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Abstract

Quadratic peak interpolation in a zero-padded Fast Fourier Transform (FFT) has been widely used for sinusoidal
parameter estimation in audio applications. In this series of papers, we investigate the estimation errors associated
with various choices of analysis parameters, and provide precise criteria for designing the estimator. In this third
paper, we focus on the bias caused by amplitude and frequency modulations of sinusoidal components. We investigate
the first order modulations and derive a theory to predict the bias with a Gaussian window. We then extend it to other
often-used windows, numerically confirm the results, and provide a criterion to determine the maximum window
length as functions of prescribed maximum error bound and AM/FM rates of a signal. The results show, for example,
if we are to bound the frequency bias below 1Hz using a Hann window for a sinusoid whose magnification rate is 100
times per second and chirp rate is 1kHz/s, we need to use a window whose length is less than 31ms.

1 Introduction

Among various approximate maximum likelihood (ML) sinusoidal parameter estimators [1, 2, 3, 4], quadratic in-
terpolation of magnitude peaks in a zero-padded Fast Fourier Transform (FFT) [5] (referred to as the Quadratically
Interpolated FFT, or QIFFT method) has been widely used due to its simplicity and accuracy. Although it works as
an approximate ML estimator for well-separated sinusoids with a large zero-padding factor, its accuracy in practice
is restricted by the choice of its design parameters, such as window type, FFT length and zero-padding factor. In
this series of papers, we theoretically predict and numerically measure the estimation error bias associated with the
choice of the design parameters, and precise design criteria for the estimator are defined. In the first paper [11], we
investigate the bias due to quadratic interpolation and determine a criterion for choosing a zero-padding factor. In the
second paper [12], we examine the bias due to interfering nearby signal components and detemine a criterion for a
lower limit of window length.

In this final paper, we focus on the bias caused by amplitude and frequency modulations of sinusoidal components.
A general requirement for the QIFFT, as well as most ML sinusoidal parameter estimators, is to choose window
length enough short so that the sinusoidal components can be regarded as quasi-stationary. In practice, however, since
audio signals are rarely completely time-invariant, the estimates are more or less biased by the AM and FM. Although
accurate error bounds are important for designing the optimum estimator, only a few investigations on the bias with
Gaussian windows can be found. Marques [6] proposed a method to estimate the AM and FM rates, and Peeters [7]
derived mathematical formulas of the bias due to the AM and FM. Although their results are quite effective for a
Gaussian window, since it is rarely used in practical applications due to its incompactness in both time and frequency
domain, we need to determine a more general criterion for the bias with other often-used windows.

In this paper, we first derive mathematical formulas of the biases in frequency, amplitude and phase estimates with
a Gaussian window. The results are essentially the same as the Peeters’s formulas. We next extend them to other
well-used windows, such as rectangular, Hann, Hamming and Blackman windows. We show approximate prediction
formulas of the biases, and numerically confirm them. We finally provide a criterion to determine an upper limit of
window length for given error bound and AM/FM rates.

2 QIFFT method

The Quadratically Interpolated FFT (QIFFT) method for estimating sinusoidal parameters from peaks in spectral
magnitude data can be summarized as follows:

1. Calculate the amplitude and phase spectrum of audio data, by using a zero-padded FFT (points in Fig. 1).

2. Find the bin number of the maximum peak magnitude (kmax).

3. Quadratically interpolate the log-amplitude of the peak using two neighboring samples (dotted line), and define
∆̂ as the distance in bins from kmax to the parabola peak.

4. Estimate the peak frequency in bins as kmax + ∆̂, and define the estimated peak amplitude Â as the interpolation
(based on ∆̂) of the log amplitude samples at k = kmax − 1, kmax, and kmax + 1.
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Figure 1: Quadratic interpolation of spectral peak

5. Estimate the phase, if needed, by interpolating1 the phase spectrum based on the interpolated frequency estimate.

6. Subtract the peak from the FFT data for subsequent processing.

7. Repeat steps 2-6 above for each peak.

3 Preparation

For the sake of mathematical simplicity, we use continuous signal representation in the following discussion.

3.1 Signal

Let a sinusoid with the first order AM and FM be

x(t) = A0eα0te j(β0t2+ω0t+φ0), (1)

where

A0 : instantaneous amplitude at t = 0,

ω0 : instantaneous frequency at t = 0,

φ0 : instantaneous phase at t = 0,

α0 : amplitude change rate,

β0 : frequency change rate.

Without loss of generality, we assume the window center is placed at the time origin t = 0. A main concern of this
paper is to clarify the dependency of the estimates (ω̂0, Â0 and φ̂0) on the AM/FM rates (α0 and β0).

3.2 Typical AM/FM rates

Before detailed discussion, let us confirm typical values of α0 and β0 in actual audio. The root mean square (RMS)
and maximum values in a female speech are shown in Table 1. For detailed discussion for obtaining these values, see
appendix A.

1Quadratic interpolation is appropreate for sinusoids with FM.
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Table 1: Typical values of the amplitude and frequency change rate and the fundamental frequency of a speech (from
appendix A).

RMS MAX
α0 [s−1] 34 ±100
β0 [rad/s2] 2300 ±8000
ω0 [rad/s] 1300 2500

Note that ω0 and β0 are values for the fundamental frequency, i,e, for the Nth partial, they are N times larger.

4 Bias with Gaussian Windows

Let a normalized Gaussian window be

w(t) =
1
√

2πσ
e−

1
2σ2 t2

=

√

p
π

e−pt2
, (2)

where σ is the standard deviation (
√

1/e width) of the Gaussian and p
4
= 1

2σ2 . The windowed Fourier transform of the
signal is calculated as (see appendix B)

X(ω) =

∫

w(t)x(t)e− jωtdt

= Aeu(ω)e jv(ω), (3)

where

u(ω) =
α2

0

4p
− 1

4
log(1 + (

β0

p
)2) − p

4(p2 + β2
0)

[ω − ω0 −
α0β0

p
]2 (4)

is the log-amplitude term and

v(ω) = φ0 +
atan(β0/p)

2
+
α2

0

4β0
− β0

4(p2 + β2
0)

[ω − ω0 +
pα0

β0
]2 (5)

is the phase term2. Applying the QIFFT method, we get the frequency estimate as3

ω̃0 = argmaxω |X(ω)|

= ω0 +
α0β0

p
, (6)

the amplitude estimate as

Ã = |X(ω̃0)|

= Ae
α2

0
4p −

1
4 log(1+(

β0
p )2)

≈ A













1 +
α2

0

4p
−
β2

0

4p2













, (7)

and the phase estimate as

φ̃ = ang [X(ω̃0)]

= φ +
atan(β0/p)

2
−
α2

0β0

4p2

≈ φ +
β0

2p
. (8)

Some characteristics of the biases can be predicted from these results:
2Although we show here the formulas for β0 , 0, the following results are applicable to β0 = 0 case.
3The quadratic interpolation for a Gaussian window is exact, so that the peak of the fitted parabola is the true peak. For the other windows, the

estimates are biased by the interpolation [11].
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Table 2: Equivalent standard deviations

Width Rect Hann Hamm Black
σ0 0.288675 0.180756 0.200445 0.159485

Table 3: Theoretically predicted biases with Hann windows.

width 15ms 30ms 45ms 60ms
Freq. [%] 0.089 0.35 0.80 1.4
Amp. [%] 0.43 1.7 3.8 6.8
Phase [%] 0.53 2.1 4.3 6.7

For α0 = 34[s−1], β0 = 2300[rad/s−2] and ω0 = 1300[rad/s]. The frequency, amplitude and phase biases are normalized by ω0,
A0 and π, respectively. Since the amplitude bias is not a monotonic distribution, the biases in the amplitude are the largest values
below the α0 and β0.

1. The frequency estimate is biased by the multiple of AM and FM. This means the bias only appears when the
sinusoid is modulated in both amplitude and frequency.

2. The amplitude estimate is biased by either AM or FM.

3. The phase estimate is mainly biased by FM. The bias only appears when the sinusoid is modulated in frequency.

4. Since 1/p is proportional to the square of the window length, use of a shorter window square-proportionally
reduces the biases.

5 Bias with non-Gaussian windows

Due to its incompactness in both time and frequency domain, a Gaussian window is rarely used in practical applica-
tions. Since it is not always possible to induce analytic formulas for other windows, it is useful to provide a scheme
to extend the above results to them. A natural approximation of a window with a Gaussian window may be setting
the peak curvatures of the magnitude spectra to the same. This can be done analytically for some windows; at least
numerically for any kind of windows. We show an analytical method for windows in the Blackman-Harris family here.

Let a window in the Blackman-Harris family be

w(t) =
L

∑

l=−L

qle
j2πt/Tw , (9)

where Tw denotes the window length, L is the order of the window, and qls are coefficients determine the window.
Then the standard deviation of the equivalent Gaussian window can be calculated as (see appendix C)

σ = σ0Tw, (10)

where

σ0
4
=

√

√

√

1
12
+

1
q0π2

L
∑

l=1

(−1)lql

l2
(11)

is a constants for each window. Some values of σ0 are tabulated in Table 2.

For example, the standard deviation of the equivalent Gaussian to the 30ms Hann window can be calculated as

σ = 0.180756 × 0.03 [s] = 0.005423 [s],

p = 1/2σ2 = 17004 [s−2]. (12)

Theoretically predicted biases with the 30ms Hann window are shown in Figs. 2 (3D plot) and 4 (contour plot). The
biases for the typical AM/FM rates (RMS values in Table 1) are shown in Table 3.
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Table 4: Parameters for experiment

Parameter Unit Value
A0 1.0
ω0 [rad/s] 1300
φ0 [rad] random
α0 [/s] −100 to 100
β0 [rad/s2] −8000 to 8000

6 Experiments

6.1 Conditions for numerical experiments

The signal to be tested is a complex AM/FMed sinusoid as

x(n) = A0eα0Tne j(β0T 2n2+ω0Tn+φ0), (13)

where T = 1/44100[s] is the sampling period and n is a discrete time index. The signal parameters are shown in Table
4. We use the FFT size N = 16384 and examine the rectangular, Hann, Hamming and Blackman windows whose
sizes M = 661, 1323, 1983 and 2645, which correspond to 15, 30, 45 and 60ms respectively. The zero-padding factors
are larger than 5 for all the windows. By changing α0 and β0, we estimate {Â0, ω̂0, φ̂0} using the QIFFT method, and
evaluate the differences between the true values and the estimates. For each {α0, β0}, we prepare 16 sets of sinusoids
having different phases, and take the maximum errors out of them. The frequency, amplitude and phase biases are
normalized by ω0, A0 and π, respectively.

6.2 Results

The results for the 30ms Hann window are shown in Figs. 3 (3D plot) and 5 (contour plot). The biases for the typical
AM/FM rates for the other windows are shown in Table 5.

Comparing Figs. 3 and 2, we can confirm that the theoretical predictions qualitatively well approximate the exper-
imental results. Although the theory slightly over-estimates the frequency bias, the amplitude and phase biases are
quantitatively well fit to the theory as well.

Comparing Tables 3 and 5, we can confirm that 1) the biases are about square proportional to the window length as
predicted in the theory, 2) the biases are inversely proportional to the main lobe width of the windows, i.e. Blackman
< Hann < Hamming < rectangular, and 3) the 30ms windows are already too large to bound the amplitude and phase
biases below 1%.
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Table 5: Experimentally obtained biases

Rectangular window
width 15ms 30ms 45ms 60ms

Freq. [%] 0.090 0.37 0.87 1.9
Amp. [%] 1.1 4.4 10.0 18.3
Phase [%] 1.4 5.3 11.1 16.3

Hann window
width 15ms 30ms 45ms 60ms

Freq. [%] 0.062 0.25 0.57 1.0
Amp. [%] 0.42 1.7 3.9 7.0
Phase [%] 0.53 2.1 4.5 7.4

Hamming window
width 15ms 30ms 45ms 60ms

Freq. [%] 0.082 0.33 0.75 1.4
Amp. [%] 0.52 2.1 4.8 8.6
Phase [%] 0.65 2.6 5.4 8.4

Blackman window
width 15ms 30ms 45ms 60ms

Freq. [%] 0.056 0.22 0.51 0.92
Amp. [%] 0.33 1.3 3.0 5.4
Phase [%] 0.41 1.6 3.5 5.9

For α0 = 34[s−1], β0 = 2300[rad/s−2] and ω0 = 1300[rad/s]. Since the amplitude bias is not a monotonic distribution,
the errors in the amplitude are the largest values below these α0 and β0.
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Figure 2: Theoretically predicted biases (3d plot): frequency
(top), amplitude (middle), and phase (bottom).
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Figure 3: Experimental results for a Hann window (3d plot):
frequency (top), amplitude (middle), and phase (bottom).
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Figure 4: Theoretically predicted biases (contour plot): fre-
quency (top), amplitude (middle), and phase (bottom).
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Figure 5: Experimental results for Hann window (contour plot):
frequency (top), amplitude (middle), and phase (bottom).
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7 Criterion on maximum window length

It may be convenient to formulate a criterion on the window length to bound the maximum biases below a prescribed
amount for given AM/FM rates.

Let Bf be the maximum frequency bias in Hz, αm be the maximum AM rate and βm be the maximum FM rate. Then
from Eqs.(6) and (10), we get

2πBf = 2αmβmσ
2
0T 2

w. (14)

This leads

Tw ≤
√

πBf

αmβmσ
2
0

. (15)

Similar bounds can be derived for the amplitude and phase biases. Let Ba be the amplitude bias which is the ratio to
the true amplitude and Bp be the phase bias in radians. Then we get

Tw ≤ Min

















√

2Ba

σ2
0α

2
m
,













Ba

β2
mσ

4
0













1
4
















, (16)

Tw ≤

√

Bp

βmσ
2
0

. (17)

For example, if we are to bound the maximum frequency bias of a Hann window below Bf = 1.16Hz (10 cents of
200Hz), for αm = 68[s−1] and βm = 4600[rad/s−2] (twice the RMSs), we have to set the length to

Tw ≤ 18.9[ms]. (18)

8 Discussion and Summary

In this paper, we investigated the estimation bias due to AM and FM of sinusoidal components in the QIFFT method.
We derived a theory to predict the biases in amplitude, frequency and phase estimates, for both Gaussian and non-
Gaussian windows, and numerically confirmed it. The results show that the theory well fit to the experimentally
obtained biases. We also provided a criterion for choosing window length which bounds the bias below a prescribed
value.

Some important results in this paper are 1) if we use a 30ms Hann window, the biases in a natural speech are around
a few percent, and 2) the biases are square proportional to the window length. This amount of the biases may cause
audible errors, and become square-proportionally worse for a longer window. Another point to be mentioned is that the
typical frequency change rate used in our experiments is for the fundamental frequency component in a speech. Since
the rate is k times larger for the kth partial, it raises the phase bias linearly and the amplitude bias square-proportionally.

If we wish to predict the frequency bias for non-Gaussian windows more precisely, we may have to consider an
additional compensation scheme. A simple solution is to adjust p to a more adequate value. From our informal
experiment, p ≈ 24000 seems to be well fit to the experimental result for the 30ms Hann window.

Note that the results in this paper are also applicable to other sinusoidal parameter estimation methods based on
spectral peak detection. Even if we use the true ML estimator for a stable sinusoid [1], the bias due to AM/FM still
exists as well.

As a method to reduce the AM/FM bias, the multi-resolution STFT [8] in which shorter windows are used for higher
frequency partials can be effectively used. Another method is to estimate AM and FM rates explicitly, by which we
may correct the bias as well as being able to utilize the estimated rates for further spectral modeling. Some methods
have been proposed for this purpose, such as the frequency-varying sinusoidal modeling [6], the dynamic channel
vocoder model [9], and the linear chirp modeling [10]. We also propose a method to estimate α0 and β0 by extending
the QIFFT method in our related paper [14].
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Appendix

A Example of AM/FM rates

In this appendix, we confirm AM and FM rates in an actual sound. The sample to be tested is a female speech of about
7 second long. The waveform and spectrogram are shown in Fig.6(a) and (b).

To estimate the amplitude change rate, we first get the amplitude envelope a(n) by calculating the moving average of
the root-mean-square (RMS) of the waveform, as shown in 6(c). We used 20ms Hann window for the moving average.
We may roughly estimate α(n) as

α(n) =
a(n + 1) − a(n − 1)

2Ta(n)
, (19)

which is sometimes referred as a relative derivative or a log-derivative of a(n). T denotes the sampling period of the
amplitude envelope.

The result is shown in Fig.6(d). Since the relative derivatives become infinity at each onset, which should not be
modeled by sinusoidal components, we may ignore the large spikes. Therefore, we may roughly say that the maximum
amplitude change rate is around ±100[s−1] and the RMS is about 34[s−1].

To estimate the frequency change rate, we extract the fundamental frequency f (n) of the signal by simply picking the
peaks of the lowest frequency component in the spectrogram. By evaluating flatness of the spectrum around the peaks,
we discriminate consonants and extract vowel intervals. The result is shown in Fig.6(e).

We can roughly estimate the frequency change rate β as

β(n) = 2π
f (n + 1) − f (n)

2T
, (20)

where T denotes the sampling period of the STFT.

The result is shown in Fig.6(f). We may roughly say the maximum frequency change rate is about ±8000 [rad/s2],
and the RMS is about 2300 [rad/s2].
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Figure 6: Female speech: (a) waveform, (b) spectrogram, (c) amplitude envelope (20ms Hann windowed average), (d) amplitude
change rate, (e) estimated fundamental frequency (42ms Hann windowed DFT, zero pad factor = 8, QIFFT), (f) frequency change
rate of the fundamental frequency.
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B Gaussian windowed Fourier transform of an AM/FM sinusoid

Let us calculate the windowed Fourier transform of the AM/FM sinusoid shown in Eq.(1).

X(ω) =

∫

w(t)x(t)e− jωtdt

=

∫

e−pt2
Aeαte j(βt2+ω0t+φ)e− jωtdt

= Ae jφ
∫

e−(p− jβ)t2+[α− j(ω−ω0)]tdt

= Ae jφ
∫

e−(p− jβ)[t2− [α− j(ω−ω0)]
(p− jβ) t]dt

= Ae jφe
[α− j(ω−ω0)]2

4(p− jβ)

∫

e−(p− jβ)[t− [α− j(ω−ω0)]
2(p− jβ) ]dt

=
√
πAe jφe

[α− j(ω−ω0)]2

4(p− jβ)

√

1
p − jβ

. (21)

Denoting

ξ2 =
1

p2 + β2
,

ω′ = (ω − ω0),

θ = atan(β/p), (22)

and using
1

p − jβ
=

1
p2 + β2

(p + jβ) = ξ2(p + jβ) = elog ξ+ jθ, (23)

we get

X(ω) =
√
πAe jφ exp

(

1
2

(log ξ + jθ)

)

exp

(

1
4
ξ2(p + jβ)(α − jω′)2

)

=
√
πA exp

(

jφ +
1
2

(log ξ + jθ) +
1
4
ξ2(p + jβ)(α2 − ω′2 − j2αω′)

)

=
√
πA exp

(

jφ +
1
2

(log ξ + jθ) +
1
4
ξ2(pα2 + jβα2 − pω′2 − jβω′2 − j2pαω′ + 2αβω′)

)

. (24)

For β = 0, we get

X(ω) =
√
πA exp

(

jφ +
1
2

log ξ +
1
4
ξ2(pα2 − pω′2 − j2pαω′)

)

=

√

π

p
A exp

(

α2

4p
− 1

4p
(ω − ω0)2

)

exp

(

j

(

φ − α
2p

(ω − ω0)

))

. (25)

For β , 0, we get

X(ω) =
√
πA exp

(

jφ +
1
2

(log ξ + jθ) +
1
4
ξ2(pα2 + jβα2 − p[ω′2 − 2αβ

p
ω′] − jβ[ω′2 +

2pα
β
ω′])

)

=
√
πA exp

(

jφ +
1
2

(log ξ + jθ) +
1
4
ξ2(pα2 + jβα2 − p[ω′ − αβ

p
]2 +
α2β2

p
− jβ[ω′ +

pα
β

]2 + j
p2α2

β
)

)

=
√
πA exp

(

jφ +
1
2

(log ξ + jθ) +
1
4
ξ2(
α2

p
(p2 + β2) + j

α2

β
(β2 + p2) − p[ω′ − αβ

p
]2 − jβ[ω′ +

pα
β

]2)

)
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=
√
πA exp

(

jφ +
1
2

(log ξ + jθ) +
α2

4p
+ j
α2

4β
+

1
4
ξ2(−p[ω′ − αβ

p
]2 − jβ[ω′ +

pα
β

]2)

)

=
√
πA exp

(

1
2

log ξ +
α2

4p
− p

4
ξ2[ω′ − αβ

p
]2

)

exp

(

j(φ +
θ

2
+
α2

4β
− β

4
ξ2[ω′ +

pα
β

]2)

)

=
√
πA exp

(

α2

4p
− 1

4
log(p2 + β2) − p

4(p2 + β2)
[ω − ω0 −

αβ

p
]2

)

exp

(

j(φ +
atan(β/p)

2
+
α2

4β
− β

4(p2 + β2)
[ω − ω0 +

pα
β

]2)

)

. (26)

C Fitting Gaussian to a window in Blackman-Harris Family

There exist several methods to approximate a window in the Blackman-Harris family by a Gaussian. Here, we approx-
imate it by fitting the curvature of the peaks of the spectra.

The Fourier transform of the Gaussian window in Eq.(2) can be written as

Wg(ω) = e−
1
2σ

2ω2
. (27)

Note that the peak value is normalize to 1. The second derivative at the peak is

W ′′g (0) = −σ2. (28)

A window in the Blackman-Harris family can be written as

wb(t) =
L

∑

l=−L

qle
j2πt/Tw =

L
∑

l=−L

qle
jπt/γ, (29)

where Tw denotes the window length and γ = Tw/2. Actual values of qls for some often-used windows are shown in
Table 6.

The Fourier transform of the window in Eq.(29) can be calculated as

Wb(ω) =
1
q0

L
∑

l=−L

(−1)lql
sin(γω)
γω − lπ

. (30)

Note that the peak value is normalize to 1. The first derivative is

W ′b(ω) =
1
q0

L
∑

l=−L

(−1)lql
(γω − lπ)γ cos(γω) − γ sin(γω)

(γω − lπ)2
. (31)

The second derivative is

W ′′b (ω) =
1
q0

L
∑

l=−L

(−1)lql
γ2[2 − (γω − lπ)2] sin(γω) − 2γ2(γω − lπ) cos(γω)

(γω − lπ)3
. (32)

Table 6: Coefficients of windows in Blackman-Harris family.

Window L q0 q±1 q±2

Rect 0 1.0 — —
Hann 1 0.5 0.25 —

Hamming 1 0.54 0.23 —
Blackman 2 0.42 0.25 0.04
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For ω = 0, by using sin(x) ≈ x − x3/6 and cos(x) ≈ 1 − x2/2, we get

W ′′b (0) = −γ2















1
3
+

4
q0π2

L
∑

l=1

(−1)lql
1
l2















= −T 2
w















1
12
+

1
q0π2

L
∑

l=1

(−1)lql

l2















. (33)

Note that the positive and negative terms are combined and the range of the summation has been changed. From
Eq.(28) and Eq.(33), we get the B-H window equivalent Gaussian as

σ = Tw

√

√

√

1
12
+

1
q0π2

L
∑

l=1

(−1)lql

l2
. (34)

For example, a Hann-window-equivalent Gaussian can be calculated as

σ = Tw

√

1
12
− 1

2π2
≈ 0.180756028 Tw. (35)

The values for the other types of windows are shown in Table 2.
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