the case of white measurement noise v;, we wish to minimize
Joe(d) =T {03} A Nim Z (2.74)
z-

. T N . 3 -
with respect to the vector of parameters & ={(ay,...,da,,b1,...,ba,). Such a procedure
is known as an output error identification technique. We must restrict A(z™!) to have roots
inside the unit circle in order for the limit (2.74) to exist.

Using the assumption that v; is uncorrelated with u, for all s, we have

2 B(d) _ B(d)
Joe(o) =?t{[(m :4(7)) } }+d,,

o5 AT{v?}

is the output noise variance which is independent of 4.

where

In the frequency domain, this is equivalent to minimizing

p B(e"") B(c"”)
Joel0) = — A(c]w) A(ch)

21!' -

U(¥)dw + 03 .

where i,
Uy A Z To{urup e vk
Joama = 0O
is the power spectral density of u;.

If n* =0, and if u; is persistently exciting of order ng + n;, then the unique minimum
of J,.(9) is given by the true system parameters [126].
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If n* > 0 and u; is persistently exciting of order max{A, + ny, ng + 3}, then the
unique minimum is attained by a continuum of parameter vectors & such that

A(d) = A(d)(d)
B(d) = B(d)Ld),

and the polynomial
Ud)y=1+lid+ -+ +Ilped”

is of order n* with arbitrary coefficients I; [126].

In the case n* < 0, minimization of J,,(&) yields an optimal weighted least squares
fit to the system frequency response, where the power spectral density of u; appears as the
weighting function in the frequency domain. If u; is spectrally flat, such as an impulse or
white noise, then the mean squared error between the system and model impulse responses
is minimized.

A difficulty with output error methods is that they present a nomlinear optimization
problem. This is due to the fact that the loss function J,(9) is not a quadratic form in the
parameters a;, or equivalently, because v; is not linear in the parameters a;. Currently,
the conditions for convergence are unknown. Moreover, it is shown in Appendix A that
when fig < n4, there can exist multiple local minima in J,, which can make gradient-based
descent algorithms of limited utility.

The Steiglitz-McBride Algorithm

The Steiglitz-McBride algorithm is an iterative application of an equation-error mini-
mization where u; and y: are filtered between iterations by an estimate of 1/A(d). This
converts equation error Ag(d)ys— Bi(d)us into the error Ay(d)ye/Ap—y(d)—Bi(d)ue/Ap_,(d)
which reduces to y; — Bj(d)us/A(d) upon convergence of A.

The Steiglitz-McBride algorithm is given by the following iteration for k£ =0,1,2,....

buss =T el e m)} z{elGuntion), (2.75)

where
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0 = (81(R) - iy (R),BalB), -, By ()
el (007 = (~vl_i@0) ... —vln B0 w1 (B0), . ol (B0))
b)) = ——n
Awld)

o] (6) = —
Ai(d)

Ald) =1+ay(k)Md+ -+ +adz, (k)d™
By(d) = by(k)d + -+ + bs, (K)d™.

g

Note that ék“ minimizes
Tet(Brar) = '5:{3{ (h)’}

where
(8e) = vl(8e) - o] (8) b1
= Appr(d](8) - Buld)] (B2)
= Aeai(d) o
Ai(d)

Thus, if 8, converges, then the output error criterion is minimized. Unfortunately, conver-
gence even to the nearest local minimum has not been shown [128]. It is straightforward to
extend the Steiglitz-McBride algorithm to time-recursive form. It was observed empirically
that the A estimate used in the pre-filtering should be delayed by at least #, samples
relative to the pre-filter input signals.

In practice, the algorithm does apparently get stuck at sub-optimal local minima more
often than not. However, when it does work, it tends to give much superior modeling of the
frequency response. Figure 2.4a shows the result of applying Weighted Least Squares to
white noise filtered by H(z) == 1+ 0.7z7!4, The weight function (an order 8 Butterworth
lowpass with the —3dB point at f = f,/8) causes the algorithm to focus on the first two
“resonances” in the frequency response. Fig. 2.4b shows the result after 3 iterations of the
Steiglitz-McBride algorithm. It is clear from this figure that output error can yield a better
match in the band of interest. This example was fortunate, however, for in other similar
cases, the fit changed only slightly or even became worse. This emphasizes the practical
importance of guaranteed convergence to an optimum solution. Indeed, much ¢f the work
of Chapter 1 was motivated by this example and others like it.
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Figure 2.4. Comparison of equation-error minimization and output-errcr minimiza-
tion using the Steiglitz-McBride algorithm. Each plot gives an overlay of the true
frequency response magnitude (the regular series of arches), the weight function (a
gentle lowpass characteristic), and the 5-pole, 4-zero model frequency response mag-
nitude.

a) Equation error.

b) Output error.

2.5.8. Summary of Offline Identification Algorithms

We have derived the off-line versions of Least Squares (#5)), Optimally Weighted
Least Squares, Generalized Least Squares, Extended Least Squares (§F%%), Instrumental
Variables (8¥?), Maximum Likelihood (%), and the Steiglitz-McBride algorithm. All
methods (other than Steiglitz-McBride) differ only in the manner in which the correlation of
the noise ¢; is handled. The Steiglitz-McBride algorithm provides a means for transforming
an equation-error method into an output-error method. The two general frameworks
discussed were the regression formulation and gradient descent.

In the following sections, we shall be primarily concerned with the methods §#“, §*),
§'5LS) and §'MY), which can all be expressed as
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. . N -1l N
Inti +1) = bn(3) - (Z A f)eui)f) 3 al)El),
tam] fam
~ — (2.76)
= I (i) + (Z zc(,-)g(;)) 3 2(iedi),
tam] taml

where .
&(i) = ye = $T ()N ()

Sb{(i) = ( —y:tl:-!’ ey -ytz:-n.: ug;ll sy “Z—nv 23:-1(‘.)1 ey 2:tll.-m,(")) (2.77)

I() = (8160 30, B Bl 08, ()

and the individual methods are obtained from the following table:

Method z¢{1) &(9)

5"'5’ Pt Pt

§EE) | 5.(9) FXG)

0 | 3l li)

O ] el | #16)

General —&l(9) -&(9)

Table 2.1
where
#1(5) = o) = 81()RT_1(5) = - = Enali)PT_n () (2.78)

is (precisely) the negative gradient of &(s) with respect to 8 (i) when the model is of the
form (2.76). For more general models, the gradient of the error at time ¢ with respect to
the parameters § n(f) is denoted é)(s). These methods may all be viewed as forms of the
Gauss-Newton method for nonlinear optimization with different gradient approximations.

2.8. Recursive Computation of Offiline Methods

The algorithms derived zbove can made time-recursive, where the parameter estimate
8 is updated for each t. In this section we will consider only one pass through the N
data points. Therefore, we will drop the pass-number ¢ from the equations for notational
simplicity. The initial value 8 v(i), from the previous pass, will be denoted fy, and the final
estimate (i + 1), obtained at the end of pass i, is written as 8n. Then the four off-line
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algorithms described in the preceding section may be written as

. R N -1 N
On=0do+ (Z z‘e'{) 3z,

fom1 tam1
which is simply (2.76) with the pass number omitted. Defining

N N
Ry A Y =z, GNA Y zb,
taml tam1

we have the time recursions -
R¢ = Ry + 2§,

Gy = G-y + 28,

and the relation
0 =00 +R;'G: t=1,...,N.

We derive a recursive in time update for 4; as follows:
8; = 8o + R G
= 0o + R; {(Gt—1 + 2:2)
= bo+ Ry }(Re=ad1-1 ~ 80 ) + 2
= by + R:‘R,_l(b,_, —bo) + R zste
=80+ R7Y(Re - z,s{)(ét-. —bo) + Ry iy
= b1 = Ry 216 (Bems — o) + BT U2ty

= ag—l + R;lzg(‘é: - f{(&g-; - 90)) .

2.8.1. Recursive LS, ELS, and IV

In 8YY) and §'FL5), we have § = &, which implies

=4 —Sbg‘at—l-
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(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

(2.84)

Thus the exact recursive forms of the ofline methods 8" and 4% (and also §'*) when

& is replaced by @) are given by

By =y + Rt_lzt(yt - ¢Z'5g..1)

= 3:—1 + Rt_lztét(t -1)

(2.85)
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and Table 2.1.
It is interesting to note that the “driving residual” of the off-line version é; & y,~$7 8,
has become
Gt —1) =y, — 70—, (2.86)
in the recursively updated version Otherwise the structure is very similar to the batch
version (2.78).

2.8.2. Interpretation of ELS as a Limited-Step Newton's Method

The recursive algorithm (2.85) may be interpreted as a limited-step Newton’s method
[161] for each ¢, since

a:,gt- 1) = 22t - )Beg(t 1)
30,-1 ) a9 t—1 (2.87)

= =28t - 1)@,

using the fact that @, is not a function of §;—;. Thus, in the recursion (2.85), an exact
“instantaneous” gradient of the prediction error é;(t—1) with respect to the latest parameter
estimate 0;—; is computed, given of course the fixed pre-filter Cy(d) which applies to the
whole batch for ¢t =1,...,N.

Since the Hessian,

2:2(¢ —
i Uik JPPAPS 4 (2.88)
a0,

is not invertible, a true instantaneous quadratic descent is not possible. However, in 8529,
the average Hessian is used, for the update can be written as

. - 1. (8283t —1)) " oe3(t -1
B =820 - 2T ek.(g—)} Glt-1) (2.89)
a0, 30ty
where
Ce{zi} A5 sz (2.90)
E-l

denotes time averaging.

Thus #E%) is a form of limited-step Newton's method [161]. The search direction at
each time instant is given by the instantaneous direction of steepest descent multiplied by
the estimate of the inverse Hessian based on 2!l data up to time t. The step-size factor
1/t weights each individual step by the inverse of the total number of steps so far; this
essentially averages the individual Newton directions, and from (2.89) we see that it is
exactly equivalent to first averaging the instantaneous gradients and then multiplying by
the inverse of the final average Hessian to obtain a single (batch) Newton step.
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2.6.3. Recursive Maximum Likelihood

The one case of (2.83) where we did not get a cancellation of the term involving 8,
was with 8%, In this case, substituting according to Table 2.1 into (2.83), we have,
B0 = 0P + R (= Rl T(02P - i29))
] . e P . (2.91)
=8P + RP ] (v 1THEDP + BT (00 - 31P)).

Thus 82 is asymptotically equivalent in form to the simpler cases since eventually f, —
#:—1 — 0 as the number of batch iterations tends to infinity. Also, when the equation error
¢; is not strongly correlated, so that gb{ ~ &y, then #™E) again reduces to LS (as does
§),

We may note one further interpretation of the §** recursion as follows. By linearity,
pre-filtering may be factored outside the expression y{ - g&{T 89 to obtain Co l(d)(yg -
$T8o) = C; '(d)ee = &f. Similarly, we find that yf — ${ T8,y = &3 (d)eelt — 1) =
&f(t —1). Therefore, introducing yf — yJ into (2.91) yields

B0 = 3340 4+ R (00— + (2 - 1)). (2.92)

Thus #MD i3 effectively driven by three residuals which are

a

Co(d) (2.93)

. 1 s T3
efe-1) = —— (v - $To40)
Co(d)

-] = m (m—é?%‘“’)

This concludes the derivation of the recursive forms of the off-line identification algo-
rithms. No approximations have been made, and these recursive forms are exactly equiv-
alent to their off-line counterparts. Thus the off-line algorithms (2.78) may be implemented
recursively by means of (2.83) making repeated passes through the data until convergence
is achieved.

2.6.4. Eliminating the Initial Estimate from the Recursions

The offline met}xods discussed so far step n in a direction which reduces residual
energy J(0n) = E’NE'N as computed over the entire data record. As a result, a fixed
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value of § is used over all the data on each pass. For large IV, this can be inefficient since
fewer samples may give almost as good a step in 8. In other words, there is a trade-off
between accuracy in the estimation of the descent step versus taking steps often enough
to give descent along the loss surface at a reasonable pace. In this section, algorithms are
derived which simultaneously update the search direction and the parameter estimates on
which the search direction is conditioned. These are the algorithms which are known as
recursive identification algorithma.

Consider that in the recursive versions of the off-line methods, the pre-filtering by
C, !(d) is fixed throughout each pass. However, within a pass, new and presumably
better estimates of C‘(d) are being explicitly computed. It seems reasonable to expect that
incorporating these latest estimates into the recursive algorithm will improve its rate of
convergence. Also, if the system is changing over time, it is better to use a “local” estimate
of C(d) in order to get a good gradient computation.

There are a variety of ways to infuse the latest information about 2 into the recursive
algorithms. One approach is to extend the interpretation of #*>) as a instantaneous
quadratic gradient descent method by removing the fixation of C(d) to Co(d) and re-
computing the gradient. Another is to apply the Robbins-Monro algorithm from the theory
of stochastic approximation [124]. However, we give instead a derivation based on the
recursively upated offline maximum likelihood method 8%,

Equation (2.92) gives the off-line version of ™% which was obtained by applying
Newton's method to the minimization of J(6y). We wish to use the latest parameter
estimates wherever possible in the algorithm. Accordingly, we replace 8o by §;—; and C‘o(d)
by Ct~i(d) in the offline recursion (2.92). With these substitutions, ¢, becomes &t — 1),
and E{ becomes 3{ (t—1). Therefore, we get a cancellation of the two filtered residual terms,
and 99 becomes

BPMD = BIYD — RT (= Dt~ 1)

. R 2.94
Ry == Re—y + 9,(t — 1)1!"{(‘ -1) (294

where

trmi(t = 1) = gpoy — PTi{t — 1)ty _
.T . . (2.95)
~h (t - 1) = ( =Ytmlyeeey =Ylmng) Bt=1j-.-, Yt=ny, Eg-](t - 1), ce ,Eg-nc(t - 1)) .

Thus we proceed as if we were recursively computing the offline maximum likelihood
estimates, refining the initial conditions to be the latest estimates as we go; i.e., 8o is
replaced by 8:—, wherever it appears. We call this the Recursive Mazimum Likelihood
Algorithm, and denote the parameter estimate by 8R4,
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The gradient y,(t — 1) is by definition

de(t —1)
FYI

= =it =)= (0,-.,0,0,...,0, 4t = 1),...., Byep(t - 1) )e-s
==pft—1) = es(t — 1)y (t = 1) = -+ = En,(t = Iy, (2= 1)

Pt-1)=

(2.96)

=“‘ @it —1).
Ct—1(d)

Due to the shift structure of @,(t—1), the above filtering may be implemented with smaller
complexity by the following computation.

A= ——p ==t = -+ = tns (W (7)

t—-1
ul(r) = ——ue = we = es(rul_y(r) = - —in (i, (7)
Ci—-1(d)
(1) = ——alr) = te(r) ~ ey () = -+ = En (DR ()
t=-1

9 () A (s =edes() o ol (1), =)~ (),

(2.97)
where in the algorithm r =t -1.

Note that the above algorithm is not truly recursive in that the gradient requires
computation of $i(t —1), for k= 1,...,t, and the computation of &,(t — 1) alone requires
recomputing all the residuals from time ¢ = 1 using the latest model estimate 8.
However, if the zeros of C(d) are well outside the unit circle, then the gradient recursion
rapidly forgets past ¢ vectors. Also, since the change in #; over n. successive samples
should be small for ¢ 3> n, it is reasonable to expect that &;(t — i) =~ &;(t — 5) for small ¢
and 7 as long as the computation of & is strictly stable (i.e. the recursive filtering used in
computing é; from u; and y; must have approximately finite memory, and preferably fairly
short memory). Thus we consider using

o =y —tt-1wl, - - —n (-1,

u{ =uy — &t — I)u{__1 — e —in (t- l)u{°ﬂe
d=t(t-1) =yt -1 = - —nft—1)e]_,. | (2.98)

5T S f o of
11): E 3 (y{—l:"'!y{—n."“t—l""7—“t—n57_et-1""1_ft—u.)'
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With these approximations, we obtain an algorithm that is truly recursive in time. The
residuals in & are now just the prediction errors computed on the past n. updates, and the
recursive filtering for the gradient estimate also just uses previously computed quantities.
In the case of the ¢ vector, this time-shift structure is necessary for using the complexity
O(Np) update algorithms to be discussed shortly.

To summarize, we have derived a Gauss-Newton algorithm which is truly recursive
in time and which allows simultaneous updating of the parameter estimates, the gradient
search direction, and (unlike the offline versions) the parameter estimates used in computing
both the gradient and equation error. The search direction is akin to the Newton direction
using 2 Hessian estimate based on all the data up to time ¢, and an “instantaneous” gradient
of &é(t — 1) with respect to 53-1.

Miscellaneous Relations and Terminology

In the case n = 0, #F¥ reduces to exact recursive least squares #*5), Also, when the
é‘(d) polynomial is fixed to C:'o(d), and when &, is made to contain {¢,-40),s =1,...,n.},
we obtain the exact recursive update for the off-line extended least squares method §E%),
If 3, is constant, the approximations used in obtaining #*™% from #M“ become exact.
Thus if the estimate 87" converges, it becomes equivalent to the recursive offline ##%
except for state information accumulated prior to convergence. This information consists
of an additive difference in the matrix R; and memory of old residuals and gradient vectors
via the recursive filtering (2.98). If the average signal powers of u; and y; remain nonzero,
then the R; discrepancy becomes arbitrarily small. If the final C./'-l(d) is strictly stable, then
the influence of residual and gradient estimates prior to convergence will also die away. In
other terms, when convergence at a finite time is assumed, the input is persistently exciting,
and the final C{d) is strictly minimum-phase, then the truly recursive maximum likelihood
method is equivalent to the offline version.

The present form of the algorithm for ##M%) is called Recursive Mazimum Likelihood
(RML) [95] or RML2 [125]. When the gradient ¢, is approximated as —@,, then we get
what is called RML 1 [125], Approzimate Mazimum Likelihood (AML) [119,127], or Recurssve
Eztended Least Squares (RELS). When the irue gradient is used only as one of the two
vectors in the R; update, then a form of Recurssve Instrumental Variables (RIV)is obtained.
When 5. = 0 the result is Recursive Least Squares (RLS) which is equivalent to the off-line
version, since all approximations above pertain only to the computations needing C(d).
By considering the more general case in which H¢(d) = 1/F(d), it is possible also to
incorporate Recursive Generalized Least Squares (RGLS). In this case, the gradient of &; is
more complicated, but still obtained by linearly filtering components of ©,. For discussion
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of the more general case

Ald)ye = g%u, + g_g;,‘-;f,, (2.99)

as well as general prediction-error algorithms, see [108,111].

2.8.5. A Generalized Recursive Gauss-Newton Method

Using the same steps. as.in_(2.83), we.can abtain an exact recursion which does not
depend on the form of ¢;, and only the sum-of-squares structure is used. The recursively
updated Gauss-Newton method becomes

b = bems = BTO|140)+ 40 (Bems = )

(2.100)
Ry = Ry + &(0)¢}(0)7,

where €;(0) is the model error at time ¢ given parameters 8o, and the prime denotes
differentiation with respect to the parameters dg.

As in the previous section, we eliminate the initial estimate 8o by using the latest
parameter estimate §;—; in its place. This gives

by =By — RTME(t - 1)yt - 1)

2.101
Ry = Re—y + &t = 1)E(t - 1)T, (2.101)

where now, é;(t—1) denotes the model error at time ¢ obtained using the previous parameter
estimate 8;—,, and &(t — 1) denotes the gradient of &(t — 1) with respect to §s—;.

2.6.6. Forgetting the Past

When performing a nonlinear optimization by means of the recursive Gauss-Newton
method, it is usually helpful to discard the influence of early gradient estimates, since they
are typically inaccurate. In this case, the update for R; becomes

Re = MeRe—y + &(t = et —1)T,

where 0 < \; < 1is the “forgetting factor.” The exponential time constant corresponding
to A¢ = X\ is 1/(1 — \) samples, and thus 1/{1 — A¢) can be interpreted as the “memory”
or “averaging capacity” of the algorithm at time t. If the corresponding off-line Newton’s
method is taken to be

N -1 N
ING+1)=dpn(i)- (Z ﬂ’c[elc(")é'z(i)r + e',(.-)e,(.-)]) 3 weli)el(s),

t==1 t=21
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where wy == A¢A¢qy- - -A -y, then it is easy to verify that the exact recursive update (2.100)
for # is the same. The 8, recursion (2.101) is unchanged also. Ogly the R, update is affected.

When the input and output signal are stationary, and when the parameter estimation
is nonlinear, it is generally recommended that A, start out small and ultimately approach
unity. This is so that early gradient estimates are given less weight in the solution. The
use of a forgetting-factor which starts small and grows toward unity can be considered a
convergence. acceleration technique; other acceleration methods will be discussed in a later
section. A simple way to implement a growing forgetting-factor is to define

At =cA¢—y +(1 —¢),

where 0 < ¢ < 1 controls the rise of \¢ to 1, and A\g determines the initial “memory.” For
example, with ¢ = 0.99 and A\¢ == 0.9, one may say heuristically that the averaging-time
of the identification algorithm (affecting R;) rises from about 10 samples to infinity with a
time-constant of 100 samples.

When tracking time-varying parameters, A\; can be set to correspond to the rate of
change in #;. A trade-off appears between averaging-time and parameter bandwidth. For
example, setting A\¢ = 0.999 allows on the order of 100 time samples to be accumulated in
R;, and therefore the true system parameters should be relz:ively constant over a span of
1000 samples. It would seem possible to set A\, as a function of “time-variation indicators”
such as the short-term prediction error statistics.

2.6.7. Summary of Recursive Identification Algorithms

The generalized recursive Gauss-Newton (RGN) algorithm may be prescribed as follows
(using simplified notation from above):

te=yo— pT 0y
Re=X\Ru_y + 267 (2.102)

0: == 0:-1 + RT"Z;E:,

where

‘;9 = ( =Yt—1y-e oy TYtong, Yt—=1,. .., Uteny, at—l, seey ét—nc )

T
t
0 = (81(8), (0, B0 g0 2a(8) - E0l0)), (2109)

and the special cases are given by the following table.
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Method 2 &
el Y )
§RIV) Sa{ b
FRML) Sar {é{
General | —é4(t—1) | —=&i(t—1)

Table 2.2
where

= _y{—p ) -”{-n.r “{—1’ sy “{-m’ E{‘l’ o ,E{_,“ )
vl =we—alt-yl, - - —ent -1l
= Uyt - él(t - l)“{‘-l b E"c(t - l)u{—ﬂe (2.104)

=& —é(t— 1)3{-1 — e =Cnft— 1)3{—::.
0¢,

The recursive least squares method 8% i3 given by any of the first three methods with
Be = 0.

2.7. Accelerating Convergence

As mentioned previously, the use of a forgetting factor A\; can improve the rate of
convergence in the methods for which 5, > 0. In this section, convergence acceleration
based on improving the approximate gradient used in the RGN algorithm will be discussed.

Recall from (2.95) that within @,, {é—1(t — 1),...,ét=n,(t — 1)} is, in a sense, ap-
proximated by {ét—1{t — 2),...,ét—n,(t — nc — 1)}. This approximation allows the simple
insertion of €;(¢—1) into a “delay line” within ¢,, avoiding the computation of all residuals
é&(t-=1), ,k=1,...,¢ from the beginning of time for each update. We now examine
techniques which improve this approximation at greater computational cost.

9.7.1. Use of the A Posteriori Residuals

For a small increase in computation (having complexity C(Np)), we can use instead the
a posteriori residual estimates {¢~3(t — 1),...,¢ét—n.(t — nc)} which give a slightly better
approximation still exhibiting the important shift structure. Thus at time ¢, after 6 is
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updated using @, and &(t— 1), we compute é;(t) =y -{o}'é, which is then placed into the
@ vector where &;(t — 1) was used before.

This modification transforms (2.102) into

t(t—1) =y — T8
Ry == Rewy + 267
B =By + R npie(t - 1)
alt) =y — o7 0:,

(2.105)

BT = (—ttmts ey =Ytmnar Ytmts oo o, tmny, ét1(t = 1), ..o Gtmng(t — 1) ). (2.106)

Simulations show this extra computation to significantly improve the early convergence
of the RGN algorithm. As an example, consider the system

Yyt — 0.8 yiy = uy +0.034(e; + 0.7 €4-;) (2.107)
where u; and ¢, are independently generated Gaussian noise with u‘nit. variance. The scaling

of the disturbance by 0.034 results in a signal to noise ratio in y; of about 10dB.

Table 2.3 lists the sample standard deviation of the prediction errors é; for the first
two sets of 258 points. The sample standard deviations are computed using the formula

1 g
S &, (2.108)

ty—t; Prd

it ty) =

In the cases using convergence acceleration, the sample standard deviation is denoted by
4(A)
T¢ (t{ 1 f).

Method | 6.(1:258) | 6¢*(1:256) | 6(257:512) | 6¢*(257:512)
JRELS) 0.0379 0.0240 0.0223 0.0206
gRIvV) 0.0703 0.0243 0.0250 0.0205
gRML) 0.0373 0.0237 0.0218 0.0206

Table 2.3. Compzrison of prediction-error variances with and without
convergence acceleration (superseript A).
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2.7.2. Backtracking

Equations (2.96) and (2.97) give an exact recursion for the gradient of the prediction
error with respect to the model parameters. Equation (2.98) gives the corresponding
approximation used in the RGN algorithms. It is possible to use approximate gradients
which fall between these two extremes. The idea is to reach back Np samples before
the current time ¢ and recompute the gradient using the latest parameter estimate. If one
reaches back to time 0, then the exact gradient is obtained. If one reaches back one sample,
the convergence acceleration using a posteriori residuals is obtained. This experiment was
carried out for a variety of values of Ng. The results indicated that Ng = 1 (yielding a
posteriori residuals) gave nearly all the improvement that is to be had with this technique.
Greater values of Np gave negligible further improvement in the rate of convergence. Thus
there is something fundamental about Ng = 1 which deserves further explanation. This
experiment was suggested by Lennart Ljung.

2.8. Efficient Recursive Updates

In this section we review a method for reducing the computations per time sample in
the RGN alorithm to the complexity O(N3). The next section gives a method which brings
the complexity down to O(Np).

The RGN algorithm, as given in (2.102), is dominated computationally by the inversion
of Ry = Ry—y + z:£T. The inversion of a general N, X N, matrix is of complexity O(N )
Since the update of R; is a “rank 1 correction,” we may update its inverse explicitly with
O(N?3) operations using the so-called “matrix inversion lemma,”

(A+BCD)y ' =A"1-A"1B(C™'+ DA™'B)"'DA™?, (2.109)

with A= AR¢—y, B=12, C=1I,and D =£7.

Defining
P ARTY, (2.110)
we have Tes
Py=(NeRe—r + 261 )
—lp Preyzi€ Pry | 1 (2.111)
=|l=-1 =7 I
At + &7 Pi—yze Mt
Note that Ry cannot be chosen as a singular matrix. When it is felt that Ry should
be zero, an arbitrarily good approximation is §I where § is a small positive number. This
implies using the initial condition Pp = §~11.
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Computation may be saved by using the fact that

Pi—yz;

Pz = ——o—————,
A+ €T Pieyzy

(2.112)

2.9. “Fast® Recursive Updates

There is yet more structure in the update of R; which allows us to further reduce
computational complexity. Note that in the algorithms §V), §®LS), and §MD) the @,
vector may be partitioned into three sections, each of which acts as a “delay line” or “shift
register.” That is, at time ¢, the way @, is updated for the next cycle is to shift the elements
of each partition (corresponding to y, 4, and ¢) down one place, and insert the three samples
—yt, Ut, and & in the vacated positions. As a result, it is possible to perform updates of
the quantity P;z; with O(3Np) operations. This result is applicable also to any case of the
generalized RGN algorithm (2.101) for which the gradient of the error with respect to the
parameters exhibits this time-shift structure. To specify the procedure, we quote a lemma
from Ljung and Falconer [110] which is based on the properties of low-displacement-rank
matrices introduced by Morf [115,116,117]. The lemma provides an O(NN,) update for the
quantity R; !z; which we denote as k;.
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Let ¢; and #; be two sequences of p X 1 vectors such that ¢; = 9; =0 for 7 < 0, and
let
St—1 Nt—-1
Z¢==( ),Ez=( )
St—n Mt-n

' -1
¢
ke = (Z 76T + u) z

Then the quantity

Jm=1

can be determined recursively as

ee=mn+AL, & (2.113.1)
A=Ay = ke (t-1) (2.113.2)
Co=Ct1 + €gggT (2.113.3)
e=a-CTk (2.113.4)
Te=C¢1 + el (t~1) (2.113.5)
e
E =( t ot ) 2.113.6
T ke + AT ( )
Partition k; as
m; (np X 1)
A
ke =(m) P X 1) (2.113.7)
Let
pr(t=1) = gt—n + B &t41 (2.113.8)
-1
By = (Bi—y — mesT (¢ - )(1= meef (e~ 1) (2.113.9)
kipy = my — By . (2.113.10)

The initial conditions can be taken as

ky=Ag=Co=DBo=0, (2.113.11)
To=61I. (2.113.12)

This result can be applied to our formulation by re-ordering the elements of ¢, and 9,
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h that
suc a3 f‘yt-l\

UYp—1
€t—1 Nt

~Yt—n Nt—n
Ut—n
\ Et:n

and
-T a t o a %
ot = ahbhcb“'raﬂ’b’l’cﬂ ’

where n = ng = np = n.. In the present formulation, p = 2 for §**), and p = 3
for 8YV), §FLS) and §'MY), Using (2.113) to obtain k¢, we have 8; = 8;—; + k;é;, where
& = y; — $T 8;—; as before. These computations are required only for #*™% since for
§IRES) JRIV) and §IRELS) , [ies along the top row of AT.

Note closely the coupling of the equations due to the third component of the ¢; vector
in (2.113.1) being a feed-around and negation of the first component. In the a posteriori
residuals versions, the top row of Equation (2.113.2) must be computed before Equation
(2.113.1) can be finished, and then (2.113.2) can be finished.

In the case of arbitrary n4, 3, and n., the fast updates may be implemented using
a permutation matrix on k¢ above [110]. The gradient vector is obtained by the same
recursion (2.104) as before, giving reordered elements in ¢3.

In the symmetric cases (85, §#EL), §IME)) the recursion for the cross-covariance C
can be eliminated. Simply set £ = z in (2.113), and replace (2.113.3) and (2.113.4) by
T
€ = ¢ — A¢ 2.

2.10. Conavergence of Recursive Identification Algorithms

It is important to consider the convergence properties of the recursive identification
algorithms. Since they were derived as approximations to the offline algorithms, one may
suspect that their convergence behavior is similar. This is in fact the case, although it is not
easy to show. For a detailed discussion of the convergence of recursive identification algo-
rithms, see Ljung and Soderstrom [111]. The bottom line is that the Recursive Maximum
Likelihood (RML) algorithm has the best convergence properties. It can be shown that
under ordinary conditions the RML algorithm will converge to a local minimum of the
loss function, or to the stability boundary. Intuitively, this is due to the fact that the
approximate negative gradient ¢,/C(d) used in RML becomes the true negative gradient
when the parameter estimate 8, is fixed. The Extended Least Squares (ELS) algorithm, on
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the other hand, does not always converge to a lecal minimum of the loss function. This is
because the absence of the filtering of @, by 1/C(d) can cause the gradient to “point the
wrong way” and actually prevent convergence.

Convergence of RML

In order to guarantee convergence of the RML algorithm, as given by equation (2.94),
the following conditions-must be met- [L11]:-

o 1/Cy(d) must be strictly stable for each time-step t. If the algorithm produces a
parameter vector #; such that 1/C(d) is unstable, then the roots of C(2~1) must
be projected inside the unit circle. '

o The matrix 1R; must be strictly positive definite for each ¢ > 0. This can be
guaranteed by choosing Ry == 67 for some small § > 0. It is also necessary
that the input data be persistently exciting of sufficiently high order, i.e., that

_ &{pteT} be nonsingular. This ensures that the initial Ro is “forgotten” and that
the eigenvalues of } R, are strictly positive asymptotically.

e The forgetting-factor A\; must asymptotically approach unity. When \; < 1, con-
vergence cannot occur since the algorithm is “throwing away” past information.
For fixed M\¢ = ¢, the parameter estimates d; have a nonzero asymptotic variance
which approaches zero as ¢ approaches 1.

In addition to the above restrictions on the algorithm, the following limits involving
the data u; and y; must exist for each fixed # such that 1/C(d) is stable. As before, let the
time-averaging operator be denoted by

t=—1
Tz} A zl-i.%o% Z zp .
ka=0
Then the required limits are
b =10
{47} = c0)
T{(1+]9:e*)} < o0

The first two conditions state that when the parameter estimate B; is “frozen,” then the
update directions for 8; and R; are asymptotically mean-stationary. The third condition
is satisfied whenever y; is bounded, as is always the case in practice.
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2.11. Conclusion

In this chapter, many tools of system identification have been derived in a unified
and simplified manner. In addition, we examined the relationship of the identification
algorithms to the methods of Chapter 1. Various interconnections among the algorithms
were discussed. A generalized recursive Gaass-Newton method was defined which can
be used in nonlinear problems, and which reduces to the RML, ELS or RLS algorithms
when the problem structure permitsand when the gradient is approximated in a particular
way. It was noted that the gradient approximation associated with use of the a posteriori
residuals performed as well in practice as the exact gradient, and much better than the
gradient approximation corresponding to the prediction error.




Chapter 3

Mocleling the Violin

“Making an instrument s one of music’s grestest joys. Indeed, to make
an instrument is in some strong sensc to summon the future. It i3, as
Robert Duncan has said of composing, ‘a volition. To seize from the asr its
forma.” Almost no pleasure is to be compared with first tones, tests, and
perfections of an instrument one has just made. Nor are all instruments
tnvented and over with, so to speak. The world is rich with models—but
innumerable forms, tones, and powers await their summons from the mind
and hand. Make an instrument—you will learn more in this way than you
can imagine.”

— from Lou Harrison's Music Primer [246,251]

121
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BOm PogiTIOM

Bow Pressure

tou verecrey —y CONtrol. 1 String 1 Beody .[—

1

Figure 3.1. Complete violin model to be identifled from input-output measurements.

3.1. Introduction

Techniques from the previous two chapters will now be used in the construction of a
model for the violin. The violin model will be as shown in Fig. 3.1.

Thus the violin is decomposed into three principal parts—the input excitation, the
string, and the body. The body will be modeled by a rational digital filter using the
techniques of chapters 1 and/or 2. The string will be modeled as a special type of linear
filter which will be introduced in- this chapter; the methods of the first two chapters will
still apply. The excitation is an external input which will not be treated in detail, but a
good first-order approximation is supplied, and a high-quality method based on the physics
of bowed strings is described.

The first part of the chapter pertains to modeling the body, and the second part to
modeling the string. In the next section, some issues associated with the perception of
modeling error are discussed. Based on this information, a pre-processing procedure is
developed which will be applied to mezsured violin frequency-response data. Next, an
experiment is described in which the input and output of the violin body were recorded
simultaneously, and the results of this recording are discussed. From the measured input-
output data, the empirical frequency-responsc of the violin body is formed. A variety of
rational flters are then calibrated to the measured frequency respoase using methods of
Chapters 1 and 2. It turns out that Chapter 1 methods are most successful in modeling the
body because they can take advantage of spectral pre-processing. Next a special model for
the vibrating string is derived. It's main virtue is that it provides an extremely high-order
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model with only a few degrees of freedom. In this case, methods from Chapter 2 prove
to be best suited for estimating the parameters of the string from recorded data. Finally,
a bowing mechanism is described, and some possible extensions to the overall model are

discussed.
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3.2. Minimizing Audible Error

“Psychologists interested in perception have, ever since the ezperiments of
Adelbert Ames, known that we tend to percesve what we want to perceive.
This, in turn, is conditioned by what we have elready perceived and by the
framework we have been taught to perceive in. We don’t just see sorrething
‘out there.’ Qur perceptive apparatus conditions, filters out, focuses the raw
data that initiates the process of seeing.”

— Richard A. Lanham [279]

When attempting to fit a parametric model to a naturally occurring audio filter, aspects
of human auditory perception should be respected by the measure of fit employed. For
example, the ear is much more sensitive to spectral amplitude than phase. Also, the “critical
bands” of the ear have a strong bearing on the importance of fine-structure in the spectrum,
with higher frequencies being less individually resolved. Knowledge of the discernability
of various spectral modifications allows more efficient use of the degrees of freedom iz a
model. Accordingly, in this section, some relevant findings from psychoacoustics research
will be reviewed. These facts will be used to define an error criterion which is well-suited
to audio modeling.

At the outset, the domain of audio signals considered will be restricted to a subset
which is fairly well understood. Since the main purpose at hand is the modeling of linear
filters in nature, we may focus on perceivable differences in frequency response functions.
For an audio filter with a short impulse response, such as the body of a violin, the frequency
response will be dealt with primarily in terms of its effect on steady-state tones. That is,
we may compare the outputs of the true filter and the model for a relatively small set of
stationary or periodic excitations. A natural generalization of this method of comparison,
necessary when no a priors restriction is possible on the class of input signals, is to treat the
true and approximate frequency response functions as steady-state spectra themselves. This
is most reasonable for models driven by a periodic impulse train or white noise, and valid
only for systems having a short impulse response (i.e. when transient effects in the filter
have pegligible effect on the perceived sound). For systems with long impulse responses,
such as concert halls, tuis approach is highly incomplete since the temporal structure of a
long impulse response is an important determinant of quality. Although the time-structure
of the impulse response is contained in the phase cf the frequency response, it is no longer
analogous to the phase of a steady-state tone spectrum. Thus it is important to distinguish
between spectral-magnitude and reverberant properties of an acoustical filter.
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For the purposes of studying the perceivable differences between steady-state tones,
the ear may be modeled as a spectrum enclyzer with limited frequency resolution. This
idea dates back to Helmholtz who, in 1863, provided the foundations for this point of view
in his classic treatise On the Sensations of Tone [252). Since then, much research has been
done to refine the basic spectrum analyzer model of the ear. Two excellent books on this
subject are Aspects of Tone Perception by R. Plomp [263], and volume IV of the Handbook
of Perception [248].

3.2.1. The Importance of Phase

It is generally known that the phase relations among the components of a sum of
sinusoids do not contribute significantly to the perceived sound. However, a closer look
at the nature of phase perception will be useful for understanding the limitations of an
approximation which ignores phase. The following summary for the case of sums of
sinusoids will serve to highlight some of the main points [263]:

s Phase differences are more noticeable at higher frequencies.

¢ Discrimination between two complex harmonic tones on the basis of phase is easier
at low pitches.

o Phase relations which significantly modify the “peakiness” of the time waveform
(the ratio of maximum and minimum of the amplitude envelope) can result in
different timbres. Conversely, if the phase of a spectrum is changed in a way which
does not appreciably alter the amplitude envelope, then typically no difference is
perceived.

e In a tone consisting of 10 harmonics with amplitudes inversely proportional to
frequency, the greatest phase discrimination is observable between the case of a
sum of sines {or cosines)

sin(wt) + -;-sin(2wt) + %sin(&ut) + :14- sin{4wt) + -+ + -116 sin(}0wt),
and a harmonic sum in which sine and cosine are alternated
. 1. 1
sin{wt) + % cos(2wt) + 3 sin(3wt) + Y cos{(4wt) +--+ + -113 cos(10wt).

The perceived difference between a sum of sines and a sum of cosines in this
situation is negligible.

o In the previous case, changing the slope of the spectrum magnitude by a small
amount has a more pronounced effect on perception than does the maximally
different phase modification. This amount varies from person to person, and in a
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study involving eight subjects, the change in slope comparable with the maximal
phase distortion, in the context of timbre discrimination, ranged from 0.2 dB per
octave to 2.7 dB per octave.

o Discrimination based on phase seems to be concentrated within “critical bands” (see
below).

These effects may be explained to a degree in terms of critical bands, nerve-cell firing-
rate modulation, and “combination tones” due-to-mild nonlinearities in the response of the
ear [263].

In view of the above facts, an important simplification available when modeling systems
with short impulse responses is that phase information can be largely ignored. Further
considerations which support the unimportance of phase errors are that

(1) When the position of the listener changes relative to the source, the phase of the
spectrum is modified (when the sound radiates from other than a point source,
or reflections are present).

(2) In a reverberant sound field, the phase of the spectrum received by the ear is
randomized.

In cases where phase is unimportant, it is typically best to convert the desired frequency
response into the corresponding minimum phase frequency response. This allows most
methods for system identification and filter design to give their best results in terms of
magnitude fit. Again it is emphasized that phase-response can be ignored only for systems
with impulse responses which are short compared with transients in the input signal.

3.2.2. Perception of Phase-Delay and Group-Delay Distortion

The previous discussion of phase effects applies only to the case of periodic or stationary
excitation. For transien? sounds, a more relevant measure of phase-response distortion is
given in terms of the group delay and phase delsy. (See Appendix E for definitions of
these quantities.) There is only a small amount of data available on the perception of such
distortion, and a summary is given by Preis [267]. The conclusions (based on narrow-band
signal tests) are that

e At low frequencies (below 500 Hz), deviations in group-delay on the order of a few
milliseconds are imperceptible.

e At high frequencies, the ear becomes more sensitive to delay distortion. For example,
between 1 and 5 KHz, group-delay errors greater than 0.5 msec can be perceived
under sensitive test conditions.
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In complex contexts, such as natural speech or music, the threshold would be more
than twice the nominal values above [267).

For the case of lowpass filtering, Bloom and Preis have determined the phase-distortion
audibility threshold for two filter cut-off frequencies [247]. The excitation signal used was
(effectively) an impulse. Their results were that

o At 4KHz cut-off, two seventh-order elliptic function filters in cascade give audible
phase distortion: Four cascade-eighth-order Butterworth filters give audible phase
distortion. (The trials always used one or more pairs of cascade filter sections.)

o At 15KHz cut-off, up to eight seventh-order elliptic function filters in cascade give
no audible phase distortion.

Thus, while phase-sensitivity increases from low to middle frequencies, at very high
frequencies (near the limits of hearing), the ear becomes relatively insensitive to this type
of distortion.

3.2.3. Frequency Resolution

The resolving power of the ear as a spectrum analyzer varies with frequency. Since
hearing is not a linear process, it is impossible to arrive at a definition of frequency resolution
which holds in all circumstances. However, in the context of discriminating steady-state
timbre, a reasonable definition can be made based on critical bands. The concept of critical
bandwidth in the ear is itself rather vaguely defined, being somewhat dependent on the
particular experimental procedure employed.

From measurements of critical bandwidth based on masking [248,249,274], a reasonable
approximation to the frequency-resolution of the car is given by

100Hz, f < 500Hz

f/5, f > 500Hz. (3.1)

Bf)~ {

From Plomp [263] we have the following general guidelines regarding the frequency-
resolution of the ear:

o “For complex sounds with equal amplitude components, the ear is able to identify
these partials as long as their frequencies are separated by more than 15-20%
(first 5 to 7 harmonics of a complex tone), with a minimal frequency distance of
about 60 Hz.”

o This resolving power is consistent with critical bandwidth measurements made using
direct masking.
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o When tones are not simultaneous, the critical bandwidths can be as small as half
the bandwidth measured for simultaneous tones (due to lateral suppression).

Note that the ear can resolve two sinusoids much closer together than a eritical
bandwidth. However, the evidence is that when a complex spectrum is perceived as a
whole, the resolution of the ear corresponds to critical bands. This distinction is analogous
to the distinction between “acute” and “peripheral” vision of the eye.

3.2.4. Perception of Amplitude Spectrum

Since phase changes in a steady-state tone are so weakly perceived, the perception of
distortion in the amplitude spectrum of a tone is central to determining an appropriate
frequency-response error measure to be used in the modeling of short-memory systems.

One successful approach to defining such a distortion measure is based on a model for
loudness summation proposed by Zwicker and Scharf [274]. The central premise is that the
loudness of a complex sound is derivable from its ezcstation patiern. This is based on the
observation [272] that as the frequency spread of an ensemble of sinusoids is increased, the
loudness remains constant until the overall bandwidth exceeds that of a critical band. The
computation of loudness from the power spectrum proceeds as follows [263]:

o The power spectrum is converted to an excitation pattern (dB SPL vs. log frequency).
The excitation pattern is defined as the masking pattern plus 3 dB for low and
middle frequencies, and 8 dB is added for high frequencies. (These corrections
correspond to just noticeable differences in level for narrow-band noise.)

The excitation pattern is weighted (above 2 KHz) according to the frequency response
of the middle ear.

The frequency axis is warped such that critical bandwidth is independent of center-
frequency (the so-called Bark frequency scale [274]).

The power in each critical band is summed and converted to a specific loudness
for the band. Based on experimental results, a factor of 2 in specific loudness is
made to correspond to a 12 dB shift in the excitation pattern.

Zero loudness is accounted for by assuming a physiological background noise at the
hearing threshold {which is inaudible). The hearing threshold is cot uniform with
respect to frequency.

The loudness estimate, in sones, is given by the integral of the specific loudness
curve alonz the Bark frequency axis.

While this mode! is carefully constructed on the basis of psychophysical messurements
and provides insight into the mechanics of aural processing, a simpler procedure, also due
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to Zwicker [273], has found greater use in practice. In the simpler technique, loudness
is computed directly from the output of 1/3-octave bandpass filters. (1/3-octave filters
give spectral resolution comparable to critical bands.) A program for performing this
computation is given in [260] and the method has been accepted as an international standard
(Method B of ISO Recommendation R-532).

For the purpose of predicting dissimilarity between steady-state tones, Plomp states
(263, p. 94] that

“for stimuli with modest differences in amplitude spectrum, this [elaborate loud-
ness summation] procedure appears to give predictions that are hardly better than
a much simpler procedure directly based on the sound pressure levels within 1/3
octaves.”

In [258], the findings of [265,268] are summarized to state that “differences in sound
spectrum, measured in one-third octave bands, was a good first-order approximation of the
physical correlate of timbre dissimilarity.”

Plomp’s measure of timbral dissimilarity between two tones ¢ and j is computed as

15 1/p

Jp & (Z(Lz'k - ij)") y P=2, (32)
k=1

where L;;. is the sound pressure level of signal i at the output of the kth 1/3-octave bandpass

filter. Plomp notes that p = 1 gave slightly better results than p = 2, but that the value

of p “appears not to be very critical.”

A particularly relevant experiment conducted by Plomp [262,263] consisted of measur-
ing the perceived difference in timbre between two steady-state harmonic tones, and com-
paring this with the difference measured using (3.2). Nine tones were generated by replicat-
ing a single period from a note at 349 Hz played on nine orchestral instruments, and these
tones were scaled to have equal loudness. For the perceptual difference measurement, ten
subjects listened to three tones and were asked to decide which pair was most similar and
which pair was most dissimslar. From these comparisons, the dissimilarity associated with
each tone pair was derived. Multidimensional scaling techniques were then used to form a
Euclidean “timbre space” in which linear distance corresponds to dissimilarity. Each tone
appears as a point in this space. The correlation coefficient for the two distance measures
was 0.8 for p = 2 and 0.8 for p = 1. Thus the quantitative distance measure (3.2)
correlates well with the qualitative perception of dissimilarity in harmonic spectra.

The timbre space could be projected into three dimensions with only 2.3% “stress” (a
measure of discarded information in multidimensional scaling [255]). This value of stress
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is said to correspond to an “excellent” goodness of fit. Similarly, principsl components
analysis [259] was applied to the 15-dimensional manifold corresponding to (3.2); the first
three principal dimensions accounted for 90.4% of the spectral variance. The correlation
coefficients between the three principal axes of the timbre space and the space generated
by (3.2) were 0.993, 0.987, and 0.912, in order of importarce. Thus, when the degrees of
freedom in the model is reduced to three, excellent agreement is obtained between these
qualitative and quantitative distance measures.

3.2.5. Perception of Formant Resonances

Some research has been done directly on the perception of formants in the spectrum
of speech sounds [170, 250]. The followiag is a summary from Flanagan [170].

e The JND (“Just Noticeable Difference”) for the overall intensity of a vowel is about
1.5 dB.

The JND for the overall intensity of wide-band noise is about 0.4 dB for sensation
levels above 30 dB.

The JND for the intensity of the second formant of a near-neutral vowel is about 3
dB.

The JND for the intensity of a harmonic in the “valley” between formants can be
as much as +13 dB to —co dB (i.e. zero amplitude).

The JND for the bandwidth of a formant is on the order of 20 to 40%.*

The JND for the fundamental frequency of a vowel (male speech) is about 0.3 to
0.5% (5 to 9 cents).

For a filtered white noise, the minimum perceptible Q is 2bout 5 dB for a two-pole
resonance and 8 dB for a two-zero anti-resonance.

‘We have briefly reviewed some aspects of perception of steady-state spectra. Awareness
of these properties of hearing can be valuable in obtaining efficient models for audio
applications.

* It has been observed [280] that for models of the singing voice, the first formant bandwidth
should be more accurate than this, while high-frequency formaats can be less accurately modeled.
Such a rule-ofl-thumb seems also to be true of violin body models.
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3.3. Pre-Processing for Time-Invariant Audio Spectra

In this section, a method is described for smoothing steady-state spectra so as to
eliminate information of small perceptual significance. The smoothing will be applied to the
violin frequency-response data described in the following section. The main advantage of
such pre-processing is that a model can be more readily fit to the most important features.
On the other hand, it.is difficult. to define a pre-processing strategy for frequency-response
functions which does not give up some important attributes of the original. This is because
perceptually important characteristics of a frequency response depend on the particular
signal used as input.

The first data-reduction step is the elimination of phase information. This is done
initially by taking the squared magnitude of the frequency response to obtain the power
frequency-response. For modeling methods which are sensitive to phase, a minimum-phase
frequency-response will be constructed [169)].

The second step is smoothing according to critical bands of the ear. For this step,
a “moving average” filter is applied across the power frequency-response which grows in
length as it progresses to higher frequencies. The filter length grows so that spectral power
is averaged over roughly a critical bandwidth. The equation for the filter length (in Hz) at
each frequency is given by (3.1). Thus for frequencies below 500 Hz, the smoothing is over
a fixed 100 Hz interval, and for higher frequencies the smoothing extends over an interval
which is 20% of the frequency at the mid-point of the window.

The third pre-processing step counsists of warping the frequency azis to normalize
critical bandwidths as much as possible subject to the constrained form of the mapping.
Thus the frequency axis is made to approximate the Bark frequency scale [274]. The
frequency-warping is restricted to the class of first-order conformal maps as discussed in
Chapter 1 (§1.9.1). This restriction is necessary so that a digital filter fit to the warped
spectrum can be unwarped without increasing its order. Another function of the conformal
mapping can be to provide an effective weight function on the frequency-response error.
For example, by stretching the low-frequency axis more than necessary to achieve constant
critical bandwidths, increased emphasis is placed on the fit at low frequencies. This happens
because the fine-structure in the spectrum at low {requencies is spread out over a much
larger interval, and it becomes “easier to follow” with the frequency response of a digital
filter.

Note that steps (1) to (3) produce data similar to the power output of a one-third
octave filter bank. As discussed in the previous section, spectral distance-measures based
on power in one-third octave bands correspond closely to perceived timbre for steady-state
tones.
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As a fourth step, one may apply a rational pre-emphasis function as discussed in §1.5.5.
However, pre-emphasis is not included in the general pre-processing specification because
it must be carried out with characteristics of the driving-signal and the error-criterion in
mind. The purpose of such an “equalization” is to effect a weight-function on the spectral
error in the modeling procedure. For example, in modeling the violin body, a weighting of
this sort is desirable to force greater accuracy on low-frequency detail in the filter response.

Algorithm Summary

Let all frequency-responses be defined on /N equi-spaced points on the unit circle,
including the point z = 1. Also assume that all impulse response functions are real so that
only N, = |IN/2]+1 points are needed in computations (the upper half of the unit circle is
taken). Define wy = 27k/N. Let T denote the sampling period in seconds, and f; = 1/T
the sampling rate in Hertz. Then the pre-processing consists of the following steps:

(1) Convert to power response. .
Replace the desired frequency response H(e“k) by

Hp(cj”')élH(cj”')lz, k=0,...,Ny— 1.

(2) Smooth according to critical bands.
Filter the desired power response Hp to obtain

. AL :
H() = g D Hd®*™), k=0,..,N,~1,
a( )m-—Nx(k)
where
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(3) Warp the frequency axis to improve low-frequency resolution.
Replace the smoothed power response H, by

9r +p

.‘b'k A

), k=0,...,N.—1.

where
pA sin(x(j; - 1)T)
= (@ fi + FT)
and fr is an arbitrary reference frequency in Hz, f; is the desired image of f;
under the mapping, and 7' is the sampling period. Note that the value of H,(e79*)
is assigned the value of H, st

guer A S te
T peivr + 1

(1 — p*)sin(wy) )_é_ 2k, .

— tan—!
= pe=tan (2p + (1 + p*)cos(wy) N

Thus the kth element of the H, array is assigned the k,th element of the H,
array. Since k, is not an integer in general, one may wish to use interpolation of
the H, values.

This completes the pre-processing. The remaining modeling steps are as follows:
(4) Fit a digital filter to H,(¢’*) to obtain H ,(z).
This filter will be mapped back into the original frequency domain by means of the
inverse of the mapping used in step (3).
(5) Compute
Hz)=H (i:_’_
e 1=pz2
as the final approximate filter.

Discussion

Note that in step (2), low-frequency resonances with bandwidths less than 100 Hz will
be flattened somewhat. This is undesirable since it can significantly alter the balance of the
low-order partials relative to higher partials when a periodic excitation is present. When
sharp low-frequency resonances are present, it may be advisable to reduce or eliminate the
low-frequency smoothing.

Heuristically, p is set in step (3) to horizontally stretch the low-frequency spectrum. A
good first choice is that which makes critical bands have constant bandwidths over the entire
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BARK ~HERTZ

Figure 3.2, Overlay of the frequency mapping provided by
the Bark scale with that provided by an optimum first-order
conformal map. This figure holds only for a sampling rateof f, =
27 KHz. The Bark-frequencies have been multiplied by (/f,/2)/24
to facilitate comparison with the conformal map frequency-scale.

spectrum. In this case, fine-structure in the power-spectrum is made more “perceptually
uniform.” The frequency-scaling which accomplishes this is the Bark frequency scale [274].
There are approximately 25 critical bands covering a range of zero to 13.5 KHz in the Bark
scale data publisked by Zwicker.*

Of course, the mapping is highly constrained, and one can only approximate the Bark
scale. What is surprising, however, is how close the mapping can come to the Bark scale
(which is based on measured psychophysical data). An example match for the (maximum
available) sampling rate 27 KHz is shown in Fig. 3.2. The fit is even better at lower
sampling rates due to Bark frequency-mapping being closer to linear. Table 3.1 gives a list
of Bark-scale mapping-constants for various sampling rates.

* The Bark scale values at 0,1,2,...,24 correspond respectively to frequencies {in Hz) 0, S0,
150, 250, 350, 450, 570, 700, 840, 1000, 1170, 1370, 1600, 1850, 2150, 2500, 2900, 3400, 4000,
4800, 3800, 7000, 8500, 10500, and 13500. These values were interpolated using cubic splines. The
author is grateful to Joha Grey and John Gordoa for making this function and associated software
available.
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Bark Frequency Conversion
fs T P error
8 0.983 0.3572604 0.0078
8 1.159 0.4218740 0.0081
10 1.337 0.4765089 0.0089
12 1.500 0.5177548 0.0088
14 1.646 0.5490850 0.0087
16 1.781 0.5746753 0.0092
18 |7 1.910 | 0.5965534 0.0102
20 2.038 0.6159932 0.0111
22 2.164 0.6339815 0.0120
24 2.295 0.6507166 0.0128
26 2.423 0.6657497 0.0132
27 2.484 0.6724681 0.0135

Table 3.1. Table of mapping constants which provide approximations to the Bark frequency scale
for various sampling rates. The sampling rate f, and the image-frequency f; are in KHz. The
image-frequency f; is the image of f, = 500 Hz. The value of f; was optimized by least-squares to
within 1 Hz using a bisection method [174]. The conformal mapping constant p can e used directly
in step (3) of the pre-processing procedure. The error measure is the root-mean-square deviation
between the Bark scale and the frequency-scale generated by the mapping, divided by f,/2

An example of the practical performance is given in Fig. 3.3. A sum of 24 sinusoids
was geperated at frequencies 1,2,3,...,24 Bark. In other words, the sinusoids are spaced
in frequency by critical bandwidths. The spectrum of this signal is shown in Fig. 3.3a.
After mapping the frequency at 500 Hz to frequency 2484 Hz (corresponding to f, = 27
KHz), the spectrum appears as shown in Fig. 3.3b. As one can see, the mapping gives an
excellent approximation to the Bark frequency scale.

The frequency-warping according to critical bands does not, in principle, eliminate any
information contained in the data. In practice, however, the size N, of the spectrum array
should be sufficiently large so that adjacent spectral samples can be accurately linearly
interpolated. Due to the excellent agreement between the Bark scale and the confermally
mapped frequency scale, it is reasonable to perform the mapping before the smoothing.
In the warped frequency coordinates, the smoothing is uniform ard therefore easier to
implement.* However, at sampling rates higher than 27 KHz, it may be better to smooth
first, since the mapping to Barks becomes less accurzte at higher sampling rates.

One might also consider using the Bark scale to set the size of the smoothing filter
in step (2). This is indeed possible. The slope of the Bark-to-Hz curve may be taken as

* Uniform smoothing can be accomplished by a much wider variety of techniques. See, for
example, Oppenheim and Schafer [181] on cepstral (“homomorphic”) smoothing.
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Figure 3.3. Performance of the Bark-conformal-map at 27 KHz on
a sum of 24 sinusoids spaced according to eritical bandwidths.

a) Spectrum prior to mapping.

b) Mapped spectrum. The apparent difference in the heights of
the spectral lines is due to insufficient plot resolution; such error due
to the frequency mapping procedure is not visible to the eye. The
FFT size is 4096 and a Hamming window was used. The mapping
constant is g = 0.6724681.

a measure of “instantaneous critical bandwidth” which can be used to set the FIR filter
length. This, however, was found to be unnecessary effort. Figure 3.4 shows an overluy of
the Bark critical bandwidth data with the simple estimate proposed in step (2). It was feit
that the curves are sufficiently close that the simple form would suffice. Another reason is
that the smoothing according to critical bands is not rigorously justifiable. The function in
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step (2) is merely a reasonable point-of-departure in the search for a successful smoothing
strategy.

~NERTZ
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Figure 3.4. Comparison of the critical bandwidths estimated
from the Bark-scale with those generated using the piecewise
linear approximation in (3.1). There are 258 points displayed.
The discrete Bark function was interpolated using cubie splines
and differentiated to obtain critical bandwidth.

3.4. Violin Frequency-Response Measuremeat

The next goal is to obtain a measured frequency-response for the body of a violin.
This will become H(¢’“) in problem &°, and a mode! for the body will be designed using
the methods of Chapter 1. Also, input-output measurements will be used in applying the
methods of Chapter 2. The data-collection task can be very delicate. Norman Pickering
[237] summarizes the problem as follows:
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“The acoustic spectrum of a stringed musical instrument is a complex affair,
covering a significant frequency range of nearly 10 KHz and a dynamic range
of about 60 dB. It consists of from 50 to 1C0 successive resonant peaks, with Q
factors which vary from 5 to over 100. Furthermore, the spectrum of a given
instrument varies with time, humidity, and the state of adjustment to an extent
which may make the difference- between-musical acceptability and the lack of it.
It is startling to observe the audible eflect of small changes in amplitude in limited
portions of the frequency range. Despite the fact that the spectrum is so very far
from ‘flat,’ a change of less than 2 dB in any one of the principal resonances is
clearly recognizable by a skilled player;”

These observations indicate the requirements for measurement as well as modeling
precision. The claimed JND of about 2 dB for a major resonance must be carefully
interpreted. Onme of the effects of a change in body resonance is a change in the “feel”
of the instrument. A strong body-resonance coupled to the string provides greater energy
dissipation in that frequency region (possibly even a “wolf note”). Some strongly coupled
resonances do not correspond to efficiently radiating body modes. Thus it is possible
that noticeable differences in the playability arise more from changes in responsiveness
of the strings. Also, it is typically not possible to change one mode without affecting
the higher modes corresponding to the same geometry. For example, brightness may be
affected by the attenuation of an entire series of modes corresponding to a specific physical
modification. Recall also (§3.2.5) that a 2 dB change in the middle-formant amplitude of
a neutral spoken vowel is imperceptible. These points are brought up because of the fact
that the experimental results to be discussed later indicate that a much wider tolerance in
the resonances is allowable when the sound quality is the only concern.

3.5. Measuring Violin-Body Input-Output Data

In this section a method for measuring the input-output characteristics of the violin
body is described. This leads to an empirical frequency response which will be approximated
by a rational digital filter using techniques of Chapter 1. It also provides signals suitable for
system identification techniques described in Chapter 2. The first issue is what to measure.
The output signal is more straightforward, so it is considered first. It should be noted that
the ultimate use of the measurements will be to provide a musically useful model. This
relaxes some of the requirements for rigor in experimental techrique. The main criterion for
judging a set of measurements is how well they capture musically important information.
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3.5.1. The Output Signal

Loosely speaking, the output signal is “what you hear.” The pre-processing procedure
developed in §3.3 is designed to convert (in an approximate manner) from sound pressure
in the air to the excitation envelope along the basilar membrane. Thus we wish to measure
sound pressure radiated by the violin body. This should ideally be done for a representative
set of listening. positions in.an anechoic.room. . ..

Based on the simple observation that the sound of a violin does not change very
drastically when one changes position, only one measurement is made at one point in space
in our experiment. It is desirable to place the microphone sufficiently far from the violin
body that all radiating eiements are represented, yet close as possible to maximize the
signal-to-noise ratio of the recording. As a compromise, we chose a point approximately
one foot from the top plate, roughly over its mid-point. However, this positioning was
varied for ease of play.

The chief differences noted in the measured sound-pressure spectrum due to changing
the observation point was the movement of spectral nulls. The violin body is a distributed
source, and changing the point of observation changes the phase relationships among the
rays ip the sum. Since these changes obviously have a small second-order eflect on the
steady-state sound, they should be largely ignored or modeled only statistically. This
argument supports the use of critical-band smoothing. Nulls due to summing spatially
distributed sources become more dense at high frequencies, and thus more smoothing is
called for at higher frequencies, as occurs in the critical-band smoothing algorithm.

3.5.2. The Input Signal

The input to the violin body is at the bridge. The input from a given string has a
force and velocsty component in three dimensions.

Due to the geometry of the bridge, there is poor coupling of motion parallel to the
string, and this component is ignored. Since the bow moves along a line tangential to the
top of the bridge, one would expect that the main motion of the string is in this direction
(to be known as the horizontal bridge excitation). It is common practice to measure string
motion in this direction only. However, the comporent of force at the bridge normal to
the top plate (the “vertical component”) is known to be significant [281], and if it is to be
ignored, pains should be taken to avoid exciting it. It would be better to identify two transfer
functions—one from the vertical and one from the horizontal directions of excitation. Since
the string is the least linear element of the entire system, the tension modulation in the
string (which is a rectified version of the waves propagating on the string) can provide a
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Figure 3.5. Violin modifications for measuring force at the bridge.
a) Violin bridge with piezoelectric transducer attached.
b) Diagram of how the G and A strings are swapped at the
tailpiece.

significant contribution to the vertical excitaticn at the bridge. We attempt to mezsure
only the transfer function associated with horizontal excitation.

Since the bridge is a relatively rigid termination, force is the primary input variable.
We will consider force at the bridge as the controllable input, and it wiil be measured in
the lateral direction, tangential to the top of the bridge.

3.5.3. Description of Recording Apparatus

The sound-pressure was measured using a high-quality PZM audio condenser microphone.

The Barcus-Berry Hot Dot is a “sub-miniature” piezoelectric transducer which was employed
for the measurement of lateral force at the string-bridge termination. A special bridge con-
structed for this purpose is shown in Fig. 3.3a. The piezoelectric crystal was epoxied to
the bridge to provide a transverse termination for the G string. The bridge had a small
rectangle of material removed (with a pen-knife) so that the center of the sensitive face
of the crystal would be aligned with the top of the bridge, and so the crystz]l would have
solid mechanical support. On the face of the transducer, a small metal rod was epoxied
to provide a better string termination. This rod had a small groove etched into it, and it
was mechanically similar to the metal bridge-rods found on mzuiy acoustic guitars. The
resulting termination appeared to be quite steady, allowing no observable slipping of the
string. The G and A strings are swapped at the tailpiece in order to introduce a lateral
“bias” force on the pickup, as shown in Fig. 3.3b. This configuration was inspired by the
electronic violin built by Max Mathews [229].
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Three pre-amps were tried with the transducer: a voltage-to-voltage amplifier, an
integrating current-to-voltage amplifier (known as a “charge amp” {118,177]), and a (non-
integrating) current-to-voltage amplifier. The first two gave comparable results, and the
observed force waveforms at the bridge were very similar to those published in the literature.
The third, which provided a +6 dB per octave pre-emphasis, provided the best data. The
bridge and microphone signals were low-passed to 20 KHz and simultaneously digitized at
44.642 KHz with a 14-bit A/D converter.

3.5.4. Results

Several types of excitation were tried. The main purpose of course was to obtain a
good estimate of the frequency response. This was not a trivial task. The main problem
seemed to be obtaining an excitation at the bridge which excited all frequencies equally.
Bowed excitations were tried, but these are insufficient because the lowest pitch is around
200 Hz, and sampling the frequency response at 200 Hz intervals is far too sparse. It
is possible, however, to combine bowed excitations at a dense set of pitches to construct
a spectrally rich source. (One simply adds the bridge input measurements from several
recordings, and adds the corresponding microphone outputs together to form a spectrally
rich input-output pair, by superposition. One could even go so far as to optimize the
coefficients of a linear combination of diverse signal types so as to optimize the effective
excitation.) Also, glissandos were recorded, giving a “chirp response.” With the strings
wrapped in cloth to suppress their vibration, we recorded bow-ncise response (the bow
being slid close to the bridge at very light pressure to produce a smooth hissing sound),
raucous squawks (producing rather isolated bow-slips which are like impulses), the response
to striking the transducer in the lateral direction with a metal rod (a hefty screw-driver
actually), and finally, the response to plucking near the bridge with a guitar pick. Of all
these, the guitar-pick excitation turned out to yield the best data. The worst data came
from the metal-rod excitation, presumably due to the direct sound of the metal-to-metal
elastic collision between the rod and the bridge element installed on the transducer. The
squawks produced results in agreement with the plucking.*

* Omission of discussion of the other recordings does not necessarily imply they are bad ap-
proaches. In the case of bow-noise excitation, for example, the recording was rejected due to poor
signal levels, and the glissando recording had clipping in many places. The recordings were hard
to get because the new digitizer interface would crash the time-sharing system every third trial or
so0, causing the loss of in-core text to people editing files. (Experiences such as this are enough to
make a person pursue pure theory forever.) The idea of constructing a superposition of harmonic
excitations was not tried due to time-constraints. Basically, I declared the data collection phase
to be finished once I got similar results from two different methods.
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Figure 3.8. Time-domain inbut-cutput pair for the case of a plucked damped violin
G-string.

a) Force derivative at the bridge.

b) Sound pressure from the body.

Figure 3.8 shows an input-output pair for the case of a plucked, damped string. Thick
cloth was wrapped around all the strings in order to eliminate their contribution to the
response, with about two inches exposed near the bridge. The G-string was plucked with
a heavy guitar pick, near the bridge, in a regular up-and-down fashion at the rate of
about ope per second. Thus we recorded several “up-picks” and several “down-picks” in
alternation. The recording of several samples was useful for determining repeatability and
linearity of the entire process, which was found to be fairly good. The spectra of the input
and output signals are shown in Fig. 3.7. Also shown is the noise floor, obtained by Fourier
transforming the window of silence immediately preceding the pluck for both input and
output.
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Note the significant time (= 3 msec) it takes for the body output to develop full
amplitude. Apparently, the sound must propagate a few feet within the body before quasi-
steady-state is established. Consequently, the violin body is somewhat far from being a
minimum-phase filter. Minimum-phase models, such as will be constructed shortly, may
give a slightly “harsh” sound even when the amplitude response is accurately modeled.
However, minimum-phase models are (1) much easier to compute, (2) much less expensive
to implement, and (3) usually adequate in reverberant and/or ensemble contexts. One
place, however, where the finite rise-time of the body response may be quite important, is
in the perception of attack in vigorous bowing styles (e.g. martelé [244]). We should keep
in mind that a minimum-phase body-model impulse-response needs a more gradual attack
envelope. '

The input spectrum (in dB) is subtracted from the output spectrum to yield the
frequency-response estimate shown in Fig. 3.8a. One can see the very dense structure
in the frequency-response, and the presence of many deep nulls. It should be noted that
detailed behavior of this frequency-response varies considerably from recording to recording,
especially above 5 KHz, although the general envelope does not. By subtracting the shown
frequency response from that obtained from a different recording, it was found that the
difference is generally flat up to 5 KHz, after which it begins to look noise-like with standard
deviations steadily rising up to a level of around 12 dB at 20 KHz. This is thought to be due
in part to the relatively weak excitation energy at high frequencies, and to the movement
of spectral nulls associated with the exact positioning of the instrument with respect to the
microphone. (Half a cycle at 5 KHz corresponds to about one inch of sound propagation
in air.)

Next, the sampling rate is reduced by the factor 2/5 to yield f, = 17.857 KHz, and
the resulting frequency response is shown in Fig. 3.8b. Sampling-rate conversion was done
for several reasons. First, it is thought that the frequency-response detail above 8 KHz
is not very critical, with the main requirement being to provide the correct roll-off so
that brightness is unchanged. Second, the measurements at high-frequency are not very
repeatable experimentally, and so their reliability is suspect. Third, 22 KHz is a lot of
bandwidth to fit with a digital filter, especially when it is desired to obtain a close match
at low frequencies. (The main air and wood resonances of the violin body are both below
500 Hz.) Fourth, the conformal mapping technique of Chapter 1 (§1.9.1) can be used to
rescale the final filter to high sampling rates.

3.8. Pre-Processed Violin Data

The effect of smoothing the measured frequency response according to critical bands
is shown in Fig. 3.9a. Next, the optimum first-order conformal map is applied to warp the
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Figure 3.7. Frequency-domain input-output pair for the case of 3 plucked damped violin
G-string. '

a) Force derivative at the bridge overlayed with noise foor.

b) Sound pressure from the body overlayed with noise floor.

frequency axis as shown in Fig. 3.9b. This is the desired {requency-response to which a
digital flter will be fit using a variety of spectral modeling methods.

Note that the main wood and air resonances (below 300 Hz), though well resolved, have
been “rounded” by the smoothing according to critical bands. A different smoothing was
tried in which frequencies below 500 Hz were not smoothed at all, and the smoothing above
500 Hz was the same as in the figure. The frequency responses were compared aurally using
the experiment described in §3.7.7. The difference was almost imperceptible. However,
when the fundamental passed through one of the two major resonant frequencies, a slightly
greater “reverberant swell” was noticeable in the case with no low-frequency smoothing.
The difference was considered musically unimportaat.
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Figure 3.8. Frequency-response measurement for the case of a plucked damped violin
G-string.

a) Result for 44.642 KHz sampling rate.

b) Result after resampling to 17.857 KHz.

Generally, the smoothing is most reasonable at high frequencies where there are many
densely-spaced peaks and valleys in the frequency response. The assnmption is that the
individual amplitudes are not important in an ensemble of partials falling within a critical
bandwidth. On the other hand, the dense modulation of the high-frequency power-response
provides independent temporal amplitude modulation of partial amplitudes when vibrato is
present. While this leads outside of the steady-state point of view, it is a source of richness
of sound which one may wish to recover in some other way. Since reverberation is often
described in terms of the statistics of the peak/valley distribution, it may be that a simple
reverberator with a similar spectral variance can recapture the perceptually significant
features of an irregular high-frequency power response. In any case, it is not feasible at
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Flgure 3.9. [lustration of frequency-response pre-processing.
a) Overlay of orignal data with the critical-band smoothed data
b) Smoothed data after frequency-warping.

present to place two poles at each peak of the frequency respouse, for filter orders well into
the hundreds would ensue for the violin body at quality sampling rates.

3.7. Performance of Various Modeling Methods

The task now is to find a digital filter of low complexity which has nearly the same
frequency-response as the pre-processed curve of Fig. 3.9b. While a priori considerations
could narrow the choice of method considerably, a wide range of methods will be applied,
primarily to illustrate their characteristics on a common problem. (This section serves as
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a “computed examples” section for Chapter 1.) Various frequency-response error norms,
shown for each method, are defined in Appendix D. To fix the comparisons with respect to
order, only 8 poles and 8 zeros will be allowed for each filter-design method. Ordinarily, one
would specify instead an upper bound of 17 degrees of freedom (the sum of the numbers of
poles and zeros plus a gain-matching scale-factor). This is not appropriate here because the
conformal mapping will equalize the number poles and zeros; for example, a 16-pole filter
with no zeros becomes a 16-pole, 16-zero filter when mapped back to the normal frequency
axis.’
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Figure 3.10, Frequency-response fit using RLS

3.7.1. A System-Identification Mode!

Tke use of time-domain system-identification methods may seem ideal because we have
input-output data available. It turns out, however, that the pre-processing defined for the
frequency-domain methods is very much necessary for a reasonable fit using 8 poles and 8
zeros. Figure 3.10 shows the results of Recursive Least Squares (RLS) on the input-output
data used to obtain the desired frequency response. The figure lists the error norms defined
in Appendix D. The input/output signals were modified so that the desired frequency
response is minimum phase (with the desired amplitude response left unaltered). This is
typically unavoidable whea minimizing equation error, as discussed in Chapter 1, §1.7.1.
As is evident, there is no resolution of the important main air ard wood resonances (beiow
500 Hz), and the fit elsewhere is crude. Note that RLS is equivalent to the fast frequency-
domain equation-error method described in Chapter 1; results for the frequency-domain
version, including the pre-processing, will be given shortly.
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Figure 3.11. Frequency-response fit using linear prediction.

3.7.2. Linear Prediction

One of the most ;;opular spectral modeling techniques is that of linear prediction. The
two primary methods of linear prediction are the covariance method and the autocorrelation
methed. In the present circumstance, in which a desired power response is posed, the
two methods are equivalent. Thus, the squared amplitude response is inverse-Fourier-
transformed to provide the autocorrelation of the impulse response, and this is converted
to an 8-pole filter by the Durbin recursion [188]. The frequency-response fit is shown in
Fig. 3.11. Note that linear prediction techniques provide 2 minimum-phase model, and the
phase of the desired spectrum is discarded in forming the autocorrelation function. One
can see that the main air and wood resonances are still not resolved.

As an aside, the 18-pole linear-prediction fit to the unsmoothed (but warped) desired
frequency response is shown in Fig. 3.12. Linear prediction methods characteristically yield
a model of the spectrum envelope, as this figure clearly shows. Since frequency-warping
was done, this is really twice the complexity of the other models presented. In practice, one
may wish to implement the inverse conformal map (p+ z71)/(1 + pz~!) in place of each
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Fligure 3.12. Frequency-response fit using 16-pole linear prediction on the un-
smoothed desired frequency-response.

unit-sample delay in the mapped filter structure. This would allow real-time frequency
scaling, for example. In such a situation, the 18-pole linear-prediction filter would be a

goed choice.
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3.7.3. Kopec’s Method

Kopec’s method is a variation on linear prediction which allows zeros as well as poles
in the model [186]. First, an 8-pole fit is obtained by the linear prediction method. Then
the error spectrum is inverted and an 8-pole fit is obtained to this, giving the numerator
of the model transfer function. The results are shown in Fig. 3.13. The spectra have
been normalized to have 0dB mean since the natural scaling places the approximation
along the lower spectral envelope. If zeros are estimated before the poles, then the natural
scaling gives an approximate filter which follows the upper spectral envelope. The model
is minimum-phase because it is a ratio of two stable allpole filters obtained by linear

prediction.
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3.7.4. L? Equation-Error Minimization

Figure 3.14 gives the results of applying the fast frequency-domain equation-error
method given in chapter 1 (§1.7.1). The results are almost identical to those obtained by
Shank’s method and the Padé-Prony method (also discussed in Chapter 1), and to save
space they are not shown. For these three methods, it was necessary to prepare a minimum
phase impulse response corresponding to the pre-processed desired {requency response, and

the cepstral method was used for this [169].
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Figure 3.15. Frequency-response fit by the log-magnitude method.

3.7.5. Log-Magnitude Spectrum Matching

Figure 3.15 gives the results of applying the approximate log-magnitude matching
method presented in chapter 1 (§1.8.5). Since Chebyshev approximation was implemented
in the polynomial case only, the idea behind Kope:'s method was used to obtain a rational
filter. First, 8 zeros were fit, then the error spectrum was inverted and fit with 9 zeros (ziving
the poles of the model). Nine zeros were used in the second step instead of eight because
because the error after fitting 8 poles was nearly equiripple. (On a log scale this error is
merely reversed in sign and used as a desired function for the second step.) As a result,
the second eighth-order fit is nearly zero. (In genperal, the optimum nth order Chebyshev
approximation to the error of an nth order Chebyshev approximation is identically zero.)
The error for a 18-pole fit is shown in Fig. 3.18. One can see the nearly equal-ripple error
on a dB scale. Since Chebyshev approximation is feasible in the rational case, better results
are to be expected when a true optimum rational approximation is found.
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Figure 3.17. Frequency-response fit by the Hankel-norm method.

3.7.6. Hankel-Norm Minimization

Figure 3.17 gives the results of applying the Hankel norm method presented in chapter
1 (§1.8.5). This is the only eighth-order case in which good resolution of the main air and
wood resonances is obtained. The small resonance near the center, on the other hand, is
pretty much ignored. This is understandable in light of the appearance of the fit on a
linear magnitude scale, shown in Fig. 3.18. Optimum Hankel-norm approximations tend to
be approximate Chebyshev approximations, and on a linear scale, one can see the nearly
equal-ripple error in the amplitude response. Also, the fattening of the resonances due to
smoothing has been compensated by the nature of the fit.

It is upfortunate that no method is known for introducing an arbitrary weight function
for Hankel-norm methods, for then it would be possible to exterd the approximate log-
spectral matching idea to the case of Hankel-norm approximation.
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Figure 3.19. Frequency response of final violin body model in mapped form.

3.7.7. Conclusions Regarding the Body Model )

Several of the filter-design methods from Chapter 1 have been applied to the pre-
processed frequency-response data for the violin body. By limiting the comparisons to
a predetermined set of conditions, neither the filter-design methods nor the violin body
received full consideration. The purpose of this was to provide a comparison of the filter-
design methods. The set of conditions was chosen, however, to be close to those used in
obtaining the filter which was selected for use in the final violin model. The final choice was
an eighth-order Hankel-norm design using somewhat more frequency warping than provided
by the Bark-scale case. This filter is shown in Fig. 3.19. Although the comparisons are
not presented here, various orders and smoothing strategies were tried and compared in
arriving' at the final filter.

A particularly illuminating test consisted of driving the body model with an impulse
train which rose in pitch from 200 Hz to 400 Hz over 2 seconds time. This signal has all
harmonics present in equal amounts, and the rising pitch ensures that the entire frequency
response is represented in the output sound. These signals were compared in informal
listening tests. The overall conclusion is that small changes in the shape of the body-filter
frequency response do not affect the quality of the sound in a musically significant way.
Also, the effect of critical-band smoothing on the original data did not change the first-
order sound quality; it had a noticeable effect, however, on the perception of “roughness” in
the high-frequency spectrum. It was decided that either the fine details of the freaquency-
response of the violin body are of second-order importance, or that conclusions cannot be
drawn when the bowed string is replaced by a very artificial excitation, such as an impulse-
train. Nonetheless, this test was the basis for the choice of such a low-order model for the
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violin bedy. The only features retained in the model are the maix air and wood resonances,
the “singing formant,” and the overall spectral-envelope. Tke comparisons should be
repeated using the measured bridge excitation for naturally played notes. At present,
bowever, the choice of 8th order filters, and the smoothing used, indicate preliminary
conclusions regarding the necessary quality of fit to a measured violin frequency response
when sound quality is the only consideration.

3.8. A Parametric Model for the Vibrzating String

We now turn from the violin body to the string. The string is in many ways more
important than the body for determining the sound of a viclin. This was graphically
demonstrated by Max Mathews [229] who built a pleasant sounding “violin” consisting of
a bowed string on a metal mounting (non-resonating), and a single electronic resonance in
the vicinity of 3 KHz (the “singing formant”). While it did not sound exactly like a violin
in A:B comparisons, it did evoke the illusion of a member of the violin family.

A problem in modeling vibrating strings is that they are very high-order systems. As a
rough estimate, the number of poles needed in the model is twice the number of harmonics
produced by the string. At high sampling rates (say 40 KHz) and low pitches (say 100 Hz),
the complete number of poles becomes very large (400!). The situation is further aggravated
by the fact that these poles are very close to the unit circle. Numerical experience indicates
that no method of filter design can be expected to model closely such a large-order, lightly-
damped system on typical computer systems. Besides, who would want to! A major goal of
modeling is to capture the useful essence of the physical phenomenon in a computationally
eficient form.

This section derives a parametric model for the vibrating string which provides most
musically important features of real strings at much-reduced complexity. This model will
be then applied to the case of bowed strings. The bowed-string simulator consists of a
linear digital filter which models the vibrating string, together with a means of exciting the
string like a3 bow. Two approaches to driving the string model are considered. The first
is similar to that used in linear predictive speech coding, and consists only of a series of
impulses which convey pitch and amplitude information. A more elaborate methed yields
a much improved model of bow-string interaction; specifically, the input variables are the
pressure, velocity, and position of the bow on the string.

3.8.1. The Wave Equation for an Ideal String

The wave equation and its solution in terms of “traveling waves” were derived by
d’Alembert in 1747 [139]. Eight years later, Daniel Bernoulli demonstrated the sclution
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in terms of “standing waves” [139]. Bernoulli claimed that any displacement of the string
could be expressed as an infinite sum of sinusoidal harmonics—or standing waves. Euler
objected to this claim on the grounds that a sum of sinusoids could not express an arbitrary
curve. In this way, a controversy was born which led to Fourier theory and the foundations
of modern analysis.

For an ideal string, we have the following wave equation.
wi(z,t) = w2, 1), (3.3)

where w(z,t) denotes the transverse displacement of the string at the point z along the
string at time ¢ in seconds. If the length of the string is L, then z is taken to lie between
0 and L. The partial derivative notation used above is defined by
d (ow

wyy & 5—;(":,-”-) .
The constant c is given by ¢* = T /p where T is the string tension, and p is the mass per
unit length of the string. An elegant derivation of the wave equation is given by Morse
[257]. The wave equation implies that the transverse acceleration of a point on the string
(wys) is proportional to the curvature® of the string at that point (w).

The general traveling-wave solution to (3.3) is given by
w(z,t) = gz — ct) + Y(z + ct). (3.4)

This solution form is interpreted as the sum of two fixed wave-shapes traveling in opposite
directions along the string. The specific waveshapes are determined by the initial shape
w(z,0) and the initial velocity we(z, 0) of the whole string.

Given any solution of the form (3.4), we may successively differentiate the terms of
the equation to obtain a solution in terms of traveling velocity waves, acceleration waves,
etc. It turns out that for bowed and plucked strings, acceleration waves are a convenient
choice. This is because a pluck gives rise to a pair of acceleration (or curvature) impulses
propagating outward from the pluck-point. A bowed string may be described, to the first
order, as a periodically plucked string in which one of these two curvature impulses is
eliminated.

If the string is rigidly fixed to w = 0 at z = 0, say, then in equation (3.3) the constraint
w(0,¢t) = 0 holds for all t. The traveling displacement waves of (3.4) must then satisfy
p(—ct) = —(et), (3.5)

* Actually, curvature is defined as tws./(1 + w2)3/2 [157]. However, when the maximum slope
on the string is much less than unity (jws| < 1), the curvature and the second derivative in z are
approximately equal. We will refer to w,, as the curvature mainly for descriptive convenience.
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If ¢(-) is chosen arbitrarily, then () must be the same waveform flipped about the
horizontal and vertical axes. An equivalent point of view is that ¢ is the reflection of
@ from the termination. At a rigid termination, an arbitrary incident wave is reflected
such that it emerges negated and time-reversed. A curvature impulse merely changes sign
upon reflection from a rigid termination since it has negligible width.

3.8.2. .. A Description.of One-Dimensicnal Propagating. Waves .. .

An analytical approach will be described which is well-suited to modeling vibrating
strings as linear filters. We desire an tnput-output representation of the string, because we
wish to drive the string with a simple function, such as an impulse, to produce natural
waveforms.

Assume that the string is driven at the point z; on the string by the acceleration
function u(t). Let the output acceleration, observed at the point z,, be denoted y(t). Then
we have u(t) = wy(z;,t) and y(t) = wi(z,, ).

Let u(t) be an acceleration impulse (defined in Appendix E) with amplitude A at time
t == 0. This is expressed by writing
u(t) = AS(¢).

We assume for the moment that the string is ideal which means the curvature impulse does
not attenuate or “spread” as it propagates along the string. If the observation point z, is
located a distance d = |z; — z,| from the point of input, in the direction of travel for the
impulse, then at time ¢ = d/c there will be an output impulse. This output is written as

o(t) = A&(t - 71),
where §(t — d) denotes an impulse occurring at time 4, and d A d/e. In this chzapter, a tilda

placed above a distance value denotes the time it takes to travel that distance at speed ¢.
In the frequency domain, the Laplace transform of the first output impuise is

o0 -
Y(9) 2 f y(t)e™dt = A9,
For discrete time, simply set ¢ = nT where T is the sampling period, and define the z

positions along the string to be at integer multiples of ¢7T', the distance traversed during
one sample period. If d = meT, then

y(nT) = A§(nT — mT).
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The frequency domain representation is given in the discrete-time case by the z-transform
of the time-domain expression,

m -
Y(2)& ) y(nD)eT =Azr 9= 47T,

nmm=—C0

The discrete-time and continuous-time representations are related in the frequency domain
by the substitution z == ¢%:;- When- working- with discrete time; it is convenient to use the
definitions

y(in)=Ab(n-m), Y(z)=A"",

where the sampling interval has been normalized to 1. In this situation, the substitution
z = ¢*T converts properly to the analog frequency domain. In particular, the spectrum is
obtained by setting z = ¢’“T in the »-transform, where w = 2xf, and f is frequency in
Hz.

Let z(n) be an arbitrary waveform having the z-transform X(z). The notation z(n) ~ X(z)
means that z{n) and X(2) are transform pairs. By the shift theorem for z-transforms [164),

zZ(n)=X(z) = z(n—k)—zFX(2).

This implies that the term % may be interpreted as a delay operator which delays a signal
by k time samples.

In deriving the string model, the following delay-operator notation will be used.
T Tz{t) Azt -7).

Thus time is in seconds and the unnormalized notation for the z-transform is used.
This notation facilitates writing down the string transfer function by inspection in simple
cases. In later sections, where discrete-time effects are of interest, the samplicg rate will
be normalized to unity so that the time indices will be integers.

3.8.3. Non-Rigid Terminations and Distributed Losses

Non-rigid terminations and lossy, stiff strings are relatively difficult to analyze when
the wave equation is used as a starting point [257]. Therefore, we take a simpler approach
involving some approximations which are reasonable for audio applications. First, losses
and phase-dispersion due to string imperfections are absorbed into termination losses. This
causes little or no change in the perceived output signal. For example, if the string is ex-
ponentially damped, this can be provided by simple scaling by p < 1 at a termination point;
this replaces a continuously decaying exponential envelope by an exponential “staircase”




Page 162 MODELING THE VIOLIN 3.8

which steps down once per period. Similarly, if the string is dispersive, a variable delay (as
a function of frequency) may be inserted at the string termination to alter the round-trip
travel time as though the speed of propagation on the string were being changed as a func-
tion of frequency. The second approximation is that a yielding termination is represented
as o linear time-invariant filter of low order. This termination filter includes all absorbed
string imperfections. In general, as long as the transformation from one period to the next
can be well approximated by a low-order filtering operation, this approach can be effective.
Since the ear.is.not very.sensitive.to a rearrangement of phase in a quasi-periodic signal,
lumping the losses and dispersiveness of a string into the terminations does not have serious
audible consequences. This is the key to economy in the model for vibrating strings to be
discussed.

If the termination loss is purely “resistive”, i.e. nondispersive, then an incident
waveform ¢(ct) will produce a reflection expressible at time ¢ (and z = 0) as —pg(—ct).
A curvature impulse goes into the termination as §(t) and emerges as —pé(t). The general
case of a linear lossy termination is obtained by replacing p with an arbitrary integro-
differential operator in continuous time, or delay-operator expression in discrete time. The
“reflection” of a curvature impulse becomes the impulse response of the termination-filter.
Further reflections produce multiple convolutions of the termination impulse response. In
general, the amplitude response of the termination controls string damping as a function
of frequency, and the phase delay of the termination adds to the effective string length
as a function of frequency. Thus the ideal string can be perturbed in a parsimonious
fashion to provide harmonics which decay at different rates and/or overtones which are not
harmonically related to the fundamental.

We will now find a general expression representing the effects of filtering due to yielding
terminations and string imperfections. For a doubly-terminated, ideal string of length L,
the period of oscillation is P = 2L/c. When a filtering operation is introduced on the
string, the signal is no longer periodic, but we assume that this filtering is so “mild” that
the signal is close to periodic. Let the total round-trip filtering be denoted by Hj(z). Then
each “period” is the previous period filtered by Hi(z). If P(z) equals the Fourier transform
of the first period, then the next period has the Fourier transform z~% H(z)?(z). Thus the
output transform for all time is given by

Y(2) = P(z) + P H(2)P(z) + =P HR2(z)P(z) + - -~
Y ) (3.8)
1-z-PH(z)’

3.8.4. Transfer Function for the Non-Ideal String

Using the above concepts, a transfer function for the doubly-terminated linear string
will be derived which includes frequency-dependent damping and inharmonic overtones.
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Figure 3.20. Initial acceleration (or curvature) impulse traveling
to the left on the string. The point of input is =, and the output
is observed at position z,.

For convenience, the “left” termination (at z = 0) will be called the bridge, and the “rizht”
termination (at 2 = L) will be called the nut. The nut and bridge reflectior. transfer
functions will be denoted Hy,(z) and Hy(z), respectively.

Suppose that the string is initialized with a solitary acceleration impulse of amplitude
A traveling, say, toward the bridge (z = 0) from the point z = z; at time ¢ = 0 as shown in
Fig. 3.20. Then u(t) = A5(t). Let the observation point on the string be at z = z,, where
for definiteness z, is assumed to lie to the left of z; (i.e. 2, < z;). As before, we define
Z = z/c for an arbitrary distance z, in order that distance be normalized to correspond to
time in seconds.

The first output impulse occurs when the impulse has traveled from z; to z,. This
will be at time ¢ = (z; — z,)/¢ == Z; — Z,. Thus, the first contribution to the output is
the term Az—(%i—%o)§(t). The impulse continues left until it reaches the bridge, where
it is filtered and reflected (a change of sign is typically included in Hj{z)). Next it
propagates to the right with “amplitude” AHj(z), and when it reaches the point z,, the
term AHj(z)z~(3i=%0);=2%05(t) == AH(z)z~(%i+30)5(t) appears at the output. The pulse
continues to the right, reflects at the nut, and returns to z; at time P = 2L/c with
amplitude AH(z)Hp(z). Thus the first period of the output waveform is

y(t) = Az~ (Bi=25(0) + AH ()~ Fit3g(e), 0<t<P.
For tke remaining pericds, we invoke (3.8) to obtain

z"('i"-io) -+ Hb(:)z—(5‘+§°)
1= z=PH)(z)Ha(z)

y(t) = Ad(t), t>0.
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The transfer function of the string is therefore

Y(2) _ z=(Fi—3o) 4 Hy( z)z—(i-.-+io)

Hy(2;,20,2) & U(z) - 1- z‘PHb(Z)Hn(’-)

(3.7)

An analogous derivation yields the string transfer function for the case of an acceleration
impulse traveling initially toward the nut, again for the case z, < z;.

_p £ 4 By ()i
| Z-PHb(z)Hn(z) )

Ht(zt': Zo, Z) é Hn(z)z (3.8)

If an impulse is input to the string with an initial velocity of propagation other than ¢,
then the transfer function becomes a linear combination of H}(z;, z,, z) and H(2;, z,, 2).
Thus the general transfer function is given by

Hl(ziv 20,0, z) é 'fH:’(zir Zo, z) + (l - 7)H:(zi: Zoy z) ’ (3'9)

where 7 is determined by the initial position and velocity of the input impulse. It will be
shown that for the plucked string, observed between the bridge and the pick, we set

7=3,  (Plucked String),

and for the steady-state Helmholtz description of the bowed string, observed between the
bridge and the bow, we set

0, (Down-Bow)
|1, (Up-Bow)
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Flgure 3.21.
a) Initial string displacement for the ideal plucked string.
b) Corresponding initial acceleratica distribution.

3.8. Application to Bowed Strings

In this section, the description of bowed-string motion due to Helmholtz will be used
to derive a model for bowed strings which uses the string model of the previous section
along with an impulse-train excitation. The ideal plucked string is treated also, because it
turns out to be simply the superposition of a “down-bow” and an “up-bow” of Helmhoitz
bowed-string waveforms.

3.9.1. The Plucked String

A diagram for the ideal plucked string is shown in Fig. 3.21a. Prior to time 0, the
string is pulled away from equilibrium by a point force at z == z;, to give two straight
string segments of equal tension meeting at a corner. Let D denote the maximum initial
displacement of the string, D == w(z;,0). The initial velocity of the string is assumed zero.

Twice differentiating the initial string shape with respect to z gives the initial curvature
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distribution,* DL
0z2(z,0) = -m"(z -z;).

From the wave equation (3.3), the equivalent acceleration input is

DL
zf{L ~ z;)

This initial acceleration is shown schematically in Fig. 3.21b.

olt) & vz, 0)6(t) =~ i(t) A 245(0).

' -
' c ¢ Q)
« =~
. \
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L] .33 ..g ® 7'3 : ;‘
< c
L d —-—p
-t T 1 'a T ]
€23 .9 s 1
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Figure 3.22. Plucked-string displacement and corresponding
acceleration distribution at time ¢t = P /8 = (1/8)2L/c.

a) Displacement.

b) Acceleration.

Since the initial velocity of the string is zero, the curvature impulse is also initially
at rest. Therefore, for ¢ > 0, the impulse splits into a left-going and a right-going
impulse, each with amplitude A. The string displacement and corresponding acceleration
distribution for a time one-eighth period after ¢t = 0 are shown in Fig. 3.22.

* We(2,0) & lima—o|ws(z + 4,0) = w,(z — &, 0)]/(2h).
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The transfer function of the string (3.9) can be used to write the output acceleration,
observed at z = z,, as y(t) = H,(z;,2,,1/2,2)2A6(t), and therefore the transfer function
of the plucked string is given by

z-(i."'ia) + Hb( z)z"’(ét""io) + Hn( :)35.‘4'50-" + Hl( z)zit'-éo-P

1- Z-PHg(Z) ?
(3.10)

Hl(zi: Zo, 1/27 :) =

where Hj(z) & Hy(z)Hu(z). -

] .23 9.3 4.7S !
STRING PCSITIN

Flgure 3.23.
a) String displacement for the ideal bowed string.
b) Corresponding acceleration distribution on the string.

3.9.2. The Helmholtz Bowed-String Model

The first-order model of bowed string motion derived by Helmholtz [252] is as shown in
Fig. 3.23. The string consists of two straight linear segments at all times. The corner at the
intersection of the two segments propagates along 3 parabolic arec with speed c. Since the
linear string segments have zero curvature, the wave equation implies that the acceleration
must be zero everywhere except at the corner where it is impulsive. This impulse simply
shuttles back and forth on the string. In the plucked string there were two such impulses.
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Thus in terms of acceleration waves, the model for the bowed string is even simpler than
that of the plucked string.

Let D be the peak displacement of the string when the corner is at the midpoint z =
L/2, and let ¢t = 0 correspond to this configuration. Then the curvature distribution is
given by

0za(z,0) = iga_(z —1/2),

which is the same as the plucked string for z; = L/2. By requiriﬁg the curvature to
propagate with constant magnitude, one obtzins the peak displacement

D(z) = 4D(L/2)x(L - z)/L*

at each point z € [0, L] on the string—a parabola, in agreement with Helmholtz. The
acceleration input is then

4D¢?
L

u(t) A w2, 0)6(t) = 5(¢) A Ab(t).

For t > 0, there is esther a left-going or a right-going impulse, depending on the
direction of bowing. This is necessary to produce the steady-state string motion described
by Helmboltz. We arbitrarily assume that the bowing is “down” and that the impulse is
initially left-going.

The transfer function of the string for “down-bowing” is then

z-(if°io) -+ Hb(g)z—(ét"*'éo)
1-z-PH(z)

y(t) = Ho(z;, 20,0, z) = H(z;, %o, 2) = (3.11)

The transfer function for “up-bowing” (the impulse initially traveling to the right) is found
by subtracting (3.11) from the transfer function of the plucked string (3.10).

3.9.3. Bowed Strings as Periodically Plucked Strings

Helmholtz bowed-string behavior amounts to a single curvature impulse traversing the
string, while a plucked string entails two such impulses. A simple physical description of
the bowed string based on this idealized picture is as follows.

Imagine the string drawn from rest by the bow until the tension in the string overcomes
the static friction force, and the string releases {rom the bow. Assume the dynamic
coeflicient of friction is zero. Then the string has been “plucked” and two curvature impulses
propagate outward from the bowing point, just as in Fig. 3.22. Assume the bow is closer to
the bridge than to the nut. Then the impulse traveling initially toward the bridge returns
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first to the bow. Consider the time just after this impulse has returned and passed under
the bow. Then the string is moving in the direction of the bow at a constant velocity (still
behaving as an ideal plucked string). If the bow velocity happens to be the same as that of
the string, then they move together as if the string were stuck to the bow. Thus, with no
work whatever done by the bow (and therefore no new “pluck”), the string has returned
to a “stuck” condition, where now the static coefficient of friction applies. But now when
the impulse from the nut returns to the bow, it finds the string terminated by the bow. If
this termination is absorptive, then the secondary impulse disappears. Now there is only
one impulse on the string which continues on to the nut, reflects, and returns to the bow.
Since the string is back to the initial displacement, the static friction cannot hold, and the
string slips free once again, repeating the process.

If the string attenuates (nondispersively) the propagating curvature impulse, then the
bow can compensate by providing a small pluck once per period. This means that the
excitation function is simply an impulse train. Our first-order mode! for bowed strings is
based on this idealization. The transfer function (3.11) is simply driven by an impulse train
at the desired pitch and amplitude. Note that if the impuise train has constant amplitude
(a “rectangular envelope”), then the string output has an “exponential attack” followed by
a sustain, and then an “exponential release.” When the impulse train ceases suddenly, the
resulting effect is like lifting the bow from the string.

3.9.4. Helmbholtz Crumples

Helmbholtz described the main deviations from the simple mode of bowed-string opera-
tion as “crumples”. By twice integrating the acceleration waveform to get transverse string
displacement, one obtains the “leaning sawtooth” waveform as observed by Helmholta.
Crumples appear as little ripples in the sawtooth which correspond to those harmonics
having nodes at the bowing point. Helmholtz recognized crumples as missing Fourier com-
ponents, and reasoned that losses in the string can explain them. When the string waveform
is considered as a steady-state natural-mode oscillation of the string, it seems clear that
the bow cannot replenish energy in those modes having a node under the bow.

It is interesting to observe that these missing harmonics are the same as those in
the ideal plucked string. (To see this, replace all termination filters in the numerator of
(3.10) with —1 and compute the frequency response of the numerator, which reduces to
4 sin{wZ;) sin(wZ,).)

Thus one can simulate the effect of crumples by interpolating between the extremes of
plucked-string and bowed-string in the general transfer function (3.9). The parameter v in
Hy(z;, 20,7, 2) is selected between 0 and 1/2 for a down-bow, and between 1/2 and 1 for
an up-bow.
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3.10. General Capabilities of the String Model

3.10.1. Frequency-Dependent Damping and Inharmonicity

Equation (3.9) gives the general transfer function for the doubly terminated string.
When the string is plucked, struck, or otherwise initialized and then allowed to vibrate
freely, the numerator of the transfer function can be comsidered as part of the initial
conditions for vibration. For free vibration, the damping and spacing of the partials are
governed solely by the denominator of (3.9)

1

Hz4 ——,
1-2-PH(z2)

(3.12)

where Hi(z) & Hn(z)Hj(z) is the total round-trip “loop filter” associated with the string
and its terminations (the bulk delay P being factored out).

The frequency response of the string simulator is then

1
1 — ¢=dwP [{eiu)

H(eY) =

The loop gain is equal to )
G(na lHl(c’z’f) I ,

and the effective loop length is equal to
T() AP +D(f) (seconds),

for each sinusoidal frequency f, where
w
D[(f)é "'i‘i'a—)r w=2xf,

is the phase delay of H in seconds.*

Since the freely vibrating string is only quasi-periodic, it does not consist of discrete
sinusoids. Essentially there are many narrow “bands” of energy decaying to zero at
different rates. When these energy bands are centered at frequencies which are an integer
multiple of a lowest frequency, they will be referred to as harmonics. When the frequency
components are not necessarily uniformly spaced, the term partial will be used to emphasize

* For example, consider H(z) = z™%. The phase delay is =ZH(#)fw = =L [ = wZ[w =
t=1zfc
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the possibilty of inharmonicity. Consider a partial at frequency f Hz circulating in the
loop. On each pass through the loop, it suffers an attenuation equal to the loop amplitude
response, G(( f). Since the round-trip time in the loop equals P+ Dy( f) seconds, the number
of trips through the loop after ¢ seconds is equal to t/(P + D/(f)). Thus the sttenuation
factor at frequency f Hz and time ¢ seconds, is given by

]
ay(t) A G(f)FFoi, (3.13)
For example, an initial partial amplitude A at time 0 becomes amplitude Aa y(t) at time ¢,

where f is the frequency of the partial in Hz.

The time constant of an exponential decay is traditionally defined as the time when
the amplitude has decayed to 1/e =~ 0.37 times its initial value. The time constant at
frequency f is found by equating (3.13) to ¢~*/"/ and solving for 77, which gives

- -t ___(P‘I-D;(f))
T maM) | mGA))

(seconds). (3.14)

For audio, it is normally more useful to define the time constant of decay as the time it
takes to decay —60 dB, or to 0.001 times the initial value. In this case, we equate (3.13)
to 0.001 and solve for ¢. This value of ¢ is often called t30. Conversion from r; to tso(f) is
accomplished by

teo(f) = In(1000)r; ~ 6.917r;. (3.15)

For example, if a sinusoid at frequency f Hz has amplitude A at time 0, then at time
teo(f) it has amplitude Aay(teo(f)) = A/1000, or it is 60 dB below its starting level.

The above analysis describes the attenuation due to “propagation” on the string. It
does not, however, incorporate the fact that sinusoids which do not “fit” on the string are
quickly destroyed by self-interference. Any signal may be fed into the string, but after
the input ceases, the remaining energy quickly assumes a quasi-periodic nature. Thus,
even if the string were initialized with a random shape, after a very short time the primary
frequencies present are those which have an integral number of periods in P+Dy(f) seconds.
The lowest such frequency provides the fundamental or pitch frequency of the note, and it
is defined as the minimum positive solution of ‘

1

h=roi

(3.18)

Experience has shown that fi corresponds well with the perceived pitch of the freely
vibrating string.
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The higher pari;ials are solutions of

k P
A__ = = R .
and the decay factor at time ¢ for the k** partial is
¢
ag(t) =G f)P*0:, - (3.18)

3.10.2. Stiff Strings

An important capability of the string-loop filter Hi(z) is the eflective shortening of the
string length at high frequencies to simulate stiffness eflects. Measurements of the cello
A-string suggest that stifiness is the dominant source of nonlinearity in the phase delay of
the filter Hy(z) [231, Fig. 2]. The theory of stiff strings [257, p. 170] indicates that stiffness
creates a stretching of the partials according to the approximate formula

1+ k222 s 4
fomkhfi+5+ (M= )| aken, k=12, <t
where fo is near the fundamental frequency, and k is the partial number. The parameter §
has been called the coefficient of inharmonicity; if § = 0, then perfect harmonicity results.
The phase delay desired for Hj(z) when the string is tuned to f; is given by solving

__k_kneB _ _ sy
e=psoim = ay = D=5 F

A robust technique for designing filters with a prescribed phase delay may be obtained
by a simple modification of the procedure given in [80], as described in Chapter 1, §1.8.6.

3.10.3. Passive Terminations

Another source of energy loss in the string is );ielding terminations. When a string
resonance is close in frequency to a body resonance, the coupled resonator effect ‘[257]
causes the eflective damping and length of the string to change near the common resonant
- frequency [221]. This eflect has been observed to alter the resonant frequency of a violin
string by 10 to 20 cents* [236], 2n amount extending well outside the tolerances of geod

* A cent is defined as one-hundredth of a semitone. The frequency one cent higher than f, is
given by 21/32% £, = 1.0008 f,
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intonation. In extreme cases, a phenomenon known as the wolf note occurs [220,215]. A
wolf note manifests as beating between the normal modes of coupled oscillation between
the string and body.

While the wolf note is undesirable, the pulled tuning of the various partials of the
string can be considered an important determinant of the sound of the string. Therefore,
we desire a realistic model of the termination filtering, especially at frequencies near
strong body -resonances. which. are coupled to-the string at the bridge. Coupling can
be assumed sufficiently weak that string resonances are only altered by a weak shift of
resonant frequency and damping. In particular, the resonance need not split into two
distinct resonances so as to produce a wolf note. This relaxes the requirements on the
phase delay of the loop filter.

The driving-point impedance of the string termination is defined as the ratio of the
force to the velocity at the point where the string drives the bridge. When the termination
is passive, the driving-point impedance is positive real (see Appendix C). It is convenient
to work with the specific impedance which is defined as the ratio of the driving-point
impedance to the wave impedance of the string (pc). Since the termination is assumed to
be close to rigid, the specific driving-point impedance is large compared to unity.

In general, there are two important driving-point impedance functions, corresponding
to the horizontal and vertical modes of bridge excitation. In the violin family, it is often
assumed that the transverse mode of vibration is dominant because the bow displaces the
string along this direction. However, near body resonances, where the impedance behavior
is most important, incident vibration in the transverse direction is reflected with a different
polarization [281]. This is caused by bridge-coupled resonances having a directionality other
than tangential to the top of the bridge. For further discussion of this phenomenon, see
[221].

Let R;(z) denote the 2-transform of the specific driving-point impedance of the bridge
termination. It is assumed that Ry(z) is positive real, a condition which is preserved
when the bilincar or matched-z transform is used to map the continuous-time impedance
to discrete time (¢f. Appendix C). To maintain alignment between the string resonant
frequencies and the structural resonant frequencies of the body and bridge, the matched-
z transformation should be used along with anti-aliasing filtering. If only a statistical
distribution of resonances represented by Rj(z) is needed, then the bilinear transform may
be adequate. In either case, Ry(z) satisfies

1) z real = Ry(z) real,
2)|z] 21 = Re{Ry(2)} 2 0.

Given Ry(z) we wich to find the corresponding reflection transfer function Hj(z).
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Adapting an argument from [257] yields

_ 1= Ry(2)
_ 1=Hy(2) :
Ry(z) = m ’

The squared modulus of the reflection frequency.response_is then .. ..

1-2Re(Ryfc)} + | Re) [ -
1+ 2Re( B} + | R P =

.2
IH;,(:’“’)I - (3.20)
since Ry is positive real. Note that conversely, if Ry(z) is not positive real, then (3.20) shows
that for some frequency !Hb(cj“‘)‘ > 1. Consequently, if there are no other losses in the
string, the string transfer function Hi(z) = —~Hy(z) is stable if and only if the reflection

transfer function Ry(z) is positive real The string is strictly stable if and only if Ry(z) is
strictly positive real.

It is shown in Appendix C that all positive-real functions have an equal number of
poles and zeros, all of which are inside the unit circle (stable and minimum phase). This
property holds only for the filter representing the reflection at a termination—the filtering
which takes place along the string is stable but a0t minimum-phase in general.

Since typically the string termination is a stiff support, we have |Ry(¢’“)| > 1, which
implies
| H(e) | = 1= ()

where ¢(w) > 0 is small. Since |Hj(¢’“)| is close to the stability boundary, a small deviation
in amplitude response can translate into a relatively large change in the time-constant of
decay at a given frequency for the vibrating string.

3.11. Practical Extensions of the String Model

In this section, various enhancements of the string model are discussed which improve
its practical value for music applications. These improvements were suggested by David
Jaffe at the time he was realizing his computer music work “Silicon Valley Breakdown.”
The refinements which follow were initially applied to the Karplus-Strong algorithm [254],
which, when configured for plucked string sounds, may be considered a special case of
the string model developed here. For a complete account of our extensions to the Karplus-
Strong algorithm, see [252].




3.11 PRACTICAL EXTENSIONS OF THE STRING MODEL Page 175

Previously, the analysis was done using notation which was closely connected to a
simple physical picture. Now, however, practical implementation issues are the main topic,
and so we will start speaking of time in samples rather than seconds. Accompanying this
will be what was termed the normalized notation for z-transforms (cf. §3.8). Time indices
will be denoted by # rather than ¢, and all times are in samples unless explicitly multiplied
by T, the sampling period. A frequency denoted f is still in Hz, and fT = f/f, gives
normalized frequency corresponding to the unit sampling rate. For example, D;(cj“’ ) stands
for the phase delay of the loop filter in samples zt frequency w = 2xfT, where f is in Hz.

3.11.1. Fine-Tuning the String

If Hi(z) is not measured separately for each note, then the string has tuning problems.
Since the fundamental frequency is f; = f,/(P+ D;(f1)), the allowed pitches are quantized,
especially at high frequency. For large values of P (low pitches), the difference between
the pitch at P and P + 1 is very slight. However for high pitches, P and P + 1 yield very
different pitches and tuning becomes crude.

This problem can be solved by adjusting the phase delay of the loop filter H;. Recall
that the fundamental frequency satisfies

- J
h=55Di)

Suppose f; turns out to be mistuned due to the integer quantization of P. To make up the
difference between f; and the desired frequency, we need to introduce into the feedback loop
a filter which can contribute a small delay without altering the loop gain. This implies an
allpass filter is needed. It turns out that a first-order allpass provides the necessary tuning
freedom. The first-order allpass filter has the difference equation

y(n) = Cu(n) + un-1 — Cyn—1, (3.21)

and transfer function c .
+ 2z
o) & Trg
where C is the only coefficient to be set. For stability, we must have |C| ‘< 1. The

amplitude response is given by

’C+c""“’l

A —_— =
Gd(f):—.. II+CC—JWI l!

Ha(ejw) ] =

The use of an allpass ensures that no modification of the decay rate will take place. The
loop gain is G4(f)Gi(f) = G(f) as before.
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The transfer function of the whole string (ignoring the numerator) is now

1
A
HEO& —rome

The phase delay of H, is selected to tune f; to the precise desired frequency. This
requires only the ability to select phase delays between 0 and T seconds, i.e., one sample’s
worth. -

The phase delay, in samples, of the first-order allpass H, is given by

Z(l + Cc"j"') [(C + c-iw) (3.22)
= — - ”

- S () o ().

When the arguments to arctangent above have magnitude less than unity, the power series
expansion [132]

# $» 7
U)o e e e = e
tan"}(z) =12 3+5 7+ , lz] <1

holds. Thus the low-frequency phase delay is approximable by

sin{w) - Csin(w) 1 (o4 1-C

D)™ o T cos@) " AT+ Ceasfw) ~C+1 1+C —14C°

(3.23)

A plot of the exact phase delay is given in Fig. 3.24 for 17 values of C equally spaced
between —0.999 and 0.999, inclusive. Note that delays between 0 and 1 sample can be
provided somewhat uniformly across the frequency axis. A delay of 0 samples corresponds
to C = 1, where the pole and zero of Hj(z) cancel to give H,(z) = 1. However, pole-zero
cancellation is inadvisable in practice, since roundoff errors may yield an unstable filter, or
one which tends to overflow in fixed-point arithmetic. Therefore, it is preferable to shift
the range of one-sample delay control to the region ¢ < Dy < (1 + ¢), for some small
nonnegative ¢ (0 < ¢ &« 1). It is preferable not to shift very far since the phase-delay
curves are less flat in the region beyond one sample’s delay.

Note that the delay curves below the one-sample level in Fig. 3.24 correspond to slizhtly
flattened upper partials, while the delay curves above the one-sample level correspond to
slightly sharpened upper partials. The timbre change due to slight systematic shifting of




3.1 PRACTICAL EXTENSIONS OF THE STRING MODEL Page 177

QELAY (SAMALES)
[ )

e

FRECuUENCY

Figure 3.24. Phase delay for the fine-tuning allpass filter H.(z) =
(C+z7Y)(1+Cz™h).

the upper partials, of an amount less than one sample period, was found to be hardly
noticeable in our implementation.

To precisely tune the instrument to a desired fundamental frequency f;, let P; equal
Jel f1, the real value for the period of the first partial, in samples, which would give perfect
tuning. Then we desire P + D((f,) + Da(f1) = P;. The integer bufler length P and the
delay Dg(fy) required from the allpass filter become

P A |P,~Dff1)-¢]

Du(f) A P~ P=Dy(fy), (3.24)

where ¢ > 0 is the offset which shifts D,(f1) into the range [¢,1 + ¢].

We next solve for the filter coefficient C in (3.22) as a function of D4(f;). Taking the
tangent of both sides, and using an identity for the tangent of a difference leads to the
quadratic equation in C,

C?sin(w; Do( 1) + w1) + 2C sin(w D4 1)) + sin(wyDa(f1) — wy) =0,
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where w; & 27 f;. The solution is found, after some manipulation [276], to be

- — sin(w1 Dg(f1)) £ sin(w;)
sin(w1Da(f1) + w1)

We have introduced an extra root by producing a quadratic equation. The previous
approximation (3.23) indicates that the + sign should be taken. Therefore, the final solution

is
- sin{w;) — sin(w; Da( f1)) _ sin(““;“'*f’i.'(f_‘))

sin(wi1Da(f1) +w1)  sin (mw,zn.( I3) ) (3.25)
which can be approximated, at low frequencies, by
C =~ | Da(fl) (3.26)

1+Da(fl) ‘

3.11.2. Approximating Nonlinearities

The amplitude of the synthetic string signal is proportional to the amplitude of its
input driving function. This is an unsatisfactory control in simulating the timbral effect of
dynamic level as it occurs in the case of a real stringed instrument [277]. This is due in part
to the fact that real strings are nonlinear, and the harmonic and intermodulation distortion
due to nonlinearity can contribute significantly to the timbre. The first-order effect of
nonlinearities in a real string is an increase in the “brightness” of the tone. Harmonic
distortion can be simulated in the string model by means of a filter which boosts the high-
frequencies present in the waveform. Since the complete harmonic series is usually present
in applications of the string model for which the phase delay of the loop filter H(z) is
constant, any harmonic distortion can, in principle, be simulated. When the string model
is used with inharmonic partial overtones, however, the simulation of nonlinear operation
fails to produce intermodulation distortion as required for fuil realism.

In this section, a means for providing dynamic level control using a simple low-pass
filter is described. A higher dynamic level is implemented by increasing the effective spectral
bandwidth of a tone in order to boost its apparent intensity. This technique was developed
jointly with David Jafle.

The bandwidth is controlled by means of a one-pole low-pass filter applied to the initial
period (before it is fed into the string). This filter -will be referred to as the “dynamics
filter”. The difference equation of the dynamics filtér is

y(n) = (1 - R)u{n) + Ry{n - 1)
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and its transfer function is R
1 p—

Hiz) & 1=R=1 (3.27)

where R is a real number between 0 and 1, computed as a function of fandamental frequency
f1 and the desired dynamic level L. When a series of notes at pitch f; is played while R

is moved gradually toward 1, a diminuendo is approximated in terms of both decreasing
loudness and spectral bandwidth reduction.

We define the dynamic level L as a bandwidth between 0 and f,/2. If L is small, the
spectrum is more low-passed, corresponding to a softer dynamic level. Similarly, large L
gives a bright spectrum corresponding to louder notes. It is not sufficient to use a fixed
low-pass filter for all pitches since low-pitched notes would then be louder than high-pitched
notes. Rather, for a given dynamic level, R must be changed with pitch to yield a uniform
perceived loudness. While this is a difficult problem in general, a good approximation is
obtained by varying R so that the amplitude of the fundamental frequency component is
always the same. '

It remains to be shown how R is computed for a giver pitch fi and dynamic level L.
The main steps are as follows: First, a one-pole low-pass filter is designed having bandwidth
L. Next the gain of this filter at a “middle” frequency is computed. Finally, the dynamics
filter is computed as a one-pole low-pass having this gain at the desired fundamental f;.
The remainder of this section gives the equations needed for these steps.

The reference frequency fm is chosen as the logarithmic middle (geometric mean) of the
range to be used (a function of the particular musical context and tke sampling frequency),

Sm = en (J)+in (1) — (f“f‘)%

\

where fy is the upper pitch limit (< f;/2), and f; is the lower pitch limit.

The one-pole low-pass having bandwidth L is given by

1-R;
A_— %
Hils) & 7=
where
RLA LT

The substitution By = ¢~"LT is a somewhat standard aj)proximate formula for mapping
bandwidth to pole radius; it derive:s from applying the matched-z transformation [196]
to the conventional bandwidth approximation (in terms of damping factor) for an analog
two-pole resonator.
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The gain of the low-pass filter Hy at the reference frequency is defined 2s

GLlfm) = | Hy (/=T |

- 1-R;
T= R i’

where T is the sampling period.

Now, for any desired fundamental frequency f;, R is computed so as to provide gain
G4lfi) = Gr(fm). In other words, all fundamental-frequency comporents are made to
have the same amplitude. The value of R is found by solving

1-R
|1 = Re=27nT | )

Gilfm) =

Sqixa.ring both sides of this equation, and solving the resulting quadratic pelynomial in R
yields :

R 1= GiUm)cos(2/iT) ~ G}(fm)cos¥(x f,T))*
1-Gi(fm) 1-Gi(fm)

We use whichever value is less than 1 in magnitude for stability.

+ 261.(.f'm)sin(:rfxT)(l

A family of frequency-response curves for Hy is shown in Fig. 3.25 for six fundamental
frequencies in octave steps from f; == 100 Hz to f; = 3200 Hz. The dynamic level in each
case is L = 100 Hz. A vertical line is drawn to each curve at the fundamental frequency
to which it applies. The reference frequency fm is set to 282.84 Hz (the geometric mean of
fi =120 Hz and fy; = f,/2), and the sampling rate is f, = 8000 Hz.

To add to the effect of simulated dynamics, it is sometimes helpful to increase the
damping on the low soft notes, using a “resistive” loss factor ¢ < 1 in cascade with Hy(z)
[277].

3.11.3. Coupled Strings

The illusion of a sympathetically vibrating string can be created by exciting one copy
of the string simulator by a small percentage of the output from the main string.

The effect of several sympathetic strings can be created simply by a bank of parallel'
“sympathetic strings” as defined above, each tuned to an arbitrary frequency. Each string
output can be added (highly attenuated) to the input of every other stricg to provide full
coupling. The output of the whole assembly is just the sum of the string ouiputs.
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Figure 3.25. Frequency response of Hy(z) = (1-R)/(1-Rz™*) computed at dynamic
level L = 100 for six values of f;.

3.11.4. Moving the Point of Excitation

An examination of the general string transfer function (3.7-3.9) (cf. also §3.9) shows
that the principle effect of the numerator is to introduce severe losses at nearly harmonically
spaced intervals in the spectrum. If the pluck-point z; divides the length of the string L,
then harmonics numbered L/z;,2L/z;,... are suppressed completely in the ideal string.
Thus the “pick” or “bow” position can be easily simulated by zeros uniformly distributed
over the spectrum of driving excitation. These zeros may be placed on a circle in the
z-plane. As the radius of this circle approaches one, the eflect becomes more and more
pronounced. This has been found to simulate convincingly the effect of plucking or bowing
a string at varying distances from the bridge. The string input is filtered with a “comb
filter,” H. having the difference equation

y(n) = u(n) — vu{n — pP),

where z is the fraction of the string between the bridge and point of excitation, P; is the
period of the played string, and v € [0, 1] is used to vary the amount of the effect (which
is strongest for 7 = 1 and weakest for 4 == 0). For example, in the case of a harmonically
vibrating string (Di(f) constant), 4 = 1/2 causes the even harmonics to be removed, and
the effect is that of driving a string at its midpoint. Similarly, when g =1/10, every tenth
harmonic is suppressed, and the effect is like playing a tenth of the way up the string. With
p ==1/P,, the filter approximates a differentiator, creating a sharp sul ponticello sound.
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3.12. String-Loop Identification

This section treats the problem of identifying the string loop filter Hi(z). which
represents the total filtering accumulated in the propagation once up and down the string
(one period).

As was discussed in the derivation of equation (3.8), the string transfer function can
be expanded in a formal power series to yield

U(z)

H&) = 1—FrG)

= U(2)+ " PH{(2)U(z) + 2 PHAU(G) + - -,

where U(z) may be thought of as the numerator of H{z), or as the z-transform of the initial
period of vibration (in which case H{(z) is the output transform). This expression illustrates
the interpretation of Hi(z) as a filter which is applied successively at periodic intervals to
generate the output waveform from the initial conditions.

3.12.1. Error Criterion

As in any modeling problem, we must first think about the error criterion. The basic
approach is to state what would be ideal to minimize, and then whittle it down by various
sensible approximations until it is tractable with known approximation techniques.

Magnitude Error

An important role of the amplitude response |H(¢e’“)| in the string loop is to provide
frequency-dependent damping in-the string. Such damping causes different decay rates of
the various partials when the string is left to vibrate freely. A natural choice of error would
then be the error in the time-constant of decay. In equation (3.14), (§3.10.1), it was shown
that the decay time-constant is given by

P — LH ()|
In I H;(cj"’) '

Tw {samples),
where P is the loop bulk-delay in samples. The time-constant error is then defined. by

P— LH() o _ P=LH()u _ Pla|H()| = Pln| Ae)]
In | Ay(eiv) | In | Hife?)] In| He) | In | Eeie)|

E{w) & , (3.28)

where H{¢?“) is the approximate frequency response, and Hi(¢?“) is the true frequency
response of the string-loop filter. We assume that P is known. Since P is typically much
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larger than the phase-delay of the string-loop filter, the terms LH g(cj“)/w, LH|(e79)[w are
both much less than P and have been dropped.

The denominator of (3.28) may be interpreted as a weighting which approaches infinity
as the loop gain approaches one. This is appropriate since such gains correspond to very
long time constants, and a small change in magnitude produces a large change in the time
constant. This weight function is still provided to a good extent if we approximate |H;(&/%)]
by |Hi{¢’“)} in the denominator of (3.28)..The advantage of this modification is that it will
reduce the error criterion to one discussed in Chapter 1, viz.,

| Hie)| - | Be) | pin|He) | - 1n | Erei) [
ln2|H,(cJ“))| B In? | Hi(ev) | 7

Efw)~P - (329)

In the terminology of Chapter 1, this error classifies as a weighted log-power frequency-
response error, and a method was given in §1.8.5 which minimizes the L* norm of its
first-order Taylor-series approximation with respect to |H;|. Thus, the final magnitude
error criterion is given by

|H,(c""")l2 - |m(ef~)|’
| Hife) |* 1n? | Hy(e3w)| -

AV (3.30)

where 2 is the vector of filter coefficients for H/(z). The final error inside the norm also
happens to be the first-order term in the Taylor expansion of (3.28) with respect to |H)|
about |Hj|, making the explicit approximation from (3.28) to (3.29) unnecessary.

It is an important benefit that the final form (3.30) can be minimized by an algorithm
which is guaranteed to converge monotonically to an optimum solution. Furthermore, this
is true even for rational filters H;, which, as Chapter 1 discusses at length, is typically rare
in filter design.

Phase Error

We have only arrived at a means for obtaining a good magnitude approximation. We
now consider the phase-response error, and its importance.

An important role of the loop-filter phase response is to provide inharmonic partials
in the freely vibrating string. The ear is very sensitive to slight relative perturbations in
the frequency of sinusoids (cf. §3.2). Let wi denote the true radian frequency of the kth
partial overtone of the string, and let &, denote the kth partial frequency of the string
model. Also, let Di(w) = —ZH{w)/w denote the phase-delay of Hi(z). Then minimizing
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the worst-case relative deviation in partial-tuning means to minimize (cf. §3.10.1)

" wk—aku - _ |1 - 2mtel(P + Do)
W oo o || 27kfe/(P+Diwr))

= n 1 PrDdwn) | n Di{@) = D{ws)
Prban | | P+ Brar)

x©

~ %" Dyfwy) = Dyfwy) "oo .

Thus a good phase errer criterion. is-given by . -.

LH\(e™*) = LH (w)

w

(9 & | D) - D) | = ﬂ (3.31)

oo

Minimizing the error in the tuning of the string overtones thus corresponds to min-
imizing the error in the phase delay of the string-loop filler. Assuming the magnitude
response is obtained by log-power matching, as discussed above, one can then design an
allpass filter having the optimum phase-delay approximation (cf. §1.8.6 of Chapter 1). This
does not produce an overall optimal solution since the phase and magnitude have been
matched separately in two independent sections of the filter H i(z). However, the increase
in filter order required may be offset by the greater relevance of the two error criteria.
A further advantage is that the relative accuracy in decay-rate and partial-tuning can be
easily controlled.

The ability to work with the error criteria (3.30) and (3.31) depends on having the
true string-loop frequency response Hi(¢’“) to use as a desired function. A method for
measuring Hi(¢’“) will be discussed later. Alternatively, it is possible to form string models
directly from the recorded behavior of the freely vibrating string, as discussed in the next
two subsections. :

3.12.2. A Linear Prediction Approach

The structure 1
H(z) = ————— (3.32)
1-:=PH(z)
where Hy(z) is a low order string-loop transfer function of the finite impulse response (FIR)
class

H(2) & hy{0) + ~{1)z™ + -+ + Ay(N)z~™N
can be estimated from the behavior of a freely vibrating by mezns of a modified form of

linear prediction. To see this, note that in the time domain, (3.32) implies

vim) = (& ) = i = ulo) + @™ tn = P), (339
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where d is the unit-sample delay operator.* If the string is vibrating freely at time n, then
the input u(n) is finished, which gives

¥(n) = Hi(d ")y(n - P).

The modeling problem is then to find the coefficients of Hj(d™!). This can be done by
minimizing the energy of the signal

 tn) Agin) — HdVy(n - P).

with respect to the coefficients ﬁ;(i),i = 1,...,N. This is nothing more than a linear
prediction problem in which the prediction takes place over a span of P samples instead
of the usual one sample. The various styles of solution to the one-step linear prediction
problem may be carried over to the P-step case with no particular surprises, and the reader
is referred to Markel and Gray [186] for a comprehensive (though advanced) treatment of
the one-step case. We will solve the P-step linear prediction formulation as a special case
of the system-identification approach, presented in the next section.

The P-step linear-prediction formulation has not received a lot of attention in the
literature, although forms closely related to it exist. In [160], a similar form was proposed
for the purpose of eliminating the fine-structure from the spectrum of the residual output of
a conventional linear predictor for voiced speech. Also, related models have been applied to
seasonally varying time-series [135]. We have also applied it successfully to pitch tracking;
in this application, the coefficients {A{(f)}2’ exhibit a peak corresponding to the estimated
period. Pitch tracking can also be based on the average phase-delay of Hj(z). The basic
structure (3.32) can provide a parsimonious model for a wide class of quasi-periodic signals.

3.12.3. A System Identification Approach

The resuits of §3.10 and Appendix C imply that the reflection transfer function cor-
responding to passive terminations is a Schur function.! As such, it must have the same
number of zeros as poles. Thus it is desirable to allow pole-zero modeling of the string-loop
transfer function, so that more physically accurate models are possible. Rational models
can be estimated directly from string behavior by means of system identification methods
(described in Chapter 2).

* This delay-operator notation was used extensively in Chapter 2. Recall that d*z(n) & z(n — k),
and that d can be replaced by z™! to convert the delay-operator function into a transfer function.

t Defined in Appendix E.
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The free vibration of the string is expressed by equation (3.33) with the input u(n) set
to zero, giving
' y(n) = Hd )y(n - P).

Hj(z) is assumed to be a linear transfer function which is to be modeled with a rational
transfer function of the form .
B(z)

A=
Hiz) 2 i)

(3.34)

B Ao+ bye 4 -or 4 by

. 3.35
AlZ) A1+ 4 oo +apsN, (3:35)

where

and the order N is given. Asdeveloped in Chapter 2, applying the basic system-identification
formulation means to minimize equation error

{n) = A(d™")y(n) = B(d~")y(n ~ P) (3.36)

in the time domain under the L? norm. If we set A(d~!) = 1, then (3.38) reduces to the
linear prediction formulation discussed in the previous section. In the more general case,
. the solution is giver by a standard least-squares procedure which is derived in detail in
Chapter 2 (§2.4, “The Regression Formulation”).

When considering the application of system-identification methods, the question arises
as to the utility of the more general formulation,

C(d™)i(n) = A(d™*)y(n) = B(d™")y(n ~ P).

The addition of the polynomial é(r 1) allows greater flexibility in the modeling of the
noise term é(n). This will be of value only if the residual é(n) is to be used in the model in
some way. For example, one might wish to characterize é(n) by its statistical behavior and
feed it into the model according to the difference equation

C(d—1)

B(d™?)
."(n) = -—————y(n —P) + A(d-‘)

A(d=1)

where ¢n) is statistically similar to é(n). Note that in practice, ¢(n) will depend on the
nature of the initial excitation of the string used to generate y(n).

en),

3.12.4. Practical Issues .

In both string modeling formulations, the solution is at first sight independent of
the initial excitation of the string. This occurs because one is really only comparing one
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period* to the next to find the filtering operation which takes one to the other. In practice,
however, the excitation is important. For example, if the string is initially excited only at
its fundamental frequency, then the string-loop frequency response can only be measured at
that frequency. Similarly, when all partials are present, the string-loop frequency response
is “sampled” onmly at these frequencies. In the case of modeling the violin body, harmonic
excitations proved to be insufficient for identification because the resonance structure of
the body cannot be outlined by the overtones of any single note in the range of the
instrument, and the losses at.the.string termination- have. potentially the same general
frequency-distribution as the body resonances.

The ideal experiment consists of sending an impulse into the string, and measuring its
shape after one trip around the string loop. This only works if the impulse response of the
string loop is less than one period (a reasonable assumption), since otherwise the measured
impulse response will be “time-aliased.”

Another possibility is the use of pizzicato recordings, i.e., the response to a pluck. In
this case, two curvature impulses, traveling in opposite directions, are initialized in the
string. This is less desirable since the measured spectrum will have nulls at all multiples of
the first frequency having a node at tke pluck-point. However, if the pluck-point is chosen
very close to the bridge, then the first null will be at a very high frequency, e.g., above the
20th harmonic.

A means for obtaining a nonparametric estimate of the string-loop frequency response,
to which the error criteria of §3.12.1 can be applied, is as follows. In a recording of NV
samples of the freely vibrating string, y(n),n =1,..., N, take N — P samples in the time
range [1, N — P] ard call the DFT of this segment Y{e’%). Now take the same amount of
data in the time range [P + 1, N] and call its DFT Y,(¢’“). It is helpful to use spectral
smoothing in these DFT's in order to reduce side-lobe oscillation and spurious errors in the
spectra. Now, the string-loop frequency response estimate is given by

Yofe)
ZEDN

F: WY

. P A s . .
The prime on H; (¢7“) is used to distinguish the nonparametric estimate from the parametric
representation H{z) in terms of a rational filter. H ;’(c-"") can then be used as a desired
frequency response in a filter-design technique.

Another practical issue is that of pre-emphasis. In both the system identification and
linear prediction methods, there is an implicit weighting function on the frequency-response

* Again, the term “period” is used loosely. The signal is only approximately periodic. If it were
exactly periodic, the string-loop transfer function would be L.
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error which is proportional to the excitation power spectrum. This can be seen by looking
at the definition of equation error in the frequency domain:

| E() [’ = | ()Y (/) = B(e#)e 3w PY (i) ]’
YW —rw, “B(‘Ju)
Y(c’ )(l - PA(—;—JW))

1- e-ijﬂ-[(cjw)
1 - ¢~ iwPHew)

2
= | A(e) |"'

2

= | Ay |2| vie)[

’

where U(¢?“) is the spectrum of the initial string excitation. If there is significantly less
energy at high frequencies (as is the case after a short time of free vibration) then the
high-frequency error may be larger. This was found to be a real problem in practice. A
means of counteracting this behavior is to apply pre-emphasis to the data, e.g., work with

Yy(e'¥) & O(EY (),
where C(¢’“} is a low-order polynomial obtained as the solution to one-step linear prediction

modeling of Y. Thus Y} is a prediction error spectrum, and tends to be flat, especially in
the middle of the analysis time frame.

3.12.5. Performance on Pizzicato Data

Figure 3.26 shows a recording of a plucked violin G-string. The upper curve is the
waveform at the bridge. Note how the main pulse decays and spreads over time. The loop
filter H(z) must provide this behavior.

To equalize the spectral content, the time-waveform of Fig. 3.28a was filtered by a
third-order linear-prediction inverse filter. The resuiting time-waveform and spectrum are
shown in Fig. 3.27. This signal is the prediction error from the linear prediction. Note that
at high frequencies the signal does not have sharply defined partials or harmonics. This
proved to lead to a string-loop filter with excessive loss at high frequencies.

The nonparametric method in which the FFT cf one segment is divided by the FFT
of a segment one period earlier gave unusable results due to excessive variance in the
frequency-response estimate (even when heavy smoothing was used). For example, the
loop-filter gain exceeded unity at many places in the spectrum. This was unfortunate since
a good nonparametric estimate would allow the error criteria (3.30) and (3.31) of §3.12.1 to
be used. The linear-prediction and system-identification methods, however, gave plausible
results, as will be shown.
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Figure 3.28. Time-domain input-output pair for the case of a plucked
open violin G-string.

a) Force derivative at the bridge.

b) Sound pressure from the body.

The results of an order 8 and an order 20 string-loop filter estimate, obtained using
the periodic linear prediction method, are overlayed in Figure 3.28. The plot shows the
coeficients of the predictor, which can be interpreted as the appearance of an impulse after
one round-trip on the string. The curves have been aligned to show the agreement obtained
over their common delay range. ’

The performance of the string model using the smaller filter is shown in Figure 3.29.
It is evident that the overall exponertial decay is reasonable, but that the kigh frequencies
die out too quickly. This is thought to be due to the lack of high-frequency energy in the
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Figure 3.27. The same time-domain input as in Fig. 3.26a after
applying third-order linear-predictive pre-emphasis.

a) Force derivative at the bridge.

b) Corresponding spectrum.

original recording. This type of trouble could be also te caused by stiffness; if the predictor
does not span more than the range of effective string-length change over all frequeacies,
then those frequencies which are “out of reach” of the predictor appear uncorr-lated and
will be attenuated severely.

Figure 3.30 shows an overlay of three string-loop frequency responses obtained using
the system identification approach. Each filter has the same number of poles as zeros,
and the three cases are orders 6, 7, and 8. In each case, the bulk delay was adjusted by
trial and error to maximize the gain of the string-loop filter at 0 Hz (theoretically 0 dB).
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Figure 3.28. Two string-loop fllter coeflicient sets obtained by the linear prediction
method. The FIR loop filters are of order 8 and 20, respectively.

This was a very important step due to an attenuation phenomenon discussed in Chapter
1 (§1.7.1). In addition to the three pole-zero cases, the order 8 FIR string-loop frequency
response is included for comparison. Again, high frequencies appear decorrelated, and
the high-frequency fit is somewhat random. The low-frequency identification, however, is
quite consistent. Figure 3.31 illustrates the response of the string model when the order 8
recursive filter is used as the string-loop fiter.
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Flgure 3.29. Performance of the order 8 FIR string-loop filter.

a) Original pizzicato recording.

b) String-mode! response initislized with the first period of a).

¢) String-model impulse response.
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Figure 3.30. Three string-loop filter frequency-response magnitudes obtained by the system-
identification method, and one fliter obtained by the linear-prediction method. The string-loop
" filters have (pole,zero) orders (6,6), (7,7), (8,8), and {0,8), as marked in the figure. The horizontal
axis ranges from O Hz to half the sampling rate.
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Figure 3.31. Performance of the 8-pole, 8-zero string-loop fiter
obtained by the system-identification method.
a) Original pizzicato recording.
b) String-model respouse initialized with the first pericd of a).
¢) String-model impulse response.

3.13. Additional Refinements

“There is no problem, no matter how complez, which cannot, when viewed
in the right way, become stsll more comglez.”

— Anderson's Law
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Thus far, the model for the violin includes only the body and string. For plucked-string
instruments, the model is somewhat complete. For bowed strings, however, this is only the
beginning. The interaction between the bow and string plays a crucial role in the quality
of transient sounds. Even for steady-state tones, the model as it now stands accounts for
only a few of the characteristics that are observed with bowed strings. For more realistic
behavior, covering a wide range of bowing styles, a more accurate medeling of the bowing

_ process is required.

3.13.1. Bowing the String

As discussed previously, driving the string mcdel with an impulse train provides
Helmholtz-type behavior. The main improvement needed for reslistic transient behavior is
an input to the string which behaves more like a bow. This input is an additive component
which models the effect of a bow with a given pressure, differential velocity, and position.
The basic physical mechanism is the [riction of the bow against the string. The most
convenient choice of string simulation quantities i3 transverse velocity, obtainable by one
time-integration of the acceleration waves considered previously.

Figure 3.32 shows a diagram of the bowed string which more accurately reflects the
physics of bowing. This bowing model has been most extensively developed by Mclntyre
and Woodhouse [231]. To enbance the physical analegy, the propagation delzy from the
bow to nut and back has been split into two halves, placing the termination at the nut
between them. Similarly, the bridge is located between two delay-lines corresponding to
the portion of the string between the bow and bridge.

The operation of the “bow” is as follows: The variables sensed are the incoming left-
going and right-going velocity waves which are denoted v;1(n) and v;.(n), respectively. Let
vi(n) = vy(n) + v;r(n) denote their sum {which is interpreted as the incoming transverse
string velocity at the bowing point). We must solve for the change in velocity av{n) as
a function of the bow pressure, the relative velocity between the bow and string, and the
string wave impedance. The velocity correction will be distributed equally in left-going
and right-going directions to produce outward velocities v,; = vy + Av(n)/2 and vor =
vir +av(n)/2. The net instantaneous string velocity under the bow is v(n) = v;(n)+ av(n).
The force of the bow applied at time-sample n will be f(n) = F(v(n) — vy(n)), where
F is the friction curve which relates force anrd velocity under the bow, at a given bow
pressure and bow velocity vp. This force must also correspond to a velocity shift of the
amount av(n) =Y f(n), where Y is the characteristic wave-admittance of the string. These
last two equations are solved simultaneously in practice by finding the intersection cf the
functions
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Figure 3.32. System diagram of the string model with the Mcintyre-Woodhouse bowing
system.

f=av/Y
'f=F(Av+v,--—v5).

If bow force is held constant, then the intersection of the curves can be pre-computed and
stored in a table look-up. Typical values of Y and F(v) can be found in [235]. The bow
force can be approximately represented by a vertical scaling of the friction curve. Bow
position, of course, is represented by the sizes of the delay-lines to the left and right of the
bowing point. It is straightforward to extend the above model to include torsional string
waves, multiple bow-hairs, and realistic bow-hair dynamics [235].

3.13.2. Spikes

In {232], McIntyre and Woodhouse discuss a phenomenon known as “spikes” which
is thought to be responsible for much of the noise which builds up when bowing with
heavy force near the bridge. The main effect is that several secondary curvature impulses
appear between the main Helmboltz impulses. As bowing pressure is increased further,
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these impulses hecome larger and more widely separated. The secondary impulses appear
somewhat random and might be well-modeled by a Poisson or renewal process {148].

The spikes are evidently due to the string slipping on the bow during the time it
is normally stuck. A simple explapation would be that the bow velocity exceeds that of
the string, and therefore the stricg slips a little to let the bow get 2head. However, this
hypothesis is contradicted by the fact that spikes canrot be produced with a bow contacting
thestring at-only one point:{232].. Thus.the finite width of the bow seems to play a crucial
role in this phenomenon [232].

The mecharism proposed in [232] to explain the source of spikes is as follows. When
the string is first captured by the bow, it is trapped 2t an angle under the bow. As the bow
and string move together, the string is bent such that it is no longer a straight line from
the bridge to the main Helmhcltz corner. At some time, before the main corner returns
to the bow to initiate slipping, the string slips enough to straighten out under the bow—a
process called “differential slipping”. This may happen several times within a period. The
greater the bow force, the longer the string waits (and the more it deforms) between slips.
The innermost bow-hairs slip most often, since the force on them is typically greater.

To provide spikes, a second bowing unit can be added to the structure of Fig. 3.32
which is separated from the other bow-point by a few samples delay cn both the upper and
lower rails.

In the simple modcl, where =1 acceleration impulse train is used as input, spikes may
be simulated with extra impulses which arrive at random times and amplitudes, as in a
Poisson “random shock” process.

3.13.3. Adding Vibrato

Another aspect of musical contrel is the inclusion of vibrato. This is obtained easily in
the simplified model by placing frequency (and perhaps amplitude) vibrato on the driving
impulse train. {Gocd results are obtained without varying the delay-line lengths.) In
the more gencral case, using the Mclntyre-Wocdhouse bowing system, vibrato must be
implemented by varying the size of the delay line which represesnts the length of the string.
Since the delay lines are of integer length, unacceptable results are cbtained unless an
interpolation of delzy length is performed. It was found that the technique presented in
§3.11.1 can be easily adapted to provide vibrato with no audible distortion dus to string
quantization.
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3.14. Conclusions Regardiag the String Model

A computational model for bowed strings has been presented, which captures several
of the most musically important aspects of real siringed instruments. This capability is
obtained at very low cost compared to other approaches of similar generality. Several
schemes for cclibrating the model to recorded data were proposed, and some resuits for
pizzicato data were presented. Although approximations were made to arrive at the final
structure, it. has been fcund that the performance is very realistic in practice. However,
there is still considerable work to be done in making a useful family of bowed strings using
the techniques presented.

One area for future work is in experiment design for the metheds of §3.12.5. The
pilot experiments presented there are by no means final. While demonstrating the basic
feasibility of identification methods, they point out areas of practical diffculty such as in
obtzinirg reliable high-frequency estimates of the string-loop f:2quency response. It would
also be much better to measure or infer force at the bridge without imbedding a sensor in
the instrument; alterations of the playing properties seem unavoidable with this technique,
and it should not be considered for iastruments of very high quality. Norman Pickering has
employed a phonograph pickup resting on the bridge to measurc transverse velocity. Since
the vertical force of the string on the bridge is significant, it is suggested that the excitation
at the bridge be measured in both the horizontzl and vertical directions. Ccnsequently,
there would be two body transfer functions, one from each input to the output.

For musical purposes, the most pressing problem is that of control. The complete
model requires functions of time corresponding to bow pressure and velocity. It is somewhat
awkward to specifly bowing style by these functions. What is necded is a versatile library
of pressure and velccity curves {dependent on bow position) which cover the useful bowing
regimes [241,244]. Once such a library exists, it should be straightforward to find functional
approximations. It is conceivable that empirical measurements could provide these data,
using, for example, laser interferometry during normal playing. Such experiments could
also be used to estimate the statistics of the innovations signal for natural bowed strings.

The innovations signal may be important for “breathing life” into the sound. That is,
a purely deterministic simulation of bowed strings may prove to be fatiguing to the ear even
when realistic (though smooth) excitation functions are used. Probably the most expedient
path to satisfzctory stochastic components is by way cf trial azd error input and/or model
perturbations. A real musical instrument may be so inherently complex that a prohibitively
large and accurate deterministic model is necessary to obtain an innovations signal which
is well-modeled by a pseudo-random sequence.




Appendix A. Non-Concavity of Problem &’

In this appendix, it is shown that the recursive filter design problem, called “problem
H* in Chapter 1, is extremely dificult regardless of the choice of error norm. In particular,
it is shown that there is no upper bouad on tke number of locally best approximations.
This means that algorithms based on local searching of tke error surface can in general
never know when they have reached an optimum solution.

The outline of the proof is as fcllows. First, a construction is given which provides a
“desired” frequency response-that gives-any-number of local minima in one-pole approxima-
tion under the L2 norm. These local minima have controllable curvature. It is next shown
that the norm equivaleace theorem caz be used to extend this construction to provide an
arbitrary number of locally best approximations under virtually any norms.

Lemma A.l. Given any set of I distinct stable one-pole filters,

1

1—rz=1’

Hyz)= 0<r; <1, i=12,.. K,

there exists a bounded causal filter H(z) having each Hg(z) as a locally best apprcximation
under the L* norm. If H(z) is taken from the set of order 2K FIR filters,

H(z)=h(0)+ A(1)z™1 + .-« + B(2K)22K
and if the curvature of the squared L® error norm

2J
c;é%%(r.-»o, i=1,...K,

is specified for each H, then H(z) is unique and is given by

k(1) 1 2ry 3§ .- 2K 3K -1 ey
12) 0 2 6ry - 2K(2K —1)r3K-2 A1
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Proof. Minimization of Ja(r) gives the same answer as minimizing

2 2
Vi 23 = e - —L | = [ aeiy - L
l=remv i, - 1] —pe=iw | 27
o0 . (A.2)
= Z (A(m)=r")".
n==0
Necessary conditions for a locally best approximation 2t r - r; are that
av(r
irg =0
2V (A-S)
9 ")(r,) =¢>0
for i ==1,...,K. The derivative of V(r) at r = r; is
v d <
(r) (ri __.a__z h(n)—r?)? zlh(n)—r (=nrP™1)
na=0 nam0
00 2K
Z (r237=Y = 2" h(n)) = 2a; — 2 Z nr? " 1h(n)
n==0 N0
Differentiating again at r = r; yields
5 V(r) (ri)=2 Z ((27 = 1)r3""2 — (n = 1)r?"2h(n))
n=0
=29;+¢;—2 Z a(n — 1)r?"2h(n).
Nna=0
Conditions (A.3) become
2K
H(r;)= > r?"(nh(n)) =
==l ‘
ok . (A.4)
H'(ri)= 3 (n = 1)r}™%(nk(n)) = 3; + 5
n==1

where the summation indices have been adjusted for vanishing terms. Since h({0) kas no
effect on the conditions, it is arbitrary; we take A(0) = 1 since 4(0) =1 for all r; (nonzero
by hypothesis).
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Define a new pclynomial G(r) by

giln=1}=nak{n), n=1,...,2K,
2R -1

G(r) = Z g(m)r® = H'(r).

n=0

Then the problem is to (1) interpolate the order 2K — 1 polynomial G(r) to the K values
Glr;) = a;,1 <1 < K, and (2) interpolate the K derivatives of G(r) to G'(r;) = 8; +¢;/2.
Since G(r) = H'(r), we see that the solution is » K-point interpolation of the first and
second derivatives of H(r).

The conditions (A.4) become the 2K X 2K matrix equation

2 2K -1

1 ry rg -- ri 1
oK —n o
0t 2 - (2K-1)r3K-2 Z&; { B
Do : . =; : |, (A.5)
Vrg v} oo 3 (”{'_1) laﬁ’
01 2rg -+ (2K~ l)r'jf‘{{'2 = Fx

from which (A.1) follows.

The only remaining issue is whether the matrix is nonsingular in geaeral. While this
follows from interpolation theory [19,75], aa elementary proof will be given. A square
matrix is nonsizgular if and only if its nuil space equzis the zero vector [151). Thus if
setting the right-hand side of (A.5) to zero gives an equation in which g{r) == 0 is the only
solution, then the matrix is always invertible. Setting the rigkt-hand side to zero gives a
system of equations corresponding to

G(r;)=0, G(r)=0, i=1,..,K, (A.6)

where G/(r;) & %,ﬁ,ﬂ(r;). A solution to (A.8) can be written as

K
G(r)=P(r) [T(r—r2),

t=a}
where P(r) is a polynomial of order not exceeding K — 1. We can also write G(r) in the
form G(r) == (r — r;)@:(r) which can be differentiated to obtain
G'(r) = Qilr) + (r — r;)Qi(r)

K
= G'(r) =Qilr;) = P(ry) H(’i"'k)
o
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Since the r; are distinct, the requirement G'(r;) = 0 implies
P(r;)=0, i=1,...,K.

But P(r) is of order not greater than K — 1. Hence, P and thercfore G must vanish
identically. it then follows that a solution to (A.1) exists for all distinct {r;} C (0,1). a

Note that Chui, Smith, and-Su state in-{15] that-artitrarily many loca! minima can
exist for higher order flters.

We have constructed an order 2K FIR filter which gives rise to an arbitrary set of K
local minima in the squared L* error norm V(#) for the case of one-pole approximation.
Furthermore, the curvature at these points can be set to arbitrary values. With this it is
easy to prove the following.

Lemma A.2. For any set of 2K distinct real numbers {r;}3X 0 < r; < 1,K >
1, there exists an order 4K polynomial H{r) such that the one-pole L* approximatic er-
ror Jp(r) oscillates with local mizima at ra;_y,! = 1,..., X ard local maxima at re;, { =
1,...,K. Moreover, the curvature at these extrema czn be set arbitrarily and indepen-
dently.

Proof. Proceed as in tke Lemma A.1 using alternating signs for the ¢;. §

Lemma A.3. Under the conditions of Lemma A.2, at least [K/2] local maxima,
V(ra;) = J3(ra;) approach infinity as the alternating curvature values ¢; approach infinity
in magnitude, i.e.,

iiKm V(r;) = oc,
(I C" lj-l}.'co

for at least |K /2} even values of .

Proof. First note that by construction, V(r) > 0. Suppose that § is even and that
V(r;) approaches a finite limit as the curvature at each extremum becomes infinite. Then
there exists a number A sufficiently large such that with |¢;] > M, the second derivative
V"(r) changes sign at least three times as r goes from r; to rigs i =1,...,2K — 1. (See
Fig. A.i.) Let N; equal the number of finite maxima of V. Then Ny is between 0 and
K. For each finite maximum (at r; say) between two minima, there are at least six sign
changes in V"(r) as r ranges from r;_; to the r;y,. If V(r;) goes to infinity, then the sign
of V() need only change sign twice on the interval [r;_,, r;;,]. The total number of real
zeros of V(r) on (0, 1) is therefore at least 6Ny + UK — Ny) = p, where p = 1if Viray)
bas an iafinite limit, and g = 3 otherwise.
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Figure A.1. Mlustration of the behavior of a polynomial having
finite values at extrema with curvature of infinite magnitude and
alternating sign.

By definition,
<«

Vi)=Y (k(n)-r")?

nm=0

o0
= Z h3(n) = 2hpr™ + o7

= H(1)+ P(r) +

1-r2’
where

4K
P(r)=-2 Z hpre?

na=0

Page 203

(A.7)

is a polynomial of degree at most 4K in r. Twice differentiating with respect to r gives

(1-r2B3P"r)+6r2+2

V”(r)z (1—,‘2“

The term 1 — r? does not change sign on (0,1). Consequently, V(r) can have at most

4(K + 1) sign changes on {0,1). Therefore,

' -~
BNy +2AK = Ny)=p S K +1) = Ny s{h-’-l‘!.

2
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Hence there must be at least | K /2] local maxima of V'(r) which approach infinity as the
9K extrema curvatures approach infinity in magnitude. §

Lemma A.4. Under the conditions of Lemma A.2, for K 2> 2, the curvature
magnitudes at the extrema of V(r) can be made to grow in such a way that the local
minima remain fixed.

Proof. A Taylor expansion of (A.2) about r = r; gives
Vir)=V(r;) + V'(rr)(r —r)+ 5 V”(’v.)(f - r:)z V”(rt)(’ -ry )3

= V(i) + Sl =i + —‘-V"'(r,-)(r — i+

Equation (A.7) shows that the singularities of V(r) are at x1. Therefore the Taylor
expansion is valid throughout (0,1). If ¢; decreases, V(r) decreases everywhere but at r =
r;. At each local maximum (r; for ¢ even), ¢; is negative. If the local-minima curvatures
are held constant wkile the local-maxima curvatures increcse in magnitude (decrease), then
V{r) decreases fcr ail r. Similarly, when only the minima-curvatures increase, V'(r) “floats
up.” Our problem can be solved by defining the curvatures at the local minima in terms
of those at the maxima so that the minima are held fixed. The total differential of V at
with respect to the curvature differential (dey, dea, ..., deag ) is given by

avi{r) aV{(r) o
dVir) = —ac-;—dcl +"'+-5‘:’}-{—dc Py Z(r 7’,) de;.

2
To simplify notation, let
ra()) Bra;, (i) B rgicy,
crft) a €2:» co(f) a €ajw—1s

for § = 1,2,..., K. The subscript “h” denotes “hill”, and “v” denctes “valley”. Then
cn(f) < 0 and ¢y(¢) > 0. The total differential is now

K
aV(r) =3 3 (r = rali)denli) + 5 Z — ruli))desli)
tam] t==1

In order that the local minima remain fixed as curvature magnitudes increase, we require
dv'(fu(j))—_—o, j=ly"'yKo

which implies
K K

S {rold) = roli)*deuti) = = 3_(rold) = rali)) deali) & dn(1),

t=1 ta=1
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or in matrix form,

AK)C,(K) = dD(K),

where cv(l) (1)
el P |, ral ™ |,
clK) /- 1K)
and
0 (ru(l) - r,,(2))2 (r,,(l) - r,,(3)):‘: eee (fu(l) - r,,(K))z
(rol(2) = ro(1)? 0 (r(@=r@)® o (r(2) = ()
AK) A (@)= (1)) (ro(3) = ro(2)* 0 <o (rol3) — ro(K))?
(mxﬁnuW(MK%mmW(mxrnwW~~ 0

We must show

(1) lAK) #0,
(2) deo(i) >0, i=1,... K,

A-1(2) = 1 01 ’
) (r,,(l)—rum))‘(‘ 0)

for which conditions (1) and (2) are satisfied. Suppose these conditions are satisfied for
some K > 2. Then note that

)= (250 o8

For K = 2, we have

where
a(K)T A ((ro(K + 1) = ry(1))%, ... (ro(K + 1) = ro(K))* ).

acurc+n & (90,

where dp > 0 is an arbitrary positive differential. Then

Let

dT(K) +a(K)dp

AK +1)dCy(K +1) = ( a(K)T dCy(K)

)édI(K-H).

Since every element in dT'(k), a(¥X), and dCy(K) is positive, it follows that dT{K + 1) is
properly defined. Also, every element of dCy(K +1) is positive by construction. Therefcre,
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it is possible to increase curvature at all extrema of V(r) without perturbing the values of
V at the minima.

Lemma A.5. Under the conditicns of Lemma 4.2, for K 2> 2, the relative oscillation
amplitude, defined by

AN A K(-’-*“,)(T")T'ﬂ i=1,...,2K (A.8)

can be made arbitrarily large for { K /2] even-values of i:-In partizuler, for any number M,
there exist curvature values {cj}fx such that A{(V) > M for | K /2] even values of 1.

Proof. This is a straightforward consequence of Lemmas A.3 and A.4. 3

Lemma A.8. Let Va(r) dencie the one-pole squared L* approximztion error norm
defined on a discrete-frequency grid of size N, and let V(r) = J3(r) dezote the usual
continuous-frequency error norm. Then for any ¢,§ > 0, there exists M(¢, §) such that

[Valr) = V(r)| <e
for all N > M(e,6) and forall |f| S RA1-6.
Proof. By direct computation,

a
-

Viv(r) = V(r) = }:(h(n)— s ) - (B(m) =)

nu=0 1-—- fN

N _ 2N N &=
- = —+ LA Sy YRES
(1=r)1-r¥)2 PN-1,20

Since |H(¢?¥)| < By for some finite Bqz, we have

. _
f_ i H(a“')a'w"i‘ﬂi < By.

| ()| = o
Consequently,
. —p2N N
V)~ V()] < | 2=t |_Y | B
(1=r2)1—¢N)? IrN—l 1—|r]

3RN RNBH
St

Thus we may set

M(e, 6) = ln(F‘r;:Tg)/ln(l -5),
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and for N > M(e, §), the two norms differ by less than ¢ over the whole range of r. 8
We can now state the main theorem for which the above lemmas were developed.

Theorem A.7. Let K be a positive integer. Then for any discrete-frequency norm,
there exists an order 8K FIR filter H(z) 2nd a frequency-grid size IV such that the one-pole
approximation-error norm '

1

1= re=iwi

J(r)= " H(cv*) —

has X loczal minima.

Proof. Lemma A.2 constructs an oscillating L? error measure, and Lemma A.5 shows
that the oscillation can be given arbitrarily wide excursions over half the extrema. Lemma
A.6 then allows tkat Lemma A.5 apply over a sufficiently dense discrete-frequency grid. On
a discrete frequency grid, the norm equivalence theorem [192] applies which states for each
porm there exist positive constants g and G such that

9J2(r) < J(r) < GJar),

for all r. Ttus J is confined between gJ and GJs 2s shown in Fig. A.2. If Jo(r) is made to
oscillate with sufficiently large amplitude {A.8), then J(r) must oscillate, i.e., if gJo(r.) >
G Jo(r*) holds, where r, is an arbitrary constructed maximizer of J> and r* is the greater of
its two adjacent constructed minimizers, then J(r) must have at least one local minimum
between each pair of maxima constructed for Jo. By Lemma A.5, there exist curvature
values ¢; such that

G-y

Jalre) = Jo(r*) > Jo(r*) = Jolrd) > —j—.fz(r*) = gJo(r) > GJo(r*),

as needed to force oscillation of J{r).
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Figure A.2. Region containing an arbitrary norm bounded by
scaled L? norms (norm equivalence theorem).

Corollary A.8. Problem H * is oot concave under any discrete-frequency zorm. and
there is no upper bonzd ca the number of locally best approximations. Consequently, no
gradient-based method can be guaranteed to converge for a filter design problem with one
or more poles in the approximation.

While the result was shown only for discrete-frequency norms, it is true also for any
coatinuous-frequency nerm which is a uniformly coatinuous limit of discrete norms. For
example, all L? norms fall in this category.




Appendix B. Optimality of the CF Algorithm

The purpose of this appendix is to prove that the CF method provides an optimal ap-
proximation under the Hankel norm of the impulse-response error under certain conditions.
The theory is an elementary version of the more sophisticated arguments in Hankel-norm
theory [2]. An 2ttempt has been made to simplify as much as possible the development
necded to cover the case of real digital filter design.

Given a real, causal, finite impulse response-sequence {hx(n)}&, with hx(0), hxc(K) 5%
0, corresponding to the desired transfer function

K
Hyc(z) A Y hg(n)a™",

n==0
the CF method computes an approximation to Hg(z) on the unit circle |z| = 1 by a
rational transfer function
. B -k
A5 A B 5 Tz (B.1)
Alz) Ek 08rz%

with all poles inside unit circle, and normalized by ag = 1. We denotc by ¥ M, N the set of
all such functions.

As an intermediate step, the CF aigorithm determines the best Chebyshev approxima-
tion out of the larger class }(M N~ of functions which are of the form

r 2 AB(‘) Z/:a-oo — i n —r
HOO( )-—_ A(Z)— 2k_oak."° =n§°° hoo( )Z

(with ag == 1), where the zeros of 2V A(2) still lie inside the unit circle.

When M > N —1, the CF approximation is simply the causal projection of & oo(2),

H(z) A E hoo(m)s™" .

We will show that in this case H is optimal with respect to the Hankel norm,

Decfine
VAM-N+1 >0.
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The v > 0 restriction is only necessary in the final step below. The Hankel matriz
corresponding to Hx and v is defined as

hge(v)  hg(v+1) - - - hg(K)
hp(v+1) 0
A ) )
BEEL L hget)
hy(K) 0 0

Let {\, }{f =" denote the eigenvalues of H,, g ordered according to decreasing mag-
nitude [No] = \1] = ... 2 [Ag—y], and for each A, let v, = (¢a(0), ..., va(K = v))T
denote any corresponding eigenvector,

Hv.Kzn":knzn
K=v
= Y hgli+k+va(i) =Xavalk), Ek=0,1,...,K~v.

1=0

(B.2)

The cigenvalue/eigenvector pair of interest in the CF method is the vV th where N is
the number of poles desired in the approximation. It will turn out that Xy is the Hankel-
norm of approximation error associated with the optimum .V-pole approximation. We
assume Ay, > Ay since otherwise poles can be deleted (/N decreased) without increasing
the approximution error.

Now take the z-transform of both sides of (B.2), with n = IV, to obtain

K-vK-v o K-v
3 3 hxln+k+vun(az"F =An 3 un(k)zEF AANVin(2).
k=0 n==0 k=0

The change of sumzmation index ! = n + k + v yields

K-v K-v
AwVa(z) = Z vn(n) Z hx(n+ k+v)z~*

na=0 k=0
K=y n+K

= > un(n)"t Y hg()s
n=0 l=n4+v
K-y K n4v=1

=3 vN(n):""'”(ZhK(l)z"l- > hK(z):-‘)
n=0 =0 =0

2 VN(=TDHK(2) - Qu(=TY),
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where
K—v nev—1

QN A Y S un(a)kg(!

n=0 1=0

K K .
=3 (Z on{i — v)bg (i - i))z’

tmxl \ jm1
K . -
é.‘— Z ql\'(")z1 ]
t=1i

with vacuous sums {e.g. Y 5 ') and out-of-range subscripts (e.g. vp(~—1)) defined to be
zero.

We have decomposed Hpc(z) as
-ll vAv(‘-!) -V VN(Z)
Hp(2) = V; (z"l) + ANz 7 ( -l) (B.3)
To eliminate positive powers of z from the denominator of (B.3), we define

Va(2) A s~ E=I (27 = un(K = v) + o (K —v = 1)zt + -+ + on{0)~(K—V)
Cn(2) Az KQu(z7") = qn(K) + gn(KC = 1)t + -+ gn (1) ED,

With these polynomials, (B.3) becomes

2) = ~N(z) ~K VN( )
Hg(z)= Val )+XN T n() (B4)

The first term in the decomposxtlon (B.4) of Hgc(z) is an unstable approximation which
we denote by

Hoo( )A QJV( )
Vi (2)

and the approximation error, Ay 2z~ K Vnv(z)/V a(2), is an allpass filter with magnitude Ay
or the unit circle.

?

Lemma B.1. Hm(z) € ;(‘-\1,N-

Proof. By a theorem of Takagi {87]. we know that V" w(2) has precisely N roots inside
the unit circle when Ay—; > An. Therefcre, it can be factered as

Vnlz) = Vi(2)Vo(z) (B.5)
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where the N roots cf V;{z) are all inside tke unit circle, and the K — v — N roots of Volz)
are all outside the unit circle. The term 1/V ,(z) may be written as

1 1
Volz)  90(0)+ -+« + 0o(K — v = N)z—(K=v=N)
K-v=N
90K N 4 iy — v = N)
A K=v=Ny ()
A KN (5(0) + Bo(1)z + 56(2)2 + - ).

Thercfore, the numerator of Ho(z) = =X ""NQN(z)T.fo(z)/f/;(z) has highest negative
power of z equal to (K = 1)~ (K — v — N) = M. Thus we conclude H(z) belongs to
RIVEA |

The CF approximation is defined as the causal part of £Ioo(z) as expanded in a Laurent
series convergent on the unit circle |z] = 1. Let the operator which projects a transfer
function H(z) onto its causal part be denoted by C{H(z)}. Then the CF approximation
can be expressed as

H) AC{Heo(z)} =C{ Y hoo(n)z™™} A Y heo(n):™" (B.8)

nE==—00 n=0

The CF approximation impulse response is then

}‘2(") é {ilgo(ﬂ), n= 0, l, e
0, n<0
Definition B.2. The Hankel norm of a stable filter H(z)«~ h(n) is defined as the
spectral norm of the associated Hankel matrix. That is, if H is the matrix whose (3, )t4
element is (i +7) (4,7 =0,1,2,...), and X = ( z(0), z(1),... ) is a vector, then the Hankel
norm of H is equal to

T

X‘Hx
Hly A max=

" “H—— X XT-X

where the maximum i5 attained by virtue of the stability restriction. Note that a noncausal
component of 2(n) does not affect the norm.

?

To show that H{z) is an optimum approximation under the Hankel norm, we need the
following.

Lemma B.3. The {unction Ho.(z) is the unique eptimum Chebyshev approximation
from the class of rational functions ¥y n.
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Proof. To show that Ho(2) is an optimum Chebyshev approximation, suppose there
exists oo(2) € ¥ag N which is a better approximation in the Chebyshev sense, i.c.,

| Exctei) = Hoole) ]| < | Hxc () = Fasle™)|_ =2
Then we have, by use of inequalities proved in [43,32]

A > | i) = Hoole)|_ 2 || Hxle) - Aol

]HK(J“) - C{H ()} l[H 2 AN,

which provides a contradiction.

If A is an isolated eigenvalue, then ¥, is unique up to a scalar which does not affect
Hoofz). Consequently, Hoo(z) is unique in this instance. In [2] it is shown that uniqueness
holds even in the case of multiple eigenvalues Ap,n = N, N + 1,...,N + . Essentially
what happens in this case is that all eigenvectors which satisfy (B.2) have a unique ratio
of the form V(z)/¥(z™!) due to pole-zerc canceilations. In [2], the fact that there are no
other forms for an optimal approximation from ¥ M, N is also established. §

It is equally immediate to show that the causal part of an optimum Chebyshev ap-
proximation is an optimum Hankel-norm approximation.

Lemma B.4. H(z) is the unique optimum Haakel-norm approximation to H(z).

Proof. Using the same argument as in the previous lemma, we have that

M = || Hrte) = Heol) | 2|

Hi (") = Heol @) |,

= | Hx () -I?(ej“’)"H >y

Therefore equality must hold, and in particular,
| Hx ()= B | = 2w

This establishes the fact that A (z) is an optimum Hankel approximant.

Uniqueness follows from the uniqueness of the rank .V Hankel matrix which optimally
approximates H, g under the spectral matrix norm [2]. 8

It only remains to be shown that H(z) is a member of #ag.n. For this it suffices to
show that H(z) is of the form (B.1) with all its poles iuside the urit circle.

Lemma B.5. F(z) 2s defined by (B.6) is 2 member of ¥ps &
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Proof. Ei(z) is defined as the causal part of

Heo(2) A (:21\,-(:) .
Valz

The factorization (B.5) leads to the additive deccmposition

: R{2) | Ruf2)
H F{z —
B=rE 7.0

where .
R{2) =rf{0) +r{1)z™ 4o  + r({N=1)s~ (V1)

Ro(z) = ro(0) + ro(1)z™1 + -+ + £o{(K = N) = 1)s~(K=N)=1)
F(z)= [O)+ f(1)s™ 4 oo 4 flv = 1)2~ (71,
If » <0, then F(z)==0.
since all the roots of Vo(z) lie cutside the unit circle, The term R,(2)/V o{z) may be

expanded in a Taylor series about z = 0 which converges in the unit disk.

H (,) A Ro(:) — _'1’0(0):(K-V_N)—l) L AEEE ro((AL -y - lv) - l)
= {’0(2) : l"a(o)zK_”_N R vo(K -v~—N)

= h_(1)z+h_(2)s* +

Therefore, the causal projection of H_ is zero. Analogous considerations show that F(z)
and Ry(z)/V {z) are ipvariant under causal projecticn. Consequently,

Ry(z)

H(z) = F(z
() =F(z HV,(:)

For v = 0 (M = N —1), H(z) is obviously in Xn-1,n, since F(z) = 0 and the degree
of Ri{z)is N—=1. If v < 0, corresponding to M < N—1, then H.(z) € Kot N FHMN
(in general). On the other hand, for » > 0 we have

PR )

Since the degree of F(z)is v — 1, and the degree of V;{(z) is .V, we have a maximum
numerator degree of max{v -1+ N, N — 1} = max{M, NV -1} = I

Thus, we ccnclude
H(Z) € HArN M2N-1.
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The previous discussion allows us to state the following,

Theorem B.8. The CF method finds the unique optimum M-zero, N-pole approxima-
tion H(z) to an arbitrary Hg(z) (M > N — 1), minimizing the Hankel norm of the error
1 Hg(z) = H(2) |-




Appendix C. Functions Positive Real 1n the Cuter Disk

Any passive driving-point impedance, such as the impedance of a violin bridge, is
positive real. It was found in §1.8.3 of Chapter 1 that approximation of mzgnitude-squared
frequency response requires an estimated polynomial to be positive real. Mcreover, some
convergerce proofs for system identification algorithms, particulary ELS (cf. Chapter 2),
rely on the condition that a particular transfer function be positive real [102,107,127].
Positive real functions have been extensively studied in thke continucus-tims case in the
context of network synthesis {185,203]. Very little seems to be awailable on the image of
the many properties of positive rcal functions under trapslation to discrete time. The
purpose of this Appendix is to record facts derived about pesitive real transfer functions
for discrete-time linear systems.

Definition C.1. A complex volued function of a complex variable f(z) is said to be
positive real (PR) if

1) zreal = f(z)real
2)|z] 21 = Re{[(z}} 20

We now specialize to the subset cf fuzctions f(z) representable as a ratio of finite-order
polynomials in 2. This class of “rational” functions is tke set of zll transfer functions of
finite-order time-invariant linear systems, and we write H(z) tc denote a member of this
class. We use the convention that stable, minimum phase systems are analytic and nonzero
in the strict outer disk.* Condition 1) implies that fer H{z) to be PR, the polynomial
ccefficients must be real, and therefore complex poles and zeros must exist in conjugate
pairs. \We assume from this point on that H(z) £ 0 satisfes 1). Frcm 2) we derive the
facts below.

Theorem C.2. A real rational function H(z)is PRI || 2> 1 = |ZH(2)]| <

[LE]

Proof. Expressing H(z) in polar form gives

Re{H(2)} = Re{| H(=) |94} = | H(z) eos(£L1(2))
‘ )
20 « |sz(:)|5%, (C.1)

since the zeros of H{z) are isolated. §

Theorem C.3. H!{:z)is PR iff 1/H{z)is PR.

* The strict outer disk is defined as the region | 2| > 1 in the extended cemplex plane.

218
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Procf. Assuming H(z) is PR, we have by Thm. C.2,

|2H™Ye)| = |=2H(5)| = |¢H ()| S 5, (2] 21

Theorem C.4. A PR function H(z) is analytic and nonzero in the strict outer disk.
Proof.. (By contradiction).

Without loss of generality, we treat only nt# order polynomials
@z + 12" M+t ageyz+oap

which are nondegenerate in the sense that ag, an 5 0. Since facts about agH{(z) are readily
deduced from facts about H(z), we set @g = 1 at no great loss.

The general (normalized) causal, finite-order, lincar, time-invariant transfer function
may be written '

— - b2)
H(z)=1: )

- z_pl +byz7 44 b‘M:—A!
1+e1z7  +---+ayz™N

= 7"V Hf"il(l - q,-z“) (C2)
{A-r.l(l -p,-z“)
Ni wi .x

47
SW_ >0
tam] ja=1 (Z -p".)J ’

where N is the number of distinct poles, each of multiplicity p;,and

Ny
Ep;=max{N,M'}. (C.3)

ta=1

Suppose therec is a pole of multiplicity m outside the unit circle. Without loss of
generality, we may set gy = m, and p; = R¢?% with R > 1. Then for z near p;, we have

ZKI,m + ZKl,m—l
(2= Rei®)™  (z—Rel¥)m—1

ZK"m

(z= Reiw)mn’

H(Z) =

D R

Consider the circular neighborhocd of radius p described by z = Re/¥ + p /¥, —x <v <
7. Since R > 1 we may choose p < R ~ 1 so that all points z in this neighborhood lie
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outside the unit circle. If we write the residue of the factor {(z — R ¢??)™ in polar form as
Kim=C ¢7€, then we have, for sufficiently small »,

Kl,mR 6]9 — Kl'mRCJ? == % cj(lp+€—m¢) . (C'4)

YH(z) ~ — =
(=) (z—Re¥)™ pm ™Y P

Therefore, approaching the pole R e/# at an angle ¢ gives

}Eng LH(R +-pe’:=‘q)| =|g(l=v)+€-myp|, - -r<v<=7 (C.5)
which cannot be confined to satisfy Thm. C.2 regardless of the value of the residue angle
€, or the pole angle ¢ (m cannot be zero by hypothesis). We thus conclude that a PR
function H{(z) can have no poles in the outer disk. By Thm. C.3, we conclude that positive
real functions must be minimum phase. 8

Corollary C.5. In equation (C.2), » =0.

Proof. As|z]|—oc, H(z)=2"Y = |/H(z)|—{vL:| € v=. Since = can be chocen
such that equality holds, Thm. C.2 implies v =0. §

Corollary C.C. The log-magnitude of a PR furction has zero mean on the unit circle.

Proof. This is a general property of stable, minimum-phase transfer functions which
follows immediately from the argument principle [183,150]. 3

Corollary C.7. A rational PR function has an equal number of poles and zeros all
of which are in the unit disk.

Prcof. This really a convention for numbering poles and zeros. In (C.2), we have
v =0, and all poles and zeros inside the urit disk. Now, if Af > N then we have M — N
extra poles at z == 0 induced by the numerator. If M < N, then N — M zeros at the
origin appear from the denominator. 1

Corollary C.8. Every pole on the unit circle of a positive real function must be
simple with a real and positive residue.

Proof. We repeat the argument of Thm. C.4 using a semicircular neighborkood of
radius p about the point p; = ¢7¥ to obtain

lim | LH(? + p¥) | = o+ E-my], p-FSv<e+ (C8)

p—C
In order to have | LH(z)| < =/2 near this pole, it is necessary that m=1and {=0. §

Corollary C.9. If H(z)is PR with a zero at = ==q; == ¢’%, then

H(z)
z) & —=
7 )_(l—th-"l)
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must satisfy ,
H{q)5#0

LH (q) =0 (1)

Proof. We may repeat the above for 1/H(z). 8
Theorem C.10. Every PR function H{z) has a causal inverse z-transform h{n).

Proof. This follows immediately from aralyticity in the outer disk [195, pp. 30-36).
However, we may give a more concrete proof as follows. Suppose £(n) is non-causal. Then
3% > 0 such that A(—k) 7% 0. We have,

H(z)A i h(n)z~" = h(=k)z* + Z h(n)z7".

== —00 nyk—k

Hence, H(z) has a pole of order k at infinity and cannot be PR by Thm. C.4. 8

Theorem C.11. H(z)is PR iff it is analytic for | z] > 1, poles on the unit circle are
simple with real and positive residues, and Re{H(¢/?)} > 0fcr0 < 8 < =.

Proof. If H(z) is positive real, the conditions stated hold by virtue of Thm. C.4 and
the definition of positive real. We prove the converse:

Since h(n) real = Re{H(c?®)} even in 4, nonnegativity on the upper semicircle implies
nonpegativity over the entire circle.

Next, since the function ¢? is analytic everywhere except at z = oo, it follows that
flz)= ¢~#(2) is analytic wherever H(z) is finite. There are no poles of H(z) outside the
unit circle due to the analyticity assumption, and poles on the unit circle have real and
positive residues. Referring again to the limiting form C.4 of H(z) near a pole on the unit
circle at ¢7%, we see that

; ; C ; T g
J° Iy L2 J(‘P"‘J’)’ O e L)L hid
H(P +pe )p_.opc ® 2_¢_¢+2
a S 9pp-u -Icoc<i
) . 2 2 (C.8)
= f(z) _.c—-% e - c—% cosoc—j% sin §
=0
—0
p—0

since the residue C is positive, and the net angle # dees not exceed +x/2. From (C.8) we
can state that for points z, 2/ with modulus > 1, we have

Ve>0,36>0||z=2| <6 = [flz2)= ] <e. (C.9)
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Q

Thus f{z) is analytic in the strict outer disk, and continuous up to the unit circle which
forms its boundary. By the maximum modulus theorem [138],

sup |f(z)| & sup |¢HO)| = sup "R} = inf Re(H(2))
12131 |2 131 NS 2121

occurs on the unit circle. Consequently,

e RH(IN > e DLEEIA S s
_”gnefs”Rc{H(c =20 = lzllnéch{H(z)}Zo = H(z)PR.

For example, if a tran=fer function is known to be strictly stable, then a frequency
response with nonnegative real part implies that the transfer function is positive real.

Consideration of 1/H(z) leads to analogous necessary ard suificient conditions for H(z)
to be positive real in terms of its zeros instead of poles.

C.1. Relation to Stochastic Processes

Theorem C.12. If a stationary random process {z,} has = rational power spectral
density R(e“) corresponding to an autocorrelation function r(k) = & {z, Zn4k), then

Ri(z)A 5%0—) + 3 rn)z™" (C.10)

flam]
is positive real.

Proof. By the representation theorem {83, pp. 98-103] there exists an asymptotically
stable filter H(z) = b(z)/a(z) which will produce a realization of {z,} when driven by
white noise, and we have R(e/*) = H(¢*)H(e™7%). We define the anzlytic continuation
of R(e?%) by R(z) = H(z)H(z~!). Decomposing R(z) into a sum of causal and anti-causal
components gives

Riz) =YD by R(o)

a(z)a(z—1) c11)
_ o), e ©
a(z)  a(z—1)
where g(z) is found by equating coefficients of like powers of = in
b(z)b(=7") = g{z)a(z") + a(z)g(=71). (C.12)

Since the poles of H{:) and R4(z) are the same, it orly remzirs to be shown that
Re{Ry(e¢?¥)} 20,0 fw < m.
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Since spectrai power is nonnegative, R(e’*) 2 0 for all w, 2nd so

R(&¥) A i r(n)e™ =r(0)+2 Y _ r(n) cos{wn) = 2Re{Ry4(c¥)} > 0. (C.13)

n==00 n=1

C.2. Relation to Schur.Functions . .

Definition C.13. A Schur function S(z) is defired as a complex function analytic
and of modulus not exceeding unity in |z} > 1.*

Theorem C.14. Let a be a real number greater than zero. The function
a - R(z)
a + R{z)
is a Schur function if ard orly if R(z) is positive real.

Proof.

Suppose R(=) is positive real. Then for |z] 2 1, Re{E(z)} 2 0 = a+ Re{R(z)} 2>
0 = e + R{z)is PR. Consequently, & + R{z) is minimum pkase which implies all roots
of S(z) lie in the unit circle. Thus S(z) is analytic ia |z] > 1. Also,

S()A (C.14)

2 o= 2aRe(R{7)} + | R(™) |
" a?+ 2aRe{R(c)} + |R(e)|F =

[ ()

By the maximum modulus theorem, S(z) takes on its maximum value in |z| > 1 on the
boundary. Thus S(z) is Schur.
Conversely, suppose S(z) is Schur. Solving (C.14) for R{z) and tzking the real part on
the unit circle yields
1-5(z2)
1+ 5(z)
1= 5(c%) 1+ S{e=duw)
1+ S(e7w) 14 S(c—3v)

R(z)=a

Re{R(<¥)} = aRe{

= aRe{1 — S(¢?¥) + S(e~7¥) -ﬂl S(e7¥) ‘2
|1+ 5(e) %)

1- IS(ej“’)r

Qq =——————s

|1+ S(e?)|"

= 2 0.

* Classically, this deflnition is given with |z] < 1.
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If S(z) = c is constant, then R(z) = (1 = |c[*)/11 + ¢|* is PR. If S(2) is not constant, then
by the maximum principle, S(z) < 1 for |[z] > 1. By Rouche’s theorem applied on a circle
of radius 1 +¢, ¢ > 0, on which |S(2}| < 1, the functicn 1 + S(z) has the same number
of zeros as the function 1 in |z] 2 1 +¢. Hence, 1 + S(z) is minimum phase which implies
R(z) is analytic for z > 1. Thus R(z) is PR. &

C.3. Relation.to Functions.PR in.the Right-Half Plane ... ..

Theorem C.15. Re{H(z)} 2 0for [2] 21 & Re{H(3X:)} > 0 for Re{s} >
0, where a is any positive real number.

Proof. We shzall show that the change of variable z — (e + 8)/(a — 8), @ > 0,
provides a conformal map from the z-plane to the s-plane that takes the region [z] > 1 to
the region Re{s} > 0. The general formula for a bilinezr conformal mapping of functions
of a complex variable is given by

(z=sn)s2—z3) _ (s~ s1)(s2 = 23)
z=z3fz2=21) (8~—83)s2—a1)

(C.15)

In general, a bilinear transformation maps circles and lines into circles and lines [138].
We see that the choice of three specific points and their images determines the mapping for
all s and z. We must have that the imaginary axis in the s-piane maps to the unit circle in
the z-plane. That is, we may determine the mapping by three points of the form z; = 7%
and ¢; == jw;, 1 = 1,2,3. Il we predispose one such mapping by choosing the pairs (s; =
+00) = (2; = ~1) and (s3 = 0) ~ (23 = 1), then we are left with tronsformations of the

form +1 1 1
] b — z -
¢ (82:2—1)(:-#1) a(:+1) (C.16)
or
ALY (C.17)
a—3s

Letting s, be some point jw on the imaginary axis, 2nd z, be some point ¢/ on the unit
circle, we find that )
a =jwcﬂ +1 - sind
J? =1 1 —cosd

= wecot(d/2) (C.18)

which gives us that a is real. To avoid degeneracy, we require 8o % 0,00, 22 5% %1, and
this translates to o finite and nonzero. Finally, to make the unit disk map to the Jefi-half
s-plare, w and 4 must have the same sign in which czse a > 0. 3

There is a boaus associated with the restriction that a be real which is that

z= e e s=a— ER. (C.19)
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We have therefore proven

Theorem C.18. H(z) PR e H(Zt%) PR, where a is cny positive real number.

a—8
The class of mappings of the form C.15 which take the exterior of the unit circle
to the right-half plane is larger than the class C.17. For example, we may precede the
transformation C.17 by any conformal map which takes the unit disk to the unit disk, and
these mappings have the algebraic form of a frst order complex allpass whose zero lies

inside the unit circle.
j‘ w - Wy

Tow—1"

ze—e¢ Jwo] <1 (C.20)
where wg is the zero of the allpass and the image (also pre-image) of the origin, and ¢ is
an angle of pure rotation. Note that (C.20) is equivalent to a pure rotation, followed by a
real allpzss substitution (g real), followed by a pure rotation. The general preservation
of condition 2) in Def. C.1 forces the real axis to map to the real axis. Thus rotations by
other than 7 are useless, except perhaps in some special cases. However, we may precede
C.17 by the frst order real allpass substitution

w—r
rw—-1’

L -

lr] <1, rreal, (C.21)

which maps the real axis to the real axis. This leads only to the composite transformation,

+{al=t
s it lor) (c22)
s (e157)

which is of the form C.17 up to a minus sign (rotation by x). By inspection of C.15, it is
clear that sign negaticn corresponds to the swapping of points 1 and 2, or 2 and 3. Thus
the only extension we have found by means of the general disk to disk pre-transform, is
the ability to interchange two of the three points already tried. Consequently, we conclude
that the largest class of bilinear transforms which convert functions positive real in the
outer disk to functions positive real in the righi-balf plane is characterized by

a+ 8

PR .
a—3s

(C.23)

Riemann’'s theorem may bc used to show that (C.22) is also the largest such class of
conformal mappings. It is not essential, however, to restrict attention solely to conformal
maps. The pre-transform z + Z, for example, is not conformal and yet PR is preserved.

The bilinear transform is one which is used to map analog filters into digital filters.
Another such mapping is called the matched z transform [196]. It also preserves the positive
real property.
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\
Theorem C.17. H(z)is PR if 77/¢®T) is positive real in the anzlog sense, where
T > 0 is interpreted as the sampling pericd.

Proof. The mapping z +— ¢*T takes the right-half s-plane to the cuter disk in the
s-plane. Also z is real if s is real. Hence H(e?T) PR implies H(z) PR. (Note, however, that
rational functions do not in general map to rational functions.) 4

These transformations aliow application of the large battery of tests which exist for
functions positive real in the-right-half plane[203]... . . -

C.4. Special Czses and Examples

e The sum of positive real functions is positive real.

o The difference of positive real functions is conditionally positive real.

The product or division of positive real functions is conditionally PR.
H(z) PR = z*FF(z) nct PR for k > 2.
Hl(_:-)-% isPRIiff |H(z)-1|<1lfor|z]2>1.

Minimum Phase (MP) Polynomials in =

All properties of MP polynomials apply witkout modification to marginally stable
allpole transfer functions (¢f. Thm. C.3).

e Every first-order MP polynomial is positive real.

e Every first-order MP polynomial é(z) =1 + b, 2! is such that F(l?) — § is positive
real {107].

e A PR second-order MP polynomial with complex-conjugate zeros,

H(z)=1+4b127 4+ bq272
=1-(2Rcosp):"'+R*:72, R<L1

satisfies N
€cs®

R*+ <1.

If 2R? + cos® g = 2, then Re{H(e/*)} has a double zero at

- 1-R? - CO8 ¢ cos \
-— L3 — 1f. — 1 r
W == c0s (_( oOR?2 ) ) == C0s (: Y ) = CcO0s (4-——-—-——-} .

{2+ 2sin? )

e

LE] o
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o All polynomials of the form
H(z)=1+R":"", RZ1

are positive real. (These have zeros unifcrmly distributed on a circle of radius
R.)

C.5. Conjectured Properties
The following conjectures are true for analog positive-real functions, but ro attempt
was made to establish them in the discrete-time case.

e If all poles and zeros of a PR function are on the unit circle, then they alternate
along the circle.

e If B(z)/A(Z) is PR, then so is B'(z)/A'(z), where the prime denotes differentiation
in 2.
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Below are the objective error criteria shown iz the figures comparing frequercy-response
functions in Chapter 3. Each L? error measure J(#) is normalized to lie between 0 and 1
under normal circumstances. To avoid square root symbols, most measures are given in

squared form below.

(L?) PREDICTION: J"'(é)_
(L*) ....OUTPUT: J*(d) =

(L%) .. EQUATION: J*(d) =

(L*) |SPECTRUM[?: J3(8) =

(L*) La[SPECTRUM|: J%(§) =

(L*®) |SPECTRUM|: J3(9) = ml?.x{
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Appénclix E. Fundamentals

E.1. Digital Filter Theory

In this section, linearity, time-invariance and four basic representations of digital filters
are defined: the difference equation coefficients, impulse response, transfer function, and
frequency response. -Next the concepts-of -phase-delay, group delay, poles and zeros, and
filter stability are defined. This elementzry material was taken from course notes for a class
given at Stanford by the author in 1979.

Definition E.1. A real signal is defined as any real-valued {function of the integers.
Similarly a complex signal is any complex-valued function of the integers.

Definition E.2. A real filter L, is defined as any real-valued functional of a signal
for each integer n. We express the input-output relation of tke filter by

¥(n) = La{z(-)} (E.1)

where z(-) is the entire input signal, and y(n) is the cutput zt time n.

E.1.1. Linearity and Time-Invariance

In everyday terms, the fact that a filter is linear means simply that
1) the amplitude of the output is proportional to the amplitude of the input,
and

2) when two signals are added together and fed to the filter, the filter output is the

same as if one had put each signal through the filter separately and then added
the outputs.

Definition E.3. A flter is said to be linear if, for any pair of signals z4(-), z2(-) and
for all constant gains g, we have
) La{ezi()} =g Laf{z:()}

9 La{zi()+ 22N} = Lal{za()} + Lalz2()}, (E-2)

for all n. These two conditions are a mathematical statement of the previous definition.
For ¢ rational, property 2) implies 1).




Page 228 FUNDAMENTALS E.1

Definition E.4. A filter is sdid to be time-inveriant if

Ln{ae - =N} = Lawn{z(’)} = s(n = N), (E-3)

where z( - —N) is understood to denote the waveform z(-) skifted right (or delayed) by N
samples.

From now on, all filters discussed will be linear ard time-invariant. For brevity, these
will be referred to as LTI filters.

E.1.2. Difference Equation

Definition E.5. The difference equation for a gereral linear time-invariant (LTI)
digital filter is given by
yin)=tboz{n)+ b1 2(n—1)+ -+ + bp, 2{n ~ n}) .
.4
~a14(n=1)= -+ = an, y(n - na) (-4
where z is the input signal, y is the output signal, and the constants {b;,{ =0,1,2,...,n;},
{a;, i = 1,2,...,n,} are called difference equation coefficients, or more simply, filter
coefficients. When the a and b coeflicients are real numbers, then the filter is said to be
real.

When ny = 0,n,; > 0, the filter is sometimes called an all-pole, infinite-impulse-
response (IIR), or autoregressive (AR) filter. When n, = 0,73 > 0, the filter may be
called an all-zero, finite-impulse-response (FIR), or moving average (1{4) filter. When
ng > 0,np > 0, the filter may be called a pole-zero, infinite-impulse-response (IIR), or
autoregressive moving average (ARMA) filter. (The terms AR, MA, and ARMA are usually
found in connection with fltered stochastic processes.)

Definition E.8. Equation (E.4) represents only causal LTI filters. A filter is said to be
causal when the output does not depend on any “future” inputs. (In more colorful terms,
a filter is causal if it does not “laughk” before it is “tickled.”)

Definition E.7. The mazimum time spen, in samples, used in creating each output
sample is called the order of the flter. In (E.4), the order is the larger of n; and ng. Since
n; and ng4 in (E.4) are assumed finite, (E.4) represents the class of finite order causal LTI
filters.

In addition to difference equation coefficients, any LTI filter may be represented in the
time domain by its respcnse to a specific signal called the smpulse.

Definition E.8. The impulse is denoted as §(n) and is defined by

l, n=20
DALY ]
6('J“{0,n#0
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Definition E.9. The émpulse response of a filter is the response of the filter to §(n)
and is most often denoted h(n).

Definition E.10. A filter is said to be stable if the impulse response h(n) approaches
zero as n goes to infinity.

Convolution Represeatation

If y(n) is the output of an LTI filter with input z(1) and impulse response k(n), then
y is the convolution of z with A,

y(n)=d_ z(i)k(n— i) Az + h(n).

12=0

Since convolution is commutative (z * h{n) = h * z{n)), we have also

y(n) =D h(s)z(n— 7). (E.3)

tam0

Definition E.11. The z-treasform of the discrete-time signal 2{n) is defined to be

X4 Y #An)=,

n==00

That z(n) and X(=) are transform pairs is expressed by writing X{(z) = Z {z(n)} or X(z) —
z{(n).

Theorem E.12. The convolution theorem (Papoulis [195]) states that
z+y(n) - X(2)Y(2). (E.8)

Irn words, convolution in the time domain is multiplication in the frequency domain.

Taking the z-transform of both sides of (E.5) and applying the convolution theorem
gives

Y(z) = H(2)X(z2) (E.7)

where H(z) is the :-transform of the filter impulse response. Thus the z-transform of the
filter output is the z-transform of the input times the z-transform of the impulse response.

Definition E.13. The trans/er function H(z) of a linear time-invariant discrete-time
filter is defined to be the z-transform of the impulse response A{n).
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Theorem E.14. The shift theorem [195] for z-transforms states that

z(n - k) = z~FX{(2).

The general difference equation for an LTI filter appears as

y(n) =boz(n)+brz(n—=1)+ - + bp, z(n — ny)

—ayytn—1)y=----—angy(n—n,),
Taking the z-transform of both sides, denoting the transform by Z{} gives

Z{y(n)} = bo Z{z(n)} + by ™ Z{z(n)} + -+ + b, 2™ Z{2(n))
—a,z71Z{y(n)} = --- —ang z™"* Z{y(n)},

using linearity and the shift theorem. Replacing Z {y(n)} by Y(z), Z{z(n)} by X(2), and
solving for Y(2)/X(z), which equals the transfer function H(z), yields

Y(z) bo+biz7t+ oo +by ™™

H(:)=X(z)= l+ayz7l+ .- +angz™ne’

(E.8)

E.1.3. Frequency Response

From (E.8), we have

where X'(z) is the z-transform of the filter input, Y'(z) is the z-transform of the output
signal, and H(z) is the filter transfer function.

Definition E.15. The frequency response of a linear time-invariant digital filter is
defined to be the transfer function, H(z), evaluated on the unit circle, that is, H(e7¥).

The frequency response is a complex-valued function of a real variable. The response
at frequency f Hz, for example, is H(¢?2*/T), where T is the sampling period in seconds.

Since every complex number can be represented as a magnitude and angle, the fre-
quency response may be decomposed into two real-valued functions, the amplitude response
and the phase response. Formally, we may define them as follows: o

Glw) A |H(Y)|
&(w) A LH(¥)
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so that ) _
H(e¥)= G(w)c’e(“’) . (E.9)

Thus G(w) is the magnitude (or complex modulus) of H{e/¥), and ©{w) is the phase (or
complex angle) of H{e?¥).

Definition E.18. The real valued function G{w) is called the filter amplitude response
or magnitude frequency response and it specifies the amplitude gain that the filter provides
at each frequency.

Definition E.17. The function G%(w) is called the power response and it specifies the
power gain at each frequency.

Definition E.18. The real function ©(w) is the phase response and it gives the phase
shift in radians that each input component sinusoid will undergo.

If the flter input and output signals are z(n) and y{n) respectively, then
|Y(a’~)| = G() | X(e)
LY () = O(w) + LX ().

E.1.4. Phase Delay and Group Delay

The phase response of a filter 6{w) gives the radien phase shift experienced by each
sinusoidal component of the input signal. Sometimes it is more meaningful to consider
phase delay [195].

Definition E.19. The phase delay of an LTI filter 7I(z) with phase response 8(w) is
defined by

Pw) & - &) .
w
The phase delay gives the time delay in seconds experienced by each sinuscidal com-
poneat of the input signal. For example, in the filter y{(n) «— z{r) 4+ z(n — 1), the phase
response is 8(w) = —wT/2 which corresponds to a phase delay P(wj = T/2 which is
one-half sample.

More generally, if the input to a filter with frequency response H(e¥) = G(w)e7®iw)
is
z{n) = cos(wnT),

then the output is

¥(n) = G(w)cos{wnT + &{w)) = G(w)cos(u(nT - P(u))) ,
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and it can be seen that the phase delay expresses phase response as time delay.

In working with phase delay, care must be taken to ensure all appropriate multiples
of 2x have been included in ©(w). We deficed ©(w) simply as the complex angle of the
frequency response H(¢?“), and this is not sufficient for obtaining a phase response which
can be converted to true time delay. By discarding multiples of 2, as is done in the
definition of complex angle, the phase delay is modified by multiples of the sinusoidal period.
Since LTI filter analysis is based on sinusoids without beginning or end, cne cannot in
principle distinguish between “true” phase delay and a phase delay with discarded sinusoidal
periods. Nevertheless, it is convenient to define the filter phase response as a continuous
function of frequency with the property that ©(0) = 0 (for real filters). This specifies a
means of “unwrapping” the phase response to get a unique phase-delay curve.

Definition E.20. A more commonly ercountercd repres2ntation of filter phase response
is called the group delay, and it is defined by

Dw) 4 - %e(w).

For linear phase responses, the group delay and the phase delay are identiczl, and each
may be interpreted as time delay.

For any phase function, the group delay D(w) may be interpreted as the time delay of
the amplitude envelope of a sinusoid at frequency w [195]. The bandwidth of the amplitude
envelope in this interpretation must be restricted to a frequency interval over which the
phase response is approximately linear. While the proof will not be given here, it should
seem reasonable when the process of amplitude envelope detection is considered. The
narrow “bundle” of frequencies centered at the carrier frequency w is translated to 0 Hz.
At this point, it is evident that the group delay at the carrier frequency gives the slope
of the linear phase of the translated spectrum. But this is a constant phase delay, and
therefore it has the interpretation of true time delay for the amplitude envelope.

E.2. Vector Space Concepts

Definition E.21. A set X of objects is called a metric space if with z2ny two points p
and g of X there is associated a real number d{p, g), called the distance from p to g, such

that (3) d(p,q) > 0 if p 7 q; d(p,p) = 0, (b) d(p,q) = d(q,p), (c) d(p,q) < d(p,r) + d(r,q),
for any r € X [154].

Definition E.22. A linear space is a set of “vectors” X together with a feld of
“scalers” § with an addition operation + : X' X X=X, and a multiplication opration -
taking § X XX, with the following properties: If z, y, and z are in X, and a, 3 are in
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§, then

MNz+y=y+az.

2z+y+z)=(z+y)+ 2

(3) There exists @ in X such that 0.2 =9 for all z in X.

(4) a(Bz) = (aB)z.

(3) (a + B)z = az + B=.

8)1-z=ax.

(N a(z+y)=cz+ay.
Thke element @ is written as 0 thus coinciding with the notation for the real number zero.
A linear space is sometimes be called a linear vector space, or a vector space.

Definition E.23. A normed linear space is a linear space X on which there is defined
a real-valued function of z € X called a norm, denoted ||z ||, satisfying the following three
properties:

(1)Jz)| 2 0,ard |z]] =0 & =z=0.

(2) ezl = el )|z}, ¢ a scalar.

@)zt 2zl S larlf + 1 =21
The functional ||z — y|| serves as a distance function on X, so a normed linear space is
also a metric space.

Note that when X is the space of continucus complex functions cn the unit circle in
the complex plane, the norm of a function is not changed when multiplied by a function
of modulus 1 on the unit circle. In signal processing terms, the norm is insemsitive to
multiplication by a unity-gain allpass filter (also known as a Blaschke product).

Definition E.24. A pseudo-norm is a rcal-valued function of z € X satisfying the
following three properties:

(Hflz)l 20,and z=0 = ||z} =0.

(2) ezl =lc| -l z]l, ¢ a scalar.

G llzitzel] Szl +1 2]l
A pseudo-norm differs from a norm in that the pseudo-norm can be zero for nonzero vectors
(functions).

Definition E.25. A Banach Spaceis a complete normed linear space, that is, a normed
linear space in which every Cauchy sequence* converges to an element of the space.

Definition E.28. A function A (cj‘"’) is said to belong to the space LP if

f " | mey ]”i‘i

<
— 2x 0

* A sequence Ha (&) is said to be a Cleuchy sequence if for each € > 0 there is an NV such that
|| Hal€”®) = Hm(e?“)|| < € for all n 2nd m larger than N.
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Definition E.27. A function H(¢’“) is said to belong to the space HP if it is in LP
and if its analytic continuation H(z) is analytic for |z] < 1. H(z) is said to be in H~? if
H(z"Y) € HP.

Theorem E.28 (Riesz-Fischer). The L? spaces are complete.
Proof. See Royden [153], p. 117.

Definition E.29. A Hilbert space is a Banach space with a symmetric bilinear inner
product (z, y) defined such that the inner product of a vector with itself is the square of its
norm (z,z) = || z|[°.

E.3. Specific Norms

The LP norms are defined on the space LP by

1 (7 . pdw\Y?P
Al = jwy [P o«
IIFll,=(2ﬂL”lF(c )I 23) , P21 (E.10)

L? norms are technically pseudo-norms; if functions in LP zre replaced by equivalence
classes containing all functions equal almost everywkere, then a norm is obtained. Since all
functions in problem A *of Chapter 1 are continuous and therefore bounded on the unit
circle (H(¢?) € Cp), it follows that each equivalence class contains only one furction and
that {H(¢?¥)} forms a Banach space under any L? norm.

Tke weighted LP norms are defined by

1 [T o dwr)?
llzfll,,.é(?—,r f_ ”|F(a‘~)["www)2—‘l;’-)’, P21, (E.11)

where W(e?¥ ) is real, positive, and integrable. Typically, JW=1.If W(e¥ )=0for a
set of nonzero measure, then a pseudo-norm results.

The case p = 2 gives the popular root mean square norm, and | - ||2 can be interpreted
as the total energy of F in many physical contexts.

An advantage of working in L? is that the norm is provided by an inner product,
T v dw
7,64 [ HEEHL.
- 2x
The norm of a vector H € L? is then given by

N H| AH,H)3.
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As p approaches infinity in (E.10), the error measure is dominated by the largest values
of |F(e?“)|. Accordingly, it is customary to define

A o
IFlle & o | Fe )], (E.12)

and this is often called the Chebyshev or uniferm norm.

Suppose the L! norm of F(e¥) is finite, and let
1 (" ‘o Twn AW
A . JWYIWn 7
fn) 27 /--ﬂ’ F(e™)e 2r

denote the Fourier coefficients of F(e/%). When F (¢79) is a filter frequency response, f(n)
is the corresponding impulse response. The flter F is said to be causal if f(n) = 0 for
n <0

The norms for impulse response sequences || f ||, are defined in a manrer exactly
analogous with the frequency response norms || 7 ||,, viz.,

1

Ilfll,,é( ) mn)lp)’.

7l am—0C
These time-domain norms are called P norms.
The L? and [P norms are strictly concave functionals for 1 < p < oo (see below).
By Parseval’s theorem, we have || F ||2 = || |2, i.e., the L? and I norms are the same
forp=2.
The Frobensous norm of an m X n matrix A is delined as
1

uAupg(E Z!a,-,-;z) .

tam] jex]

That is, the Frobenious norm is the L? norm applied to the elements of the matrix. For
this norm there exists the following.

Theorem E.20. The unique m X n rank k¥ matrix B which minimizes ||A - B||
is given by UZ,V*, where A = ULV is a singular value decomposition of A4, and Ty is
formed from I by setting to zero all but the k largest singuiar values.

Proof. See Golub and Kahan [178].

The snduced norm of a matrix A is defined in terms of the norm defined for the vectors
X on which it operates,

Ax ||
All & sup fax|
141 x lxl
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For the L® norm, we have
xTaTax
xTx

and this is called the spectral norm of the matrix A.

’

lAlZ =sup
X

The Hankel matriz corresponding to a time scries f is defined by I'(f)s, 51 & f(§ + 5),

f J0) £(1) £(2) -

1) A2)
rna 2) . , (E.13)

Note that the Hankel matrix involves only causal components of the time serias.

The Hankel norm of a filter frequency response is defined as the spectra! norm of the
Hankel matrix of its impulse response,

| 7], 1Tt

The Hankel norm is truly a norm only if H(z) € H™?, i.e., if it is causal. For noncausal
filters, it is a pseudo-norm.

If F is strictly stable, ther |/(e’%)] is fnite for 2l w, 2nd all norms defined thaus far
arc finite. Also, the Hankel matrix I'(f) is a bounded linear operator in this case.

The Hankel norm is bounded below by the L* norm, and bounded above by the L®
norm [43,32],
NFll, SHFlg SUF o,

with equality iff 7 is an allpass filter (i.e., |F(¢7“)| constant).

E.4. Concavity

Definition E.31. A set S is said to be concave* if for every vecter z and y in S,
Az+(1=Nyisin S for 2ll 0 < M < 1. In other words, all points on the line between two
points of S lie in S.

" Definition E.32. The concave hullof a set S in a metric space is the smallest concave
set containing S.

Definition E.33. A functional is a mapping from 2 vector space to the real numbers
R.

* or convez
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Every norm is a functional. The norm of the approximation error J(9) in problem
H® of Chapter 1 is a functional defined on the subset of R#s+#t+1 in which the filter
coeficients are contained.

Definition E.34. A linear functional is a functional f such that for each z and y in
the linear space X, and for all scalars @ and 3, we have f(az + fy) = a f(z) + B f(y).

Definition E.35. The norm cf a linear functional f is defined on the normed linear
space X by ,

()]
A IEAMWA}
1712 = Sy -

Definition E.38. A functional f defined on a concave subset S of a vector space X
is said to be concave on S if for every vector z and y in S,

M) +(1=Nf) 2 [Pz +(1-)N)y), 0K

A concave functional has the property that its values along a line segment lie below or on
the line between its values at the end points. The functional is strictly concave on S if
strict inequality holds above for A € (0,1). Finally, f is uniformly concave on S if there
exists ¢ > 0 such that for all z,y € S,

M)+ (1= NfY) = f(Az+ (1= Ny) 2 M1-M]z-y|?, o0<N<1.

We have
Uniformly Concave =  Strictly Concave =  Concave

Definition E.37. A local minimizer of a real-valued function f{z)is any z* such that
f(z*) < f(z) in some neighborhood of z.

Definition E.28. A global minimizer of a real-valued function f(z) on a set S is any
z* € S such that f(z*) < flz) forall z € S.

Definition E.39. A cluster point z of a sequence z, is any poiant such that every
neighborhood of z contains at least one z,.

E.5. Concave Norms

A desirable property of the error norm minimized by a filter-design techrique is
concavity of the error norm with respect to the filter coefficients. When this holds, the
error surface “looks like a bowl,” and the global minsmum can be found by iteratively
moving the parameters in the “downbhill” (nezative gradient) direction. The advaatages of
concavity are evident from the following classical results [156].
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Theorem E.40. If X is a vector space, S a concave subset of X, and f a concave
functional on §, then any local minimizer of f is a global minimizer of fin S.

Theorem E.4l. If X is a normed linear space, S a concave subset of X, and f a -
strictly concave functional on S, then f has at most one minimizer in S.

Theorem E.42. Let S be a closed and bounded subset of R?. If f: R'—R! is
continuous on S, then f has at least one minimizer in S.

Replacing “closed and bounded” with “compact,” Thm. E.42 becomes true for a
functional on an arbitrary metric space (Rudin [154], Thm. 4.14). (In R", “compact” is
equivalent to “closed and bounded” [153].)

Thm. E.42 bears directly on the existence question for a solution to problem H It
implies that only compactness of © = {by, ..., b4,,81,...,8;,} and cortinuity of the error
norm J(#) on © need to be shown to prove existence of a solution.

E.8. Gradient Descent
Concavity is valuable in connection with the Gradient Method of minimizing J(8) with
respect to 4.

Pefinition E.43. The gradient of the error measure J(b) is defined as the N X 1
column vector

X T
7 & 25000 & 552000, F 60 5 00), G a0) - 500 )

Definition E.44. The Gradient Method (Cauchy) is defined as follows.

Given 30 € é, compute
bn+l=bn"’3n~ﬂ(au): ﬂ=1,2,...,

where J’ (3,.) is the gradient of J at 3,., and t; € R is chosen as the smallest nonnegative
local minimizer of
®n(t) & J(bn — tJ'(8,)).

Cauchy originally proposed to find the value of t, 2> 0 which gave a globzl minimum of
®,(t). This, however, is not always feasible in practice.

Some general results regarding the Gradient Method are given below [156).
Theorem E.45. If dg is a local minimizer of J(9), and J'(2;) exists, then J/(8,) = 0.

Theorem E.43. The gradient method is a descent methed, i.e., J(b,,“) < J(8).
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Definition £.47. J:6 = R!, 6 C "2“, is said to be in the class Cx(8) if all kth
order partial derivatives of J(f) with respect to the components of # are continuous on ©.

Definition E.48. The Hessian J"() of J 2t 8 is defined as the matrix of second-order
partial derivatives,
22J(8)
FTRET
where 0[] denotes the ith component of 0, i = 1,..., N = fig + fiy + 1, and [{, 5] denotes
the matrix entry at the ¢th row and jth column.

J"0), 51 A

The Hessian of every element of Co(8) is symmetric [158]. This is because continuous
second-order partials satisfy
a® a2
02,8z, 92280z,

Theorem E.49. If J € €,(6), then any cluster point 4o, of the gradient sequence 9,
is necessarily a stationary point, i.e., J'(6o0) = 0.

Theorem E.50. Let 6 denote the concave hull of & - RV 1t g € C2(©), and there
exist positive constants ¢ and C such that

cinli®* < 270 < Clln i, (E.19)
for all # € 6 and for all 1€ ?RN then the gradient method beginning with any point in 6
converges to a point 8*. Moreover, 8* is the unique global minimizer of J in RV

By the norm equivalence theorem [192], (E.14) is satisfied whenever J”() is a norm
on © for each # € 6. Since J” belongs to C2(©), it is a symmetric matrix. It is also
bounded since it is continuous over a compact set. Thus a sufficient requirement is that J”
be positive definite on é.» Positive definiteness of J” can be viewed as “positive curvature”
of J at each point of 6 which corresponds to strict concavity of J on ©.

E.7. Taylor’s Theorem

Theorem E.51 (Taylor). Every functional J : RV R in Cg(?Rﬁ) has the repre-
sentation 1
J(B+9)=J(@) + T'(O)n + 507 I8 + M)
for some X between 0 and 1, where J/(8) is the V X 1 gradient vector evaluated at 8 € R,
and J"(8) is the N X N Hessian matrix of J at 4, i.e.,

J@a 97 (’)(6)

A a2J(o)
Py

J"(8) & ——(0)
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Proof. See Goldstein [143] p. 119. The Taylor infinite series is treated in Williamson
and Crowell [158]. The present form is typiczlly more useful for computing bounds on the
error incurred by neglecting higher order terms in the Taylor expansion.

E.8. Newton’s Methed

The gradient method is based on the first-order term in the Taylor expansion for J(§).
By taking a second-order term as well and solving the quadratic minimization problem
iteratively, Newton’s method for functionzl minimization is obtained. Essentially, Newton’s
‘method requires the error surface to be close to quadratic, and its effectiveness is directly
tied to the accuracy of this assumption. For most problems, the error surface can be well
approximated by a quadratic form near the solution. For this reason, Newton's method
tends to give very rapid ( “quadratic”) convergence in the last stages of iteration.

Newton's method is derived as follows: The Taylor expansion of J(8) about # gives
I = @)+ SO =)+ (5" = 9T 708" +58)(5" - 5),

for some 0 < A < 1, where X A4 1~ \. It is now necessary to assume that J”(\0" + X8) ~
J"(8). Diferentiating with respect to 8°, where J(8") is presumed to be minimum, this
becomes

0=0+J8) + S35 - 5).
Solving for 8” yields
8 =a- [0 TD). (E.15)
Applying (E.15) iteratively, we obtain the following.
Definition E.52. Newton’s method is defined by

Bppr = 0o = [J"(00)]"2 T (8n), n=1,2,..., (E.18)

where 8¢ is given as an initial condition.

When J7(\8" + X8) = J"(d), the answer is obtained after the first iteration. In
particular, when the error surface J(d) is a quadratic form in 6, Newton's method produces
" in one iteration, i.e., 0 = 8" for every 4o. .

For Newton's method, there is the following general result on the existence of a critical
point (i.e. a point at which the gradient vanishes) within a sphere of a Banach space.

Theorem E.53 (Kantorovich). Let 8¢ be a point in © for which [J”(dg)]! exists,

and set
Ro & 'I [J"(60)] " J'(80) “ .
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Let S denote the sphere {# € é“[ §— o] < 2Rp). Set Co = || J{(8o)]|. If there exists a
number

M such that L
Ml b, ~ b,
& e 0
— 2 b

for 9., 32 in §, and such that CoRoM & ko < 1/2, then J'(?J) =0 for some & in S, and the
Newtom sequence (E.16) converges to it: Furthermore, the rate of convergence is quadratic,
satisfying

| @0 - 572))|

0" =0, || <271 (2he)2" "R,

Proof. See Goldstein [143], p. 143.
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E.8. Maxims of Signal Processing

1) Every technigue is equivalent to the same operaiion, once you really understand it.
2) If one technique is superior to another, it 53 due to more averaging.

3) With sujficiently sophisticated processing, it i3 no longer necessary to have any input
data.

4) Almost. all unusual or interesting. results are ultimately found to be artifacts of the

processing.
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