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Foreword

This draft has been written during a sabbatical stay at CCRMA, Stanford University, September-

November 2003.

The idea of examining more closely the air-structure interaction problems in stringed instru-

ments came first from the observation that these phenomena are not extensively discussed in

the available musical acoustics literature. Most often, the presentations are restricted to very

simple models: the cavity of the guitar, for example, is often described as a simple Helmholtz

resonator, which is actually only true below 200 Hz. The origin and consequences of radiation

damping, as well as its accurate mathematical description, are also very difficult to find in text-

books.

The selected method of presentation consists in starting first by analyzing very simple one-

dimensional vibroacoustic coupled systems and by progressively generalizing the results to more

complex 2-D and 3-D systems. It is hoped that this method will help the reader to gain a good

understanding of the underlying physical phenomena.

During the process of writing this draft, the observation that the air-structure coupling in mu-

sical instruments can be frequently considered as weak has been exploited, so that a number of

interesting approximations can be made. A definition of weak coupling has been proposed and

simplified solutions for the coupled eigenfrequencies and decay times were calculated.

Recent work of the guitar made by the author with other colleagues also brought up some ques-

tions with respect to the appropriate definitions and equivalences between sound power, total

energy and string’s decay times. This explains the motivation for examining systematically these

quantities, again starting from very simple cases and extending the results to complex systems.

In addition, one goal of computing the sound power radiated by an instrument was to deter-

mine whether or not an active control of this quantity could be developed in the future in order

to obtain, through electromechanical feedback, some radiation properties which could not be

achieved by means of structural modifications of the instrument only. This part of the present

work should rather be considered as a preliminary study whose objectives here are limited to

properly writing the fundamental equations of the problem and to list the appropriate mathe-

matical tools that could be used for solving it. In this context, some developments are made

with the help of the state-space method. This investigation is complemented by a bibliographic

study on the concept of radiation filter which has been developed in the recent years in the
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context of active control of noise.

This document should be considered as a first draft which still contains a number of unanswered

problems. Some questions are extensively developed while some others are only briefly sum-

marized. Some points of interest are listed as the end of each section, and could be viewed as

starting points for future studies. The objective for the near future is to progressively fill the

gap so as to obtain a more structured document.

Finally, one should say that the problem solved in the appendix has not very much to do with

the problem of sound-structure interaction. It is simply there because it has been the subject of

interesting discussions with my friend and colleague Julius Smith. However, this development

might not be found very easily in the literature.

Any comments from colleagues and students for future improvements of this text and sugges-

tions for related studies at CCRMA and ENSTA are most welcome.

Antoine Chaigne

CCRMA, Stanford University

November 26, 2003.
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1 Introduction

In stringed instruments, the structural-acoustic modes of the complete system are coupled, be-

cause of sound radiation. This means, in practice, that the sound pressure radiated by the

structure reacts on it, which can be viewed as a feedback process. The phenomena become even

more complex if we consider the presence of the cavity since, in this case, we have a multiple

degree of freedom (dof) radiating structural system coupled to a multiple dof acoustic system.

As a first consequence of this structural-acoustic coupling, the eigenfrequencies and damping

factors are modified, compared to the “in vacuo” case. Probably even more significant is the

fact that each partial of the vibrating strings will excite simultaneously many modes of the

structure. In particular, if the excitation force is located at nodal points of some modes, these

modes can be excited through the coupling effects.

In this document, we start with a thorough description of the coupling phenomena in the case

of a 1-D longitudinally vibrating bar coupled to a semi-infinite tube, which is a simple repre-

sentation of the coupling between a multiple dof structure and a radiating wave. Using the

Laplace transform, it is shown how such a system can be conveniently described by a filter

containing a feedback matrix whose coefficients are directly connected to the acoustic coupling.

The presentation is then extended to the case where the length of the tube remains finite, with

a terminating impedance whose aim is to simulate a partially radiating acoustic cavity. Finally,

the previous results are generalized to 2D structures, where the phenomena are similar to those

of stringed instruments. In the last section, the results obtained by using a filter representation

are compared to the particular case of the guitar, where the modeling of the instrument is made

by means of numerical approximations which are directly applied to the equations of the com-

plete boundary-value problem.

The presentation continues with an energetic approach of the fluid-structure interaction phe-

nomena. We start by computing instantaneous and mean power quantities for a single dof

system. Highlight is put on the radiated acoustic power and on the radiation efficiency of the

system. This latter quantity is defined here as the ratio between radiated acoustical power and

input power. Links with other definitions are established. The question of whether the sound

power can be derived from measurements of decay times in free vibrations is also addressed. The

expressions for radiated power and efficiency are generalized to a coupled system with multiple

dof. These expressions include the definition of a radiation matrix.

Finally, some preliminary mathematical derivations are made in order to obtain a state-space

model for a radiating structure. The ultimate purpose here is to put the basis for the control of

sound power radiated by stringed instruments.
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In what follows, results on the guitar are based on previous work by Derveaux [1] and Chaigne

et al. [2]. Considerations on acoustic power and efficiencies are inspired by previous work by

Snyder and Tanaka [3], Snyder et al. [4], Chen [5], Chen and Ginsberg [6], Rumerman [7], Elliott

and Johnson [8] and Gibbs et al. [9]. Active control of sound radiated by stringed instruments

has been investigated by Baumann [10], and Griffin et al. [11] [12]. More generally, the basic

results on control and state-space modeling of radiating structures can be found in textbooks by

Juang and Phan [13], Meirovitch [14], Fuller et al. [15] and Preumont [16]. Examples of practical

realizations can be found in [17]. Finally, recent results on structural-acoustics systems with

applications to control are presented in [18], [19], [20] and [21].
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2 Multiple dof structural system coupled to a radiating acoustic

wave

2.1 Presentation of the model. Notations

We consider here the simple case of a longitudinally vibrating bar of length L coupled at one

end to a 1-D infinite tube filled with air. For example purpose, it will be assumed throughout

this section that the bar has a constant cross-sectional area S and that it is clamped at one

end (x = 0) and free at the other (x = L). However, we will show at the end that the present

method can be generalized to any boundary conditions and to structures of complex geometry.

Let us denote ρs the density of the bar, E its Young’s modulus, cL =
√

E/ρs the longitudinal

wave speed and ξ(x, t) the longitudinal displacement at one point M of coordinate x in the bar

(0 ≤ x ≤ L).

Similarly, ρ denotes the air density, c the speed of sound and p(x, t) the sound pressure in the

tube (L < x <∞).

In the absence of excitation force (free vibrations), the equations of the problem are the following:























































ρsS
∂2ξ
∂t2

= ES
∂2ξ
∂x2 − Sp(L, t)δ(x− L) for 0 ≤ x ≤ L

p(L, t) = ρcξ̇(L, t)

ξ(0, t) = 0

p(x, t) = ρcξ̇(L, t− x− L
c ) for L < x <∞

(2.1)
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� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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Figure 1: Longitudinally vibrating bar coupled to a semi-infinite tube.

In order to find the solution ξ(x, t), an appropriate method consists in expanding this variable

in terms of its in vacuo or normal modes, taking benefit of the orthogonality properties of this

set of functions. Let us insist on the fact that this method does not imply that the bar itself

vibrates in vacuo, which would be completely in contradiction with the heart of our problem
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where we want to emphasize the effect of air loading on the structure. Let us now take a break

and review the main properties of the normal modes, using our generic example of the 1-D bar.

2.2 Brief review: normal modes of the longitudinally vibrating bar

N.B. This paragraph does not pretend to present the fundations of normal modes theory in detail. It

should rather be viewed as help for facilitating the comprehension of the following parts of the paper.

For more information, the reader should refer to basic textbooks in vibrations.

The in vacuo equations for the bar are simply obtained by letting ρ vanishing to zero in Eq. (2.1).

This yields, for a clamped-free bar:



















ρsS
∂2ξ
∂t2

= ES
∂2ξ
∂x2

ξ(0, t) = 0 ;
∂ξ
∂x

(L, t) = 0

(2.2)

The normal modes (also called eigenmodes) of the clamped-free bar are obtained by looking for

solutions of the form:

ξ(x, t) = φ(x) cosωt (2.3)

Inserting Eq. (2.3) in Eq. (2.2) yields:

φ
′′

(x) + k2φ(x) = 0 (2.4)

Where the symbol ′′ means second derivative vs. space, and where k = ω/cL is the wavenumber.

This equation yields the general solution:

φ(x) = A cos kx+B sin kx (2.5)

Introducing now the boundary conditions in Eq. (2.5) gives A = 0 and k = kn = (2n − 1) π2L .

The other constant B remains arbitrary. It can be shown that its value has no influence on the

result: in what follows, we can decide to fix it to B = 1. Finally, we get the series of acceptable

solutions (for 1 ≤ n <∞):

φn(x) = sin (2n− 1)
πx

2L
= sin knx with kn =

ωn

cL
(2.6)

It can be demonstrated that the eigenfunctions are orthogonal functions with respect to the

mass (or to the stiffness) or the system. This means, in practice, that if we have to calculate,

for example, integrals of the form:
∫ L

0
ρsSφn(x)φm(x) dx (2.7)
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then this integral with always be zero for m 6= n. Notice that this property remains valid for

heterogeneous systems (ρs(x)) and for variable sections (S(x)).

Because of the linearity properties of Eq. (2.2), the most general form of the solution can be

written:

ξ(x, t) =
∑

n

φn(x)qn(t) (2.8)

Where the functions of time qn(t) are often called the modal participation factors.

Replacing ξ(x, t) in Eq. (2.2) by Eq. (2.8), multiplying both sides by φm(x) and integrating

over the length L of the bar yields, taking the mass- and stiffness-orthogonality properties of

the normal modes into account, the following set of independent differential equations for the

modal participation factors:

q̈n + ω2
nqn = 0 (2.9)

Each of these equations obviously yields an harmonic solution with frequency ωn. These fre-

quencies are often designated as the eigenfrequencies of the structure.

To summarize all this, one should remember that, if the bar (or any structure of finite di-

mensions) vibrates in vacuo, then the modal expansion of the displacement is such that each

eigenfrequency ωn is associated to one unique modal shape φn(x). In other words, if the struc-

ture is driven at a frequency equal to one of its eigenfrequency, then the spatial profile of the

structure will be exactly described by the corresponding modal shape. This particular property

is not satisfied in fluid-structure interaction problems as it will be shown below.

2.3 Free vibrations. Normal modes expansion of the solution

We go back now to our coupled problem defined in Eqs. (2.1) and we look for solutions of the

form given in Eq. (2.8). It means that we impose the spatial functions φn(x) because of their

powerful orthogonality properties. However, it can be anticipated that the functions of time

qn(t) will not be the same as in the in vacuo case.

Now we apply the same method as previously to the first equation in Eqs. (2.1), i. e. we multiply

both sides by any eigenfunction and integrate over the length of the bar, which yields:
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∫ L

0
ρsS

(

∑

m

φm(x)q̈m(t)

)

φn(x) dx−
∫ L

0
ES

(

∑

m

φ
′′

m(x)qm(t)

)

φn(x) dx =

∫ L

0
Sρc

(

∑

m

φm(L)q̇m(t)

)

φn(x)δ(x− L) dx (2.10)

This last equation can be rewritten in a more simple form, by defining the modal mass

mn =

∫ L

0
ρsSφ

2
n(x)dx (2.11)

Because of the mass-orthogonality property of the eigenfunctions, the terms of the series in the

first integral on the left-hand side of Eq. (2.10) are zero for m 6= n and thus the integral reduces

to mnq̈n(t).

Using Eq. (2.4), the second integral can be rewritten:

−
∫ L

0
ES

ω2
m

c2L

(

∑

m

φm(x)qm(t)

)

φn(x) dx (2.12)

which, due to stiffness-orthogonality properties of the eigenfunctions, reduces to −ω2
nmnqn(t).

Finally, due to the properties of the delta function, the third integral can be rewritten:

−Raφn(L)
∑

m

φm(L)q̇m(t) (2.13)

where Ra = ρcS is an “acoustic radiation resistance”.

Remark: in the case of the clamped-free bar, we would get φn(L) = (−1)n+1 and, similarly,

φm(L) = (−1)m+1. However, in what follows, we can decide to keep the formulation of Eq. (2.13)

so that the equations have a more general signification.

Summary of the previous developments

• For a 1-D bar of length L coupled to a semi-infinite tube, the displacement is given by:

ξ(x, t) =
∑

n

φn(x)qn(t) (2.14)

where the functions of times qn(t) obey to the set of coupled equations:

mnq̈n(t) +mnω
2
nqn(t) = −Raφn(L)

∑

m

φm(L)q̇m(t) (2.15)
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• For a clamped-free bar, we have φn(x) = sin(2n− 1)πx2L .

• Once the displacement of the bar ξ(x, t) is known, we can calculate the velocity ξ̇(x, t) at

each point of the bar and, in particular, at point x = L and thus derive the sound pressure

radiated inside the tube through Eq. (2.1). We will now examine the consequences of

the coupling on systems of small dimensions in order to better understand its physical

meaning.

2.4 Examples of 1, 2 and 3 dof systems

Single dof system

Suppose that, for various reasons, we might be allowed to reduce the previous system to one

single mode. In this case, Eq. (2.15) reduces to:

q̈1(t) +
Raφ

2
1(L)

m1
q̇1(t) + ω2

1q1(t) = 0 (2.16)

We recognize here the well-known equation for a damped oscillator where the dimensionless

damping factor ζ1 is given by:

2ζ1ω1 =
Raφ

2
1(L)

m1
(2.17)

Thus, for a single dof system, the effect of the acoustic coupling is to add a radiation damping to

the structure. This damping represents the amount of acoustic energy radiated by the vibrating

bar.

2 dof sytem

We consider here only the two lowest modes of the structure. In this case, Eq. (2.15) reduces

to:














q̈1(t) + ω2
1q1(t) = −Raφ1(L)

m1
[φ1(L)q̇1(t) + φ2(L)q̇2(t)]

q̈2(t) + ω2
2q2(t) = −Raφ2(L)

m2
[φ1(L)q̇1(t) + φ2(L)q̇2(t)]

(2.18)

This system can be rewritten as follows (omitting, for simplicity, the explicit time dependence

of the variables):















q̈1 + 2ζ1ω1q̇1 + ω2
1q1 = −Raφ1(L)φ2(L)

m1
q̇2 = C12q̇2

q̈2 + 2ζ2ω2q̇2 + ω2
2q2 = −Raφ2(L)φ1(L)

m2
q̇1 = C21q̇1

(2.19)
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Remark: Notice that we have here −m1C12 = −m2C21 = Raφ2(L)φ1(L). This quantity will

be denoted γ in Section 4 devoted to sound power.

Several conclusions can be drawn from this last result:

• The acoustic radiation introduces damping terms 2ζiωiq̇i in each equation.

• The time functions are coupled by the radiation. The coupling coefficients C12 and C21

are not equal, in general. In the present case where the damping terms are supposed to

be entirely due to radiation, notice the property C12C21 = 4ζ1ζ2ω1ω2
∗.

Taking the Laplace transform of the system in Eq. (2.19) leads to the following characteristic

equation:

(s2 + 2ζ1ω1s+ ω2
1)(s

2 + 2ζ2ω2s+ ω2
2) − 4ζ1ζ2ω1ω2s

2 = 0 (2.20)

which can be written equivalently:

s4 + 2s3(ζ1ω1 + ζ2ω2) + s2(ω2
1 + ω2

2) + 2sω1ω2(ζ1ω2 + ζ2ω1) + ω2
1ω

2
2 = 0 (2.21)

Eq. (2.21) is not easy to solve analytically, in general. However, it shows that the structural-

acoustic modifies the eigenfrequencies and the damping factors of the system, compared to the

in vacuo case.

Remark: For ζ1ω1 � 1 and ζ2ω2 � 1, which are reasonable assumptions for stringed instru-

ments, one can find first-order approximations for the modifications of both the eigenfrequencies

and decay times, due to air-structure coupling. Denoting s = σ + jω and replacing it in the

equations (2.19) yields the new damping factors:















σ1 ≈ −
[

ζ1ω1 − ω2
2ω1

C12

]

σ2 ≈ −
[

ζ2ω2 − ω1
2ω2

C21

]

(2.22)

Similarly, the new eigenfrequencies become:















ω
′2
1 ≈ ω2

1 −
[

2ζ2
1ω

2
1 − (ζ1 + ζ2)ω2C12 + ω1

2ω2
C21C12

]

ω
′2
2 ≈ ω2

2 −
[

2ζ2
2ω

2
2 − (ζ1 + ζ2)ω1C21 + ω2

2ω1
C21C12

]

(2.23)

In a musical instrument, the eigenfrequencies of the plate are only slightly perturbed by the

radiation. The main perturbation effect is due to the coupling with the cavity (see Section 3).

∗This property does not hold if a structural damping is considered in addition to radiation, see Section 4.
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3 dof system

A truncation of the fluid-structure system to 3 modes leads to:






































q̈1 + 2ζ1ω1q̇1 + ω2
1q1 = −Raφ1(L)

m1
[φ2(L)q̇2 + φ3(L)q̇3] = C12q̇2 + C13q̇3

q̈2 + 2ζ2ω2q̇2 + ω2
2q2 = −Raφ2(L)

m2
[φ1(L)q̇1 + φ2(L)q̇2] = C21q̇1 + C23q̇3

q̈3 + 2ζ3ω3q̇3 + ω2
3q3 = −Raφ3(L)

m3
[φ1(L)q̇1 + φ2(L)q̇2] = C31q̇1 + C32q̇2

(2.24)

Here again, we see that the 3 modes are coupled together by means of the Cnm coefficients.

Generalization

Finally, the generalized equation for the radiation structure can be written:

q̈n + 2ζnωnq̇n + ω2
nqn =

∑

m6=n

Cnmq̇m (2.25)

where

2ζnωn =
Raφ

2
n(L)

mn
and Cnm = −Raφn(L)φm(L)

mn
(2.26)

2.5 Forced vibrations. Filter representation

Up to now, the analysis of the system was limited to free vibrations. We want to show here that

the structural-acoustic coupling has additional effects in the case of excitation by an external

force, which is much closer to the behavior of stringed instruments where the body is excited by

the vibrations of the strings. This will lead us to suggest a general structure for a filter which

is supposed to account for the transfer function between excitation force and bar displacement.

Eq. (2.1) is modified through introduction of a force term F (xo, t) at excitation point xo:

ρsS
∂2ξ

∂t2
= ES

∂2ξ

∂x2 − Sp(L, t)δ(x− L) + F (xo, t)δ(x− xo)

for 0 ≤ x ≤ L and 0 ≤ xo ≤ L

(2.27)

Using the same modal developments as in the previous section, we find:

∫ L

0
ρsS

(

∑

m

φm(x)q̈m(t)

)

φn(x) dx−
∫ L

0
ES

(

∑

m

φ
′′

m(x)qm(t)

)

φn(x) dx =

∫ L

0
Ra

(

∑

m

φm(L)q̇m(t)

)

φn(x)δ(x− L) dx+

∫ L

0
F (xo, t)δ(x− xo)φn(x) dx (2.28)
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where each differential equation is now written:

q̈n + 2ζnωnq̇n + ω2
nqn =

∑

m6=n

Cnmq̇m + F (xo, t)
φn(xo)

mn
(2.29)

Or, in the Laplace formalism:

q̃n(s) = Hn(s)F̃ (xo, s) +
∑

m6=n

Knm(s)q̃m(s) (2.30)

with

Hn(s) =
φn(xo)

mn(s2 + 2ζnωns+ ω2
n)

and Knm(s) =
sCnm

s2 + 2ζnωns+ ω2
n

(2.31)

Finally, the displacement is written:

ξ̃(x, s) =
∑

n

q̃n(s)φn(x) = F̃ (xo, s)
∑

n

φn(x)Hn(s) +
∑

n

φn(x)
∑

m6=n

Knm(s)q̃m(s) (2.32)

2.5.1 Matrix formulation

Eq. (2.30) can be rewritten (removing the “∼” from the Laplace transforms, for convenience):













1 −K12 . . . −K1n

−K21 1 . . . −K2n

. . . . . . . . . . . .

−Kn1 −Kn2 . . . 1

























q1

q2

. . .

qn













= F













H1

H2

. . .

Hn













(2.33)

which can be formulated in a more compact form:

KQ = FH (2.34)

In Eq. (2.34) and below, the matrices are in bold, and the vectors are underlined.

The displacement of the bar is written:

ξ = Qt.φ = Q.φt = (K−1H)t.φF = (K−1H).φtF (2.35)

In some applications, it might be interesting to write Eq. (2.30) so as to obtain the characteristic

equation immediately. In this case, Eq. (2.33) becomes:













s2 + 2ζ1ω1s+ ω2
1 −sC12 . . . −sC1n

−sC21 s2 + 2ζ2ω2s+ ω2
2 . . . −sC2n

. . . . . . . . . . . .

−sCn1 −sCn2 . . . s2 + 2ζnωns+ ω2
n

























q1

q2

. . .

qn













= F













β1

β2

. . .

βn













(2.36)
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where βn =
φn(xo)
mn

. The equivalent matrix notation is:

CQ = Fβ (2.37)

The displacement of the bar is written:

ξ = (C−1β)t.φF = (C−1β).φtF (2.38)

2.5.2 Inversion of the matrix C

Finding explicit solutions for the qi (2.36) supposes to invert the matrix C. An example is given

below for a subsystem of order 2, where we write, for convenience Dn = s2 + 2ζnωns+ ω2
n. We

obtain easily:

q1 =
β1D2 + sC12β2

D1D2 − s2C12C21

F and q2 =
β2D1 + sC21β1

D1D2 − s2C12C21

F (2.39)

Or, alternatively, using the (H,K) formulation:

q1 =
H1 +K12H2

1 −K12K21
F = L1F and q2 =

H2 +K21H1

1 −K12K21
F = L2F (2.40)

from which the displacement can be derived.

Remark 1: The coupling appears in Eq. (2.36) through the fact that q1 (resp. q2) is not zero,

even if β1 (resp. β2) vanishes. In other words, one can observe oscillations at ωn in the response

of a structure coupled with air (structure displacement, sound pressure,...) even if this structure

is excited on a node of the in-vacuo mode corresponding to this frequency.

Remark 2: In practice, inverting K corresponds to replacing the “in vacuo” transfer function

Hn between F and qn modified by the feedback matrix K by the new set of uncoupled transfer

functions Ln. We realize, among other things, that the new eigenfrequencies and damping fac-

tors modified by the coupling are now given by the roots of the denominator D1D2 − s2C12C21

or, more generally, by the roots of the determinant of C.

2.5.3 Orthogonalization of matrix C

Orthogonalizing C means that we are able to find an appropriate vector basis in which the

relation between the displacements and the forces reduces to a diagonal form. In other words,

this corresponds to decoupling the set of differential equations that govern the time evolution

of the generalized displacements. In this section, much attention is paid to the case of weak
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coupling, in order to derive approximate equations that are valid for radiating instruments.

We start with a 2 dof system before generalization. The matrix C is:

[

D1 −sC12

−sC21 D2

]

with Di = s2 + 2ζiωis+ ω2
i (2.41)

The corresponding diagonal matrix Λ is written:

[

λ1 0

0 λ2

]

(2.42)

where the λi are solutions of the equation:

∣

∣

∣

∣

∣

D1 − λ −sC12

−sC21 D2 − λ

∣

∣

∣

∣

∣

= (D2 − λ)(D1 − λ) − s2C12C21 = 0 (2.43)

Denoting ei the corresponding eigenvectors and T = [e1 e2], then we have the following matrix

equations:

TΛ = CT ⇔ Λ = T−1CT (2.44)

In the general case, the λi are given by:

λ1,2 =
1

2

[

D1 +D2 ±
√

(D1 −D2)2 + 4s2C12C21

]

(2.45)

At this stage, it is thus interesting to define the nondimensional coupling parameter

ε =
C12C21

D2 −D1
=

C12C21

ω2
2 − ω2

1 + 2s(ζ2ω2 − ζ1ω1)
(2.46)

so that, for ε� 1, the eigenvalues of C can be written to a first-order approximation:

λ1 = D1 − εs2 ; λ2 = D2 + εs2 (2.47)

2.5.4 Weak coupling approximations

Discussion on ε: Let us assume that the damping terms are small compared to the in vacuo

eigenfrequencies ωi. In this case, Eq. (2.46) shows that the coupling is weak if the Cij are small,

as it is the case for a light fluid, for example, together with the condition that the in vacuo

eigenfrequencies ωi and ωj are not too close to each other. If this latter condition is not fulfilled,

we can have a strong coupling due to radiation even in the case of a light fluid.
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In what follows, the assumption of weak coupling, based on the criterion ε � 1, will be made.

In this case, the previously defined matrices become:

T =





1 − εs
C21

εs
C12

1



 ⇒ T−1 =
C12C21

C12C21 + ε2s2





1 εs
C21

− εs
C12

1



 (2.48)

Defining further the vectors γ = T−1β and R = T−1Q, Eqs. (2.37) and (2.38) can be rewritten:

ΛR = Fγ ⇒ ξ = TΛ−1γ φtF (2.49)

Here, we have:

Λ−1 =
1

D1D2 − s2C12C21

[

D2 + εs2 0

0 D1 − εs2

]

(2.50)

γ =
C12C21

C12C21 + ε2s2





β1 + εs
C21

β2

β2 − εs
C12

β1



 and R =
C12C21

C12C21 + ε2s2





q1 + εs
C21

q2

q2 − εs
C12

q1



 (2.51)

To a first-order approximation, it can be shown that:

Λ−1 ≈ Λ−1
0 + εΛ−1

c (2.52)

where Λ−1
0 is the in vacuo diagonal matrix given by

Λ−1
0 =





1
D1

0

0 1
D2



 (2.53)

and Λ−1
c is the coupling diagonal matrix given by

Λ−1
c =





(

s
D1

)2
0

0 −
(

1
D2

)2



 (2.54)

This result is of particular interest for computing the perturbation due to air-loading of all sig-

nificant variables of the system.

Compared to Eq. (2.38), Eq. (2.49) has several advantages:

• The matrices T, T−1 and Λ are more easily calculated than C−1 in the general case.

• The determination of the eigenvalues of C naturally yields the definition of a coupling

parameter ε, which allows interesting approximations in the case of weak coupling.

• From a physical point of view, it shows how to find the appropriate basis in order to

decouple the system.
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3 dof system and generalization

In the case of the 3 dof system (2.24), the characteristic equation is:

(D1 − λ)(D2 − λ)(D3 − λ)

− s2 (C32C23(D1 − λ) + C31C13(D2 − λ) + C12C21(D3 − λ))

− s3 (C12C23C31 + C13C32C21) = 0

(2.55)

With the assumption of small radiation resistance, it is justified to neglect the terms in s3

compared to the others. On can then rewrite (2.55):

(D1 − λ)(D2 − λ)(D3 − λ) ×
[

1 − s2
(

C12C21

(D1 − λ)(D2 − λ)
+

C13C31

(D1 − λ)(D3 − λ)
+

C32C23

(D3 − λ)(D2 − λ)

)]

= 0
(2.56)

It can be easily checked on this latter expression that first-order approximations of the eigen-

values are given by:

λi = Di + εi with εi = −s2
∑

j

CijCji

Dj −Di
and 1 ≤ j ≤ 3 and j 6= i (2.57)

Equation (2.57) can be generalized to n coupled modes. In this case, the eigenvalues become:

λi = Di + εi with εi = −s2
∑

j

CijCji

Dj −Di
and 1 ≤ j ≤ n and j 6= i (2.58)

2.5.5 2 dof system - approximated expressions for displacement and mode shapes

In view of the previous results, we are now able to find a first-order approximate expression for

the bar displacement ξ. Like in the previous sections, we start by the simple example of a 2 dof

system. Let us write first the in vacuo displacement:

ξ0 = φ10q10 + φ20q20 (2.59)

N.B.: the notation φi0, which denotes the eigenmode in vacuo, should not be confused with

φi(xo) which denotes the value of this eigenmode at one particular point of the structure.

For the structure vibrating in air, recall that we imposed to project the solution onto the in

vacuo modal shapes, in order to take advantage of their orthogonality properties. In this case,

the displacement becomes:

ξ = φ10q1 + φ20q2 (2.60)
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From Eq. (2.38) or (better !) from Eq. (2.49), one can derive a first-order approximation for the

bar displacement:

ξ = φ10

(

q10 +
sC12

D1
q20

)

+ φ20

(

q20 + q10
sC21

D2

)

(2.61)

Operating deflexion shapes: Eq. (2.61) can be rewritten

ξ = q10

(

φ10 +
sC21

D2
φ20

)

+ q20

(

φ20 + φ10
sC12

D1

)

with qi0 =
φi0

miDi
F (2.62)

In experiments on structures, it is often made use of sinusoidal excitation. Imagine that we apply

a sudden harmonic force F (t) = H(t) sinωt at time t = 0 on the structure†, with excitation

location and frequency such that q20 is negligible compared to q10. In this case, it is easy to

realize that the spatial pattern of the structure is given by:

φ1 = φ10 + φ20
sC21

D2
(2.63)

Because of the time dependence of the second term (through the Lapace variable s), it can be

seen that the spatial shape evolves with time. Here, we can use the Laplace limit theorem which

states that the value of φ(t) as time tends to infinity is given by the product of sφ(s) as s tends

to zero.

Since s2C12
D2

tends to zero as s tends to zero. this means that, in the time domain, the second

term in the right-hand side of Eq.(2.63) will vanish after some time. Calculating the inverse

Laplace transform shows that this decay time is of the order of magnitude of the decay time

for the structural mode 2. After this transient regime, the spatial shape is equal to the spatial

shape in vacuo φ10.

In the more general case, Eq. (2.62) shows that F excites both q10 and q20. After a transient

regime, the bar displacement then finally converges to:

ξ(ω, x) =

[

φ10β1

D1(jω)
+

φ20β2

D2(jω)

]

(2.64)

The quantity between [ ] is called the operating deflexion shape or ODS of the structure at

frequency ω. Since it is very difficult, in practice, to excite one time function qi0 only, this ODS

is the kind of shapes which are currently observed when experimenting on vibrating structures

and, in particular, on musical instruments.

2.6 State space formulation

The transfer function formulation is convenient if the system is initially at rest and for time-

invariant systems. It might be useful, for other applications, to express the results in terms of

†
H(t) is the Heaviside function

20



state space variables. This formulation will be extensively used in the next sections devoted to

the control of sound radiation where time-varying radiation filters will be defined.

In the present application, the mechanical state of the system is given by the position and the

velocity of the dof. Since the eigenmodes φn are given, as intrinsic part of the structure, all the

useful information for the state of the system is contained in the modal participation factors qn

and in their first derivatives (vs. time) q̇n.

This incites us to rewrite the equations for a 2-dof coupled system as follows:

d

dt













X1

X2

X3

X4













=













0 0 1 0

0 0 0 1

−ω2
1 0 −2ζ1ω1 C12

0 −ω2
2 C21 −2ζ2ω2

























X1

X2

X3

X4













+













0

0

β1

β2













F (2.65)

where

X1 = q1 ; X2 = q2 ; X3 = q̇1 ; X4 = q̇2 (2.66)

Eq. (2.65) can be formulated equivalently:

Ẋ = AX +BF (2.67)

where F is the input and X is the state vector. The output Y depends on the investigated

mechanical problem. If we decide, for example, to investigate the displacement, then we can

write for the output:

Y =
[

φ1 φ2 0 0
]t

X = ΓX (2.68)

Equations (2.67) and (2.68) are general expressions for a linear system expressed in terms of

state-space variables.

Remark: The representation presented in Eq.(2.65) is not unique. Selecting, for example

X1 = q1 ; X2 = q̇1 ; X3 = q2 ; X4 = q̇2 (2.69)

obviously leads to different values for A and B.

Remark: Denoting respectively M, R and K, the mass, resistance and stiffness matrices of

the 2 dof system, then it can be seen that the matrix A can be rewritten more generally, using

submatrices:

21



A =

[

0 I

−M−1K −M−1R

]

(2.70)

where I is the identity matrix.
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3 Single dof structural system coupled to a multiple dof acoustic

system

3.1 Presentation of the model

In stringed instruments, the soundboard is coupled to a cavity. This results in the coupling of

the structural modes with the acoustic modes. Before tackling the general problem of multiple

dof structural system coupled to a dissipative multiple dof acoustic system, it is of interest to

examine a simplified structure (a simple dof system) coupled to a 1-D tube of cross-sectional

area S and finite length L loaded at its end x = L by a dissipative load. Here, we decide to

express this end loading in terms of impedance ZL, which is defined here as the ratio between

pressure and acoustic velocity. In order to simplify the presentation as much as possible, we

restrict ourselves here to the particular case where ZL is real.

The selected structure is a mechanical oscillator of Mass M , stiffness K = Mω2
o and dashpot

R = 2Mζoωo driven by a force T (x = 0, t) at position x = 0. The motion of the mass M

is assumed small, so that the acoustic velocity v(x = 0, t) is equal to the mechanical velocity

ξ̇(x = 0, t). We assume lossless wave propagation in the tube itself. Thus, the set of equations

for the model is written:























































































1
c2
∂2p
∂t2

=
∂2p
∂x2 for 0 < x < L

ρ∂v
∂t

= −∂p
∂x

p(L, t) = ZLv(L, t)

M
(

ξ̈ + 2ζoωoξ̇ + ω2
oξ
)

= −Sp(x = 0, t) + T (t)

v(0, t) = ξ̇(t)

(3.1)

3.2 Mass displacement

As it has been done in the previous section, we can find a solution for the displacement and

derive then other quantities such as velocity, force and pressure using Eq. (3.1).

One method consists of determining p(0, t) as a function of mass displacement ξ(t) and injecting
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Figure 2: Single dof mechanical oscillator coupled to a finite loaded tube.

this expression in the equation that governs the motion of the oscillator.

Using again the Laplace formalism, we find the acoustic variables in the tube:











p(x, s) = exp(−sxc ) F (s) + exp(sxc ) G(s)

v(x, s) = 1
ρc [exp(−sxc ) F (s) − exp(sxc ) G(s)]

(3.2)

Where F (s) and G(s) are two functions to be determined. The boundary condition at x = L

yields:

G(s) = F (s)
ZL − ρc

ZL + ρc
exp(−2Ls

c
) (3.3)

The continuity of the displacement at position x = 0 yields:

v(0, s) =
1

ρc
F (s)

[

1 − ZL − ρc

ZL + ρc
exp(−2Ls

c
)

]

= sξ(s) (3.4)

Finally, the equation governing the oscillator motion becomes:

[

s2 + 2ζoωos+ ω2
o

]

ξ(s) =
T (s)

M
− s

Ra

M

zL + tanh(
sL

c
)

1 + zL tanh(
sL

c
)
ξ(s) (3.5)

with

zL =
ZL

ρc
and Ra = ρcS (3.6)

Eq. (3.5) shows that, due to the loading of the oscillator by the finite tube, the damping term

2ζoωo becomes:

2ζoωo + 2ζaωoz(s) (3.7)

where

Ra

M
= 2ζaωo and z(s) =

zL + tanh(
sL

c
)

1 + zL tanh(
sL

c
)

(3.8)
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so that we can write:

ξ(s) =
T (s)

M

1

s2 + 2ωo [ζo + ζaz(s)] s+ ω2
o

(3.9)

F(s) is derived from Eq. (3.4):

F (s) =
ρcsξ(s)

[

1 − zL − 1

zL + 1
exp(−2sL

c
)

] =
ρcsξ(s) exp(

sL

c
)(zL + 1)

2

[

zL sinh(
sL

c
) + cosh(

sL

c
)

] (3.10)

Eqs. (3.2) and (3.3) yield the pressure in the tube:

p(x, s) = ρcsξ(s)
zL cosh(

s(x− L)

c
) − sinh(

s(x− L)

c
)

cosh(
sL

c
) + zL sinh(

sL

c
)

(3.11)

The pressure p(x = 0, s) acting on the oscillator, in particular, is written:

p(x = 0, s) = ρcsξ(s)
zL cosh(

sL

c
) + sinh(

sL)

c
)

cosh(
sL

c
) + zL sinh(

sL

c
)

= ρcsξ(s)z(s) (3.12)

Discussion on z(s)

Several interesting cases can be examined here.

• If the load at the end of the tube in x = L is such that ZL = ρc, then G(s) = 0 and

F (s) = ρcsξ(s). This means that the tube is loaded by its characteristic impedance and

that there is no returning wave. In this case, we have z(s) = 1 and the only effect of

the tube is to increase the damping of the oscillator, which becomes equal to ξo + ξa.

This increase of damping is entirely due to radiation and is, of course, similar to the one

observed for the 1 dof approximation of the vibrating bar studied in the previous section.

• If the tube is closed at x = L, then zL tend to ∞ and z(s) = 1/ tanh(sLc ). If, in addition,

the length L of the tube is sufficiently small so that we can make the approximation

tanh(sLc ) ≈ sL
c , then the displacement can be written:

ξ(s) =
T (s)

M

1

s2 + 2ωoζos+ ω2
o +

2ωoζac

L

(3.13)

This amounts to saying that the tube acts as an added stiffness Ka =
2ωoMζac

L whose

effect is to increase the eigenfrequency of the mechanical oscillator.
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• If the tube is open at x = L and if we neglect the radiation at this open end, then zL = 0

and z(s) = tanh(sLc ). For a small tube, or more generally for sLc � 1, we obtain:

ξ(s) =
T (s)

M

1

s2 + 2ωoζos+ ω2
o +

2ωoζas
2L

c

(3.14)

which means that the tube acts as an added mass Ma =
2MωoζaL

c whose effect is to lower the

eigenfrequency of the oscillator.

3.3 Modal representation

Here, we want to expand the sound pressure p(x, s) in terms of the normal modes of the tube.

For simplicity, we assume that there is no damping in the oscillator (ζo = 0). We examine, here,

before generalization, the simple case where the tube is closed at x = L. In what follows, we

make use of some interesting properties of the transcendental functions:

sinh(
πs

ω1
) =

πs

ω1

∞
∏

i=1

(

1

iω1

)2

s2 + i2ω2
1 with ω1 =

πc

L
(3.15)

cosh(
πs

ω1
) =

∞
∏

i=1







1

(i− 1

2
)ω1







2

s2 + (i− 1

2
)2ω2

1 (3.16)

We can see, in particular, on these formulae that the generic term of the product tends to 1 as

i tends to ∞. This means, in practice, that it is justified to truncate this product to a finite

number N . The expansion of sinh(πLω1
), for example, is thus equivalent here to a product of

terms whose poles are given by ωi = iω1. These terms correspond to the eigenfrequencies of the

tube closed at both ends. The displacement of the mass is written here:

ξ(s) =
T (s)

M

sinh(
πs

ω1
)

(s2 + ω2
o) sinh(

πs

ω1
) + 2ζaωos cosh(

πs

L
)

(3.17)

And the sound pressure in the tube becomes:

p(x, s) =
ρcsT (s)

M

cosh(
s(x− L)

c
)

(s2 + ω2
o) sinh(

πs

ω1
) + 2ζaωos cosh(

πs

ω1
)

(3.18)

We check on these expressions that, for a very small ζa, the eigenfrequencies of the system

consists of both the oscillator frequency and the eigenfrequencies of the tube closed at both
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ends. Like in the previous problem of the bar coupled to the infinite tube, it is possible to find

approximate solutions after defining an appropriate nondimensional term ε which quantifies the

degree of coupling between the structure and the cavity.
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4 Decay times and sound power

For a structural system with a single degree of freedom, it is well-known that the dissipated

mechanical power can be derived from measurements of the decay time, in the case of free

vibration. Similarly, the acoustical efficiency of the system can be derived from the ratio between

the decay times “in vacuo” and “in air”, respectively. Il will be shown that this result cannot

be directly generalized to the case of the coupling between a continuous structural system with

multiple degrees of freedom and a radiating acoustic wave in free space, since, in this latter

case, all modes are coupled by the damping due to radiation. The problem becomes even more

complex if the structure is coupled to a partially radiating cavity, as it is the case for stringed

instruments.

4.1 Single degree of freedom (1dof) structural system

Consider the standard 1dof structural system given by the differential equation involving exci-

tation force F (t) and mass velocity v(t):

F = M
dv

dt
+Rv +K

∫

vdt (4.1)

which can be written alternatively, using mass displacement ξ(t) and the usual reduced para-

meters:

F = M

[

d2ξ

dt2
+ 2ζoωo

dξ

dt
+ ω2

oξ

]

(4.2)

The instantaneous mechanical power pmo(t) put into the system is given by the scalar product

between F and v, which yields:

pmo =
d

dt

[

1

2
Mv2 +

1

2
Kξ2

]

+Rv2 (4.3)

The three terms on the right-hand side of Eq. (4.3) represent the kinetic energy of the mass

M , the elastic energy of the spring K and the energy dissipated in the mechanical resistance R,

respectively.

In a number of applications, we are mostly interested in the time-average value of pmo(t) rather

than on the details of its time evolution. In acoustics, for example, the human ear is sensitive to

the sound level which is correlated to the average value of the instantaneous acoustical power,

after integration over a duration of nearly 50 ms. Therefore, after defining an integration

duration T , whose appropriate selection will be discussed later in this section, we can define

the average mechanical power Pmo(T ):

Pmo(T ) =
1

2T

[

Mv2(T ) +Kξ2(T ) −Mv2(0) −Kξ2(0)
]

+
1

T

∫ T

0
Rv2(t)dt (4.4)
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In a conservative system, the sum of kinetic and elastic energy remains constant over time, so

that the term between [ ] in the previous equation is equal to zero. As a consequence,the average

input power becomes:

Pmo(T ) =
1

T

∫ T

0
Rv2(t)dt = Ps(T ) (4.5)

where Ps(T ) represents the mean structural power dissipated in the mechanical resistance R.

4.1.1 Particular case: harmonic motion

A particular case of importance is the steady-state harmonic motion of the mechanical oscillator

with angular frequency ω. Given an excitation force F (t) = FM cosωt, then, due to the assumed

linerarity of the system, the mass velocity is written v(t) = VM cos(ωt + φ). Therefore, Pmo(T )

is given by:

Pmo(T ) =
1

T

∫ T

0
FMVM cosωt cos(ωt+ φ)dt (4.6)

Denoting τ = 2π
ω the period of the motion, we can write T = nτ + τo, where n is a positive

integer. In this case, the mean power can be rewritten:

Pm(T ) =
1

2
FMVM cosφ+

FMVM

4(2πn+ τoω)
[sinφ− sin(2ωτo + φ)] (4.7)

Comment: This equation shows that the mean (or average) power Pmo(T ) is nearly equal to
1
2FMVM cosφ only if the average duration T contains a sufficiently large number n of periods.

If T is equal to nτ , then the previous result is strict. In what follows, it will be assumed that

this condition is fulfilled so that the dependence vs integration time T of the mean power terms

will be suppressed.

With a given force, it can be easily shown that the velocity amplitude VM and phase angle φ

are given by:

VM =
FM

M

ω
√

(ω2 − ω2
o)

2 + 4ζ2
oω

2ω2
o

(4.8)

cosφ =
2ζoωoω

√

(ω2 − ω2
o)

2 + 4ζ2
oω

2ω2
o

(4.9)

and the mean power becomes:

Pmo =
F 2

M

2R

4ζ2
oω

2
oω

2

(ω2 − ω2
o)

2 + 4ζ2
oω

2ω2
o

(4.10)
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Eq. (4.10) shows that the maximum of the dissipated power, and thus the maximum of the input

power, is obtained for ω = ωo, i. e. when the excitation frequency is equal to the eigenfrequency

of the oscillator. In this case, we obtain:

Max {Pmo} =
F 2

M

2R
(4.11)

Since FM is known, in general, Eq. (4.11) can be used for estimating the mechanical resistance R.

Remark: Recall that Eq. (4.10) is only valid for a permanent regime, which does not correspond

to many experimental (or numerical) situations where, for obvious causality reasons, the force is

applied at a given instant of time, taken as origin. In this (more realistic case), the force signal

should be written instead F (t) = FMH(t) sinωt where H(t) is the Heaviside function.

In this case, the Laplace transform of the velocity is written:

V (s) =
FM

M

ω2

(s2 + ω2)(s2 + 2ζ0ωos+ ω2
o)

(4.12)

Finally, the velocity can be written:

v(t) =
FMω

M
√

D(ω)
+A(ω) exp(−ζoωot) sin(ωo

√

1 − ζ2
o t+ ψ(ω)) (4.13)

whereD(ω) = (ω2−ω2
o)

2+4ζ2
oω

2ω2
o . A(ω) and ψ(ω) also are functions of the excitation frequency

whose exact expressions do not add significant matter to the present discussion. The first term

in the expression of v(t) corresponds to the steady-state regime. The important features of the

second term are the following:

• It is non negligible as long as the time is “small” compared to the decay time (ζoωo)
−1.

For some lightly damped structural modes of musical instruments, this decay time can be

of the order of 0.1 ms or more. In this case, this second term cannot be neglected during

the first 0.5 to 1.0 s of the sound, if one wants to estimate the mean sound power correctly.

• When multiplying v(t) by F (t) and integrating over time, terms with frequencies ω +

ωo

√

1 − ζ2
0 and

∣

∣

∣ω − ωo

√

1 − ζ2
0

∣

∣

∣ appear in the expression of Pmo (see Fig. 3). As a con-

sequence, the mean power fluctuates at low frequency, which is another cause of difficulty

for estimating its value properly.

4.2 Single dof structural-acoustic system

We investigate again here the simplified situation of a mechanical oscillator loaded by a semi-

infinite tube. It has been shown in the previous section that the oscillator motion is governed

by the equation:

F = M
dv

dt
+Rv +

∫

vdt+Rav with Ra = ρcS (4.14)
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Figure 3: Time evolution of the mean power Pmo.

The instantaneous input power is given by:

pm(t) =
d

dt

[

1

2
Mv2 +

1

2
Kξ2

]

+ (R+Ra)v
2 (4.15)

The average input power becomes:

Pm(T ) =
1

T

∫ T

0
Rv2(t)dt+

1

T

∫ T

0
Rav

2(t)dt = Ps(T ) + Pa(T ) (4.16)

where Pa(T ) is the acoustical mean power radiated in the tube.

The acoustical efficiency of the system is given by:

η =
Pa(T )

Pm(T )
=

Pa(T )

Ps(T ) + Pa(T )
=

Ra

R+Ra
(4.17)

Some remarks can be formulated with regards to Eq. (4.17).

• The expression of the acoustical efficiency is here independent of the integration time T .

• Though Eq. (4.17) appears simple in form, the experimental (or numerical) determination

of the efficiency is generally not straightforward. As mentioned above, R can be estimated

through calculation of the mechanical power in vacuo Pmo(T ), keeping in mind the possible

sources of errors (beats, transient term, value of T ) presented in the previous paragraph.

• In the simple academic example discussed here, the acoustical resistance Ra, and thus

the acoustical power, are directly obtained analytically. This does not correspond to the

usual case where the acoustical power is estimated through measurements of the acoustic

intensity in the fluid.
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4.2.1 Link between estimation of sound power and free vibrations decay times

For a single dof system, an alternate interesting method for estimating the sound power consists

of estimating the decay times of free vibrations through experiments or numerical calculations.

In the next paragraph, the possible extension of this method to structures with multiple degrees

of freedom coupled to a fluid will be discussed.

Let us take the example of the previously described oscillator loaded by the semi-infinite tube.

We assume, here, that the excitation force F (t) = 0, whereas the mass is moved from equilibrium

by a quantity ξ(t = 0) = ξo and released without initial velocity at the origin of time. The

equation of motion is written:

d2ξ

dt2
+ 2ζωo

dξ

dt
+ ω2

oξ = 0 with ζ =
R+Ra

2Mωo
(4.18)

The Laplace transform of the displacement is given by:

ξ(s) = ξo
s+ 2ζωo

s2 + 2ζωos+ ω2
o

(4.19)

from which the time evolution of the mass displacement is obtained (assuming ζ < 1):

ξ(t) = exp(−ζωot)

[

cos(ωo

√

1 − ζ2t) +
ζ

√

1 − ζ2
sin(ωo

√

1 − ζ2t)

]

(4.20)

Eq. (4.20) shows that the decay factor α (equal to the inverse of the decay time) is equal to

ζωo = R+Ra
2M . The same mathematical derivations applied to the oscillator in vacuo yields

αo = ζoωo = R
2M . In conclusion, this shows that, for the particular 1dof system studied here,

the acoustical efficiency can be estimated in the time domain by the expression:

η =
α− αo

α
(4.21)

4.3 Multiple dof structural system coupled to a radiating acoustic wave

4.3.1 2 dof system

We rewrite here the coupled equations for a 2dof structure coupled to a radiating wave presented

in Section 2, with slight differences: we add here damping terms in the structure r1 and r2 so

that we can make a comparison between the power dissipated in vacuo and in air, respectively.

The damping terms ra1 and ra2 are due to radiation. Modal masses and stiffnesses are written
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explicitely, so that the comparison with the case of a single oscillator becomes easier. We get:










m1q̈1 + (r1 + ra1)q̇1 + k1q1 + γq̇2 = φ1(xo)F

m2q̈2 + (r2 + ra2)q̇2 + k1q2 + γq̇1 = φ2(xo)F

(4.22)

where γ = −C12m1 = −C21m2. In what follows, we use the notations:















2ζ1ω1 = r1 + ra1
m1

; 2ζ10ω1 = r1
m1

; ω2
1 = k1

m1

2ζ2ω2 = r2 + ra2
m1

; 2ζ20ω2 = r2
m2

; ω2
2 = k2

m2

(4.23)

so as to make a distinction between the damping factors in air and in vacuo.

The force F is supposed to be applied at point x = xo so that the mechanical input power is

written:

pm(t) = F
dξ

dt
(xo, t) = F [φ1(xo)q̇1 + φ2(xo)q̇2] (4.24)

Using equations (4.22), we are now able to write pm(t) explicitely:

pm(t) = m1q̈1q̇1 + (r1 + ra1)q̇
2
1 + k1q1q̇1

+ 2γq̇1q̇2

+m2q̈2q̇2 + (r2 + ra2)q̇
2
2 + k2q2q̇2

(4.25)

Integrating pm(t) over a duration T and removing the conservative energy terms yields the mean

input power:

Pm(T ) =
1

T

∫ T

0
(r1 + ra1)q̇

2
1 + (r2 + ra2)q̇

2
2 + 2γq̇2q̇1 dt (4.26)

It turns out now that the input power can be seen as the sum of three terms:

• The mean power Ps(T ) = 1
T

∫ T

0
r1q̇

2
1 + r2q̇

2
2 dt dissipated in the structure,

• The mean acoustical power Pa(T ) = 1
T

∫ T

0
ra1q̇

2
1 + ra2q̇

2
2 dt radiated in the air,

• The mean coupling power Pc(T ) = 2
T

∫ T

0
γq̇2q̇1 dt due to the exchange of energy between

the two oscillators via the fluid.
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Let us denote ω the steady-state excitation frequency. The transient regime is neglected, and

the integration time T is supposed to be taken equal to a integer multiple of the period T =

nτ = n2π
ω . In this case, the expressions of the mean input power in vacuo and in air are written:

Pmo = 1
2

[

r1|q̇10|2 + r2|q̇20|2
]

Pm = 1
2

[

(r1 + ra1)|q̇1|2 + (r2 + ra2)|q̇2|2 + 2γ|q̇2||q̇1|
]

(4.27)

The two terms of Pmo are given by the same expression than in Eq. (4.10), so that we can write:

Pmo = F 2
M

[

φ2
1(xo)

2r1

4ζ2
10ω

2
1ω

2

(ω2 − ω2
1)

2 + 4ζ2
10ω

2ω2
1

+
φ2

2(xo)

2r2

4ζ2
20ω

2
2ω

2

(ω2 − ω2
2)

2 + 4ζ2
20ω

2ω2
2

]

(4.28)

In a free vibration regime, the total displacement is made of the linear combination of two

exponentially decaying sinusoids with decay factors α10 = ζ10ω1 and α20 = ζ20ω2, for eigenfre-

quencies ω1 and ω2 respectively. In order to obtain each decay time experimentally, we need to

excite the system successively with different values of ω. The most natural choice would be to

select ω1 and ω2, however these in vacuo frequencies are in fact not known in practice since the

experiments are generally made in the air.

Pm can be written in matrix form:

Denoting Q̇ =

[

q̇1

q̇2

]

, Rs =

[

r1 0

0 r2

]

and Ra =

[

ra1 γ

γ ra2

]

, we can write:

Pm = Q̇
H

[Rs + Ra] Q̇ (4.29)

where Q̇
H

is the Hermitian conjugate (conjugate transpose) of Q̇.

4.3.2 3 dof system and generalization

Starting from Eq. (2.24), for example, one can easily show that the mean power for a 3 dof

system is written:

Pm(T ) =
1

T

∫ T

0





3
∑

i=1

(ri + rai)q̇
2
i +

3
∑

i=1

3
∑

j 6=i=1

γij q̇iq̇j



 dt with γij = −miCij (4.30)
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For the 3 dof system as well as for any system of higher number n of dof, and for an harmonic

excitation at frequency ω, this mean power can be written in the same form as Eq. (4.29), where

the resistance matrix is written:



























r1 + ra1 . . . γ1i . . . γ1j . . . γ1n

. . . . . . . . . . . . . . . . . . . . .

γi1 . . . ri + rai . . . γij . . . γin

. . . . . . . . . . . . . . . . . . . . .

γj1 . . . γji . . . rj + raj . . . γjn

. . . . . . . . . . . . . . . . . . . . .

γn1 . . . γni . . . γnj . . . rn + ran



























(4.31)

Remark: Like previously, the resistance matrix can be viewed as the sum of a structural

resistance matrix Rs and an acoustical resistance matrix Ra. This leads to the expression of

mean acoustical power:

Pa = Q̇
H
RaQ̇ (4.32)

and of the acoustical efficiency:

ηm =
Q̇

H
[Ra] Q̇

Q̇
H

[Rs + Ra] Q̇
(4.33)

which generalizes Eq. (4.17). Notice that all developments were made here with the assumption

that the structural resistance matrix Rs is diagonal, which corresponds to an usual reasonable

assumption for lightly damped structures. However, strong structural damping can also be the

source of intermodal coupling. In this case, Rs is not diagonal, though the general results ex-

pressed in Eqs (4.29) and (4.33) remain valid.

4.3.3 Radiation filter

Because Ra is real, symmetric, definite positive, we can write the decomposition:

Ra = PtΩP (4.34)

where Ω is a diagonal matrix. As a consequence, the acoustic power becomes, removing, for

simplicity, the integration time T :

Pa = bHΩb where b = PQ̇ (4.35)
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Which can be written explicitely:

Pa =
∑

n

Ωn|bn|2 (4.36)

Equation (4.36) means, in practice that, defining the appropriate basis, the acoustic power can

be expressed as a sum of quadratic terms, thus removing the cross-products between the qi seen

in the previous subsections.

Another interesting consequence of the properties of Ra is that the sound power can be alter-

natively decomposed using the Cholesky method. This leads to the expression:

Pa = Q̇
H
RaQ̇ = Q̇

H
GHGQ̇ = zHz =

∑

n

|zn|2 (4.37)

where, by comparison with Eq. (4.36), the vector z(ω) can be viewed as the output of a set of

radiation filters whose transfer functions G(ω) are given by:

G(ω) =
√

Ω(ω)P(ω) (4.38)

and whose input is the vector Q̇, so that we have:

z = GQ̇ (4.39)

4.3.4 Impulsively excited structure - Total radiated energy

For an impulsively excited structure, the total radiated energy is given by:

ET =

∫ ∞

0
Q̇

H
RaQ̇dω =

∫ ∞

0
zH(ω)z(ω)dω (4.40)

which, by applying Parseval’s theorem, is equivalent to [Baumann, 1991]:

ET =

∫ ∞

0
zt(t)z(t)dt (4.41)

4.3.5 State space formulation and control of the radiated energy

The interest of formulating the structural acoustic coupling in terms of state space will now

appear more clearly. Denoting r the internal state of filter G with input X (or Q̇) and output

z, we can find for this filter a state space realization of the form:

{

ṙ = AGr + BGX

z = CGr + DGX
(4.42)
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Combining these equations with the equations of motion of the structure yields finally:

[

Ẋ

ṙ

]

=

[

A 0

BG AG

][

X

r

]

+

[

B

0

]

F (4.43)

with the output equation:

z =
[

DG CG

]

[

X

r

]

(4.44)

If, for example, the purpose is to maximize the total energy radiated by the instrument, then

the cost function to be minimized could be:

Cf = 1 −

∫ ∞

0
zt(t)z(t)dt

Max{ET }
(4.45)

4.4 Single dof structural system coupled to a multiple dof acoustic system

Using the notations presented in Section 3, the instantaneous input mechanical power is written

here:

pm(t) = T.ξ̇ = M
(

ξ̈ξ̇ + 2ζoωoξ̇
2 + ω2

oξξ̇
)

+ Sp(x = 0, t)ξ̇ (4.46)

from which the average input power becomes:

Pm(T ) =
1

T

∫ T

0
Rξ̇2dt+

1

T

∫ T

0
SI(x = 0, t)dt = Ps(T ) + Pa(T ) (4.47)

If the tube is terminated by a lossless impedance at x = L, then the pressure and velocity are

in quadrature inside the tube and the acoustic intensity is equal to zero. In this case, there is

no acoustic dissipation in the system.

Like it has been done previously, one can assume that the excitation is sinusoidal with angular

frequency ω and that the integration time T is equal to an integer number of periods. In

this case, the dependence vs T of the mean power terms can be suppressed. For a dissipative

terminating impedance ZL, and using Eq. 3.12 in the steady state regime where s = jω yields:

Pa =
ρcS

2
Re {z(ω)} |ξ̇|2 (4.48)
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5 Extension to 2-D systems

5.1 Simply supported radiating isotropic plate

5.1.1 Equations of motion

We attempt now to generalize the fluid-structure interaction problem to the case of a 2-D

rectangular baffled simply supported isotropic thin plate radiating in air. The equations of the

problem are the following:







































































































































D∇4ξ(x, y, t) + ρsh
∂2ξ

∂t2
(x, y, t) = p(x, y, 0−, t) − p(x, y, 0+, t)

for 0 < x < Lx and 0 < y < Ly

ξ(0, y, t) = ξ(Lx, y, t) = ξ(x, 0, t) = ξ(x, Ly, t) = 0

ξ
′′
(0, y, t) = ξ′′(Lx, y, t) = ξ′′(x, y, t) = ξ′′(x, Ly, t) = 0

vz(x, y, 0+, t) = −vz(x, y, 0−, t) = ξ̇(x, y, t) for 0 < x < Lx and 0 < y < Ly

v(x, y, 0) = 0 for x 3]0, Lx[ or y 3]0, Ly[

ρ
∂v
∂t

+ ∇p = 0

∇2p− 1
c2
∂2p
∂t2

= 0

(5.1)

where h is the thickness of the plate, D = EI = Eh3

12(1 − ν2)
is the rigidity factor, E is the Young’s

modulus, ν is the Poisson’s ratio and ρs is the plate’s density. The transverse displacement of the

plate is denoted ξ(x, y, t). The acoustic variables are the pressure p(x, y, z, t) and the velocity

v(x, y, z, t). ρ is the air density and c is the speed of sound in air.
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Figure 4: Geometry of the thin isotropic baffled radiating plate.
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5.1.2 Eigenmodes in vacuo

Solving the plate equations in vacuo, with simply supported boundary conditions yield the

eigenmodes;

φmn(x, y) = φm(x)φn(y) = sin
πmx

Lx
sin

πny

Ly
(5.2)

allowing the displacement to be expanded as follows:

ξ(x, y, t) =
∑

m,n

φmn(x, y)qmn(t) = φm(x)φn(y)qmn(t) (5.3)

Defining the vectors:











Qt = [q01 q10 q11 ... qMN ]

and

Φt = [φ01 φ10 φ11 ... φMN ]

(5.4)

than Eq. (5.3) can be written in the form:

ξ(x, y, t) = QtΦ (5.5)

which is similar to the elementary 1-D system studied in the first section.

5.1.3 Calculation of radiated sound field using wavenumber Fourier transform

One main interest in calculating the radiated sound field by using the wavenumber Fourier

transform is that it allows easy calculation of the pressure on the plate surface itself, which is

clearly what we want here. For a 2-D spatial function f(x, y), this transformation is defined by:



























F (kx, ky) =

∫ +∞

−∞

∫ +∞

−∞

f(x, y)ej(kxx+kyy)dxdy

f(x, y) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞

F (kx, ky)e
−j(kxx+kyy)dkxdky

(5.6)

This allows, for example, to transform the wave equation for an harmonic pressure sound pressure

in space as follows:

∫ +∞

−∞

∫ +∞

−∞

(∇2 + k2)p(x, y, z)ej(kxx+kyy)dxdy = 0 (5.7)

This leads to the equation:

(

k2 − k2
x − k2

y +
∂2

∂z2

)

P (kx, ky, z) = 0 (5.8)
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whose solution is given by:

P (kx, ky, z) = Ae−jkzz with kz =
√

k2 − k2
x − k2

y (5.9)

The arbitrary constant A is determined by using the Euler equation, which yields:

P (kx, ky, z) =
ωρΞ̇(kx, ky)

kz
e−jkzz (5.10)

where Ξ̇(kx, ky) is the wavenumber transform of the transverse plate velocity ξ̇(x, y). The com-

plex sound pressure in space is obtained by using the inverse transform:

p(x, y, z) =
ωρ

(2π)2

∫ +∞

−∞

∫ +∞

−∞

Ξ̇(kx, ky)

kz
e−j(kxx+kyy+kzz)dkxdky (5.11)

This equation can be solved by using the method of stationary phase or the Fast Fourier Trans-

form algorithm.

5.1.4 Radiated sound power and radiation impedance matrix

In the harmonic case, the total sound power radiated by the plate is given by:

Pa =
1

2
Re
[∫ +∞

−∞

∫ +∞

−∞

p(x, y, z = 0) ξ̇∗(x, y) dxdy

]

(5.12)

where (∗) denotes the complex conjugates. Using the Parseval’s theorem and Eq. (5.10) yields:

Pa =
1

8π2Re
[∫ +∞

−∞

∫ +∞

−∞

P (kx, ky)Ξ̇
∗(kx, ky) dkxdky

]

=
ωρ

8π2Re
[

∫ +∞

−∞

∫ +∞

−∞

|Ξ̇(kx, ky)|2
kz

dkxdky

] (5.13)

Notice that this last result is only valid for the wavenumbers such as
√

k2
x + k2

y ≤ k. The

sound power can be alternatively written in terms of the wavenumber transform of the acoustic

pressure, which yields:

Pa =
1

8ωρπ2

∫∫

k2
x
+k2

y
≤k2

|P (kx, ky)|2 kz dkxdky (5.14)

Using the form expressed in Eq. (5.5) for the plate velocity and denoting Φ(kx, ky) the wavenum-

ber transform of Φ(x, y) yields the modulus squared of the velocity field:

|Ξ̇(kx, ky)|2 = |Q̇t
Φ(kx, ky)|2 = Q̇

H
Φ∗(kx, ky)Φ

t(kx, ky)Q̇ (5.15)

Finally, substituting this result into Eq. (5.13) shows that the acoustic power can be written as:

Pa = Q̇
H
RaQ̇ (5.16)
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with the radiation impedance matrix Ra defined as:

Ra =
ωρ

8π2Re







∫∫

Φ∗(kx, ky)Φ
t(kx, ky)

√

k2 − k2
x − k2

y

dkxdky







(5.17)

which generalizes the results obtained in Eq. (4.32) to 2-D systems .

In practice, each term (Ra)ij of the matrix Ra quantifies the mutual radiation resistance which

results from the interference between the fields due to the modes (m,n) and (m′, n′), respectively.

If (m,n) = (m′, n′), then we obtain the self radiation resistances which are the diagonal terms

of the matrix Ra. These terms are written explicitely:

(Ra)ij = (Ra)mn,m′n′ =
ωρ

8π2Re







∫∫

Φ∗
m(kx) Φ∗

n(ky) Φm′(kx) Φn′(ky)
√

k2 − k2
x − k2

y

dkxdky







(5.18)

For a baffled simply supported plate, the radiation resistances become:

(Ra)mn,m′n′ =
mm′nn′ωρπ2

8L2
xL

2
y

× Re
{

∫∫

fmm′(kxLx) fnn′(kyLy)dkxdky

[k2
x − (mπ/Lx)2)][k2

x − (m′π/Lx)2][k2
y − (nπ/Ly)

2)][k2
y − (n′π/Ly)

2]

} (5.19)

where the functions of the form fmm′(kxLx) are given by:

fmm′(kxLx) =























2(1 − cos kxLx) for m even, m′ even

2(1 + cos kxLx) for m odd, m′ odd

2j sin kxLx for m odd, m′ even

−2j sin kxLx for m even, m′ odd























(5.20)
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6 Example of the guitar

Interpreting the fluid-structure coupling phenomena in the guitar

In the present section, general results developed in the previous sections are applied to the case

of a guitar [2]. The leading idea is to enhance the energetic approach in order to prepare the

appropriate theoretical framework for the control of sound power. Links are made with the

experiments, so as to relate measurements of decay times and sound intensity to energetic quan-

tities.

6.1 Calculation of string’s decay factors

6.1.1 Isolated string with internal damping

Let us consider an homogeneous viscoelastic string, ideally clamped at both ends. The equations

of the problem are the following:



























w(y = 0) = w(y = ls, t) = 0

µ∂
2w
∂t2

= T
(

1 + η ∂
∂t

)

∂2w
∂y2 − r∂w

∂t
+ f(t)δ(y − yo)

(6.1)

where w(y, t) is the transverse displacement, µ is the mass per unit length, T is the tension, η is

a viscoelastic coefficient and r is an additional damping constant. The purpose of these damping

terms is to account for the fact that the higher frequencies are damped more rapidly than the

lower ones, as it is currently observed on real strings. The force term f(xo, t) = f(t)δ(y − yo)

represents the action of the finger on the string.

To solve these equations, we use a modal approach where the normal modes are those obtained

for a clamped lossless string:

w(y, t) =
∑

n

φn(y) qn(t) =
∑

n

sin kny qn(t) with kn =
nπ

ls
(6.2)

Integrating the wave equation over the length of the string and using the mass- and stiffness

orthogonality properties of the normal modes, using the same method as the one used for the

bar in Sec. (2), yields the set of differential equations:

q̈n +

(

r

µ
+ ηω2

n

)

q̇n + ω2
nqn = f(t)

φn(yo)

mn
(6.3)
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where ωn = knc = kn

√

T
µ and where the modal masses are given by:

mn =

∫ ls

0
µφ2

n(y) dy (6.4)

. For an homogeneous string, we have mn = µls/2. Assuming that the damping coefficients are

sufficiently small, then it can be shown (using, for example, the Laplace transform) that the

time participation factor of the nth- mode is of the form:

qn(t) = e−αnt
(

An cosωn

√

1 − α2
nt+Bn sinωn

√

1 − α2
nt
)

(6.5)

where the damping factors αn are given by:

αn =
rn

2mn
=

1

2

[

r

µ
+ ηω2

n

]

= ζnωn (6.6)

and where ωn

√

1 − α2
n ≈ ωn.

6.1.2 String with internal damping loaded by the soundboard in vacuo

We examine first the case of a free lossless string fixed at point y = 0 and coupled to a mechanical

load, such as a soundboard, at the other end y = ls. The equations of the problem are formulated

in the Laplace domain where s is the Laplace variable and w = w(y, s). In what follows, the

motion of the moving end is described in terms of the admittance Yl(s), defined as the ratio

between velocity ẇ = sw(y, s) and force F(y, s) at point y = ls. This yields:







































w(y = 0, s) = 0

µs2w = T ∂
2w
∂y2

sw(y = ls, s) = Yl(s) F(y = ls, s) = −TY (s) ∂w
∂y

(y = ls, s)

(6.7)

Let us denote F (s) the wave propagating towards the end (in the positive direction) and G(s)

the reflected wave from the moving end in the negative direction. The general solution of the

wave equation in the Laplace domain is written:

w(y, s) = exp
(

−sy
c

)

F (s) + exp
(

s
y

c

)

G(s) (6.8)

and the boundary condition at end y = ls yields the reflection coefficient R(s) between outgoing

and incoming wave:
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R(s) =
G(s)

F (s)
=
ZcYl − e−

sls
c

ZcYl + e
sls
c

(6.9)

where Zc = T
c =

√
Tµ is the characteristic impedance of the string.

We now examine the consequence of Eq. (6.9) for the particular case of an incoming harmonic

wave with pulsation ω. For simplicity, we also modify the origin of the y-axis with a translation

equal to −ls so that the reflection now takes place at the origin, which allows us to replace the

exponential terms by 1 in Eq. (6.9). This does not modify, of course, the calculation of the

decay times which are independent of the position of the load along the string. Denoting now

Yl(ω) = G(ω) + jB(ω), then Eq. (6.9) becomes [22]:

R(ω) = |R|ejβ =
ZcG− 1 + jB

ZcG+ 1 + jB
= e−a+jβ (6.10)

where

|R|2 = 1 − 4ZcG

(ZcG+ 1)2 +B2Z2
c

and tanβ =
2BZc

Z2
c (G2 +B2) − 1

(6.11)

Since the moving end is assumed to be dissipative, G(ω) is positive and thus Eq. (6.11) shows

that |R(ω)| < 1, which means that the returning wave is attenuated compared to the incoming

one. Assuming that this attenuation is weak (ZcG � 1), as it is the case for a string attached

to a soundboard, than we can use the approximation:

|R| ≈ 1 − 2ZcG

(ZcG+ 1)2 +B2Z2
c

= 1 − a (6.12)

For a string of finite length ls, the attenuation takes place at each period of time T = 2ls
c .

Therefore the damping factor per period of the wave along the string (in s−1) is:

αnl =
a

T
=
c

ls

ZcG

(ZcG+ 1)2 +B2Z2
c

(6.13)

The consequence of the phase shift β is to modify the eigenfrequencies of the string. In guitars,

this shift is generally very small so that we can assume β ≈ 0. With the abovementioned

assumption ZcG� 1, the damping factor for the nth eigenfrequency of the string becomes:

αnl ≈
c

ls
ZcG(ωn) =

T

ls
Re {Y (ωn)} (6.14)

We combine now the results obtained for the string and the moving end, respectively. During

each period of the oscillation, the wave is continuously damped along the string with factor αn
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and, at each reflexion at the moving end, with an additional factor αnl so that the total damping

factor for the string loaded by the plate in vacuo is given by:

αn(ωn) ≈ rn
2mn

+
T

ls
Re {Y (ωn)} =

1

2mn

[

rn + Z2
cRe {Y (ωn)}

]

(6.15)

In terms of impedance, we have Zl(ω) = 1
Yl

= R(ω) + jX(ω), so that the damping factors can

be written alternatively:

αn(ωn) ≈ rn
2mn

+
T

ls

R

R2 +X2 (6.16)

Eq. (6.15) shows that the damping always increases with the loading by the plate, compared to

the isolated string, since both terms at the right-hand side are positive. For a string stretched at

a fixed point on a soundboard, it can be seen that the damping factor increases with the tension

T . This is due to the fact that the characteristic impedance increases with T , thus facilitating

the transfer of energy between string and soundboard. Similarly, the damping factor increases

as the length of the string decreases. This can be understood by observing that the amount of

energy transferred to the load in a given time interval increases as the travelling time between

two consecutive reflexions becomes smaller.

In the low frequencies, the frequencies for which the admittance (also called mobility) Y (ω)

reaches a local maximum roughly correspond to the eigenfrequencies of the soundboard. If

there is coincidence at those frequencies with the eigenfrequencies of the string, then these fre-

quencies will die more rapidly.

On a mathematical point of view, the maxima for αn correspond to the frequencies ωn = ωi

for which X(ωi) = 0. Notice that measuring ωi experimentally is an hard task, because of the

difficulties in conducting experiments in vacuo. For these frequencies, we have:

αnMAX ≈ rn
2mn

+
T

Rls
(6.17)

6.1.3 String with internal damping loaded by the soundboard coupled to air and

cavity

The exact calculation of the decay factors in this case requires accurate modeling of the air-

structure interaction. In practice, radiation and cavity modes modify both the real and imagi-

nary part of the impedance Zl. Let us denote Ra(ω) and Xa(ω) the additional resistance and
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reactance due to air loading of the soundboard. Ra is positive whereas Xa can be either positive

or negative, depending on whether the inertial effects or the stiffening effects due to the air and

cavity are predominant at the attachment point of the string. The considerations developed in

the previous paragraph now lead to:

αn(ωn) ≈ rn
2mn

+
T

ls

R+Ra

(R+Ra)
2 + (X +Xa)

2 (6.18)

In this case, the maxima of the damping factors are obtained at the frequencies ωn = ωj for

which we have [X +Xa] (ωj) = 0, which yields:

αnMAX(ωj) ≈
rn

2mn
+

T

(R+Ra)ls
(6.19)

We obtain here an apparent paradox in the sense that the highest damping factors are smaller

than in the vacuo case, despite the fact that energy is now dissipated in both the plate and

air. In fact, one should not only consider the particular case of the highest damping factors,

but rather the total balance of power in the system. The condition that govern the increase of

damping compared to the in vacuo case is given by:

R+Ra

(R+Ra)
2 + (X +Xa)

2 − R

R2 +X2 > 0 (6.20)

Considering, for example, the frequencies ωj for which X +Xa = 0, which are easily measured,

then we see that the difference expressed in Eq. (6.20) is positive under the condition:

X2
a > RRa (6.21)

Finally, returning now to Eq. (6.18), one can see that the damping factors for the string mounted

on the complete instrument in air can be decomposed into the sum of three contributions related

to the string (αnc), the structure (αns) and the air (αna), respectively:

αn(ωn) = αnc + αns + αna

≈ rn
2mn

+
T

ls

R

(R+Ra)
2 + (X +Xa)

2 +
T

ls

Ra

(R+Ra)
2 + (X +Xa)

2

(6.22)

Notice, in particular, on this equation that the structural contribution to the damping αns is

modified compared to the structural damping in vacuo in Eq. (6.16).
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6.2 Sound power and radiation efficiency of the instrument

6.2.1 Power dissipated in the string

Using the same method as the one presented in Section 4, we start by calculating the instanta-

neous power pms(t) imparted to the string. It is assumed that the input is localized at position

y = yo and that the force is not propagating. We treat the case of a viscoelastic string. Using

Eq. (6.1), we obtain:

pms(t) =

∫ ls

0
f(t)ẇ(y, t)δ(y − yo) dy

=

∫ ls

0
µ
∂2w

∂t2
ẇ dy −

∫ ls

0
T

(

1 + η
∂

∂t

)

∂2w

∂y2 ẇ dy +

∫ ls

0
r
∂w

∂t
ẇ dy

(6.23)

Using integration by parts, this expression can be rewritten as:

pms(t) =
∂

∂t

{

∫ ls

0
µ

(

∂w

∂t

)2

dy +

∫ ls

0
T

(

∂w

∂y

)2

dy

}

+

∫ ls

0

[

rẇ2 + ηT

(

∂ẇ

∂y

)2
]

dy

=
∂Es

∂t
+

∫ ls

0

[

rẇ2 + ηT

(

∂ẇ

∂y

)2
]

dy

(6.24)

The quantity Es is a constant, since it corresponds to the total energy for a conservative system.

Therefore the instantaneous power for the dissipative string reduces to:

pms(t) =

∫ ls

0

[

rẇ2 + ηT

(

∂ẇ

∂y

)2
]

dy (6.25)

where we can identify the contributions of fluid and viscoelastic losses, respectively.

In the case of a steady-state harmonic motion with frequency ω, we can write the velocity of

the string, using the result obtained in Sec. (6.1):

ẇ(y, ω) =
∑

n

ẇn(y, ω) =
∑

n

φn(y)q̇n(ω)

=
∑

n

sin kny
FM sin knyoe

jωt

mn

[

jω +
ω2

n

jω
+ 2ζnωn

] =
∑

n

sin kny
FM sin knyo

mnDn(ω)
ejωt (6.26)

where FM is the magnitude of the force applied at the excitation point yo. Replacing this

expression in Eq. (6.25) and averaging in time over a period τ = 2π/ω yields the expression of

the mean power:
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Pms(ω) =
1

τ

∫ τ

0

{

∫ ls

0

[

rẇ2 + ηT

(

∂ẇ

∂y

)2
]

dy

}

dt (6.27)

Integrating first this expression in space over the length of the string yields:

Pms(ω) =
ls
2τ

∫ τ

0

{

r
∑

n

q̇2n + ηT
∑

n

k2
nq̇

2
n

}

dt (6.28)

then, the integration versus time yields:

Pms(ω) =
µls
4

∑

n

(

r

µ
+ ηω2

n

)

|q̇n|2 =
µlsF

2
M

2

∑

n

ζnωn sin2 knyo

m2
n|Dn(ω)|2

(6.29)

Recalling that αn = ζnωn, then Eq. (6.29) gives the relation between the power dissipated in

the string and the damping factors, for a given excitation frequency ω. If ω is equal to one

particular eigenfrequency ωn of the string, and continuing to assume further that αn � ωn, then

the approximate expression for the dissipated power is:

Pms(ωn) ≈ F 2
M

4mn

sin2 knyo

ζnωn
=
F 2

M

2rn
sin2 knyo (6.30)

Introducing the quantity:

An =
FM sin knyo

rnωn
(6.31)

thus we can express the dissipated power at this frequency as follows:

Pms(ωn) ≈ 1

2
rnω

2
nA

2
n = αnk

2
nA

2
n (6.32)

Eq. (6.32) shows that Pms(ωn) is proportional to αn, and that the coefficient of proportionality

is completely determined by both the length and boundary conditions of the string (through

kn) and by the excitation (through An).

6.2.2 Energetic considerations

For the guitar, the normal use of the instrument is rather to establish free vibrations than driving

the string with a constant frequency. In this case, integrating Eq. (6.24) over time shows that

the time history of the instantaneous energy E(t) of the string after the pluck is given by:
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E(t) = E(0) −
∫ t

0

{

∫ ls

0

[

rẇ2 + ηT

(

∂ẇ

∂y

)2
]

dy

}

dt (6.33)

which, in view of the previous results, can be written equivalently:

E(t) = E(0) − ls
2

∫ t

0

∑

n

(

r + ηTk2
n

)

q̇2n(t)dt (6.34)

The time functions qn(t) can be written as follows:

qn(t) = Ane
−αnt sinωnt (6.35)

where the An are determined here by the initial conditions of the pluck. This leads to:

E(t) = E(0)

− 1

2

∫ t

0

∑

n

(

r + ηTk2
n

)

A2
ne

−2αnt
[

ω2
n cos2 ωnt+ α2

n sin2 ωnt− αnωn sin 2ωnt
]

dt
(6.36)

Using the approximation αn � ωn yields, to a first-order approximation:

E(t) ≈ E(0) −
[

∑

n

αnω
2
nµls
2

A2
n

]

t (6.37)

which shows that the total energy of the string decreases linearly with time. This result is

confirmed by direct simulations of the string equation in the time domain (see Fig. 5).

Finally, the link between time history of the energy and the dissipated power is obtained by

taking the time derivative of −E(t), which yields:

−dE
dt

=
∑

n

αnω
2
nµ

2
A2

n =
∑

n

rnω
2
n

2
A2

n =
∑

n

Pms(ωn) (6.38)

Comparing this result with the expression of power in Eq. (6.32) shows that, to a first-order

approximation, the slope of the energy curve vs time is equal to the sum of the dissipated power

terms at the eigenfrequencies of the string.
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Figure 5: Time history of the total energy of the string

6.2.3 Structural power dissipated in the soundboard in vacuo

If the end of the string at y = ls is allowed to move, then the instantaneous power becomes:

pm(t) = pms(t) − Tẇ(ls, t)
∂w

∂y
(ls, t) (6.39)

where pms(t) denotes the instantaneous power in the string calculated in previous paragraph.

The expression of the mean power becomes:

Pm(ω) = Pms(ω) +
1

2
Re {Y (ω)} |T ∂w

∂y
|2(ls, ω) = Pms(ω) + Pml(ω) (6.40)

where Y (ω) still denotes the admittance at the end y = ls of the string.

Assuming that the perturbation of the string’s eigenfrequencies due to the load are negligible,

then we can assume that the slope of the string at the end is given by:

∂w

∂y
(ω, ls) =

∑

n

kncosknlsqn(ω) ≈
∑

n

nπ

ls
(−1)nqn(ω) (6.41)

Therefore:

|T ∂w
∂y

|2(ls, ω) =
T 2π2

l2s





∑

n

n2q2n(ω) + 2
∑

n6=m

nm(−1)n+mqn(ω)q∗m(ω)



 (6.42)
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As a consequence, we can write the power dissipated at the loaded end:

Pml(ω) = Q̇
H
RlQ̇ (6.43)

where the elements of the resistance matrix Rl are given by:

(Rl)mn(ω) =
T 2π2

l2s
Re {Y (ω)} (−1)n+m

2ω2 (6.44)

which, in view of the definition of the damping factor due to the load αl given in Eq.(6.14),

becomes:

(Rl)mn(ω) =
Tπ2

ls

(−1)n+m

2ω2 αl(ω) (6.45)

As mentioned in the previous sections, the frequencies of interest for a plucked instrument are

the eigenfrequencies of the string ωn, and thus, in this case one should simply replace ω by ωn

in Eqs. (6.40)-(6.45).

6.2.4 Radiated sound power and acoustical efficiency of the instrument

For a stringed instrument, the acoustical efficiency can be defined as:

σ =
Pa

Ptot
=

Pa

Pa + Ps + Pl

(6.46)

Where Pa is the radiated acoustical power, Ps is the power dissipated in the string and Pl is

the power dissipated in the structure. All these quantities are functions of frequency.

For a given eigenfrequency of the string ωn, the previous developments show that Ptot(ωn) can

be estimated by αnω
2
nA

2
nmn, where 2αnmn = rn + Z2

cRe {Y (ω)}, and where Re {Y (ω)} rep-

resents the admittance at the bridge for the soundborad loaded by the air and cavity. The

determination of Pa(ωn) is more difficult, since it needs the determination of the sound power

radiated by the instrument in an anechoic chamber, by means of intensity measurements and

integration over a closed surface, for example.

In general, as shown in Eq. (6.22), it is not possible to separate the structural losses from the

radiated losses, since the loading of the air modifies the response of the structure, compared to

the in vacuo case. However, an interesting alternative can be found, by defining the efficiency

of the instrument, as the ratio between the power dissipated in both structure + air compared

to the total dissipated power:

σ
′

=
Pa + Pl

Pa + Ps + Pl

(6.47)
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In this case, it is straightforward to show that:

σ
′

(ωn) =
T

ls

Re {Y (ωn)}
αn(ωn)

(6.48)

Eq. (6.48) shows that determining σ
′
is very simple. It requires measurement of string length,

tension, as well as decay time and admittance at the bridge for the frequencies of interest.

Finally, following Eq. (6.38) for a given note played on the guitar, with multiple eigenfrequencies

ωn, we would get the modified efficiency by calculating the sum:

σ
′

tot =
∑

n

σ
′

(ωn) =
T

ls

∑

n

Re {Y (ωn)}
αn(ωn)

(6.49)

If one can show (through measurements or simulations) that the power dissipated in the structure

(mostly in the soundboard) is significantly lower than the radiated acoustic power at a given

freequency, then Eq. (6.49) yields a good estimate of the true acoustical efficiency. Otherwise,

one should consider σ
′
only as an order of magnitude. In this case, accurate determination of

the efficiency is only given by σ, which requires masurement of the acoustic power, in order to

separate structural and acoustic contributions.

7 Summary and conclusions

In this report, a systematic theoretical approach for both string-structure and air-structure

coupling has been presented. The initial objective was to summarize the main useful results for

tackling the problem of sound radiation and efficiency in stringed musical instruments.

The second goal of this study was to explore as much as possible whether some of these basic

equations of mechanics and acoustics could be formulated in terms of filters and state-space

variables, in order to prepare eventual future work on mixed “physics-signal processing” synthesis

and control of sound produced by stringed instruments. This was mostly the purpose of Sec. 2.

In case of a coupling between a thin structure and a cavity filled with air, the assumption of weak

coupling is usually not justified and one has to solve the equations derived in Sec. 3 numerically.

The relationships between modal coupling, energy and sound power were developed extensively

in Sec. 4. The concept of efficiency and radiation impedance matrix is generalized in Sec. 5 in

the case of plates for which the calculations can be conducted analytically.

Finally, the main concepts are applied to the case of a guitar and compared to results obtained

through numerical simulations in Sec. 6. Comparisons with experiments on real guitars in an

anechoic space should be conducted in the near future.

52



8 Appendix: Perturbation of a string subjected to an in-plane

load at one end

Fundamental frequency f1 = c
2L

Longitudinal force P at one end so that the new length become L− ∆L = L(1 − ε).

Initial tension T and initial mass per unit length µ, so that the initial wave velocity is given by

c =
√

T
µ .

The initial tension T is given by T
S = EL− Lo

Lo
where E is the Young’s modulus and S is the

cross-sectional area after initial stretching. Lo is the length of the string before initial stretching.

Remark: For nylon guitar strings, the ratio L− Lo
Lo

usually lies within the interval [0.1; 0.5],

depending on Young’s modulus of the material and cross-section.

After initial stretching, the string volume is V = SL. The density is ρ. With a perturbation P ,

the conservation of mass allows to write:

ρSL = ρ
′

S
′

L(1 − ε) or µ = µ
′

(1 − ε) (8.1)

The new tension T
′
of the string is given by:

T

S(L− Lo)
=

T
′

S
′

(L− εL− Lo)
(8.2)

Finally, the new transverse wave velocity along the string is:

c
′

=

√

T
′

µ
′ (8.3)

And the new fundamental frequency is given by:

f
′

1 =
c
′

2L(1 − ε)
(8.4)

So far, the problem cannot be solved without getting an idea on the relative variation of section

of the string, consecutive to the perturbation. The solution is given by the Poisson’s ratio ν,

which governs the relative variation of lateral dimension compared to the relative variation of

length for a given material. For a string made of an isotropic material, it is a standard result

that:

S
′

S
= 1 + 2νε (8.5)
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For a metallic steel string, we have ν = 0.3 and for a nylon string, we have ν = 0.4. The

Poisson’s ratio is always < 0.5.

Using Eqs. (8.1)-(8.5) together, we obtain the ratio between the wave velocities:

c
′2 = c2

[

L− Lo − εL

L− Lo

] [

1 + 2νε

1 + ε

]

(8.6)

which yields, to a first-order approximation:

c
′

= c

[

1 − ε

2

(

L

L− Lo
+ 1 − 2ν

)]

(8.7)

Since ν < 0.5, we see that the transverse wave velocity always decrease due to a compression at

one end.

Finally, the fundamental frequency becomes:

f
′

= f
c′

c(1 − ε)
≈ 1 − ε

2

(

L

L− Lo
− 1 − 2ν

)

(8.8)

We see that the fundamental frequency will decrease under the condition:

L

L− Lo
=
ESL

TLo
> 1 + 2ν (8.9)

which is usually the case for strings mounted on musical instruments. However, we see that for

very flexible and thin strings (low E and S), it might happen that the fundamental frequency

increases, which means that the effect of decreasing the length dominates the systematic decrease

in transverse wave velocity.
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