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Abstract 

Digital filtering structures have recently been applied toward the numerical simulation of distr ibuted 

physical systems. In particular, they have been used to numerically integrate systems of partial 

differential ('([nations (PDEs). which are t ime-dependent , and of hyperbolic type (implying wave­

like solutions, with a finite propagation velocity). Two such methods , the multuliun•ii.tional wave 

digital filti ring and digital waveguide network approaches both rely heavily on the classical theory of 

electrical networks, and make use of wave variables, which are reflected and transmitted throughout 

a grid of scattering junctions as a means of simulating the behavior of a given model system- These 

methods possess many good numerical properties which are carried over from digital filter design: in 

particular, they are numerically robust in the sense that stability may be maintained even in finite 

a r i thmet ic As such, these methods are potentially useful candidates for implementation in special 

purpose hardware. 

In this thesis, the subtext is that such scattering-based me thods can and should be t rea ted as 

finite difference schemes, for purposes of analysis and comparison with standard differencing forms. 

In many cases, these methods can be shown to be equivalent to well-known differencing approaches 

we pay close attention to the relationship between digital waveguide networks and finite difference 

time domain (FDTD) methods. For this reason, it is probably most useful to think of scat ter ing 

forms as alternative realizations of these schemes with good numerical properties, in direct analogy 

with ladder, lattice and orthogonal digital filter realizations of direct form filters. We make use of this 

correspondence in order to import (from the finite difference sett ing) two techniques for approaching 

problems with irregular boundaries, namely coordinate changes, and a means of designing interfaces 

between grids of different densities a n d / o r geometries. We also make use of the finite difference 

formulation in order to examine initial and boundary conditions, parasitic modes, and take an 

extended look at the numerical properties of all I lit' commonly encountered forms of the waveguide 

network in two and three spatial dimensions. 

Another question is of the relationship) between wave digital and waveguide network schemes. 

Although they are quite similar from the standpoint of the programmer, in that the main operat ion, 

scattering, is the same in either case, conceptually they are very different. A multidimensional 

wave digital network is derived from a compact circuit representation of model system of PDEs . 
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The numerical routine is itself a discrete time and space image of the original network. Waveguide 

meshes, however, are usually formulated as collection of lumped scattering junctions which span the 

problem domain, connected by bidirectional delay lines. Lacking a multidimensional representation, 

then, it is not straightforward to design a mesh which numerically solves a given problem. A useful 

result is that waveguide meshes can be obtained directly from a system by almost exactly the same 

means as a wave digital network. This unification of the two methods opens the door to a larger 

class of methods which are of nei ther type, and yet which consist of the same numerically robust 

basic building blocks. 

On the applied side, special a t tent ion is paid to problems in beam, plate and shell dynamics: 

though these systems are in general much more complex than the transmission line and parallel-plate 

problems which have been discussed extensively in the l i terature, they can be dealt with using both 

wave digital filters and waveguide networks, though several new techniques must be introduced. 

Several simulations are presented. 
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Preface 

This thesis is. if anything, long: there have been a few reasons for this. At the beginning stages 

of research, the focus was on the digital synthesis of musical sound through the use of physical 

modeling techniques. Since all physical models of vibration in acoustic instruments can be framed 

in terms of coupled sets of partial differential equations, the problem, then, is one of the numerical 

integration of these equations, subject to initial and boundary conditions and external excitations. 

There are, of course, many ways of designing such simulation algorithms. We began by looking at 

digital waveguide network1-, which have been used successfully for this purpose for some t ime, but 

soon turned to multidimensional wave digital filtering methods, which are based on some similar 

Ideas, yet within a powerful framework for attacking a much more general (and not necessarily 

musical) class of problems. Wave digital filters, even for filtering applications, are hardly as well-

known here in the U.S. as they are in Europe, so it would not have been particularly helpful to 

anyone (or wise) to present a few results with only passing nods to the literature. Some ra ther 

extensive background information was thus compiled, in the form of a summary of most of the work 

that has gone on in this field to date (to this author 's knowledge)*. Because of their fundamental 

similarities to these wave digital filtering simulation methods, waveguide networks were always slated 

for a (presumed cursory) second look: upon this reexamination, however, they seemed deserving of 

an in-depth parallel development all their own. requiting yet more background material. 

Traditional approaches to numerical integration usually involve the direct discretization of a given 

set of equations by a variety of techniques, such as finite difference, finite element and spectral or 

collocation methods . The methods we will discuss, however, have their roots elsewhere, in electrical 

network theory, digital filtering and scattering theory. The most general goal of this author has been 

to provide- a unified treatment of wave digital filtering and digital waveguide network simulation 

techniques, and also to answer, or at least pose some questions about how they fit into the larger 

picture of numerical integration methods as a whole. As might be expected, this thesis suffers 

in certain respects (notation among them) from the mismatch between the points of view of the 

' h is worth staling, for tin- record, that tin1 single best reference on this subject is Guunar Nitsche's doctoral 
dissertation [131]: I have referred to and borrowed from il quite a bit, anil iii fact, several topics in this thesis have 
appeared there, in a somewhat more compact form. Unfortunately, il 18 only available in German, and this was 
another reason for attempting a comprehensive review in Knglish. 
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electrical engineer and the specialist in numerical methods. Needless to say. there is much insight 

to be gained in the at tempt to resolve some of the many outs tanding distinctions. 

Looking back, one of the few regrets of this author has been the erosion of the emphasis on 

musical sound synthesis applications. Although we will spend a good deal of time later on looking 

at ways of extending these techniques to simulate the vibration of stiff systems such as beams , plates, 

and shells, which are the sound-producing mechanisms (resonators) in many musical ins t ruments . 

we have not done the hard work of optimizing the algorithms for the audio frequency range—the 

computer program one writes in order to listen to a struck xylophone bar will assuredly be very 

different from one designed to check the modal frequencies of an I beam under stress. We have tried 

to lay down the basic principles, however, and nothing would be more rewarding than listening to a 

real-time waveguide or wave digital chime based on a cylindrical shell model. 
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Chapter 1 

Introduction 

The subject of this thesis is the numerical simulation of physical systems. In particular, we look at 

systems which are dynamic and distributed. Iiy dynamic, we mean that the system's s ta te evolves 

as time progresses, and by distributed, that the system is defined over some region in space, called 

the problem domain. The systems of interest here, always described mathematical ly by sets of 

partial differential equations (PDEs) complemented by initial and boundary conditions and possibly 

external excitations, span a large range of physical scenarios, including electromagnetics, acoustics. 

transmission hues, the vibration of elastic systems such as strings, membranes, beams, plates and 

shells, and even nonlinear fluid dynamics. 

The simulation techniques that we will discuss are based on analogies between the systems 

mentioned above and electrical networks, and make use of scattering principles. The time-evolution 

of the s tate of a system is modeled as the movement of energy as it is reflected, t r ansmi t ted and 

propagated throughout an electrical network: the energy is carried by waves. The chief benefit of 

a network Formulation is that there is direct access to a measure of the system energy, which can 

be used to bound the size of the solution of the system as it evolves over time. Because many 

physical systems, in the absence of external excitations, are inherently passive (i.e., they do not 

produce energy on their own), a network model for a system of P D E s is useful in that this passivity 

is reflected in an obvious way: a simple positivity condition on all the circuit element values is all 

that is required. When such a network model is transferred to a discrete sett ing in an appropr ia te 

way (where it will eventually be implemented as a computer program, operat ing as a recursion over 

a numerical grid), this passivity condition becomes a sufficient and trivially verifiable condition for 

the numerical stability of the resulting simulation. It is interesting that these numerical me thods 

have their roots in digital filter design techniques, which were, in turn, based on discrete physical 

models of mechanical or electrical circuit elements and the connections between them. In a sense, 

then, simulation is a more "natural" use for these structures than filtering. Many impor tan t ideas 

regarding the good behavior of these methods in finite machine ar i thmetic , however, were first 

1 
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introduced in the filtering context these also result from passivity in the network model. 

We will be primarily concerned with two such met hods. The first is based on wave digital filtering, 

a filter design technique which was initially intended as a means of translating a lumped analog 

electrical filtering network into discrete t ime, while preserving its topology and energetic properties 

(passivity in particular). Because the voltages and currents in a closed analog electrical network will 

evolve according to a set of ordinary differential equations (ODEs) . these digital filter networks Can 

also be viewed as numerical integration methods . The extension of wave digital filters to multiple 

dimensions, in which case they are referred to as multidimensional uno digital filters (MDWDFs) . 

is direct and makes use of a distributed network formulation of a given system as a means of arriving 

at a simulation routine. Here there is a compact ( though qui te abs t rac t ) multidimensional circuit 

representation of the model system of P D E s . just as a lumped network is a representation of a system 

of ODEs. Despite the sometimes abst ruse formalism underlying the const ruction of M D W D F s for 

simulation (invoking various coordinate changes, spectral mappings , and the use of non-physical 

-circuit elements" which are distr ibuted, and may have a directional character), these numerical 

methods always involve the scattering of digital signals over a numerical grid of nodes which fills the 

problem domain, and are straightforward to program. 

The second method, though very similar to the first from the standpoint of the programmer, 

in that the liable signal processing operation is the scattering of wave variables, is of a seemingly 

different origin. Here, the network is composed of a large number of connected elements, which are 

essentially transmission lines, or waveguides, so as to fill the problem domain. Wave propagation 

along a given waveguide is modeled, in discrete t ime, by a pair of digital delay lines which transport 

wave signals in opposite directions. A digital waveguidt network (DWN) . then, is usually thought of 

as a large network of lumped elements: there is traditionally not a multidimensional representation, 

as there is for MDWDFs. We will spend some t ime looking at the relationship between DWNs and 

the M D W D net works mentioned above. 

These network approaches are relative newcomers in the field of numerical simulation. There 

are. of course, many other, older ways of designing a simulation method: the most well-established 

and straightforward tack makes use of finite difference approximations to the model system of PDEs. 

Partial derivatives are replaced by differences between quantit ies on a numerical grid, and a recursion 

(or difference scheme) results. These me thods are simpler to program, but the wave/scat ter ing 

interpretation is lost, and the verification of numerical stability can be very involved, especially in 

the presence of boundary conditions. Because the electrical network models mentioned above also 

operate, ultimately, as recursions on grids, it is reasonable to ask how scattering methods fit into 

the finite difference picture. The eventual identification of scat ter ing methods with s t andard finite 

difference methods may come as something of a disappointment to anyone who feels tha t these 

methods are completely novel. It is best , however, to think of these methods as a different way 

Qf Organising calculation, which leads to more robust numerical behavior. As might lie expected. 



LI. AN OVERVIEW OF SCATTERISG METHODS 3 

an analogous situation exists in filter design between direct form and ladder/lattice/orthogOnal 

struct mi's. 

The most general goal of this thesis is to provide a unified picture of how these scattering methods 

are related to each other and to finite differences. It is possible to rephrase this goal as an a t tempt 

to answer a basic set of questions; we will pose these questions in §1.2. Before we get to thai stage. 

however, it is useful to outline the basics of these methods in a little more detail. 

1.1 An Overview of Scattering Methods 

In all of the next chapter and in large par t s of the following two, we will be forced to make a long 

detour in order to fully lay out the details of how scattering-based numerical simulation methods 

are designed. In this section, we take a brief and informal look at many of the relevant ideas, while 

put t ing aside the full development until later. T h e reader who has some familiarity with wave digital 

filters and digital waveguide networks may safely skip this section. 

1.1.1 Case Study: The Kelly-Lochbaiiin Digital Speech Synthesis Model 

As we mentioned above, all the numerical me thods to be discussed in this thesis have their origin 

in digital filter design, even though they are intended, ultimately, for use in simulation, and not 

filtering. Though these two goals may seem to be at cross purposes, there is a very early instance 

of an engineering problem which straddles bo th worlds. 

Kelly and Lochbauin [104] developed a digital speech synthesis model by treating the vocal 

tract as a slowly time-varying circular one-dimensional acoustic tube of variable cross-sectional 

area, excited at one end (periodically by the glottis, or by turbulent noise), and radiating a speech 

waveform at the other see Figure 1.1(a). At any given time t. the shape of the tube as a function 

of the spatial coordinate .r determines the system resonances, or formants [145]. which serve as 

important perceptual cues for the listener in distinguishing among various voiced and unvoiced vocal 

sounds. The problem, then, is to develop a numerical method, suitable for computer implementation, 

Which somehow simulates the time-evolution of the acoustic "state" of the vocal tract, i.e.. the 

pressure and velocity dis tr ibutions in the interior. We follow the s tandard exposition of the Kelly 

Lochbauin model here, as per [30, 140]. 

C o n c a t e n a t e d A c o u s t i c T u b e M o d e l of t h e V o c a l T r a c t 

The first step towards a digital model is in representing the tube ;is a series of A" concatenated 

tubes of constant cross-sectional areas, as in Figure 1.1(b) (where A :=8) . The tubes are assumed 

to be of equal length A: if L is the total length of the vocal tract, we have A'A = L. In the limit 

as A becomes small, t he shape of the approximation of the series of tubes will converge to that of 

continuous vocal tract shown in Figure 1.1(a). 
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- ±-

glottl e 
(a) (b) 

Figure 1.1: (a) The vocal tract, modeled as a single one-dimensional acoustic tube of varying cross-
sectional area and (b) an eight tube model mutable for discretization. 

W a v e P r o p a g a t i o n in a T u b e of C o n s t a n t C r o s s - S e c t i o n a l A r e a 

The concatenated t ube model is useful because the acoustic behavior of a single tube of constant 

Cross-sectional area .4 is quite simple to describe, in terms of a volume velocity u(.r. / ) . and a pressure 

deviation p(x.t) from the mean tube pressure. Provided wavelengths are long in comparison with 

the tube radius, and that pressures do not become too large (bo th these requirements are easily 

satisfied in the speech context). the time-evolution of the acoustic s ta te of any single tube, such as 

that shown in Figure 1.2(a), will be described completely by 

.4 Ot Ox 
A Ov du 

py* at or 

(1.1a) 

( L i b ) 

subject, of course, to initial conditions, and the effect of the boundary terminations on adjacent 

tubes. Given that the cross-sectional t ube area .4. the air density /> and the sound-speed -> are 

constant , t he general solution to (1.1) can be writ ten as 

p(r.t) = p ' ( t + * / 7 ) + P r ( « - * / 7 ) 

„(.r./) = Yp'(t + xh) -Yp'V-x/-)) 

(1.2a) 

(1.2b) 

Here the physical pressurep has been decomposed into a sum of a leftward-traveling wain p' and 

a rightward-traveling wave pr\ both are arbi t rary functions of one variable. The volume velocity '/. 

which is dual t o p in the system (1.1). can be similarly expressed as a sum of leftward- and right ward-

traveling velocity waves n1 and u r . But these velocity waves are simply the pressure waves, scaled 
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by tlie tube admittance, defined by 

PI 

In addition, the rightward-traveling wave component of the velocity is sign-inverted with respect to 

the corresponding pressure wave. 

System (1.1) can he simplified to a single second-order P D E in pressure alone. 

d2p _ .2d
2p 

W'^d^ ( U ) 

from which (lie traveling pressure wave solution is more easily extracted. The volume velocity 

satisfies an identical equation. 

Consider one of the t ube segments of length A from Figure 1.1(b). It should be clear that we 

can represent the pressure traveling-wave solution to (1.1) by using two delay lines, each of durat ion 

A / 7 ; see Figure 1.2. We can obtain the physical pressure at either ends of the tube by summing 

the leftward- and rightward-traveling components, as per (1.2a). (The physical volume velocity can 

be obtained, from (1.2b). by taking the difference of// and /»'". and scaling the result by F . ) T h e 

discrete-time implementation of this single isolated acoustic tube is immediate. Taking 

r 4 - ( i .4) 
7 

as the unit delay, or sampling period for our discrete-time system, we can Bee that there is no loss 

in generality in treating the paired shifts as digital delay lines, accepting and shifting discrete-time 

pressure wave signals, at intervals of T seconds. The discrete-time model of the acoustic tube will 

still calculate an exact solution to system (1.1). at t imes which are integer multiples of T. (This 

solution can be considered to be exact at all t ime instants as long as all signals in the network are 

assumed to be bandlimitul to half of the sampling rate. F , = 1/7".) 

Also note that because the traveling pressure and volume velocity waves are simply related to 

one another by a scaling, then in a computer Implementation, it is only necessary to propagate one 

of the two types of wave in a given discrete tube section—we will assume, then, that pressure waves 

are our signal variables. 

J u n c t i o n s B e t w e e n T w o U n i f o r m A c o u s t i c T u b e s 

Consider now a junction between two of the uniform acoustic tubes in the concatenated tube model 

shown in Figure 1.1(b). The wave speeds in all the tubes are assumed to be constant , and equal to 

7 , so that the discrete-time representation of any single tube will have the form of the pair of digit al 

delay lines shown in Figure 1.2(b). At the junction between the ith and (i + l ) t h tubes (of cross-

sectional areas A, = A(iA) and . 4 , + 1 = A((i 4- 1)A) respectively), for t = 1 A' - 1. we will then 
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+ A 

l>'tf+ */;) T 
P(*,t)~<B 

L Pr{t-xh) 

l>elav 
T= A/-> 
•ecotids 

Delay 
T = A/-) 
seconds 

f/(f + (r + A)/7) T 
J , , ' ( / - ( , + A)/-,) 

i + A 

(a) II. 1 

Figure 1.2: (a) i4n acoustic tube and (b) a representation of the traveling wave solution: traveling 
pit.••sun wares can be added together at etther end of the tube to give the physical pressure, us per 
(1.2a). 

have a pressure and a velocity on either side: we will write these pressure/velocity pairs as (y;,. i/,). 

and ( ; J , + | , I / , + | ) respectively see Figure 1.3(a). Continuity a rguments (or conservation laws) d ic ta te 

that these quantities should remain unchanged as we pass th rough the boundary between the two 

tubes, and thus 

/'.+ ! »> = a,+ \ (1.5) 

Note that we have dropped the arguments t and X, since the relationships of (1.5) hold instanta­

neously, and only at the tube boundaries. 

Area A, i'. =Pi+i 
u, = a,+i 

Ana -4,+i 

I + R, 

(a) 0») 

Figure 1.3: (a) The junction between the ith and (i + l)th acoustic tubes tn the Kelly-Lochbaum vocal 
trad model, and (b) the resulting scattering junction for pressure ivaves. 
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As per (1.2a) and (1.2b). the pressures and velocities can be split into leftward- and rightwanl-

traveling waves as 

Pi = Pi + l>'i 

Pi+\ = />!+, +p'i+\ 

»i * y> ( / ' ' - / ' ! ) (1.6a) 

(1.0b) 

where 1,. the admit tance of the t'th tube, is defined by 

m 

It is then possible, using (1.6) to rewrite (1.5) purely in te rms of the wave variables, as 

(1-7] 

P{ = £#r+(i-ftop{+, 
;<;+, = (\ + n,)fi-niP

l
i+i 

(1.8a) 

:i.8i») 

where 7v, is defined by 

nt&
Yi~Ym 

Yi + Yi+i 

Here we have written a formula for calculating the pressure waves ;;, and /)J+1 leaving the junction in 

t enns of the waves p'- and />'+1 entering the junction—see Figure 1.3(b) for the resulting signal-How 

diagram. In particular. (1.8) can be viewed as a scattering operation; incident waves on either side 

of an interface are reflected and transmitted according to the mismatch in the admi t tances between 

the two tubes, The mismatch is characterized by the reflection parameter 7v,- which is bounded in 

magnitude by 1. as long as the admittances of the two tubes are positive. (If J ; = Yj+i, for instance, 

then Ri = 0, and there is no reflection at the interface.) As we mentioned before, t h e calculations 

(1.8) should be viewed as occurring poiutwise at the junct ion interface itself, which does not occupy 

physical space. 

Suppose that we define a set of power-normalized wave variables by 

/>' = V / R P ! pi = y/YiP, !1.9) 

Then the scattering operation (1.8) can be written, in mat r ix form, as 

l£,. N / T ^ 1 -•Ri r 
•i"+l 

: i-i(>) 

Because the 7v,- are bounded in magni tude by 1, it is easy to see that scattering, in this case, 

corresponds to an orthogonal matr ix transformation applied to the input wave variables. 
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P o w e r C o n s e r v a t i o n a t S c a t t e r i n g J u n c t i o n s 

At the junction between the i th and (i + l ) th tubes , the continuity relations (1.5), when multiplied 

together, Imply that 

This is simply a s ta tement of conservation of power at the interface. Using the definitions of traveling 

wave variables from (l.C). we then have that 

ip'i+pi) y. (v'-p)) = (/<!+> +Pm)^+i 0'!+, -phi) 

or, real ranging te rms . 

K((p|)a+K>i(p^i)?-y;(pT)2+r<+i{p|+1)3 

In other words, t he sum of the squares of the incident tenets, weighted by their respective tube 

admit tances , is equal to the same weighted square sum of the reflected waves. Assuming that the 

\'i are positive, then, a weighted L> measure of the signal variables (pressure waves) is preserved 

through the scat ter ing operation. This reflects the inherent losslessnesa of the tube interface. 

In te rms of the power-normalized variables defined by (1.9). and scattered according to (1.1(1). 

we will have (due to the orthogonality of the scat ter ing matr ix) . 

Thus the L-i norms of the incident and reflected vectors of power-normalized wave variables are the 

same. 

D i s c r e t e - t i m e V o c a l T r a c t M o d e l 

Now that we have discussed both the digital delay line representation of wave propagation within a 

single acoustic tube , as well as the scattering that occurs at any junction between adjacent tubes, 

we are now ready to present the full discrete-time model of the vocal tract. For an N t ube model 

of the vocal t ract , then, we will have the digital signal flow graph shown in Figure 1.4. Hen-, the 

scattering junctions are indicated by rectangles, marked by S, (representing a matrix transformation 

of the form of (1.8) or (1.10), which is parametrized by 7v,. which itself depends on the adjoining 

t ube admit tances 1; and i ' ; + ] ) . 

The s t ruc ture is driven at the left end. by an input waveform (typically an impulse train, for 

voiced speech or by white noise for unvoiced speech, or a combination of the two), and an output 

speech waveform is emi t ted at the right end. The grey boxes, representing boundary conditions at 
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Figure 1.1: Signal flow graph for an N tulu vocal tract model 

the glottis and lips, we leave unspecified such terminations can be modeled in a variety of ways 

[145]. 

Leaving aside a discussion of these boundaries, we can Bee that a single cycle in the recursive 

s tructure shown in Figure 1.4 (one pass through the main loop of the computer program that it 

implies) will involve two distinct steps: 

• 

• 

Wave variables inc 

The output 

the left ami 

Waves 

right. 

ident on 

are shift 

hi 

d 

junct ions are 

to the inputs 

scattered. 

of the junctions inn tediat ely to 

We have already seen that the scattering operat ion preserves a weighted L> norm of the signal 

variables: it should b e obvious that the shifting operation also does so, trivially (indeed, in the 

computer program, shifting amounts to no more than a permutation of the set of pressure signals 

stored in memory). Thus we have a simple positive definite measure of the s ta te of the tube in 

terms of signal values stored in the delay registers which remains constant as t ime progresses (again, 

excepting the effect of the boundary conditions). What is more, this numerical stability property 

of this structure is very easy to verify: we need only check that all the reflection coefficients K, are 

bounded by 1 in magni tude, or equivalent lv. tha t all the admittances are positive. The excitation 

at the left boundary will, of course, introduce energy into the system, but we can at least be sure 

that signal energy is not being produced in the problem interior. The energy drain at the radiating 

(light) boundary is similarly localized. 

Several other features are worthy of comment . First , we have t reated the vocal tract here as a 

static or ttme-tnvanant linear (LTI) system. As we mentioned before, however, the configuration of 

the vocal tract must necessarily change during any ut terance these variations are assumed to be 

slow with respect to the frequency content of the excitation. The slow variation in the acoustic tube 

profile will cause shifts in the system resonances (forinants). and these shifts will be perceived, by 
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the listener, as phoneme transitions. In our discussion of scattering and energy conservation in the 

Kelly-Lochbaum model, we have not taken the time variation of the tube cross-sectional areas (and 

thus the reflection coefficients) into account. It should be clear, though, that if we are using the 

power-normalized signal variables defined by (1.9). then scattering defined by (1.10) at any junct ion 

remains an orthogonal (and thus norm preserving) operation, even if the 7v, are functions of time* 

[1GG]. Second, it is also simple to extend the model to include the nasal pathways (necessary for the 

product ion of certain vocal sounds, and also modeled as acoustic tubes [30]), without compromising 

overall losslessness. Third, we note that the stability of this model can be maintained even if the 

reflection coefficients 7v, are quantized [16G]—this will necessarily occur in any finite word-length 

machine implementat ion. As long as the quantized coefficients remain bounded by 1. then we still 

have a perfectly lossless system. Signal quantization can also be performed so as to maintain overall 

stability, though the system will become more generally passive and not strictly lossless. Four th , 

al though the acoustic tube of varying cross-sectional area is often considered to be analogous to 

a lossless electrical transmission line of spatially-varying inductance and capacitance, it is be t t e r 

thought of as a special case of the lat ter . For the acoustic tube, the local admit tance varies directly 

with the cross-sectional area, but the wave speed -, remains constant: this is important, because 

for a given t u b e length of A. the t ime delay is dependent on the wave speed, from (1.4). For a 

transmission line, bo th the admit tance and the wave speed may vary from point to point along its 

length. We cannot then approximate the full transmission line by concatenated uniform transmission 

line segments in the same way as for the acoustic tube without losing synchronization of the resulting 

discrete-time s t ruc tu re (i.e.. delay durat ions in the segments are not all the same). We will show 

how to solve this problem hi Chapter 4. 

R e l a t i o n s h i p to Dig i ta l Filters 

Discrete-time s t ructures such as that shown in Figure 1.4 are also used in digital filtering applications 

[134. 139], in which case, the notion of a spatial location associated with a particular junct ion or 

delay element is often lost. For example, consider the digital filter s t ructure shown in Figure 1.5(a). 

With .r(ti) as a real discrete-time input sequence indexed by integer n, and t/(n) as the output 

sequence, this s t ruc ture is called an all-pole lattice filter [134], when any of the types of section 

shown in F igure l .5 (b) . (<•) or (d) is used. T is the sample period, or unit delay, and the s t ruc tu re 

is parameter ized by the constants A-;. / = 1 N. It is possible to show that s(n) and y(n) art-

related by the familiar all-pole difference equation 

A' 

!/(») = . r(n)+ ]£«,.</(»-'') (1.11) 
i = l 

' i t ahould be said, however, that a time-varying acoustic tube is not, strictly speaking, a lossless system—energy 
is pumped into the system by the variations themselves. While the lossless time-varying concatenated acoustic tube 
model may be a useful signal processing construct, it can not l>e said to correspond to the numerical solution of a 
commonly-known system of I'DKs. We will revisit the full time-varying system more rigorously in §0.2.7. 
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Figure 1.5: (a) zln all-pole lattict filter, mid (l») a standard lattict junction, (c) « Kelly-Lochbaum 
junction and (d) u normalized lattice junction. 

where the direct-form filter coefficients <i,. /' = 1 .V can be derived from the A-, through simple 

recursive procedures [13-1]. While the direct-form filter implementation implied by (1.11) requires 

fewer arithmetic operations than the lattice forms in Figure 1.5, the lattice implementat ion may be 

preferable because (a) stability is guaranteed by the simple condition |A,| < 1. for all i. (determining 

stability by direct examination of the u,- is difficult, though it can of course be performed by finding 

the equivalent set of A-, parameters ) and (l>). pole locations are much less sensitive to coefficient 

quantization when applied to the A-, rather than the a,-. We also mention that the same s t ructure 

also double- as a useful all-pu.ss filter design [134]. when .r(u) is taken as the input and u-(n) as 

the output . It is also possible to extend this filter design in order to implement any general s table 

pole-zero filter by summing readout taps from the leftward signal path into the output [139]. 

The structure of Figure 1.5(a) is quite similar to the Kelly-Lochbaum discrete-time acoustic tube 

model, but there are two minor differences. First, the Kelly-Lochbauin s t ructure contains delay 

elements in both the leftward and right ward signal paths, reflecting the traveling-wave na tu re of 

the solution to the physical acoustic tube problem. In the lattice filter s t ructure , however, the 

delays all occur in the upper (leftward) signal path. It is possible to transform the Kelly-Lochbaum 

s t ruc ture into the lattice form by signal flow-graph manipulations involving pushing delays through 

the junctions, combining them, and then downsampUng by a factor of two this can lie done provided 

the acoustic tube model is te rminated by a zero or infinite impedance at the right end [ICG], (We 

remark that this downsampUng operation can also be applied to digital waveguide meshes in higher 

dimensions, in which case we will refer to il as grid decimation, we will examine grid decimation for 

a variety of mesh forms in Appendix A.) Second, the Kelly-Lochbaum and normalized junctions in 
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our treatment of the acoustic tube model differ slightly from the signal flow graphs shown in Figure 

1.5(c) and (d). This difference is due to our choice of pressure waves instead of velocity waves as our 

signal set. While these quantities are dual in the one-dimensional acoustic tube, this symmetry is 

lost when we move to acoustics problems in higher dimensions, and it is more natural to work with 

pressure variables'. 

The same lattice s t ructure is also arrived at in the analysis context when linear predictive coding 

(LPC) techniques are applied to a speech waveform [124]. The assumption underlying LPC is 

tha t speech can be t reated as a source signal (such as a glot ta l waveform), filtered by tin- vocal 

t rac t , and the goal is to design an all-pole filter of the form of (1.11) which models the system 

resonances (or formant s t ructure) . Though this filter is obtained through purely autoregressive 

(i.e.. non-physical) analysis of a given measured speech signal, the reflection coefficients A; (also 

known as partial correlation or PARCOR coefficients) are calculated as a byproduct of the main 

calculation of the direct form filter coefficients a,-. The A-, are identical to the 7v,- in the acoustic 

t u b e model, except for a sign inversion. This is not to say tha t t h e filter arrived at through LPC 

immediately implies a particular vocal-tract shape: it is best thought of as the solution to a filter-

design or system identification problem, devoid of any physical in terpreta t ion [145]. We note, though, 

tha t transmission-line models such as the concatenated acoustic t ube model have long been used 

for such system identification purposes in the inverse scattering context , in which case they are 

sometimes referred to as "layer-peeling" or "layer-adjoining" methods [22. 23, 213]. Provided certain 

assumptions are made about the glottal waveform and the effects of radiat ion on the measured s| ch 

waveform, it is possible to make some inferences about the vocal tract shape [30]. 

1.1.2 Digital Waveguide Networks 

The principal components of the Kelly-Lochbaum speech synthesis model, paired delay lines which 

t ransport wave signals in opposite directions, and the scattering junct ions to which they are con­

nected, are the basic building blocks of digital waveguide networks (DWNs) [1C6]. Keeping within 

the acoustic tube framework, it should be clear that any interconnected network of uniform acoustic 

tubes can be immediately transferred to discrete t ime by modeling each tube as a pair of digital 

delay lines (or digital waveguide) with an admi t tance depending on its cross-sectional area'*. At a 

junct ion where several tubes meet, these waves are scattered. See Figure l.C for a representation of 

a portion of a network of acoustic tubes, and its DWN equivalent. 

The scattering operation performed on wave variables must be generalized to the case of the 

'Another rea-son for our choice of pressure waves is that when wr transfer digital waveguide networks to the 
electrical framework in Chapter 1, then pressure waves become voltage, waves, which are also the signal variables in 
the wave digital tillering literature. 

" i n order for the network to he synchronic, or realizable as a recursive computer program, all the delay durations 
must be integer multiples of a common unit delay (the sampling period). Because the physical length of a digital wave 
guide is directly proportional to the delay (by a factor of -,. the wave speed), a synchronic DWN always corresponds 
to a network of acoustic tubes whose lengths are appropriately quantised. 
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Figure 1.6: (a) A portion of u gi nerul m (work of one-dimensional acoustic tubes and (b) its discrett -
time realization using paired bidirectional delay lines and scattering junctions. 

junction of M tubes, as shown in Figure 1.7. Though we will cover this operation in more detail in 

Chapter 1. and in the wave digital context in Chapter 2. we note that as for the case of the junction 

between two tubes, the scattering equations result from continuity requirements on the pressures 

and volume velocities at the junct ion. That is. if the pressures in the M tubes at the junction arc 

])j. and the velocities are iij. j = 1 M (we now fix the sign of Uj to be positive if velocities are 

in the direction of the junct ion) , then the relations are 

1>\ = Pz = ••• - I ' M — P.i (1.12a) 

u, + Uj + . . . +UM = 0 (1.12b) 

In other words, the pressures in all the t ubes are assumed to be identical and equal to some junction 

pressure j>.i at the junction, and the flows must sum to zero, by conservation of mass. These are 

the acoustic analogues of Kirchoffs Laws for a parallel connection of M electrical circuit elements, 

where pressures are interpreted as voltages, ami velocities as currents ' . 

The pressures and Velocities can b e split into incident and reflected waves p t mulpj as per (1.2a) 

and (1.2b). by 

Pj = P* + Pj iij = 1) (pj - pj) 

where \~j is the admittance of the j t h tube. T h e scat ter ing relation, which can then be derived from 

* I ti the electrical sotting, there is of course a dual set of laws describing a series connection, but there is no simple 
acoustic analogue for sucli a connection. 
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(1.12). is 

P* = ~Pk + v . u •- 2 - Y&1 
2 v j = l iJ ;=1 

ami can be represented graphically as per Figure 1.7(b). 

A = 1. M (1-13) 

Scattering 
Junction 

(a) (b) 

Figure 1.7: (a) A junction of M acoustic tubes, indicating the pressures pj and milium velocities Uj 
in tin jtli tube, j = 1 , . . . , M at the junction and (b) u scattering junction n luting outgoing pn Mlin 
wares pj to incoming waves }>t • j — I M • 

It is worth examining this key operation in a little more detail. First note that the scattering 

operat ion can be broken into two steps, as follows. First, calculate the junction pressure p.; . by 

M 

pj = ^ QjP'j w h e r e 
21 

E;I,» 
for j• = 1 .\/ [1.14) 

Then , calculate the outgoing waves from the incoming waves by 

Pk = -pi+PJ k = i w 

Although (1.13) produces M outj>ut waves from M input waves, and can thus be written as an 

M x .U matr ix multiply, t h e number of operations is ()(M) {M multiplies and 2M— 1 adds) . Also 

note that the physical junct ion pressure is calculated, from (1.14). as a natural by-product of the 

scat ter ing operat ion: because in a numerical integration sett ing, this physical variable is always 

what we are ult imately after, we may immediately suspect some link with s tandard differencing 

methods , which opera te exclusively using such physical "grid variables". In Chapter 4. we examine 
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the relationship between finite difference methods and DWNs in some detail. 

It is simple to show that the scattering operation also ensures that 

(1.15) 

which is, again, merely a restatement of the conservation of power at a scattering junction. Notice 

that it' till tin admitttintt s tin jitisitit't. then a weighted L-> norm of the wave variables is preserved 

through the scattering operation. (If power-normalized variables are employed, then scat ter ing is 

again equivalent to an M x M orthogonal matrix transformation.) The network as a whole will 

behave losslessly through the scattering and shifting operations which constitute a single step in the 

global recursion that such a network implies. 

W a v e g u i d e M e s h e s a n d t h e W a v e E q u a t i o n 

The DWN shown in Figure 1.6(b) is unstructured; though the individual acoustic tubes are assumed 

to have lengths proportional to the delays in the resulting digital waveguides, they do not fall in any 

regular arrangement . In fact, al though we have drawn what appears to be a network spanning two-

dimensional space, we have not associated any physical coordinates with the various t ube endpoints: 

it should lie clear that losslcssness of the digital s tructure is unaffected by the network topology. 

At each s tep in the computer implementation of the DWN. signals are scattered, then shifted —the 

notion of "where the signals are" is unimportant in this abstract setting. 

Consider now a regular arrangement, or mesh [198] of acoustic tubes, as in Figure 1.8(a). The 

tubes are all of length A and admi t tance V. and intersections of four tubes occur at grid points in a 

Cartesian coordinate system. The resulting DWN is shown in Figure 1.8(b): any scattering junct ion 

is linked to its four neighbors to the north, south, east and west by bidirectional delay lines of delay 

T = A/- ) . We have indicated the scattering operation by the letter S. Because the admi t tances of 

all the tubes are identical, this scattering operation at any junction, from (1.13). has a particularly 

simple form: 

(1.16) 

/'.\ 
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where p t a n d p j are the incident and reflected pressure waves from direction j . j — N,E,S,W. 

Because the t ube admittances are all identical, the scattering matrix S is orthogonal here, even if 

we are not using power-normalized waves. 



L6 CHAPTER 1. INTRODUCTION 

J 

) r 
(a) (b) 

Figure 1.8: (a) A regular mesh of acoustic tubes of equal admittances and (b) the associated digital 
waveguide network. 

Referring to Figure 1.8(b), suppose we initialize this s t ructure with a single incident pressure wave 

Py = 1 a t location P, the north port of some junction. After scattering, the energy of the incident 

wave has been disi ributed among four reflect ed waves: from (1.10). we will have p^ = p~j? = p\V = 1/2 

and pj, = —1/2. After a delay of T seconds, these reflected waves are then shifted to the inputs of 

the four neighboring junctions, at points labeled Q- This process is then repeated) and over many 

t ime s teps , signals will have propagated far from the original excitation at point P. At any time 

step, however, it should be clear that the sum of the squares of the signals in all t he delay registers 

will be 1. 

It is possible to view this propagation of signal energy (in a very rough sense) as a discrete 

t ime and space version of Huygens' Principle [35]. an early description of diffraction phenomena: 

the advance of a wave-front can be analyzed by considering each point on the wave-front to be the 

generator of a secondary source of waves. A mesh of acoustic tubes, however, is far from a physical 

medium support ing multidimensional wave propagation, and a basic question which then arises is: 

is this network of one-dimensional acoustic tubes approximating the behavior of a two-dimensional 

acoustic medium? 

D W N s a n d N u m e r i c a l I n t e g r a t i o n 

To answer this question, let us consider the two-dimensional waveguide mesh at a junct ion with 

coordinates x = iA and u = j A . for integer i and j . The discrete-time junction pressure pj,,-j(») 

at t une t = nl\ for integer n (recall t ha t our digital waveguide network operates with a sampling 

period of T). can be written in terms of the four incident wave variables at the same location, from 
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(1,14), as 

/'./...;('') = | (74 , , J (")+; ' t , , , J ( ' ' )+/^, / j (") + /'n,,,J('')) 

By I racing the propagation of the wave variables through the network backwards in t ime th rough 

two time steps, it is in fact possible to wri te a recursion in te rms of the junction pressures alone, 

pj,ij(n)+PJ,tj(" --)- xypjjt-tj{n - l)+pj,i+\An~ l)+PJ.tj-i(« - !) + /'./..,j+i(" - UJ 
(1-17) 

Assume, for the moment, that these discrete t ime and space junct ion pressure signals are in fact 

samples of a continuous function p(J,y. t) of .r, i/ and t. Expanding the terms in the recursion above 

in Taylor series about the location with coordinates X — /A and // = 7 A, at time t = (n — \)T gives 

Recalling that A = -,7". where -) is the speed of wave propagat ion in the one-dimensional tubes , and 

discarding liigher-order terms in T and A (they are assumed to be small), we get 

This is simply the two-dimensional wavt equation, with the wave speed 7 defined by 

7 = 7 M (149) 

This equation describes wave propagation in a lossless two-dimensional acoustic medium, and 

the DWN of Figure 1.8(b) can thus be considered to be a numerical integrator of this equation, 

assuming the wave speeds in the tubes are set according to (1.19): the discrete Huygens' principle 

Interpretation of the behavior of the mesh is justified, at least in the limit as T and A become smal l ' . 

The recursion (1.17) in the junction pressures, however, can be seen as a simple finite difference 

schemt which could have been derived directly from (1.18) by replacing the partial derivatives 

by differences between values of a grid function }>i,j(n) on a numerical grid. Because the DWN 

operates using wave variables, we can see that the DWN is simply a different organization of the 

same calculation: in particular, it has been put into a form for which all operations (scattering, and 

sliifting) rigidly enforce conservation of energy, in a discrete sense. 

We can also reconsider the Kelly-Lochbauin model in this light: forgetting, for the moment , about 

the approximation of the tube by a series of concatenated uniform tubes, it is possible to write the 

* Wli;ii we have done, in the jargon of numerical integration methods, is to show the consistency [176] of the 
waveguide mesh with the two-dimensional wave equation. 
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equations of motion for the gas in the tube directly [145] as 

°" + l± = 0 (1.20a) 
A(x) 01 Ox 

^ % + °^ 0 (1.20b) 
p')1 at Ox 

subject to initial conditions and boundary conditions at the glottis and lips. This system is identical 

in form to (1.1) for a uniform tube , except for the variation in x of the cross-sectional area. It can 

be condensed to a single second-order equation in the pressure alone. 

Of-
^ = ^ - ( - 4 ( , ) ^ (1.21] 
2 A(x)0x \ l 'Ox) l J 

which is sometimes called Webster's horn equation [15, 30. GG]. Due to the variation in the cross-

sectional area, it is not equivalent to the one-dimensional wave equation (1.3). and does not possess 

a simple solution in terms of traveling waves (which is why we needed a concatenated uniform tube 

model in the first place). Returning now to the DWN of Figure 1.4. it can be shown that the 

junction pressures p./,-(n) (at spatial locations x = iA and at time / = n'T for i and u integer) satisfy 

a recursion of the form 

p./., (») + / ' . / , (» - 2 ) = , . 2 , . (ViPi-iln - l ) + yi+ip*+i(n - 1)) (1.22) 

where 11 is the admi t tance of the ; th acoustic tube, running from x = (i — 1)A to j - = iA. With 

the Yi s<*t according to (1.7). it is again possible to show that (1.22) is a finite difference scheme for 

(1.21). with A = ~ r . 

1.1.3 A General Approach: Multidimensional Circuit Representations 

and Wave Digital Filters 

For the Kelly-Lochbaum vocal tract model, it is straightforward to arrive at a numerical scattering 

formulation of the problem: the approximat ion of a smoothly-varying tube by a series of concate­

nated tubes is intuitively satisfying, and leads immediately to a wave variable numerical solution 

to Webster 's equation. The identification of the mesh of one-diinensional tubes of Figure 1.8(a) 

as a numerical solver for the two-dimensional wave equation is more difficult, because it is by no 

means clear that such a mesh behaves like a two-dimensional acoustic medium (say). Although as 

we have seen, it is possible to prove ( through a finite difference t rea tment ) that the t ube network is 

indeed solving the right equation, we have not shown a way of deducing such a s t ructure from the 

original defining P D E system. If one wants to develop a DWN for a more complex system (such as 

a stiff vibrating plate of variable density and thickness, for example), then guesswork and a t t empts 



1.1. AJV OVERVIEW OF SCATTERING METHODS I'.) 

at invoking Huygens" principle will be of limited use. 

The scattering operation we introduced in §1.1.1 and §1.1.2 is at the heart of all the numerical 

methods we will discuss in this thesis, whether they are based on digital waveguide networks or wave 

digital filters, which we will shortly introduce. A given system of PDEs is numerically solved by 

filling the problem domain with scattering nodes, or junctions, such as that shown in Figure 1.7(b), 

which calculate reflected waves from incident waves according to (1.13) (or its series dual form). 

T h e topology of the network of interconnected junctions will be dependent on the particulars of the 

system we wish to solve. As we have seen, these scattering junctions act as power-conserving signal 

processing blocks, and in a DWN. they are linked by discrete-time acoustic tubes, or transmission 

lines, which are also power-conserving, and serve to transport energy from one part of the network 

to another. The key concept here is the losslesaness of the network components, which is dependent 

on the poaitivity of the various circuit element values (admittances): as we have seen, this posit ivity 

condition ensures that some squared norm of the signals in the discrete-time network will remain 

constant as t ime progresses. In other words, the simulation routine that such a network implies is 

guaranteed stable by enforcing this condition. 

Wave digital filters (YVDFs) are also based on the idea of preserving losslessness (and more gen­

erally passivity) in a discrete-time simulation of a physical system. I hough the approach is somewhat 

different from what we have just seen. As they were originally intended to transfer analog electrical 

filter (RLC) networks to discrete time, it is best to begin by looking briefly at lumped circuit ele­

ments . A Otte-port element, such as that shown at left in Figure 1.9 is characterized by a voltage v. 

and a current i. bo th of which are functions of t ime /. In the time domain, the one-port generally 

relates i(l) and ;'(/) through some combination of differential or integral operators. If the one-port 

(or more generally. AT-port) is linear and time-invariant, then there is a simple description of its 

behavior in the frequency domain, but we will wait until Chapter 2 before entering into the details. 

An analog filter is simply an interconnected network of such elements: it is operated by applying 

a voltage at one pair of free terminals, and then reading the filtered output at another pair. In 

particular, if the network is made up of passive elements such as resistors, capacitors, inductors etc. . 

then it must behave as a stable filter. 

Fettweis [4G] developed a procedure for mimicking the energetic behavior of an analog filtering 

network in discrete time. The input and filtered output become digital signals, and the filtering 

network becomes a recursion, to be realized as a computer program. Most importantly, the digital 

network has the same topology as the analog network, and can be thought of as its discrete-time 

"image." One-ports (or more generally .V-ports) are first characterized in terms of wave variables. 

(I = (> + iR 

b = . - iR 

where R i- some arbitrary positive constant , assigned to the particular one-port, called a port 
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Wave digital 
one-port 

Defined by delay 
operators 

Figure 1.9: Wave digital discretization of a one-port circuit element. 

resistance. The coiitiiiuous-tiine element, described by differential operators , is then replaced by a 

discrete-time element operating on tligital signals, and composed of algebraic operat ions and delay 

operators or shifts. The signal o(ti) is called the input wave, and b(n) is the output wane: bo th 

are discrete-time sequences indexed by integer ?>. If the discretization procedure is carried out in 

an appropr ia te way (to be more precise, differentiation is approximated by the trapezoid rule of 

numerical integrat ion) , then the resulting wave digital one-port has energetic propert ies very similar 

to the continuous element from which it is derived. In particular, if the analog element is passive 

(lossless), then the wave digital element can be considered to passive (lossless) in a similar sense, 

hi fact, if a wave digital circuit element is composed of delay opera tors (hence requiring memory) , 

then a weighted sum of the squares of the signal values stored in the element's delay registers is 

the direct counterpar t to the physical energy stored in tlit* electric and magnetic fields surrounding 

the corresponding analog element. The passivity property is contingent on the posttivtty of the port 

resistance; given this constraint, it can often be chosen such that there is no delay-free path from the 

input <i(u) to the output t){n). We will see the importance of making the correct choice of /? shortly 

in an example. 

Consider a parallel connection of two one-port circuit elements, as shown in Figure 1.10(a). The 

One-port »'i 
Parallel 

connection 

'2 
r» -

r 

'•-• 

« 

One-port 
WD 

one-port 

a i = 6', 

—-o— 
fc| = a, 

Parallel 
adaptor 

— O — 

- O-
0 , = 6i 

W D 
one-port 

(a) (b) 

Figure 1.10: (a) Parallel connection of two continuous-time one-ports and (b) its wave digital coun­

terpart. 
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one-ports arc defined by some relationship between their respective voltages and currents, which we 

will write ;b i | . i] and r_>. i%. For such a parallel connection. Kirchoff's Laws d ictate that 

r, = r > i i + i j = 0 (1.23) 

(We could equally well treat this as a scries connection, by reversing the directions of the arrows 

which define i••_. and /•_> in Figure 1.10(a).) We can now define two sets of wave variables at the two 

one-ports by 

"i = ''i + i\R\ «2 = ' j + ii&i 

bi = j ' i — i\Ri b-z = i j — /j/e_. 

In the scattering formulation, the Kirchoff connection is t reated as a separate two-porl < tement, with 

inputs u\ and a\ and outputs b\ and b1.,. These are simply the ou tpu t s and inputs , respectively, of 

t h e one-ports, as shown in Figure 1.10(b). 

Kirchoff's Laws for the parallel connection can then be rewrit ten in terms of the wave variables 

as 

b\ = 1la't + (1 - H)a\ (1.24a) 

b'., = (1 + 7? )<«',-Ro-f, (1.24b) 

where the reflection coefficient R is defined by 

Equations (1.24) define a wave digital two-port parallel adaptor. They are identical in form to the 

equations defining a parallel junction of two acoustic tubes, from (1.8)—this is to be expected, 

since Kirchoff's Laws (1.23) are equivalent to the pointwise continuity equations (1.5) at an acoustic 

junction. Thus all comments we made about scat ter ing junct ions in §1.1.1 hold for the wave digital 

adaptor as well: in particular, if we define power-normalized waves, then the scattering operation 

again is equivalent to an orthogonal (i.e.. L_> norm-preserving) t ransformation, as long as the port 

resistances / i , and /?•_> are chosen positive (implying, again, tha t \R\ < 1). 

W D F s a n d t h e N u m e r i c a l I n t e g r a t i o n of O D E s 

In the closed network of Figure 1.10, we have left the two one-ports unspecified. Suppose we 

connect an inductor, of constant inductance L > 0 at the left-hand port , and a capacitor of constant 

capacitance C > 0 at the right-hand port, as shown in Figure 1.11(a). Then the voltage-current 
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relations are defined In" 

i, = c 

When these relations are closed by Kirchoff's parallel connection rules (1.23), it is possible to write 

a single second-order O D E describing the time-evolution of the circuit s ta te . 

tfw 1 

W = - L C W 

where w(t) stands for any of the voltages or currents in the network. This network thus hehaves as a 

harmonic oscillator, of frequency 1/vLC: the voltages and currents, assumed real, evolve according 

to 

u(t) = Acos(t/\/LC) + Dsu\lt/\/LC) 

for some arbitrary constants .4 and 13 de termined by the initial voltages and currents in the network. 

The network is also lossless: if we define the to ta l stored energy of this network E(t) by 

£ ( ' ) * \ * k* (1.25) 

Energy utored in magne t ic f ie ld Energy i tored in electric f ie ld 

' u r m i i n h t i f i i n d u c t o r f u r r o u n d i n g r » p a n l o r 

then 

dt dt dt 
E{t) = constant 

In other words, energy is t raded back and forth between the two circuit elements, but is not dissi­

pated. 

Though we have not explicitly derived the forms of the wave digital inductor and Capacitor, this 
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Figure 1.11: The LC harmonic oscillator (a) a parallel connection of an inductor, of inductance L 
and a capacitor of capacitance C. and (b) the corresponding wave digital network. 
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is a good opportuni ty to sec what these elements look like the wave digital network corresponding 

to the LC harmonic oscillator circuit is shown in Figure 1.11(b). (The reader may glance ahead 

to ?j2.3.4 for a glimpse of how these forms are arrived at .) We have a parallel adaptor , which is 

a digital signal processing block defined by equations (1.24). terminated on delay elements (one of 

which incorporates a sign inversion). Special choices of the port resistances /? | and /?•„> (marked in 

the figure) were chosen ill order to obtain these simple signal-How graphs. This diagram implies 

a recursion, which, like the digital waveguide network methods consists of a scattering step, and 

a delay step (possibly with sign inversion). Because it makes use of only two delay operators, it 

should be obvious that this simple network must behave as a two-pole resonator—the discrete-time 

counterpart to the continuous-t ime harmonic oscillator. The wave digital network thus behaves as 

a numerical integrator. 

We can define the total discrete-time stored energy of this network by 

EWD[n) = ^ - ( « , ( i . ) ) - + ^ - ( « 2 ( » ) ) 2 

which is simply a weighted sum of the squares of the signal values stored in the delay registers at 

time steji n. Clearly, this quant i ty remains unchanged after undergoing delays and the scattering 

operation, i.e., we have 

E» p(n) = constant 

It is simple to identify this quanti ty with the energy (1.25) of the continuous-time LC network. 

Although tliis example is very simple, the same ideas can be applied to large networks, and the 

result is always an explicitly recuisible structure for which passivity can be simply guaranteed. 

M u l t i d i m e n s i o n a l W D F s a s P D E S i m u l a t o r s 

Wave digital filter networks a re derived from lumped analog circuits, and we have seen that they 

can be interpreted as numerical ODE integrators. Most importantly, we saw that a given analog 

circuit immediately implies a corresponding W D F s t ructure : if the original circuit is lossless, then 

the W D F network. Which is i ts discrete-time image, will be lossless as well. It is easy to extend 

the maintenance of losslessness to the more general case of passivity (i.e.. we allow our networks to 

dissipate energy, as well as recirculate it). 

Fettweis and Nitsche [G2] found a way of directly extending this simulation technique to dis­

tr ibuted systems. First, it is necessary to generalize the definition of a circuit element to multiple 

dimensions, in which case it is called an MD circuit element: an MD one-port is shown at left in Fig­

ure 1.12. T h e one-port is still defined in terms of a voltage v and current i across its terminals, but 

these quantities are now more generally functions of an n-dhneiisional spatial coordinate x as well as 

t ime /. In particular. V and /' will be in general related by partial differential operators. Though the 
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representation is the same a* in the lumped case, this circuit element is itself a distributed object, 

occupying physical space. Such a distributed circuit element is merely a generalization of a lumped 

c(x. /) b(n) <i(n) 

i[x.t) 
li 

Distributed 
one-port circuit 
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application of M l ) 
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Defined by part ia l 
differential operators 

Defined by 
multidimensional 

shift operators 

Figure 1.12: Multidimensional u>ovi digital discretization of a distributed one-port circuit tUwcut. 

one-port circuit element; it should not be conceived of as a physical entity. The rules of classical 

network theory, however (and iu particular kirchoff's connection rules), can still be applied in order 

to form combinations of such objects. 

It is also possible to extend the notions of passivity and losslessness to multiple dimensions, and 

to introduce wave variables, which, like the voltages and currents, will also be distr ibuted quantit ies. 

Finally, it is also possible to discreti/e these elements in such a way that this passivity is retained in 

the discrete time and space domain (through the use of the trapezoid rule in multiple dimensions). 

the result is the multidimensional wave digital (MDW'D) element shown at right in Figure 1.12. Jus t 

as for the lumped case, where differential operators are mapped to delays, here partial (inferential 

operators are mapped to shifts in the discrete multidimensional problem space. We again have an 

input wave ii and an output wave b, which take on values at a discrete set of locations; these are to 

be interpreted as i/i id functions over a set of points, indexed by an integer-valued vector n. 
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System of 
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Multidimensional 
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equations 

Introduce wave 
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Figure 1.13: Steps in the construction of a multidimensional warn digital filtering simulation routine. 

Though we will discuss the MDW'D discretization procedure in much more detail in Chapter 3, we 

outline the basic steps in Figure 1.13. Beginning from a given passive physical system, we first model 
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it with a suitable system of PDEs. It may be possible, then, to interpret the individual equations 

as loop equations in a closed multidimensional Kirchoff circuit (MDKC) made up of elements of 

the form shown at left in Figure 1.12. Typically, the currents flowing through the "wires" in such 

a network will be the dependent, or state variables describing the physical system: all the part ial 

differential opera tors are then consolidated in the various elements. For a first-order system of 

P D E s . it will usually be t rue that the number of e([iiations is equal to the number of loops in the 

circuit. It is impor tan t , at this stage, to ensure that such a network representation is composed of 

multidimensional circuit elements which are individually passive this can generally be determined 

by a cursory examinat ion of the circuit element values (such as inductances, capacitances, etc. . 

which may be functions of several variables). Once the work of manipulating the system into a 

suitable circuit form is complete, the discretization step is immediate, and a multidimensional Wave 

digital network results; if the MDKC is made up of passive elements, then the discrete network 

will be as well. It can then be interpreted as a stable explicit numerical integration sehemt for the 

original defining sys tem of PDEs. The basic operations will be, just as for DWNs. the scattering and 

shifting of Wave variables through a numerical grid of nodes. The resulting structures, however, differ 

markedly from DWNs in many ways, though they can still be viewed as finite difference schemes. 

We note that each of the various steps (i.e.. the arrows in Figure 1.13) involves a good deal 

of choice (and experience) on the pari of tin' algorithm designer. For a given system, there is 

almost always a variety of PDE systems which could serve as adequate models: not all are suitable 

for circuit-based discretization. It is also t rue that for a given system of PDEs. there is not a 

unique network representation (though they should all be related by equivalence transformations 

front classical network theory). Finally, though Fettweis el al. make use of the MD trapezoid rule as 

a means of arriving at a passive discrete network, this is by no means the only way of proceeding— 

many integration rules possess the desired passivity-preserving properties. We will explore the 

consequences of these choices extensively throughout the rest of this thesis. 

1.2 Questions 

Before launching into a full technical summary and listing results in the next section, it is worthwhile 

to take a step back and view the underlying motivations for writing this thesis. The general goal of 

this project can be expressed as an at tempt to answer, or at least address several general questions 

about wave digital Biter and digital waveguide network numerical simulation algorithms: 

• To what types of systems can wave digital and digital waveguide network simulation approaches 

be applied'!1 

• What features do these two methods share, and what distinguishes them? 

• What are their relative advantages? 
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• Can tin i) be unified m n formal way? 

• What extensions ami improvements ' "» '« modi to the existing forms of tin si methods'f 

These were the guiding questions that the author had in mind throughout this project; all the 

results have some hearing on their answers. The impal ienl reader can flip to jjG.l for these answers 

some clear-cut. some much less so. 

1.3 Summary and Results 

The typical thesis paradigm consists of a single isolated problem s ta tement , followed by a develop­

ment culminating in a main result. Because this thesis is intended not only as an exposition of results 

but as a review of and introduction to scattering methods, it would have been somewhat unnatura l 

and probably detr imental to arrange the material in this way. We have thus a t t empted to interleave 

review, problems and result'- in a more natural order. Because of this, it might be a little difficult 

for the reader to tell what the principal new results were. VVe here provide a chaptor-by-chapter 

summary, with results appearing in the sections indicated by bold-faced numbers. 

C h a p t e r 2: W a v e D ig i t a l F i l t e r s 

Chapter 2 is intended as a review of lumped wave digital filters, minus any discussion of filtering 

applications, since we will only be looking at simulation applications in the remainder of the thesis. 

Because these concepts are used extensively throughout the sequel, the reader is advised to begin 

here, even though discussion of numerical methods for PDE solving does not begin in earnest until 

the next chapter, We follow the s tandard development (as in. say, Fettweis's comprehensive review 

paper [40] which is the chief reference for this chapter) and begin with a brief introduct ion to 

the theory of electrical :Y-port devices [12], and, in particular, t he key concept of passivity, which 

later plays a pivotal role as the stability criterion for intiltidiinensional simulation networks. We 

then review the basics of the lumped wave digital discretization procedure, involving the use of a 

passivity-preserving continuous-to-discrete spectral bilinear transformation (the trapezoid rule in 

the time domain) and the transformation to wave variables. The wave digital counterpar ts of the 

standard circuit elements (capacitors, inductors, resistors, transformers, etc.) are then introduced, 

as are adaptors , which are simply the wave variable counterparts to KirchofFs series and parallel 

connection rules. T h e chapter is concluded with a brief description of finite word-length ar i thmetic 

properties of WDFs , and a look at some specialized vector elements that will later come in handy 

(and are in fact necessary) for the simulation of some elastic dynamic systems. It is important to 

keep in mind that though we only discuss lumped elements and networks in Chapter 2. t h e basic 

set of construction rules (essentially classical electrical network theory) remains unchanged when we 

move to a multidimensional setting in the next chapter. 
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C h a p t e r 3 : M u l t i d i m e n s i o n a l W a v e Dig i t a l F i l t e r s 

Chapter 3 begins with a review of some of the basics of symmet ric hyperbolic systems of partial differ­

ential equations, and then proceeds to the generalization of electrical network passivity into multiple 

dimensions, where it has been called MD-ptisswitu [48, 85]: this can be done in a straight forward 

way through the application of coordinate transformations [62, 122]. .Next, we introduce multidi-

IIII nsional circuit elements [45], which are similar to their lumped counterpar ts , except that they are 

distributed objects and may have particular directions associated with them. The transformation to 

wave variables and discretization proceeds as in the lumped case, but now the trapezoid rule must 

be interpreted in a directional sense, as must be the associated MD spectral bilinear transformations. 

We then proceed through some t reatments of typical model problems, namely the advection equa­

tion [17G], the transmission line system [107]. and its extension to two spatial dimensions, in which 

case it is called the panlU l-plah st/xt/ in [GO. 01], We write down multidimensional Ktrchoff circuit 

representations (MDKCs) and show the discrete t ime and space counterpar ts (MDWDFs) for all 

these systems. We then spend some time in §3.9 .1 examining MDWD structures as finite difference 

schemes and make some comments about modal behavior, paying part icular a t tent ion in §3.9.2 to 

parasitic modes. In §3.10 we present a new treatment of the initialization of M D W D methods, and 

then give a brief overview of methods for setting boundary conditions. Balanced forms are intro­

duced in §3.12 as a means of increasing the computat ional efficiency of MDWD methods: to da te 

they have been notoriously sub-optimal in that the maximum allowable t ime s tep can be a great deal 

smaller than that of conventional finite difference methods (such as, for example, the finite-difference 

time domain (FDTD) method [184, 214] and. by extension. DWNs). Finally, in §3 .13 we turn to a 

means of incorporating higher-order spatially accura te [170] methods into a circuit framework: this 

is surprising, because it had long been assumed that M D W D methods, traditionally based on the 

use of the trapezoid rule could be no better than second-order accurate [130]. We circumvent this 

problem by applying an alternative integration rule, which is also passivity-preserving (and which 

will also serve as a "back-door" into the realm of digital waveguide networks). 

C h a p t e r 4: Dig i t a l W a v e g u i d e N e t w o r k s 

Chapter 1. which is concerned with digital waveguide networks, is ra ther large, and can be conve­

niently divided into three principal parts . 

The first part of the chapter, from §4.1 to Jjl.f>. deals with the relationship between digital 

waveguide networks and finite difference met hods of the F D T D variety: we showed a very simple 

example of such a correspondence in §1.1.2. We reintroduce digital waveguide networks, now in the 

electrical context, so as to make easier the eventual comparison with the wave digital networks of 

Chapters 2 and 3 the acoustic tubes in the Kelly-Lochbaum model of §1.1.1 and the waveguide 

mesh of §1.1.2 are thus replaced by transmission line sections, and pressures and velocities become 

voltages and currents. After a brief review of the fundamentals, we reexamine the transmission line 
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and parallel-plate lest problems in §4 .3 and §4 .4 . Here. DWN structures that numerically integrate 

these syst ems are built " the hard way" (i.e., by association with finite difference methods and FDTD. 

without the benefit of a multidimensional representat ion), and we uncover several distinct families 

of such networks, in §4 .3 .6 and §4 .4 .2 . with different passivity properties. \Yc also examine the 

initialization of these networks in §4 .5 . and the implementation of boundary conditions in §4.3 .9 

and §4 .4 .4 . 

The next part of Chapter 1. from §4.6 t<> §4.9 is of a more applied na tu re here we discuss several 

variations on the DWN form, specifically for the transmission line and parallel-plate problems. First, 

we take a cursory look at some other recently proposed two- and three-dimensional DWN structures 

in §4.6 and §4.7, extending them to the variable-coeflicienl case where necessary. (The spectral 

analysis of these DWNs is postponed until Appendix A.) We then introduce some generalized DWNs 

which may be useful in "real-world" problems, in particular those involving irregular boundary 

configurations and sharp variations in mater ia] parameters. We look at DWNs in the important 

special case of polar coordinates in §4 .6 .2 . and then extend the same technique to general curvilinear 

coordinate systems in §4 .8 . Another means of tackling such irregularities, with an eye towards 

computat ional efficiency considerations, involves the use of multigrid DWNs: a "fine" DWN can be 

used over any part of the problem domain where greater detail is required, and may be interfaced to 

a "coarse" DWN operat ing over the remainder of the domain. The interface between such DWNs can 

be designed so as to maintain perfect losslessness, while introducing minimal numerical reflection. 

We look at several types of such layers, in two and three spatial dimensions, as well as a way 

of interfacing grids in different coordinate sys tems, in §4.9. Several simulations are presented, in 

§4 .6 .2 . §4 .9 .1 . and §4 .9 .4 . 

Up until tliis point in Chapter 4. we treat <ligital waveguide networks as large collections of scat­

tering junctions connected by paired delay lines, just like the Kelly Lochbaum model of §1.1.1 and 

the mesh of §1.1.2. While this is a useful vantage point, especially when it comes to constructing 

irregiUar networks such as those discussed in § 4 . 9 . and for finding proper passive boundary termi­

nations, it is somewhat lacking in that it does not allow the algorithm designer any guidance in the 

construction of these methods for more complex systems. Indeed, when faced with a many-variable 

system (such as. for example, the thir teen-variable system of PDEs which models vibration in a stiff 

cylindrical shell, to be discussed in §,5.5.2), it becomes difficult to proceed as was done for the com­

paratively simple transmission fine test problems in §4.3 and §4.4. A MDWD-based method does 

not fall prey to these design difficulties because it follows directly from a multidimensional circuit 

representation of a given defining system of P D E s : in other words, a passive numerical method can 

be automatically generated from the mode] system, regardless of its complexity. It is true, however, 

that this circuit representation is highly non-unique we have all of classical network theory at our 

disposal in order to manipula te it. What is more , while W D F discretization is based on the use of 

the trapezoid rule (or bilinear transform)- in multiple dimensions, the family of passive integration 
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rules is much more general. T h e most important result in this thesis is presented in §4.10: we use 

the flexibilities mentioned above in order to show that a DVVN also can be viewed as the discrete 

image of an MOKC. As such, it can be directly incorporated into the same family as the WDF-baaed 

methods; the relationship is shown in Figure 1.14. The range of physical systems to which the DVVN 

can be applied as a simulation method is thus considerably enlarged to include any system that has 

been dealt with using MDVVDFs. MDVVDFs and DVVNs are now on an equal footing, (and we will 

emphasize the fraternal relationship between the two methods repeatedly in Chapter 5). We develop 

al ternat ive network representat ions suitable for DVVN discretization for the transmission line and 

parallel-plate systems in § 4 . 1 0 . 3 and §4.10.4. then continue our previously postponed treatment of 

higher-order spatially accura te DVVNs in §4.10.5 . and finally conclude with a DVVN for Maxwell's 

Equat ions in §4 .10 .6 . The DVVN for this last system, in that it is equivalent to Yee's original FDTD 

formulation completes the circle of ideas begun in the first part of the chapter. 
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Figure 1.14: Steps m the construction of multidimensional wave digital jittering and digital waveguide 
network simulation routines, viewed as part of a generalized faintly of passive numerical methods. 

C h a p t e r 5 : A p p l i c a t i o n s in V i b r a t i o n a l M e c h a n i c s 

In Chapte rs 3 and I. scat ter ing structures are developed to numerically integrate certain simple 

systems of PDEs , in par t icular the transmission line equations and the parallel-plate system. In 

this chapter, we show how t h e same ideas can be applied to another set of systems, namely those 

describing the mechanical vibrat ions of elastic solid media under various conditions. These systems 
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can become quite complex, compared with the simple transmission-line test problems, but ;i^ we 

will see. circuit representations can be developed as before, though several new techniques must 

be introduced. We look at such systems in order of increasing dimensionality, loosely following 

the organisation of the text by Graff [77]. Liberal use is made of the unifying result of §4 .10 in 

order to develop wave digital and digital waveguide simulation networks in a parallel fashion for these 

systems. We first examine the simplest stiff distr ibuted system, t he classical, or ideal Euler-Bernoulli 

beam in §5 .1 . mainly in order to indicate the difficulties inherent in designing scattering methods for 

systems which are not symmetr ic hyperbolic ( though we show that it is indeed possible). We then 

turn to the modern (and much more suitable, in the scattering context) Timoshenko beam theory, 

which was first treated by Nitsche in [131]. and present a variety of distinct scattering methods in 

§5 .2 , while indicating the relevant differences, especially with respect to stability. We also apply 

the system balancing approach (introduced in §3 .12) to the Timoshenko beam in §5 .2 .6 in order to 

show that it is possible to drastically reduce the computational requirements in certain cases, and 

take an extended look at boundary conditions in §5.2.4. Then follows a look at stiff plate theory, 

and in particular the two-dimensional analogue of the Timoshenko beam, called the Mindfin plate , 

in §5.4. Here, (hie to the couplings between the variables, we are forced to make use of vector 

scattering elements, which were introduced in §2.3.7 for this very purpose. Boundary conditions 

for waveguide networks for the Mindlin plate are dealt with in detail in §5 .4 .2 . We next spend 

some time examining network representations for two cylindrical shell models, first the membrane 

shell in §5 .5 .1 . and then the more modern model of Naghdi and Cooper in §5 .5 .2 . Finally, for 

completeness sake, we revisit in §5.G Nitsche's MDKC for the full three-dimensional elastic solid 

dynamic system [131]: as for all the systems in this chapter, we show the alternative network form 

suitable for DWN discretization in §5 .6 .1 . In keeping with the more applied flavor of this chapter , 

we also present simulation results for Tiinoshenko's beam system and the Mindlin pla te in §5 .2 .5 

and §5 .4 .3 , respectively, under both uniform and spatially-varying material parameter conditions. 

C h a p t e r 6: Conc lus ions a n d Future Direct ions 

In Chapter C we address the general questions of the last section, and then make some suggestions 

for future research: in part icular , we mention some partial results that could not be easily fit into 

the main chapter development, namely the application of circuit methods to time-varying systems 

in §6 .2 .7 (and an application to time-varying vocal tract modeling is indicated), and a possible 

foundation for a theory of the boundary termination of passive distributed networks in §6 .2 .3 . 

A p p e n d i x A: Finite Di f ference Schemes for the W a v e Equat ion 

Appendix A serves a dual purpose. First, it is intended as a review of the basics of the spectral 

or Von Neumann analysis of finite difference schemes: this analysis is quite powerful and revealing 

if the underlying physical model problem is linear and shift-invariant. We pay close at tent ion to 
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the IKIIIIIIIKII stability conditions that can be arrived at through a straightforward application of 

these spectral methods. For this review portion of the appendix, we depend primarily on the 

excellent text by Strikwerda [17G]. (For the reader with no prior exposure to the analysis of finite 

difference methods . §A.l could well serve as point of depar ture , before jumping directly into network 

and scat ter ing theory in Chapter 2.) We then systematically revisit all of the large variety of 

forms of DWN for the two- and three-dimensional wave equation, applying tliis spectra] analysis 

to the equivalent difference schemes. The comparison of the Von Neumann numerical stability 

conditions with the passivity conditions on the associated mesh s t ructures yields somewhat surprising 

results, for the so-called triangular (§A.2.3) and interpolated meshes (§A .2 .2 . §A .3 .3 ) structures; 

indeed, the conditions do not coincide in these cases, leaving us with some fundamental and puzzling 

questions about the nature of this discrepancy. In addition, we also introduce some techniques 

for rigorously analyzing certain vector-type schemes ( the hexagonal scheme, in § A . 2 . 4 and the 

te t rahedral scheme, in §A.3 .4 ) . and look at a theoretical means of obtaining optimally direction-

independent numerical dispersion properties for certain schemes for which we have free parameters 

at our disposal ( the interpolated schemes in §A.2 .2 and § A . 3 . 3 ) . Throughout the appendix we pay 

particular at tent ion to evaluating the relative memory requirements and computat ional efficiency of 

the various schemes, and provide numerical dispersion error plots for all the schemes. 

A p p e n d i x B : A p p l i c a t i o n s in F lu id D y n a m i c s 

In Appendix 13. we summarize some of the interesting new developments in applying wave digital 

filtering methods to strongly nonlinear problems in fluid dynamics. Though there are no significant 

new results in this appendix, we take the opportunity to elucidate some connections to current 

trends in the analysis of such systems involving so-called skew self-adjoint forms: in doing so, we 

highlight certain unforeseen shortcomings of Fettweis's MDKC and MDW'D network representations 

of these systems, and indicate a possible way of avoiding these difficulties in § B . 3 . 3 by making use 

of intropy variables. In keeping with the overall goal of unifying wave digital and digital waveguide 

network approaches to numerical integration, we also show in § B . 3 . 2 how the methods of §4 .10 can 

be applied to the one-dimensional gas dynamics system in order to yield a DWN-like s t ructure . 



Chapter 2 

Wave Digital Filters 

2.1 Introductory Remarks 

The entry point, for any s tudy of numerical methods based on wave and Mattering ideas, must 

necessarily be a review of wave digital filters (WDFs) [41. 4G]. This filter design technique, proposed 

by Alfred Fettweis in the early 1970s, was an at tempt at t ranslat ing analog filters into the digital 

realm witli a pointed emphasis on preserving as much of the underlying physics as possible. In 

particular, a digital filter s t ruc tu re arrived at through Fettweis's procedure has the same precise 

network topology and energetic propert ies as the lumped analog electrical circuit (called the refen im 

circuit) from which it is derived. 

The theory is straightforward: analog circuit components (.V-port devices or elements), usually 

defined by a voltage-current relation, are first given an equivalent characterization in terms of wave 

variables. While this is merely a change of variables, it has the advantage of allowing an al ternate 

description of t h e dynamic behavior of the network: energy incident on a circuit ele nt (incident 

from the rest of the network to which it is connected through a port) may be reflected back from the 

element through the same por t , or t r ansmi t t ed through to another part of the network through a dif­

ferent port . T h e Incident, reflected and t ransmit ted energies are carried by waves'. The reflectances 

and transini t tances themselves are determined by arbitrary positive constants called port resistances 

which are assigned to individual wave por ts . An important result of using wave variables is that 

the entire network may then be parametr ized by these reflection and transmission coefficients which 

are. at least for passive networks, bounded independently of the numerical circuit element values 

themselves (inductances, capacitances and resistances etc.), which may vary over a wide range. 

The t rue advantage of using wave variables becomes much more tangible when we seek to obtain. 

'Though it is perhaps difficult to conceive of wave motion in a lumped system (i.e.. one with negligible spatial 
extent) such as an analog electrical network, it should lie mentioned that so-called wave variables may be interpreted 
as traveling waves in a network whose comp -nts are connected by transmission lines of vanishing length [101]. 

.",:; 
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from a given analog filter design, a digital filter structure. This is usually done in the W D F context at 

s teady s t a l e via a particular type of bilinear transformation or spectral mapping [41] from continuous 

to discrete frequency variables. Unless wave variables are employed, the resulting filter s t ruc ture 

will usually not be recursively computable , and hence not directly hnpleincntable as a computer 

program. In addition, because the reflectances and transmit tances of the network (which become 

the filter multiplier values] are bounded in a simple way. a host of desirable filter propert ies result 

which are especially valuable in a fixed-point computer implementation: complete elimination of 

certain types of limit cycles or parasit ic oscillations and very low sensitivity of the filter response 

to coefficient truncation are the most frequently mentioned [40]. A further advantage s tems from 

the fact tha t because the network topology of the reference circuit has been inherited by the digital 

filter s t ruc ture , we have convenient access to a simple energy measure for the discrete dynamical 

system: this energy, which is a direct analogue of the energy stored in the electrical anil magnetic 

fields surrounding the reference circuit, may be used as a discrete-time Lyapunov function [37, 42] 

in order to provide further rules for dealing with the inevitable truncation of the filter s t a te in a 

fixed-point implementation. 

Many of the underlying ideas, however, had existed for some time before they coalesced into 

1'Vttweis's digital filter design technique. In fact, it is perhaps best to describe wave digital filtering 

not as an unprecedented invention, but as the successful synthesis of two principal preexistent ideas. 

T h e crucial wave variable and scattering concepts were borrowed from microwave filter design [11, 12]. 

and digital s tructures based on the reflection and transmission of waves had appeared previously, 

especially in "layer-peeling" and "layer-adjoining'1 methods for solving inverse problems that arise 

in geophysics [22, 23. 213], and in models of the human vocal tract used in the analysis and synthesis 

of speech [104. 145], as we saw in §1.1.1. Many other digital filter structures make use of similar 

ideas, and have similar useful properties- among these are digital ladder and lattice forms [79], 

normalized filters [80] and orthogonal filters. This last type of s t ructure has been formally unified 

with W D F s in [192]. The other cornerstone of wave digital filtering, the concept of a continuous-

to-discrete spectral mapping which is. in some-sense, energy preserving, was not new to circuit 

discretization approaches. It appeared in the 1960s in the numerical analysis community which was 

concerned with the stability of the discretization of sets of ordinary differential equations (ODEs); 

indeed, wave digital filtering can be thought of as an A-statitv [32, 65. 75] numerical me thod which 

discretizes the defining differential equat ions of an analog electrical network. 

Wave digital filtering has, since its inception, developed in many directions, and has become a 

large subfiekl of the vast expanse of digital filter design. Because this thesis is devoted to the use of 

wave digital filters for simulation purposes, and not for filtering, this introductory chapter is intended 

merely to motivate material in the sequel, and to provide enough basic information for the reader 

to unde r s t and the WDF symbology (which is. unfortunately, somewhat idiosyncratic and takes a 

bit of ge t t ing used to). Indeed, many filtering issues do not arise at all in a simulation sett ing, at 
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least from the point of view of traditional numerical analysis ' . The single best W D F review paper 

is certainly [10]. which is filled with practical filter design information and references. We briefly 

mention that some of the recent lines of development have been in the areas of mult i-rate systems 

and filter banks [54, 117. 18C]. cochlear modelling [70]. vocal tract modelling [177]. the modelling 

of nonlinear circuit components [39] such as transistors [30]. switching elements [151] as well as 

applications to nonlinear transmission lines [-10. 120]. The concept of a generalized adaptor (see 

!i"2.3.5) with memory, as another means of approaching nonlinear circuit elements has been explored 

in [154]. Another important direction has been the generalization of VVDFs to the multidimensional 

case [02]. and we will discuss this in detail in the next chapter. 

2.2 Classical Network Theory 

2.2.1 N-ports 

Classical network theory [12] is partly concerned with the properties of connections of N-port devices. 

In the abstract . an A'-port is a mathematical entity whose internal behavior is only accessible through 

its A ports. With the j ' t h port is associated a current ij. a voltage vt, and two terminals (see Figure 

2.1). The two terminals of any port must always be connected to the terminals of another por t . A 

network is simply a collection of .Y-ports connected such that no port is left free'*. 

' V M 
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Figure 2.1: N-port. 

For lumped networks, the voltages, currents and possibly element values in the networks are 

allowed to be real-valued functions of a sole real parameter / which is usually interpreted as physical 

time. Multidimensional networks [208] are more general in the sense tha t the voltages, currents and 

port resistances may be functions of one or many other parameters, which may represent spatial 

dimensions, hi this introductory chapter, we will be concerned only with lumped networks, but 

•A good example of such a concern presents itself when we look into spectral analysis of difference schemes in 
Appendix A. Simulation people are usually interested in the convergence of approximate numerical schemes, in the 
limit as s grid spacing or time step becomes small: digital filtering people would think of this as matching a digital 
frequency response to that of the analog response (of tin' physical system) near the spatial or temporal DC frequency; 
for musical sound synthesis, however, these grid spacings or time steps are generally fixed (by the sampling rxite), so 
it might be worthwhile to look at a measure of the spei r ral fn over the entire spectrum. 

"More generally, network theory treats so-called I-terminal or multi-pale networks [2UU], for which terminals are 
not necessarily associated in pairs. 
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it should be kept in mind that Chapter 3 and par t s of Chap te r s 4 and 5 are devoted chiefly to 

a particular class of multidimensional network which can represent the behavior of a dis t r ibuted 

physical system. 

11 an A-port is hnear and time-invariant (LTI), then the port quantities may exhibit a purely 

exponential t ime-dependence at a single complex frequency s. For such an exponential state [12], it 

is also useful to define, for any port with voltage e[t) and current i(t). the complex ampl i tudes D 

and i. We can then write 

r(M = i V " i(t) = / r " 

Under certain conditions [12], a LTI network will possess an N x A" impedance matrix' Z. so that 

the steady-state voltages and currents are related by 

v = Zi (2.1) 

where v and i are the column .V-vectors containing the ampli tudes i<\,... , t',\' and ;') i \ respec­

tively. In general, if the A'-port contains elements which behave as differential or integral opera tors , 

then we will have Z = Z(s) . The admittance of such an A'-port is defined as 

Y = Z _ 1 

at frequencies s for which Z is invertible, and as infinity otherwise. 

In most cases of interest, the entries of Z(s) will be rational functions of .s. An A-port so defined 

is called real if the coefficients of these rational functions lire real numbers. In this case, there is no 

loss in generality [12] in considering the port voltages and currents to be real-valued functions of f, 

in which case we may write, for an exponential s ta te . 

r ( / ) = Re (»V") ,( /) = Re | V ' ) 

Now r(r) and /'(/) are referred to as the real ins tantaneous port voltage and current respectively. 

2.2.2 Power and Passivity 

The total instantaneous power absorbed by a real A'-port is defined by 

«-.W) = £ n(f)'j(t) (2.2) 

' A linear and time-invariant A'-port need not have an impedance; the ideal transformer, for example, does not. In 
such rases, a more general "hybrid" matrix [12], from which all relevant properties may be deduced, can be defined. 
We will make special use of hybrid forms in ^ 1.1(1. 
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where l'j(f) and ij(t) are the real instantaneous voltage and current at port j . In general, for an 

A'-port which contains stored energy £"(/). which dissipates energy at ra te uj(t). and which contains 

sources which provide energy at ra te u\,{t). then the energy balance 

I ' ( « w + tt>. - wd)dt = £ ( ' • • ) - E{h) (2.3) 

must hold over any interval [/|./i»]. Such an .V-port is called passive if we have 

WinadtZEitri-mti) (2-4) I 
•It, 

over any time interval: the increase in stored energy must be less than the energy delivered through 

the ports. The A'-port is called lossless if (2.4) holds with equality over any interval. 

For a linear time-invariant A'-port, in an exponential s tate of complex frequency s, we can define 

the total complete power absorbed to be the inner product 

«• = i*v 

and the average or activt power as 

u= R e ( F v ) 

where ' denotes t ranspose conjugation. For an A'-port defined by an impedance relationship, we 

may immediately write, in terms of the voltage and current amplitudes. 

„ = R e ( i - v ) = ^ ( i - v + v - i ) = i ( ! * 2 l + f*Z*l) = - ( l * ( Z + Z ' ) i ) 

For Mich a real LTI .Y-port. passivity may be defined in the following way. If the total active 

power absorbed by an A'-port is always greater than or equal to zero for frequencies 8 such that 

Re(.s) > 0, then it is called passive. This implies that 

Z + Z ' > 0 for R e ( s ) > ( ) (2.5) 

A matrix Z with such a property is called a positivt matrix. In the present case of a real A'-port, 

Z is called positive rial ( though in general, positivity is all that is required for passivity). If tin-

average power absorbed is identically zero for Re(.s) = 0, or, in terms of impedances, if 

Z + Z* = 0 for Re(.s) = 0 

then the A'-port is called lossless. 
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2.2.3 Kirchoff's Laws 

Connect ions between individual ports can be made through an appeal to Kirchoff'a Laws, which 

specify two impor tan t connection rules. Kinhoff's Voltage Law (KVL) states that for a scries 

connection, as pictured in Figure 2.2(a). the currents will be equal in all ports to be connected, and 

that the sum of the voltages at all por ts is zero, or. in other words, if we have a series connection of 

M por ts . 

»1 = »2 = ••• = 'A/ 

1 , + c j + . . . + (.,, = 0 

Kirchoff'a Current Law (KCL) specifies the dual relationship among the voltages and currents in 

the case of a parallel connection of . \ / ports, as per Figure 2.2(b), as 

' 1 = r-i - ... = Vu 

l * l+ i 3 +. . .+»M = 0 

< J 

>•' " 

' l 

' i 

i\i 

I'M 

(a) (b) 

Figure 2.2: Kirchoff connections of M ports, in (a) series and (b) pamllel. 

Both sets of constraints hold instantaneously and can be thought of as A/-ports in their own 

right. In addit ion, bo th types of ."-/-port are passive, and in fact lossless. For example, in the case 

of a series connection of M ports where the currents at every port are the same and equal to i. we 

have, from (2.2), that 

A/ U 
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Losslessness of the parallel connection can he similarly demonstrated. It is possible to show, through 

the use of Tellegt n's Theon in [13G] that a network made up of Kirchoff connect ions of passive .V-ports 

will behave passively as a whole. 

2.2.4 Circuit Elements 

T h e most commonly encountered linear one-ports are the inductor of inductance L, the resistor of 

resistance R0 and capacitor of capacitance C: their schematic representations are shown in Figure 

2.3. 

/?o I±:C 

(a) (I.) 

Figure 2.3: One-port elements— (a) an inductor of inductance L. (b) a resistor of resistanei /?n 

and (c) a capacitor of capacitance C. 

The equations relating voltage and current in the three one-ports, as well as their associated 

impedances are as follows: 

Inductor : 

Resistor : 

Capacitor : 

v = L 
di 
di 

V = / M I ' 

dt 

Z = Ls 

Z = Rn 

Z = ± 
Cs 

(2.G) 

(2.7) 

(2.8) 

Each of these circuit elements is passive as long as its element value (L. C or /?») is positive' ; 

tlie inductor and capacitor a re easily shown to he lossless as well. The inductor and capacitor are 

examples of reactive circuits elements all power instantaneously absorbed by either one will he 

stored and eventually he re turned to the network to which it is connected. The resistor is passive. 

b u t not lossless. 

In addition to the one-ports mentioned above, we can also define the short-circuit, open-circuit. 

'More generally, we allow these values to I"' Bero as well. In these cases, the inductor and resistor are interpreted 
as short circuits, and the capacitor as an open-circuit. 
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-0 

( > 0/ 

(a) (b) (c) (d) 

Figure 2.4: Other one-ports (a) short-circuit, (b) open-circuit, (c) voltage source and (<1) current 
source, Dots adjacent to the sources indicate polarity. 

current source and voltage source (see Figure "2.4) by 

Short-circuit : 

Open-circuit : 

Voltage source : 

Current source : 

u - 0 

i = 0 

c=e(t) 

< = / ( ' ) 

The impedances of the short- and open-circuit one-ports are zero and infinity, respectively. Both 

are lossless. 

The tivo-ports which will occur most frequently in this thesis are the transformer and gyrator. 

bo th shown in Figure 2.5. Each of these two-ports has two voltage/current pairs, one for each port . 

T h e transformer has associated with it one free parameter II. called the turns ratio, and the gyrator 

is defined with respect to a parameter /?<; > 0, as well as a direction, represented graphically by an 

arrow. The relation among the port variables in each case is given by 

Transformer : 

Gyrator : 

i>2 = n» ' i 

i'i = —Rah 

i, = — n i 2 

«'2 = Rdi 

(2.9) 

(2.10) 

It is easily checked that both the transformer and gyrator are lossless two-ports. The gyrator is 

the first example we have seen so far of a non-reciprocal e lement—that is. its impedance matrix is 

not Heiniitiau: while we will not make nearly as much use of it here as the other elements, it will 

find a place in certain par t s of this work, especially in dealing with physical systems which have a 

certain type of asymmetric coupling (see Chapter 5). in optimizing certain wave digital structures 

for simulation (see §3.12). and will play a pivotal role in linking digital waveguide networks to wave 

digital networks (see §4.10). 

There are other A'-ports of interest in network theory, many of which have been applied success­

fully in wave digital filter designs, such as circulators as well as time-varying [178] and non-linear 

elements [3G. 39. 04, 151]. which have been used to study the propagat ion of nonlinear waves in 
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Ra 

' i )C '•j 

(a) (b) 

Figure 2.5; Two-ports (a) u transformer, of turns ratio n and (b) a gyrator, of gyration coefficient 
It a-

lumped circuits [126]. For numerical integration purposes, however, the above set of elements proves 

to be an amply sufficient set of basic tools. An exception will be the non-linear distributed elements 

which appear in the circuit-based approach to fluid-dynamical problems; we mention these elements 

briefly in Appendix B. 

2.3 Wave Digital Elements and Connections 

2.3.1 The Bilinear Transform 

Wave digital filters result from the mapping of a lumped analog electrical network (usually made 

up of the elements mentioned in the previous section connected using Kirchoff's Laws, and which 

is intended for use as a filter) into the discrete-time domain. In the linear time-invariant case, this 

translation is carried out using a particular type of spectra) mapping between the analog Frequency 

variable s and a new discrete frequency variable v which will be a rational function of c _ 1 = c~al 

which is interpreted as a unit delay, of duration T: the mapping affects only reactive .V-ports. i.e., 

those whose behavior is frequency-dependent, such as the inductor and capacitor. Memoryless el­

ements, such as the transformer, gyrator and resistor (as well ;is the parallel or series connection. 

interpreted as an TV-port) are frequency-independent, and will be unaffected by such a transforma­

tion. 

The frequency mapping proposed by Fettweis' in [41] is a particular type of bilinear transform, 

given by 

2 1 - ,-*T 2 1 
-> v = 

n + ,-sl Tl + z-
(2.11) 

'Fettweis in fail proposes the mapping s —* (1 — : _ l 1/(1 + : " ' ) . which is similar to (2.11 ] except for the factor 
of 2/7' . Although this factor is of little importance in filtering applications, it is necessary lure fur the interpretation 
of such mapping as an integration rule. This should become clear in Chapter it. 
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We can then write 

clearly 

Rc(s) > 0 

Re(.s) < 0 

Rc(s) = 0 

Re(, i = 
2 1 - Id 2 l - e-3R«(«)7 

T | l + r - T | 2 r | l + r - ' | 2 

Re(v) X ) 

R e ( i ) < < ) 

Re(V) = 0 

|*|>1 

|*| <1 

M = 1 

This implies that stable, causal transfer functions in a will be mapped to stable causal transfer 

lm(«) 

He(s) He(-) 

Figure 2.G: Spectral mapping corresponding to the trapezoid rule. 

functions in the discrete variable e , and moreover that positive real functions will be mapped to 

functions which are posttnu real m the outer disk [162]. Such functions are often called pseudopassive 

[42], and have an energetic interpretation similar to that of their counterpar ts in the analog domain. 

(Indeed. Fettweis views pseudopassivity as simply passivity using a warped frequency variable f 

[46].) 

In particular, for a harmonic state— that is. for real frequencies u> such that s = ju> and z = <]ujl . 

we have that 

tan Of) (•2.1: 

so that the entire analog frequency spec t rum is mapped to the discrete frequency spectrum exactly 

once. In particular, we have that the analog DC frequency ,s = 0 is mapped to discrete DC z = 1. 

and that analog infinite frequency is mapped to the Nyquist frequency. It should be clear that there 

will be significant warping of the spectrum away from either extreme. 

It is also worthwhile examining the mapping (2.11) on the unit circle in the low-frequency limit. 
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in which case we can expand the right side of the mapping about ~' = 0, to get 

2 / u . T \ T2 , 

The mapping (2.12) can be rewrit ten as 

w - > u ; + 0 ( w : , r ' J ) 

The frequency mapping thus becomes more accura te near ^ . = 0 in the limit as T —> 0. The order 

of this approximation (namely to T2) will play an important role in numerical integration methods, 

because it defines the accuracy of a numerical scheme [G5. 131. 17G]. 

It is important to mention that the t ime-domain interpretation of the bilinear mapping (2.11) 

is called the trapezoid rulv for numerical integration. Tha t is. treating ; _ l as the unit delay, the 

right-hand side of (2.11) serves as an approximation to the derivative in a discrete-time setting. 

For example, in the case of the inductor, application of the mapping yields the following difference 

equation relating the voltage and current: 

.•(»») + v(n - 1) ;= Y('("> - , (" ~[)) ( 2 1 3 ) 

It should be understood here that i(n\ and i(n) in (2.13) now represent discrete approximations to 

the voltage and current of (2.7) at t ime / = nT. for integer n*. Generalizations of the W D F approach 

to cases in which the A'-port of interest is time-varying or non-linear are based on this time-domain 

formulation, because in these cases, we no longer have a well-defined notion of frequency. 

For the rest of this section, so as to avoid unnecessary extra notation, we will assume that we 

have discrete time voltages and currents . Thus n and i now refer to sequences t( i i) and i(n). for n 

integer, and the steady s ta te quanti t ies V and i are complex amplitudes of a sequence at the discrete 

frequency :. 

2.3.2 Wave Var iab les 

At this point, one may assume that we have finished; indeed, we can derive a discrete-time equivalent 

to any LTI A'-port (graphically represented by a signal flow diagram involving shifts and arithmetic 

operations), and such elements can be connected using Kirchoff's Laws, which remain unchanged by 

the mapping (2.11). In particular, a network consisting of a collection of connected passive A-ports 

will possess a discrete equivalent of the passivity property, which has been called paeudopassivity 

'Since the two systems arc assumed to be tin- same, modulo a spectral warping, we will not use a special notation 
to distinguish a discrete variable from a continuous one: tin* type of variable should IK- clear from context. arid in rases 
where confusion may arise, we will always explicitly note the argument, in Chapter 1. however, we will use capital 
letters to distinguish discrete from continuous variables; this notational switch is unfortunate, but is a compromise 
necessary in order to remain coherent with the different literatures. 
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[42]. T h e problem, however, is that a simple application of the bilinear transform to a given Y-port 

usually leaves Us with port variables which are not related to each other in a strictly causal way. 

For example, the difference equation (2.13) that results in the case of the inductor relates r(;i) to 

i(n) at every t ime s tep n so thai if we try to connect such a discrete-time one-port to another which 

has the same proper ty fusing Kirchoff's Laws, which are inemoryless), we necessarily end up with 

non-realizable delay-fret: loops [4G] in our resulting signal flow diagram. In other words, we will not 

be able to explicitly u p d a t e all the port variables in our algorithm using only past values stored in 

the delay registers. 

The problem of these delay-free loops was solved by Fettweis [41] with the introduction of wave 

variables, a concept with a long history borrowed from microwave electronics [11, 12]. For a por t 

with voltage V and current i. voltage waves are defined by 

a = v + 17? Input voltage wave (2.14a) 

b - e - iR Output voltage wave (2.14b) 

(i and I) are referred to as wave variables, and in particular, a is called an input wave and b an output 

wave: the significance of these names will become clear in the examples of ?j2.3.4. This definition 

holds instantaneously, and will also be t rue for continuous r and i. though we will almost never have 

occasion to refer to analog wave variables in this thesis. The parameter R > 0 is a free parameter 

known as the port resistance—its choice is governed by the character of the element itself. We also 

can define the pari conductance G by 

( ? - i (2.15) 

at a port with port resis tance/?. 

It is also possible to define power-normalized waves [4C] a and b at any port with port resistance 

/? by 

a = — y = - Input power wave (2.1Ga) 

t»-»ii „ , „ , „ , , 
b — =r- Output power wave (2. lob) 

2y/R 

The two types of waves are simply related to each other by 

a = 2V /7I<I (2.17a) 

b s 2^/Rb (2.17b) 

but power-normalized quantities have certain advantages in cases for which a port resistance is time-

varying or signal dependent (indeed, in these cases, power-normalized waves must he employed if 
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passivity in the digital simulation is to be maintained). In general, however, in view of (2.17). it 

should be assumed thai we are using voltage waves unless otherwise indicated. 

T h e steady state quantities <~i and b are defined in a manner identical to (2.14), where we replace 

i and i by P and i. 

2.3.3 Pseudopower and Pseudopassivity 

Fettweis [42] defines the instantaneous pseudopower absorbed by a port with port resistance H (real) 

at t ime step n in terms of the discrete input and output wave quantities as 

« w ( " ) = ^ ( « 2 ( ' < ) - ' > 2 ( " ) ) - 4 ( f l a ( f t ) - 6 ? ( n ) ) (2.18) 

which, when the transformation (2.14) is inverted, gives 

tr,n,,{ii) = 4 r (n ) / ( ;< ) 

This discrete power definition coincides with the s tandard definition of power in classical network 

theory from (2.2). aside from the factor of 4. which is of no consequence if definition (2.18) is applied 

consistently throughout a wave digital network. 

For a real LTI .V-port. in an exponential s tate of complex frequency z. the s teady-s ta te average 

pseudopower may be written in terms of the N x 1 vectors a and b which contain the power-

normalized complex amplitudes «,• and b•. for j> = 1 N as 

H = 4 ( a " a — b b j 

T h e steady-state reflectance S ( . : _ 1 ) is defined by 

b = S a 

and gives 

tr = 4 ( a " ( I . v - S ' S ) a ) 

where I \ is the N x N identity matrix. For pseudopassivity [42], we require, then (recalling that 

the bilinear transform (2.11) maps the right half s-plane to the exterior of the unit circle in the : 

plane) that 

S * ( c - 1 ) S ( : - ' ) < I . \ for | ; | > 1 (2.19) 

S ( r _ l ) is sometimes called a bo an did nal matrix. If (2.19) holds with equality for \z\ = 1. then 
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it is called lossless bounded real (LBR) [193]. In general, to bounded real matrix reflectances there 

correspond positive real matrix impedances, and vice versa. In terms of voltage wave quantities, we 

have for a wave digital A'-port. that 

a = 2RJa b = 2R^b 

where R? is the diagonal square root of the matrix containing the N port resistances Rt Ii\ 

on its diagonal. We then have 

S = R ^ S R - = 

for the voltage wave scattering matrix S and thus we require 

S ' ^ ' J l l ' ^ r ' j g R * 1 for | ; | > 1 (2.20) 

for passivity. For one-ports, the requirements (2.20) and (2.19) are the same. 

Also note that we have, by applying the power wave variable definitions (2.16). and the discrete 

impedance relation v = Zi (which is identical to the analog relation from (2.1), except that we now 

have Z = Z(r" ' ) ) . that 

S = (ZR~' + I ) - , ( Z R " 1 - I ) (2.21) 

If the A'-port is not LT1. then it is possible to apply a similar idea to the expression for the 

instantaneous pseudopower. from (2.18) in order to derive a passivity condition [46]: In this case, 

pseudopassivity lias also been called incremental pseudopassivity [125]. 

2.3.4 Wave Digital Elements 

We will now present the wave digital equivalents of all the circuit elements mentioned in §2.2.4. 

Under the bilinear transform (2.11), the steady-state equation for an inductor becomes 

or. in the discrete-time domain, 

r(fi) + i - ( , i - l ) = | r ( i ( » ) - j ( „ - l ) ) 
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Applying the definition of wave variables (2.14), we get. in the time domain, 

a(n) + b{n) + a < n - 1 ) + Hn - 1) = j^(a(n) - b(n) - a(n - 1) + b{n - 1)) (2.22) 

If we make the choice 

/? = 
2L 

r 
then (2.22) simplifies to 

b{„) = -« (>»-1 ) (2.23) 

Thus the input wave fi must undergo a delay and sign-inversion before it is output as b. In terms of 

steady-state quantities, we have 

. , - 1 ; S(z , - n _ _ , - ] (2.24) 

The reflectance S ( ; _ 1 ) is. as expected, LBR (.see previous section). The resulting wave digital 

one-port is shown in Figure 2.7(a). 

The derivations of the wave digital one-ports corresponding to the resistor and capacitor are 

similar: their signal-flow graphs also appear in Figure 2.7. We note that the same choice of the port 

resistance U should be made in the case of power-normalized wave variables. We also note in passing 

that we have used here the symbol T to represent a unit delay in a wave digital filter7. 

-1 

/, = /?„ o 
6 = 0 

J?-£ 

(a) (b) (- ' ) 

Figure 2.7: Wave digital one-ports corresponding to the classical OIK -parts of Figure 2.3— (a) tin 
wave digital inductor, (b) irsistor, and (c) capacitor. 

The short-circuit and open-circuit one-ports are, for any choice of the port resistance /?, perfectly 

reflecting (with or without sign inversion, respectively). The appearance of the factor /? in the 

definition of the wave digital current source results from our choice of using voltage waves (as 

Mil this chapter, because iill elements arc LTI, we could equally well use the symbol z for the unit delay (as is 
commonplace in tin' digital tillering literature). In the next chapter, however, when we will be making use of shifts in 
multiple dimensions for systems which are not. in general, shift-invariant, then frequency domain signal-How diagrams 
may only he used in special rases. 
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opposed to current waves). In all the wave digital one-ports of Figure 2.8. there is an instantaneous 

dependence of the output wave b on the input wave a. and we may expect delay-free loops to appear 

when these elements are connected with others. On the other hand, the form of these one-ports does 

not depend on a particular choice of the port resistance R (except in a very minor way for a current 

source), and remains a free parameter , which can be used, in many cases, to remove delay-free loops. 

o-i ©—-(>. ®^K)2/?/ 

(a) d>) (c) ( • I I 

Figure 2.8: Wave digital one-ports corresponding to the classical one-ports of Figure 2-4 (a) short-
circuit, (b) open-circuit, (c) voltage source und (d) cuiTent source. 

It is also possible to combine resistances and sources [46]: a resistive voltage source, shown in 

Figure 2.9(a), consists of a voltage source e in series with a resistor of resistance Ho. If the port 

resistance of the combined one-port is chosen to be R0. then the wave digital one-port [4G] is as 

shown in Figure 2.9(b). A wave digital resistive current source can be similarly defined. 

R0 

{) 

o 
R = R» 

(a) (b) 

Figure 2.9: (a) A resistive voltage source, and (b) the associated wave digital one-port. 

T h e classical transformer and gyrator two-ports can be t reated in the same way. For example, 

the gyrator accepts two input waves <it and dj , and yields two output waves /)| and bg< There are two 

port resistances. /?] and R-2. T h e instantaneous equations (2.10) relating the voltages and currents 

in a gyra tor become, upon subst i tut ion of wave variables, 

(2.25) 
h 
b, 

1 

" Rl + RiR? 

Rl-RxR-i 

lRuR-2 

-2/?< ;/?, ' 

Rl - / , ; / ? , 
"! 

."'-' 
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which simplifies, under the choice of /?i = /?<,• and R> = Ra to 

b, = -a2 b-> = d i (2.2G) 

If we are using power-normalized wave variables, then the scattering equation for the gyrator becomes 

' It I,. - R | lh - 2R<, s/ThJh 

I, 

1 

Wa + RiRi 
• 2 R ( . V R J I > R % - R i R 2 

(2.27) 

In this case, any choice of the port resistances such thai R\R-i = R'i; gives 

b, = - a 2 fe-a, (2.28) 

The ideal transformer also can take on various forms, depending on the choices of the port 

resistances and on the type of wave variable employed. Under a choice of port resistances /?; and 

R-2 such tha t R> = n2 R\. the equations (2.9) for the ideal transformer of turns ratio ;i become 

h-, = ;)(/) b{ = - O j (2.29) 

For the transformer and gyrator WD two-ports, we adopt general symbols that do not reflect a 

part icular choice of the port resistances. If simplifying choices can be made in either case, than we 

can write the signal How graph explicitly (see Figure 2.10). There may be occasions when it is not be 

possible tii make these simplifying choice's of the port resistances which yield (2.2G) and (2.29). For 

example, when we approach the numerical integration of beam and plate systems in Chapter •"). as 

well as certain balanced forms (see f{3.12) the WD networks contain gyrators whose port resistances 

are constrained, forcing us to use (2.25). We also mention that these two-ports are both lossless, 

and in fact notl-energic [12] (i.e.. we have «;„.,,(»j) = 0. for all n). 

Numerous other wave digital elements have been proposed, namely circulators, quasi-reciprocal 

" r 

R, 1/" 

• ?>2 (I i 

Rj 

" r 

/• Ra 

l>-2 (I i 

Ro 

!,, 

Figure 2.10: Wave digital two-port» - (a) a transformet with turns ratio u and Us simpler form for 
/?•_> = jr/?i uwrf (b) (/ gyrator of gyration coefficient R<; and its simpler form for R\ = R> = /?<,•. 
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lines (QUARLS) . as well as unit elements [4G]. All have been applied fruitfully to filter design 

problems, but the unit element deserves a special treatment. 

T h e U n i t E l e m e n t 

One wave digital two-port, called the unit element, is usually defined in the discrete-t ime domain. 

without reference to an analog counterpart : tlris wave digital two-port is shown in Figure 2.11(a). h 

was considered by Fettweis to be the "most important two-port element" [46], and was used exten­

sively for realizability reasons in early wave digital filter designs, especially before the appearance 

of reflection-free ports [57]. It behaves exactly like a transmission line, and is in fact identical to the 

waveguide or bidirectional delay line which is the key component of the digital waveguide network 

[1GG], as we saw in §1.1.2. The unit element is time-invariant. and obviously lossless, though it is 

reactive (able to store energy). It should be clear, however, that we may simply apply the bilin-

R 

b, "• 

T 

T 

R 

• b, 

(a) (b) (c) 

Figure 2.11: The unit element and tts eontimious-ttme counterparts - (a) a unit element, with port 
resistances R and delays T. (b) its analog lattice form and (c) Jaumann form reference two-ports, 
wtth L= ^f andC = £. 

ear t ransform backwards in order to obtain a representation in the continuous t ime domain. The 

scat ter ing relation for the unit element is 

0 

and transforming from wave variables back to voltages and currents via (2.14) gives 

'•'1 
<'•-' 

R 

t-z-* 
1 + c"2 2 ; - ' 

2c"1 l + z-2 

I] 

»2 



2.3. WAVE DIGITAL ELEMENTS AND CONNECTIONS 51 

where H is the port resistance at either port. The bilinear transform (2.11) may be inverted by 

. - l 
2 + sT 

1 , *l 
JT"1" i 

1 aT 
.si I 

1 sT' 
sT 4 

1 , sT 

and we obtain, finally, a relationship between the continuous-time steady-state voltages and currents, 

with an impedance matrix (dependent on the time step T. assumed constant) given by 

Z(.i.T) = B 

Tliis denning equation for a two-port may be written as a lattice [55] (or .laumauu [132] equivalent) 

connection of an inductor and capacitor, each of whose values is now dependent on the choice of the 

time step, I\ See Figures 2.11(b) and (c). 

VVV mention this representation because in the distributed case, it will be possible to define mul­

tidimensional unit elements which will be very helpful in integrating digital waveguide networks (see 

Chapter 4) into the multidimensional wave digital Biter framework (see Chapter 3). The necessary 

manipulations, which are quite similar to the ones performed above, are carried out in ^4.10. 

2.3.5 Adaptors 

Consider now a series connection of .1/ ports, where we have a port resistance lij > 0, j — 1 M. 

associated with each port. In terms of instantaneous quantities, we have 

M 

or. in terms of wave variables, using the inverse of the transformation (2.14), 

M 

5 > , - + &,•) = () 

Since the currents at all ports are all equal to i, this implies, using bj = cij — 2Rji. that 

M 

and thus 

1 U 
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By applying similar manipulat ions in the rase of a parallel connection of . ) / ports, we can then write 

down the equations relating the input and output wave variables at the fcth port for both types of 

connection as 

M 

9 U 

A = 1. \i 

k=\ M 

Series connection 

Parallel connection 

(2.31) 

(2.32) 

where we recall from (2.15) that Gj is defined as the reciprocal of the port resistance Rj. For 

power-normalized wave variables, we thus have, applying (2.17). 

h = -«k- + ~s, "I, Y v/^«i' A' = > u 

Series connection 

Parallel connection 

(2.33) 

(2.34) 

The operator which performs this calculation On the wave variables is called a scries adaptor or a 

parallel adaptor [4G], depending on t h e type of connection. T h e graphical representations of three-

port adaptors , for either voltage or power-normalized waves, are shown in Figure 2.12. 
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(a) (b) 

Figure 2.12: Three-port adaptors— (a) a i/< in nil three-port series adaptor and one for which port 3 is 
reflection-free and (b) a general threi -port parallel adaptor and one for which port 3 is reflection-free. 

A useful simplification occurs when we can choose, for a part icular port (/ (called a rcjlectiou-fric 

port [57]) of an -\/-port adaptor . 

R,= Y B> 

M 

Gq= Y ,
 GJ 

Series reflection-free port resistance (2.35a) 

Parallel reflection-free port conductance (2.35b) 
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in which case the scat ter ing equations (2.31) yield, for the output wave at port q. 

'>>, - - ] C °J 

2 r 
'>>! = ^ M r Y. GJ"J 

Series reflect ion-free port (2.36a) 

Parallel reflection-free port (2.3Gb) 

Thus, at a l(•Meetion-free port q. the output wave bq is independent of the input wave r/,(: such a 

port can be connected to any other without risk of a resulting delay-free loop. The same choices of 

port resistances (2.35) will also give a reflection-free port if power wave variables are employed. 

S c a t t e r i n g M a t r i c e s for Adaptors 

The adaptor equations for a connection of M por ts , in either the series (2.31) or parallel (2.32) case, 

may be written a-* 

b = S a 

where b = [bi I'M]1 *md a = [ity a M]'. and where we have 

S = Iw - a s l ' 

S = - I , u + \<*l 

Series adaptor (voltage waves) 

Parallel adaptor (voltage waves) 

(2.37) 

(2.38) 

(2.39) 

Here 1 is an .\/ x 1 vector containing all ones. IA , is the M x M identity matrix, and a., and ar 

are defined by 

as = —rf—e?. Huf 
2^j=i lfj 

The sum of the elements of either as or a ( , is 2. For power wave variables, we have a similar 

relationship. 

b = S a (2.40) 

when 

S = I.\/ — i / a j y o j 

S = - I \; + ^/ot^ya^, 

Scries adaptor (power-normalized waves) 

Parallel adaptor (power-normalized waves) 
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Heir the square root sign indicates an cntry-by-entry square root of a vector (all entries of a„ and 

a,, are lion-negative). 

Defining the Euclidean norm of a column vector x as ||x||2 = v V x . it is easy to show that a 

power normalized scattering inatrix S is norm-preserving in either the series or parallel case. i.e.. we 

have 

l|b| |2 = N , (2.41) 

For voltage waves, we have the preservation of a weighted L> norm, i.e., 

INIP,, = ||a||P.,. (2.42) 

where || • ||p,v = \/(-)TP{-): in this case. P is an .\/ x M positive definite diagonal matr ix simply 

given by diag(G'i -Gui)- It should be clear that (2.41) and (2.42) are merely re-s ta tements of 

power conservation at a nieinoryless. lossless M-por t . 

Note that multiplying S or S by a (rector requires, in either the series of parallel case, O(M) 

adds and multiplies; in particular, ii is cheaper than a full M x M matr ix multiply. 

2.3.6 Signal and Coefficient Quantization 

hi a machine implementation of a wave digital filter, the signals and coefficients must necessarily tie 

represented with a finite number of bits. As such, it is not immediately obvious that the passivity 

properties for a given YYDF. which are framed in terms of real-valued signals (waves) and filter 

multipliers (related to the port resistances) will hold in a finite word-length computer implementa­

tion. All digital filter Implementations are vulnerable to a host of undesirable effects which result 

from signal and coefficient quantization; among them are parasitic oscillations and high sensitivity 

of filter pole and zero locations (and thus the frequency response). VVDFs. however, offer a number 

of means of combating these problems. The exploration of these means has produced a large body 

of l i terature [43. 4G. 58. 125. 179. 204]. We give only a brief outline here, for completeness sake. 

From the discussion of wave digital elements, it is easy to see that in most cases, the only 

arithmetic operations in a WDF will occur as signals are scattered from adaptors*; the wave digital 

inductor, capacitor and unit element involve only shifts and possibly sign inversion, and the wave 

digital resistor, which behaves as a sink, can essentially be ignored by the programmer once it* 

port resistance has been absorbed into the adaptor to wliich it is connected. Simple quantizat ion 

procedures [56. 201] were first proposed, and later the concept of incremental pseuriopassivify [125] 

was developed for ensuring that a finite word-length implement at ion of a wave digital adap tor 

behaves passively under signal truncation. The most straightforward scheme appears in Figure 2.13. 

•Referring to risiin- 2.\ti. il is easy to see that the transformer with n = ±1 and /?i = fit, and the gyrator with 
R\ = lit = /f(;(th('ir most common forms) also are arithmetic-free. Otherwise, a more detailed treatment Is required. 
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for the case of a three-port adaptor (either series of parallel). 

Q 

h 

Q 

E K5C1 

Arithmetic 

h 

hi 
I I 
Q 

62 «2 

Figure 2.13: Signal truncation at n three-port adaptor. 

fij arc the input waves (assumed voltage waves) to the junction, for j = 1 M (we have Jll = 3 

in Figure 2.13). and are assumed to be of some finite word-length. Extended precision is used within 

the adaptor in order exactly calculate the output waves bj, from (2.37). We have assumed that 

the multiplier coefficients within the junction are of finite word-length as well We will discuss this 

presently. The output waves bj thus satisfy (2.12), where a is replaced by a. with a = [3] " \ / ] ' -

Scattering is lossless. In general, however, the number of hits required to represent bj will now 

be greater than the number required for 5.-; in order to reduce the size of the output word-length, 

we may apply magnitude truncation (represented graphically in Figure 2.13 by boxes labelled "Q", 

which are not wave digital one-ports. Magnitude t runcat ion may be incorporated formally into the 

scattering picture through the use of ciirulators [125]). A reduced word-length wave bj is obtained 

from bj by truncating it in any way as long as magni tude is decreased. In other words, for any port 

J. 

This implies, then, that 

M P J < IMlp.a = ll*l|p,a 

so that passivity is maintained even considering the finite word-length wave variables. In this way 

(by ensuring a decrease in the overall energy measure of the W D network), bo th large- and small-

scale parasitic oscillations can be completely eliminated, at least the zero-input case [4C]. Various 

types of overflow characteristics have been examined in [5G. 125]. Such a quantization rule has also 

appeared in other contexts [193]. and applies equally well to digital waveguide networks [ICC], which 
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are the subject of Chapte r 4. 

The quantization of coefficients in VYDFs [42, 43. 40, 111] aa well as other similar filter structures 

[193] has been shown to have a minimal effect on the filter response. Tha t is. in many lossless 

configurations [40], variations hi the values of the multiplier coefficients (which are usually the 

reflection and transmission parameters a.* or a r at an adaptor) can be shown to have a second-

order effect on the filter response. In contrast , when BUch variations occur in direct-form filter 

s tructures, large changes in pole locations can result, and a stable filter may even become unstable 

[133]. This robustness property of scattering-based filter structures is sometimes called structural 

passivity [147. 109, 193]. As a simple example, consider the scattering equations (2.38) for a series 

adaptor: as mentioned above, the parameters in the vector as are the filter multiplier coefficients, 

and recall also that the sum of the elements in a., is exactly 2. in infinite-precision arithmetic. 

Suppose that the elements of a.5 are t runca ted to some finite word-length values, which can be 

written as the vector &,. If they are t runca ted such that all elements of 6t3 are positive, and their 

sum is still exactly 2. then it is easy to show that there must correspond a set of non-negative 

port resistances, and thus the quantized adap tor can still be considered as exactly lossless. More 

generally, it is possible I" ensure passivity if the sum of the elements of as is less than or equal to 

2: this has been discussed in the waveguide filter context in [109]. 

While most of the approaches to quantizat ion have been concerned with fixed-point implemen­

tations, many of the same ideas can be applied in floating-point as well. Floating-point signal 

truncation rules were proposed in [34]. and an early study of coefficient sensitivity and roundoff 

noise appeared in [111]- More recent developments include a generalized W D F which is simply re­

alized using mult iply/accumulate operat ions [53], and a description of passive coefficient-truncation 

rules [121] based on scattering matr ix factorization. 

2.3.7 Vector Wave Variables 

It is straightforward to extend wave digital filtering principles to the Vector case (this has been 

outlined in [131]: the same idea has apeared in the context of digital waveguide networks in [100. 

109]). For a (/-component vector one-port element with voltage v = [ i | , . . . . t , , ] T and current i = 

[»i . iq]1, it is posible to define wave variables a and b by 

a = v + R i (2.43a) 

b = v - R i (2.43b) 

for a q x q symmetric positive definite matr ix R: power-normalized quantit ies may be defined by 

a = \ ( R - 7 ' / 2 v + R l / 2 i ) (2.1la) 

b = ^ ( R - ' ^ v - R 1 ^ / ) (2,14b) 
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where R''"- is some right square root of R , and R ' ' - ' is its transpose. T h e power absorbed by the 

vector one-port will be 

«„,,., = ( a / R - ' a - b r R - | b ) = 4 ( a ' a - b ' b ) = 4vTl (2.45) 

Kirchoff's Laws, for a series or parallel connection of M (/-component vector elements with 

voltages v ; and i j . j — \ M can be wri t ten as 

i, = i2 = . . . = i u v , + v> + ... + v v = 0 

Vi = Va = . . . = v\/ i| + l2 + ... + \u = <• 

Series connection (2.46a) 

Parallel connection (2.4Gb) 

and the resulting scattering equations will be 

/ u \ ~' M 

bj. = a*. - 2R*. I V * R j V* a^. A- = 1 \ / Series connection (2.47a) 

\j=i ) i=t 

b t . = - a f c + 2 X ! R J ' Z ] R 7 l a J - * " * • U Parallel connection (2.47b) 

in terms of the wave variables a^.. bn- defined as per (2.43) and the port resistance matrices RA.. 

A- = 1 \ / . These are the defining equations of a vector adaptor: their schematics are essentially 

the same as those of Figure 2.12. except that they are drawn in bold—see Figure 2.14. As before, 

we use the same representation for power-normali/ed waves. 

a, bj 

j 
< i 

\ 
b, Bs 

b, 

ai b 

1 V 
b 3 a. 

(a) 

Figure 2.14: Thru-port vector adaptors— (a) a vector series adaptor and (b) a vector parallel 
adaptor. 
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Coupled I n d u c t a n c e s and C a p a c i t a n c e s 

Coupled inductances and capacitances defined, in vector form, by 

r d i 
v = L — 

dl 
i = C — 

dt 
(2.48) 

for symmetric positive definite matrices L and C were first introduced in the WDF context by 

Nitsche [131]: they turn out to be essential to the construction of VVDF-based numerical simulation 

algorithms for stiff distr ibuted systems such as plates (see §5.4) a n d shells (see §5.5), as well for 

full three-dimensional elastic solid dynamics (see §5.6), Though these are best thought of as vector 

elements, they appear within larger scalar circuits, and it is convenient to have a representation for 

which the vectors of port quanti t ies are separated out into scalar port-wise components. 

We show an inductive coupling of q loops in Figure 2.15(a): self-inductances are indicated by 

directed arrows, accompanied by an inductance Ljj. j = 1 , . . . ,q ( these are the diagonal elements 

of L). and a mutua l inductance between loops j and A-, j ^ A- is represented by an arrow and the 

associated inductance L/.-j (which is the (A-, j)th or (j,fe)th element of L. and is not constrained to 

be positive). A coupled capaci tance is shown in Figure 2.15(b). 

A coupled inductance can be discretized through the use of the trapezoid rule applied directly 

to the vector equat ions of (2.48); in t e rms of wave variables defined by (2.43). we get 

b ( » ) = - a ( » - 1) R = 2 L / T 

which is a direct vector generalization of (2.23). Similarly, for a capacitor , we get 

b ( n ) = a ( » - l ) R = T ( 2 C ) _ 1 

In practice, if a coupled inductance (or capacitance) appears in a circuit which i* to be discretized 

using VVDFs, we may treat it as a (/-vector two-port made up of a series (or parallel) junction 

terminated on a vector wave digital inductor (or capacitor) of port resistance 2 L / T (or T('2C)~ ). 

(a) (b) 

Figure 2.15: (a) q coupled inductances and (b) q coupled capacitances. 
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See Figure 2.1G for the signal flow diagrams for these objects and the simplified representations that 

we will use. The port resistance at the opposing poll will in general be diagonal, so that the vector 

wave variables entering and leaving the junction may be decomposed into scalar wave variables; this 

diagonal port resistance will be determined by the res! of the network to which the (/-vector two-port 

is connected. See >(4.2.G for more information on this decomposition in the DYVN context: we will 

return to vector/scalar connections in Chapter 5. We note that in the representations in Figure 

2.1G. we have not explicitly indicated the order in which the q scalar incoming and outgoing vectors 

should be •'packed" and "unpacked" from the vector wave variables at the lower por ts of the vector 

junctions. In the applications in Chapter 5. for a given coupled inductance (say), self-inductances 

will all be identical, as will all mutual inductances; thus any ordering will do. as long ;is the j t h 

elements of both a and b correspond to wave variables at the j t h scalar port . 
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Figure 2.16: (a) Signal flow graph for a wave digital coupled inductance and a simplified representa­
tion. Here the qxq port resistance R = 2 L / T . and Ro is a e\ xa diagonal matrix: the diagonal t ntrii S 
specify the port nststances at the q scalar ports to which the element is connected, (b) The signal 
flow graph for u wave digital coupled capacitance (vector port nststance R = T ( 2 C ) ~ ' ) . and its 
simplified representation. In either case, the wave variables at the lower port of the vector junction 
are simply defim </ by a 0 = [«i aq]

r and bo = [b\,..., bq]
T. 
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Chapter 3 

Multidimensional Wave Digital 

Filters 

3.1 Introductory Remarks 

The last chapter was concerned with techniques for deriving a digital filter design from an analog 

network. It should be clear that such a digital filter s t ruc ture can also be considered to be an explicit 

numerical solver for the system of of ordinary differential equations (ODEs) defined by the analog 

network which performs the filtering on continuous-time signals. This is perhaps an obvious point, 

but was apparently first noted in the literature in [G5]. It is interesting that this link was not made 

immediately in the multidimensional case, which is the subject of tliis chapter . 

A multidimensional generalization of wave digital filters (MDWDFs) first appeared rather early 

on [14], and most of the initial work involved applications to 2D filter design [118. 119]. It is itself an 

outgrowth of earlier work in the area of multidimensional circuits and systems [20. 105, 135] where 

the emphasis \v;is DM the synthesis of so-called variable networks (i.e., lumped passive networks with 

variable elements). The procedure for deriving a wave digital filter is largely tin- same in multiple 

dimensions as for the lumped case: to a given reference circuit, made up of elements connected either 

in series or parallel, various transformations are applied, specifically a change to wave variables, and 

spectral mappings. The end product is a wave digital network which has nearly all of the same 

desirable properties as lumped WD networks, especially recursive coinputabilitv. and insensitivity 

to signal and coefficient truncation. The difference in MD. however, is that the reference circuit. 

usually called a multidimensional Kirchoff circuit or MDKC is now far more of a mathematical 

abstract ion than a lumped circuit: the circuit s ta te is a function of several variables, which may or 

may not include time, and the circuit elements (as well as the connections between them) must be 

interpreted in a distributed sense. In particular, it is not a circuit which can be "built" (except in 

(d 
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tin-1 ;IM' of the variable networks mentioned previously). As such, the major problem confronting the 

designer of a MDWDF is the construction of this reference circuit [45. 44]. Various techniques were 

put forth, some involving MD circuits obtained by rotat ion of a known lumped reference net work [46]. 

A good deal of work went into the related synthesis problem for general multidimensional reactance 

two-ports [8. 9. 52]. which is much more difficult than in the lumped case (and not possible in 

general). 

The first paper to consider M D W D F s from a simulation perspective appeared ill 1990 [59]. though 

it was foreshadowed much earlier in [178]. That is to saw in analogy with the lumped case, a closed 

MDWD network could lie considered to be a simulator of a distributed system which is defined 

by a system of partial differential equations (PDEs) and represented by an MDKC. Here, unlike for 

filtering, t here î  a clear interpretat ion of the reference circuit. which is simply a symbolic restatement 

of the defining equations of a part icular model system. The wave digital numerical integration 

approach is applicable to a wide variety of physical systems, including electromagnetics [50]. coupled 

transmission lines [63, 106] and elastic solid and beam dynamics [131]. Most surprisingly, the method 

can be applied to highly nonlinear systems [127] such as those of fluid dynamics [16. 49, 70], as well as 

even more complex hybrids, such as the inagnetohydrodynauiic system [191]. The method requires 

that the propagation speeds in the problem to be modeled be bounded: this is equivalent to saying 

that the system should be of hyperbolic type^ [17G]. This requirement is important because numerical 

methods derived in this way from this approach can be interpreted as explicit finite difference schemes 

[82]; as such, they must obey a requirement ( the Courant-Fricdrichs-Lewy criterion [176]) relating 

the physical region of dependence for the model problem to a similar region on a numerical grid. 

We would also like to note that a related approach to numerical integration, based on a transfer 

function formulation has been taken in [108. 141. 143, 144]. 

Although this chapter is intended in par t as an extended review and compendium of the work 

to date in the field of numerical integration through the use of wave digital Biters, the subtext 

is certainly that these me thods can and should be t reated as a particular class of finite difference 

methods endowed with a special property, namely passivity. This point has not been explored in any 

depth in the literature, except in the lumped case [131]. Such a t reatment will also make it easier to 

compare wave digital me thods to digital waveguide networks (DWNs)[166. 198. 200]. which can also 

be used for numerical integration purposes in a very similar way. Chapter 4. which is devoted to 

DWNs, will return to the subject of M D W D F s for such a comparison, and eventually, a unification 

of the two methods. In Chapte r 5. we will apply the concepts discussed here to a variety of more 

' i t is possible to extend the M DYVD approach to rover parabolic systems [1 7(>] as well; parabolic systems may not 
have a bounded propagation velocity, but they ran be approximated by hyperbolic systems. Phis is essentially the 
path taken by lettweis in the modeling of the full Navie.r-Stokes liquations [112] which describe the behavior of a 
general viscous fluid [19]: we remark that a similar idea, termed "second-sound theory," ['<!(>. '<_'()">] has been used to 
hyperbolicize parabolic problems (indeed, all time-dependent systems obeying the laws of classical physics must be 
hyperbolic, even if certain models do not reflect this). Klliptic problems, which typically occur in describing steady 
state potential distributions in both electrostatics and lluid dynamics can be dealt with using MDWDFs using a 
relaxation-type approach ['17]. 
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complex systems, in particular those describing the vibration of beams, plates, shells and elastic 

solids. 

We refer to fjl.3 for a full technical summary of this chapter . 

3.2 Symmetric Hyperbolic Systems 

In the previous chapter, we examined the discretization of lumped analog circuits: by lumped, we 

mean that the voltages and currents in these circuits are functions of only one independent variable: 

t ime. Although the described procedure was originally intended as a means of developing robust 

digital filtering s tructures, an equivalent point of view is that such structures in fact numerically 

integrate the set of ordinary differential equations describing the time evolution of these currents 

and voltages. 

In a dis tr ibuted problem, the dependent variables are functions not only of t ime /. but also 

of location within an n-diineusional spatial domain P. with coordinates x = \.r\ r , , ] 7 . Such 

a problem is referred to as an (u + 1)D problem in the VVDF literature [131]. Problems without 

spatial dependence will be called luinpul problems. If the equations which define the problem include 

differentia] operators , we are faced with solving a set of part ial differential equations (PDEs) . 

A particularly important family of PDE systems are the symmetric hyperbolic [74, 82] systems 

of the form 

p ?+i>^+ B w + f =° (3-D 

Here, w , the s ta te , is a (/-element column vector defined over coordinates x £ P C R" and t > 0. 

P and A;.. A- = 1 u. are real symmetric q x q matrices*: in particular, P L8 assumed to be 

positive definite. B is a real t\ x q matr ix (not necessarily symmetric) whose symmetric part models 

energy loss or growth, and the (/-element real column vector f is & forcing function or excitation. 

For all the systems to be discussed in this thesis (except the fluid dynamic systems of Appendix B). 

the matr ices A t are assumed to be constant, though P and B are allowed to depend on x. These 

systems are thus linear and time-invariant, but not generally shift-invariant, so that we cannot apply 

spatial Fourier transforms directly to analyze them. System (3.1) must be complemented by initial 

and boundary conditions [82]. in order for the solution to exist and be Unique. 

Though it is possible to extend this definition to include cases where the matrices Aj. may depend 

on x. / or even w (in which case system (3.1) is nonlinear), this simpler form describes a wide variety 

of physical systems, from electromagnetics to string, membrane, beam, plate, shell, and elastic solid 

dynamics, to transmission line systems, to linear acoustics, etc. Symmetric hyperbolic systems are 

'We will always choose x\ = r , r j = y. Xs =* *, so the matrices A i , A ; and A^ will refer to the matrix coefficient!, 
of the partial derivatives in these three directions iri (:5.1). 
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important because they form a subclass of strongly hyperbolic systems, for which the initial-Value 

problem is Well-posed [1~G]. Roughly speaking, to say that a system is well-posed is to say that the 

growth of its solution is bounded in a well-defined way: growth in an L% norm cannot be faster than 

exponential. This concept is elaborated in detail in [82. 176]. We can examine this growth in the 

present case as follows. 

First, assume that the problem is defined over an unbounded spatial domain V = R". so that we 

can drop any consideration of boundary conditions, and also that the forcing function F = 0. We 

now take the inner product of w 7 (the transpose of w) with (3.1) to get 

w ' P ^ 7 + £ w ' A , ^ + V ( B + B ' )w = 0 (3.2) 
at *-* dxi; 2 

where we have replaced B by its symmetric part A (B + B ' ) . Due to the symmetry of P and the 

Afc, we can then write 

I £ ( V Pw) + \ J2 £- (w7 A ,w) + ^w 7 (B + B ' ) w = 0 (3.3) 

Now, integrate (3.3) over 1 " , to get 

4 / ;(wTPw)dV + i / Z ! ^ - ( w T A 4 w ) d V + | / w'(B + BT)w</r = o (3.4) 
lit yP;., 2 1 Jjfn J^J d.rj. 1 ./?„ 

where dV = <IJ-\(IJ-2 ... dx„ is thenD differential volume element. The expression 5Z/t=1 a7~ ( w ' A i w ) 

is easily seen to be the divergence of a vector field, and by the Divergence Theorem [174], the integral 

of this quantity can he replaced by a surface integral over the problem boundary because we have 

assumed no boundary, this integral vanishes, and we are left with 

4 / i ( w T P w ) < / l ' + ^ / w 7 ( B + B7)wf/l ' = 0 (3.5) 
(It 7R„ 2 2 Jjjn 

The quantity 

E(t)± I UwrPw)dV (3.G) 

can be interpreted as the total energy of system (3.1) at time t. Note that due to the posit ivity 

requirement on P. it is a positive definite function of the state, w. If B + B ; is positive semi-definite, 

then we must have, from (3.5), that 

±E<Q 
ilt ~ 
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which implies that 

£'(/•_.)< £"(/,) for t-:>tt (3.7) 

In other words, the energy of the system must decrease as t ime progresses. 

In the MD circuit models that we will discuss, what we will be doing, in essence, is dividing this 

energy up among various reactive MD circuit elements. We will e laborate on this in the sections on 

the (1 + 1 )D transmission line and (2+1 )D parallel-plate system. The passivity condition is essentially 

equivalent to (3.7). Also, the symmetric n a t u r e of the systems will be reflected, in the circuit models, 

by the use of mainly reciprocal [12] circuit elements, though non-reciprocal elements (gyrators) will 

come into play if B is not symmetric (it is not required to lie. and note that system (3.1) is well-posed 

regardless of the form of B [82]). We have not explored the application of passive circuit methods 

lo systems which are more generally strongly hyperbolic, for which energy est imates such as (3.7) 

can also be derived [82]. This would appear to be a worthy direction of future research. 

N o t e o n B o u n d a r y C o n d i t i o n s 

In the analysis above, the spatial domain is assumed unbounded (i.e.. we took P = R " ) . It is useful 

to examine the energetic behavior of (3.1) if this is not the case. Integrating (3.3) over P , we get 

•^ I -lwTPw)d\- + f V b d V + i / w ' ( B + B T ) w ( / \ ' = () 
' " .In - Jn - .In 

where V = \S— , ir—V • and where we have defined 

b = - [ w 7 A |W w ' A „ w ] ' 

If the boundary of 2? is sufficently smooth, then upon applying the Divergence Theorem, we get 

-!- f i ( w r P w ) ,l\ + f b ' n p i / f r + i / W ' ( B + B r ) w ( / V = () 
' " .1 n - J&n - In 

where c?P is the boundary of P . i ip is defined as the unit outward normal (assumed unique every­

where on P except over a set of measure zero), and da is a surface element of P . If we define the 

total energy by 

then We have 

E(t)= I \(w'Pw)d\' 
•In * 

TE = - I b7nP(/a - I / w7(B + B7)wd\' (" Jan - Jn 
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If B + B ' is positive semi-definite, then a simple condition for passivity is 

b ' n P > ( ) (3.8) 

and the system is lossless if B is antisymmetric and (3.8) holds with equality. 

This analysis is grossly incomplete, however, because we have not said anything about which 

boundary conditions ensure the existence and uniqueness of a solution: this analysis is rather in­

volved, and we refer the reader to [82] for an introduction. The basic issue is the over- or under-

specification of b on the boundary. We will consider only lossless, ineinoryles.s boundary conditions 

in this thesis. 

Phase and Group Velocity 

Because the stability of an explicit numerical method (such as those that we will examine in the rest 

of this thesis) which solves a system of hyperbolic equations is dependent on propagation velocities, 

it is worthwhile to spend a few moments here to define phase and group velocities [35. 101] for a 

system such as (3.1). 

Let us return to the unbounded domain problem with P — 7v". Suppose that the matrices P . B 

and A*., k = 1 ti which define system (3.1) are real const ants: in particular, we assume that the 

driving term f is zero, and that B is anti-symmetric, so that system (3.1) is lossless. This is then a 

linear and shift-invariant system, and the solution can be written as a superposition of plane wave 

solutions of the form 

w(x,/) = w l | ( > " + 3 x 

where Wo is a constant vector. -.• is a real frequency variable, and (9 = [,1\,.... 3n]
T is the r»-

coinponent vector wavenuinber defining the direction of propagation of the plane wave. Substituting 

this plane wave solution into the constant-coefficient system (3.1) gives 

( 
jwP + ^ M A * . + B J w = 0 (3.9) 

fc=l 

Non-trivial solutions to (3.9) can only occur when 

X{w,0) k det I juP + YlJhAh + B j = 0 (3.10) 

The II solutions to this equation, 

u*(/9). k=l n (3.11) 
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(which are not necessarily distinct) define dispersion relations, from which we can derive much useful 

information. 

All the linear systems to be examined in this thesis are isotropic; propagation characteristics are 

independent of direction ( though not necessarily of location, or frequency). For LSI systems, this 

implies that the dispersion relations (3.11) can be written as functions of ||/9||;> alone, where ||/3||i> 

is simply the Euclidean norm of the vector (3. In this case, we may define the phage and group 

velocities for the A-th relation by 

- p A ^* j » i l n i 2 i 

(For non-isotropic systems, we will need to resort to vector generalizations of these quantities [101, 

190].) Phase velocities define the speeds of single sinusoidal plane wave solutions, and the group 

velocities can be interpreted as the speeds of propagation of a wave packet: from the point of view of 

the stability of numerical methods , it is the group velocities which are of most importance, because 

they define the speeds of information or energy transfer [3o|. It is interesting to note that if B 

is non-zero, phase velocities may become unbounded in the limit as /9 becomes small this occurs 

in several of the systems that will be discussed in Chapter 5, though for all these systems, the 

group velocities will be bounded. This is related to the fact that the system characteristics [7-1] are 

independent of B. 

In the interest of extending these ideas to spatially inhomogeneous systems (of the form of (3.1) 

where P and B may exhibit a smooth functional dependence on x € P). we note that about any 

location x = x u £ P. solutions to system (3.1) behave locally as solutions to the frozen-coefficient 

system [82] defined by P(xo) and B ( x 0 ) . We may then define local group velocities >f{||/9||j,Xo), 

k = 1 n in the same way as in (3.12). A quantity which will appear frequently in our subsequent 

treatment of the stability of numerical me thods for these systems will be the maximum global group 

velocity, defined as 

~i'(||/3||-,.x„) (3.13) ,.9 A 
1 max 

k 

x 0 

1131b 

max 
= l, 

6 T> 

> o 

which, more simply stated, is the maximum propagation velocity over all system modes, waveiiiim-

bers, and throughout the entire spatial problem domain. 

3.3 Coordinate Changes and Grid Generation 

Before looking directly at circuits and signal flow diagrams in multiple dimensions, il is useful to 

introduce coordinate changes, which were first applied in the context of multidimensional wave 
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digital filters in [122]. One might add that it is useful, hut not strictly necessary, since it is possible 

to develop numerical integration algori thms along the same lines without any explicit reference to 

new coordinates [01]. It is. however, a very convenient way of understanding causality and grid 

generation issues, a*, well as generalizing the passivity concept to MD [18, 85. 131]. 

Some of the lumped circuit elements we have discussed so far we have seen to he passive—that 

is, they dissipate energy as time progresses, as do Kirchoff networks composed of connections of such 

elements (by Tellegen's Theorem [130]). In the multidimensional setting, many systems possess a 

similar proper ty; some measure of energy decreases as a function of time. For example, the ampl i tude 

of the vibrat ions in a struck string or membrane will gradually decrease (or at least not increase) 

as a function of time. We have also seen tha t , for lumped circuits, application of the trapezoid rule 

t ranslates this passivity property to a discrete equivalent. When a t t empt ing a discretization of a set 

of P D E s , however, we have to cope not only with the time direction hut spatial ones as well, and 

passivity (usually a result of the conservative nature of the laws from which a system of equations 

is derived) does not in general hold with respect to space [51]. 

T h e idea of Fettvveis and Nitsche [02] was to perforin a coordinate transformation such that 

the new coordinate's, generally a mixture of t ime and space, all contain a part of the physical t ime 

variable. Traveling in the positive direction along any of the new coordinates implies that one is 

also moving forward in time (as well as in some spatial direction). More specifically, if 

Ci tn+l) = fi-ri A . , 0 

are the new coordinates, the authors provide the following conditions: 

Any positive change Af in the variable t must he reflected by a similar positive 

change A<j in all the new coordinates tj. j = 1 , . . . , » + 1. 

Conversely, any positive change Afj in any of the new coordinates must produce a 

positive change in the old variable t. 

(3.14a) 

(3.14b) 

Al a result, all the new coordinates have a time-like character; the practical implications of this will 

become apparent in the next section, when we introduce multidimensional circuit elements. 

3.3.1 Structure of Coordinate Changes 

These same authors provide some more detailed guidelines as to what types of coordinate changes 

are of interest [62]. In particular, they describe transformations of the form: 

u = V ' H t (3.15a) 

t = H - ' V u (3.15b) 
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where t = \t\ ' n + i ] ' a | ( ' the new coordinates and u = [ij r„.t]' arc t he old. V is prescribed 

to be diag(l , 1 1. i'o) and can be thought of as a simple scaling of the original coordinates u to a 

non-dimensional (or ra ther , "all-spatial") form. ru thus plays an important role, as we shall see later 

in a discrete setting, as the space s tep/ t ime step ratio on a numerical grid. Its magni tude will he 

governed by a stability bound [17G], sometimes called the Couruut-Fnrdrtch.s-Lcwy (CFL) criterion. 

as in conventional explicit finite difference methods (although the manifestation of the condition in 

the networks we will derive is of a quite different character). The invert ible matr ix H is usually 

chosen to be orthogonal [G2]. 

Here, we call see t ha t the requirement (3.14a) will be satisfied if the elements in the r ightmost 

column of H ~ ' are positive: if H is orthogonal, we have H ' = H ' . The bo t tom row of H 

then consists of positive elements (often chosen equal, so as to give equal contributions from all 

components t} to / ) . in order to satisfy requirement (3.14b). 

t h e differential opera tors V t = [ ^ - ' ; ] ' and V„ = [ T ^ e f ^ J ? ] 7 are related by: 

V t = H T V ~1YU V „ = V H - ' V t (3.16) 

Also, we introduce the scaled time variable 

t' = vut (3.17) 

which will necessitate a speciaj treatment in the circuit models to follow. See §3.5.1 for more details. 

3.3.2 Coordinate Changes in (1 + 1 )D 

Solving a set of P D E s numerically nearly always involves sampling the problem domain, and at­

tempting to approximate1 the solution to the problem at the finite collection of points. Coordinate 

sampling in the M D W D F context was first examined in [122]. and was subsequently addressed in 

[02] and ["]. In (1+1)D, there is essentially only one useful type of regular grid: it is shown, in 

the (1 + 1)D case, in Figure 3.1(a). where the grid spacings or step sizes are assumed equal to A 

in the scaled t ime (i.e.. t' = i\,t) and space directions. Note that the use of the scaled coordinates 

allows this uniform sampling, without implying any restriction on the relative grid spacings in t h e 

linstretched coordinates, since we have introduced the (as yet) free parameter t'u. 

Suppose we now change coordinates by: 

f, = =(!•„/ + .r) t-.= - ( , - o f - j - ) (3.18) 
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n 

(a) (1)) 

Figure 3.1: Sampling grids, (a) in rectangular coordinates (x, i>()f) and (b) in tin new coordinates 
(ti.h) defined by (3.18). 

which corresponds to a transformation of type (3.15) with 

If we now sample the plane in the (t\.t>) coordinates, with equal spacings along the two axes, using 

a step size of T\ = T-2. we obtain the grid in Figure 3.1(b). Notice that if we choose T\ — Tj = v 2 A , 

then our grid aligns perfectly with exactly half of the grid points sampled uniformly along the (./. i n/1 

axes, as in Figure 3.1(a). In fact, the grid of Figure 3.1(a) can be decomposed into two grids of the 

form in Figure 3.1(b). where one of the grids is shifted by (A. A) with respect to the other, in the 

( j \ r(|/) plane. It will be possible in some instances to exploit this decomposition M> a>- to achieve a 

gain in computational efficiency; the key idea here is that if we begin with a grid such as shown in 

Figure 3.1(a), and then are able to develop an algorithm such that only one of the two Bubdomains i-~ 

used, then we will have halved the amount of computat ion, at the expense of a decrease in accuracy 

by a factor of \fl ( the step size in the {t\J-2) plane is T\ = T-i — \/2A versus A in the (x,t%i) 

plane). We will mention this offset sampling [Gl. 211] when we look at the (1+1)D transmission 

line problem in §3.7. and will examine subgrid decompositions extensively in §4.4.3 and Appendix 

A. It is important to point out that regardless of the coordinate change, updating in any of the 

WDF-based algorithms that will subsequently be developed will be done with respect to the time 

variable alone (the direction of data How is still in the t ime direction), as per standard explicit finite 

difference methods for hyperbolic problems. 

3.3.3 C o o r d i n a t e C h a n g e s in H i g h e r D i m e n s i o n s 

There are more choices for the type of coordinate transformation (and hence the type of grid) that 

are available when we move to higher dimensional problems. As an example, let us look at the 

L. . - _ ^ 

(3.19) 
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transformation defined by: 

H = 

' 1 

i 
Lv/7) 

i 

3 

(i 

- v l 
i 

IS 

V = 

1 I) 

1) 1 

0 o 

Q 

0 

''o 

(3.20) 

which is discussed ill [G2] and [211]. Uniform sampling in the {t\.t-2.t-.\) coordinates yields the grid 

arrangement shown in Figure 3.2(a). flattened onto the ( J \ ty) plane. This is. effectively, a cubic 

lattice of points viewed along its main diagonal. At any given time step, one of three different grids 

O 0 

-o c 

o 

o 

-o-

o 

o 

o o 
v'-JA 

(a) (b) 

Figure 3.2: (2+l)D sampling grids, (a) in hexagonal and (b) rectangular coordinates. 

(in Figure 3.2(a) the different grids are marked by grey, white or black points) which are simple 

translations of each other, is used. In a discrete sett ing, it is sometimes possible (depending on 

the system at hand) to design an algorithm such that they are used cyclically grid variables at 

white grid points can be upda ted with reference to variables at the grey points, which in turn were 

updated using stored variables at the black points, etc . If the separation of the point-- is a^ indicated 

in Figure 3.2(a). then we have used sample steps of T\ = T? = T\ — wl jA. 

E m b e d d i n g s 

In onler to obtain a s tandard rectilinear grid in higher dimensions, it is possible to proceed in the 

same fashion, but it is in fact more convenient to extend the class of coordinate transformations so 

as to embed the problem domain in a higher dimensional space, hi [62], the following generalization 

of (3.15) has been put forth: 

u = V ' H t 

t = H " V u 

(3.21a) 

(3.21b) 
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Here, u is still the n 4- 1-dimensional vector [,i| r „ , r ] 7 , but t is /.--dimensional, with k > n + 1. 

H must be chosen such that the elements in its b o t t o m row are positive. H ~ w is a A- x (n + 1) right 

pseudo-inverBe [02] of H in order to satisfy a generalization of the first of conditions (3.14). it must 

be chosen so that t h e elements in its rightmost column are all positive. For example, for a (2+1 )D 

problem with u = [x ,y , t ) . in order to generate a rectilinear grid, the following choice is usually 

made: 

H = 

1 0 - 1 D 0 

0 1 0 - 1 0 

1 1 1 1 1 

(3.22) 

H projects five-dimensional coordinates t — \t\. /•„>. r s , f̂ . tr,]' back to the three-dimensional space of 

U. One choice [62] for this right pseudo-inverse is 

H- / ?=-HTdiag(l , l , f ) (3.23) 

Uniform sampling in the t coordinates, with s tep sizes of Tj — A. j = I , 5 yields the s tandard 

rectangular grid shown in Figure 3.2(b). which is a pat tern equivalent to what one would get by 

sampling uniformly (see comment betow) in the (s,y, t'oO coordinates, with a spacing of A in all 

three untransformed variables. It should be clear that to every grid point in the u coordinates 

corresponds a two-parameter family of points in the t coordinates: this fact will not influence the 

resulting difference schemes. This embedding of t h e problem domain in a higher dimensional space 

is simply a means to an end: in particular, we will not be solving a system numerically over a higher-

dimensional grid (which would be computationally infeasible). The new coordinate directions are 

chosen so that they define a grid, and they will also serve as directions of energy flow for the MD 

circuit elements which we will define presently. In effect, the total energy flow in a physical system 

is broken u p among these new coordinate directions: it will sometimes be t rue (as in the case of a 

rectilinear grid in ( 2 + l ) D ) that energy can approach a particular grid location from a number of 

neighbors which is greater than the dimensionality of the problem (for the (2+1 )D parallel-plate 

problem on a rectil inear grid, at least four: nor th , south, east and west). We will take a closer a 

look at this par t icular transformation, its suitability for calculation on a rectilinear grid in §3.8. 

In ( 3 + l ) D . in order to obtain a s tandard rectilinear sampling pa t te rn . Nitsche has proposed 

seven-dimensional coordinates [62] defined by 

H = 

1 0 0 - 1 

0 1 0 0 

0 II 1 0 

1 1 1 1 

0 
-1 

(1 

1 

II 

II 

- 1 

1 

o" 
II 

II 

1 

(3.24) 
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It is easy to verify that shifts of dis tance A along the coordinates tj. j = 1 C correspond to 

shifts of -A along the positive and negative ./. //. :, — x, —y and —z directions accompanied by a shift 

of T = A / I D in the t ime direction. We will make of this coordinate transformation when developing 

scattering methods for Maxwell's Equat ions (see (j4.1(J.G) and for the system describing elastic solid 

dynamics (see ?{5.G). 

The embedding technique has some tricky aspects. We will make some comments here, in 

order to complement the information provided in [G2]. The two relationships given in (3.21) are 

not equivalent for general rectangular matrices H . (3.21a) serves to define t . but the definition of 

directional derivatives in the t coordinates will be given by 

V , = H ' V - ' V u (3.25) 

and depends only on H . The question of how sampling in the new coordinates is to be carried 

out is not well-addressed in the l i terature. Suppose, for example, that we wish to use embedding 

(3.22). Grid definition proceeds by letting t = A[»i . it>. Wj, n |, /(.-,]' . where iij. j = 1 5 are 

integers. Clearly, then, using (3.21a). grid points in the original coordinates are given by u = [A(»i — 

;i;i). A(nj— u.)). ^ - (»» i+ '»2+» : t+" i + " r , ) ] ' . and thus any point of the form u = [Atiij. Ain-2, A-o , , ] ' . 

for integer o i | . m> and ma is in the range of V ~ ' H for some choice of the iij. This defines the 

rectilinear grid in the untransformed coordinates. Note, however, that not all of these points can be 

mapped back to some t with t = A[; i | . »ij. ;i : t. n j . n 5 ] ' under (3.21b). This is worthy of note, but 

will not influence the numerical methods which will depend on discretizing directional derivatives in 

the t coordinates, which, as mentioned above, are defined in terms of H and not H ~ " . We remark 

thai the inverse relationship for (3.25) will be given by 

Yu = VH-R1Yt (3.2G) 

where H " ' is the transpose of H ". 

We don*t wish to go too much into the formalism of these coordinate transformations here: it 

seems excessive since the associated circuit manipulations which we will review are quite Straight­

forward. As mentioned earlier, the coordinate changes in this section are introduced in order to 

aid in understanding the me thod and MD-passivity. and are not necessary for deriving WDF-based 

algorithms for numerical integration, though it would appear that some types of reference circuits 

can only be derived via the transformation approach [130]. 

3.4 MD-passivity 

In dealing with networks and circuit elements in multiple dimensions, we must have a means of 

generalizing their energetic properties accordingly. In particular, the notion of passivity, which in 
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the lumped case played an important role in developing stable digital filters directly from an analog 

network, must be expanded to include the distributed character of the system to be modeled. The 

definition of MD-passivity was given in [48]. and more basic results are provided in [85] and [131]. 

The idea is nearly the same ;i> in the lumped case a passive .V-port cannot produce energy on its 

own. and hence a well-defined [12] network made up of Kirchoff connections of such passive .V-ports 

recirculates and possibly dissipates energy. The difference is that in MD. we would like to be able 

to take into account that for most physical systems, conservation of energy is a property holding 

wi th respect to t ime alone. We will need to make use of the coordinates defined in §3.3, so as to 

ensure that passivity holds with respect to all coordinates in the problem. In this section, we recap 

the main points of the definitions and derivations in [18]. 

OG 

Figure 3.3: k-dtmensionid domain G. 

We begin by defining a domain G hi the vector space defined by the new coordinates t = 

[ / 1 , . . . , f t ] 7 under a transformation of the type (3.21) (which may be an embedding). Consider an 

A'-port defined over the domain 6'. with port voltages Dj(t) and currents t j ( t ) , for j = 1 ,N. 

T h e ins tantaneous absorbed power density, at any point in the interior of G is defined by 

U>te«t(t) = y ] rjij 

and the stored energy flow as a vector field 

J = I 

E = [£, Ek}> 

In addi t ion. We can define the BOUTCe and dissipated power densities within G to be tc s(t) and Wd(t). 
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The energy balance of the iV-port can then be generalized directly from (2.3): 

/ ( " ' , „ „ + « • „ - «•,/)>IY = / BoBda (3.27) 
Ji; Jeo 

where n,,- is the ^--element row vector outward unit normal to the surface of G. da is a surface element 

of G, and il\ is a volume element internal to G. See Figure 3.3* for a graphical representation of 

some of the relevant quantities, The A'-port is called MD-passivo if there is a stored energy vector 

field E. which is a positive semi-definite function of the s tate of the A'-port (i.e.. all components of 

E are non-negative, everywhere in 6') such that 

/ WinttdV > / ii,,E(/fr (3.28) 
./(,• Jsa 

and MD-lossless if (3.28) holds with equality. The total stored energy lost through the boundary 

of G must be less than the energy supplied through the ports in G: this is equivalent, from (3.27) 

to saying that the energy dissipated in G must be greater than the energy coining from the source. 

The previous definition of MD-passivity has been more precisely called integral MD-passivity (with 

respect to a domain G) [85]. A corresponding differential (point-wise) definition is 

.(•„,.„ > Y t • E in G (3.29) 

An A'-port which is differentially MD-passivo everywhere throughout a domain G will also be inte­

grally MD-passivo with respect to G. The converse is not necessarily t rue. 

It is also useful to define, for an Alpor t , a scalar total energy [85] by 

-I '• f(t)= / e;E<hidx-2...dj-n (3.30) 

Here Gt a spatial region defined as the cross-section of G at time /. and c, is a column unit vector 

in the time direction: note that this definition is framed in terms of the untransforined coordinates 

u . and E has been projected onto these coordinates under (3.21a). It can also bo used as a measure 

of the total energy at t ime / in a given circuit, as wo will see in [j3.7.4. 

Fettweis [44] looks at an extension of the idea of positive realness (see §2.2.2) to two dimen­

sions, for the case of a real linear and shift-invariant A'-port. This idea generalizes easily to higher 

dimensions, as per some very early work in MD system theory [135]. Consider a real linear and 

shift-invariant (LSI) A'-diiueusional .Y-port. where the port quantities are in an exponential s t a t e of 

frequency s t . whore 

St = [*i »k)T 

'Adapted from Figure '> of [Mfi] and Figure 1 of [-18]. 
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are the frequency variables conjugate to t . Thus we have the real ins tantaneous voltages and currents 

«V(t) = R e ( « y s < r t ) i j ( t ) = R e ( , j r s « T t ) j = l V 

where ij and it are complex amplitudes. If there is an impedance relation between the voltages and 

currents, then we can write 

v = Z(s t) l 

where v = [t'i , v.\]T and i = [i\ i,\]'. The total complex MD power density at frequency 

s, can be defined as 

tc(s t ) = i"v 

and the average or active power density as 

i r ( s t ) • Re ( i ' v j 

The positive realness condition on Z for MD-passivity follows immediately, ami i> similar to (2.5). 

except that we now must have 

Z(s t ) + Z*(s t) > 0 for R e ( * j ) > 0 j = \ A- (3.31) 

Thus the impedance must be positive real in till the new coordinates. Tin- A'-port is MD-lossless 

if (3.31) holds with equality for Re(sj) = 0. j — 1 k. It is import ant to note that because of 

(3.26) and (3.25), we have 

s u = V H w ' s t s t = H T V - 1 s u (3.32) 

where s„ = [sTt , sZn, s , ]7 is the vector of frequencies in the untransformed coordinates u. Thus . 

due to the positivity condition on the elements of the last row of H " ' and the last column of H r , 

we will have that 

Re ( . s ; )> ( ) for j = \ k <=> R e ( s , ) > ( ) 

so that for an MD-passive Alpor t , 

Z + Z - > ( ) for R e ( . s , ) > ( ) (3.33) 

It is thus seen that MD-passivity can be interpreted as passivity, but spread over a new system of 
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coordinates (regardless of whether the new coordinates number more than the old). 

3.5 MD Circuit Elements 

Beginning from the perspective of the one-port circuit elements described in the last chapter, it is 

not difficult to see how such elements can be generalized to a multidimensional setting. Consider 

again the inductance and its WD one-port equivalent, shown in Figure 3.4. T h e voltage across the 

«=¥ 

Figure 3.4: Inductor and its irum digital nnr-purt. 

inductor is integrated and scaled by a factor l/L to yield a current. The fact that the signal flow 

graph for the WD one-port equivalent is causal indicates that the inductor one-port is associated 

with the forward time direction. In the multidimensional case, the concepts of a direction associated 

with a circuit element and causality become crucial. 

3.5.1 The MD Inductor 

Consider the following (partial) differential equation: 

m 
= L 

O'j 
(3.34) 

where L is a positive constant , and tj. for any j . j = 1 , . . . . A- is a coordinate defined by transformation 

(3.21). We now have u = r ( t ) and i = i ( t ) . Considered as an MD one-port, t he instantaneous applied 

power will be 

""'" ='"' = w, {lL'2) = Vt E 

if we also define the stored energy flux E to be 

8-jttS (3.35) 

where ej is a column unit vector in the tj direction. If L > 0, this is indeed a positive semi-definite 

vector function of the current across the one por t . (3.34) defines a passive (in fact lossless) element 

in the sense of (3.29). henceforth called an MD-inductor , of inductance L and direction tj. 
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This equation resembles that which defines the voltage/current relation in an inductor with 

inductance L. the exception being thai the integration variable is no longer time, but tj, a mixed 

space-time variable. In fact, the discretization procedure is identical to that of the lumped case, as 

we shall see. but for illustrative purposes, we will derive the multidimensional wave digital one-port. 

The important thing to note here is that even though (3.3-1) is defined over a A'-dimensional domain 

with coordinates t . it is solved (given i . say) as a series of one-dimensional integrations (since (3.34) 

must hold for all values of t ) . 

We can immediately approximate (3.34) by the M D trapezoid rule [62] as 

f ( t - T j ) - r f ( t ) __ L 
= — (,(t)-i(t-Tj))+G(Tf) (3.36) 

where T j = Tjej. Tj is interpreted as the step-size. Assuming that we have uniformly sampled 

the t plane as in $3.3, with grid spacings T\ ,Tfc, we now define the grid functions r (n ) and 

/ (n) where n = \i\\ » i / ] ' is an integer-valued vector. We intend to use them to approximate 

u(t — [n\T\ .tn-Tic]1 ) and i(t = \t%iTj »n?i] ') . so we can immediately write- the recursion 

V{n) + f-ej)=±(i(n)-Hn-e})) (3.37; 

which approximates (3.34) to G{Tj). 

We can now introduce the wave variables, 

u(n) = i '(n) + Ri{n) 

b{n) = r ( n ) - / ? ; ' ( n ) 

which are also grid functions defined over n . As in the lumped case. R is an arbitrary positive 

number (here assumed constant) . Inserting these wave variables into (3.37) yields, with the choice 

R = 2L/Tl. 

b(n) = -,i(n-ej) (3.38) 

In te rms of the untransformed coordinates (where we will perform the updat ing in a simulation), 

(3.30) becomes 

°<« - V " f l>+ "" • ' * | P W - i t , - V - O T , ) ) (3.39, 

again to second order in the transformed spacing. T h e quantity V ~ ' H T y is the vector corresponding 

to the same shift, in the milransformed coordinates. 

Take, for example the case of an inductor of direction t\ under the coordinate change defined 
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by (3.19). A shift of T | = T\e\ of T\ in direction /) corresponds to a shift in the old coordinates 

of ( T | / \ / 2 ) [ l . l / i ' o ] ' - Referring to Figure 3.1(b). where we have chosen T\ = \/2S. the uistunri of 

the wave variable a entering the MD-inductor at point P exits, sign-inverted, as b at point Q. From 

i lii-. s tandpoint . MD-losslessness is obvious, since the MD-inductor merely shifts and sign-inverts an 

array of numbers. 

One point requires some clarification: the MD inductor as defined by (3.3-1) is MD-passive for 

constant L > 0. and for a t ransformed coordinate tj. j = 1 /,-. In problems for which material 

pa ramete rs have some spatial variation, some of the MD circuit elements that we will require will, as 

a rule, have some spatial dependence. If L in (3.3-1) is a function of t. then in general the equation 

iloes not describe an MD-passive one-port. More precisely, if L does not commute with J?-, then 

the application of the trapezoid rule to (3.34) does not yield the simple wave relationship (3.38). 

This begs the question, then, of how the trapezoid rule can be applied to circuit elements which 

are not LSI (which we will require in order to numerically integrate systems with spatial material 

parameter variation). 

For almost all the systems of interest in this thesis, it will be possible to consolidate any mater ia l 

parameter variation in circuit elements defined with respect to the pure time direction (recall tha t 

in our general symmetric hyperbolic system (3.1). such variation is confuted to the coefficients of the 

t ime derivative term). For example, consider an inductor described by 

<=^§7 (3-40) 

in the (1-f 1)D coordinates defined by (3.18). Here. L is strictly positive, but may be a function of 

J \ and note that /' is not among the new coordinate- defined by (3.18). Because L does commute 

with 7777. it is still possible to apply the trapezoid rule, in the time direction, in order to get a wave 

relationship of the form of (3.38). T h e directional shift will then be along the t ime direction, and we 

need to be sure that the shift does in fact refer to another grid point from Figure 3.1(b). we can see 

t hat this is in fact true (it is t rue for any of the coordinate systems discussed in §3.3). It is of course 

possible to include a pure t ime derivative among the new coordinates: this is done, for example, in 

the case of the embedding defined by coordinates (3.22). for which t$ is simply / multiplied by a 

scaling factor. Nitsche [62] has called this the genemlized trapezoid rule. Note, however, that if we 

write (3.-10) as 

=^(^+a 
it is not permissible to treat this as a series connection of two MD inductors—neither one is MD-

passive. because L does not commute with either of the two directional derivatives, 

A more general definition of an inductor, suitable for use in time-varying or nonlinear problems 
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i> 

,=yzA(yi,) = i ( ^ + ^ ) 

for any transformed coordinate tj. In this case. L can depend on t or even on r or i\ as long as 

we have L > 0 and use power-normalized waves, the MD inductor defined by (3.42) is MD passive 

[48, 85]. For constant L, (3.42) reduces to (3.34). Circuit elements of this type appear in circuit 

networks for fluid dynamical systems [1G. 49. 70. 191]. as well as in a vector-matrix context when 

dealing with the linearized Elder Equations [80]. We also note that passivity under time-varying 

conditions can be enforced as it has been done in digital waveguide networks [16G]: it would appear 

t ha t waveguide networks (to he discussed in depth in Chapter 4) could be generalized to include- the 

nonlinear case in the same manner (see Appendix B for an interesting application of these ideas). 

3.5.2 Other MD Elements 

T h e inductor and capacitor are the only circuit elements which need a more involved treatment in 

the MD case*. The capacitor is treated as t he dual to the inductor , replacing r by i and L by C. and 

needs no further comment, other than that , as with the lumped capacitor, there is no sign inversion 

in the resulting MD wave one-port. The graphical representat ions of these MD one-ports and their 

M D W D equivalents are shown in Figure 3.5. Note that for the sake of compactness , in the circuit 

d iagrams that will follow, we will use the derivative notat ion of the MDVVDF l i terature [131] where 

we have 

for some transformed coordinate tj. In some instances, derivatives with respect to the original 

untransformed variables appear, and we will write 

± 1 D ii D A! 

We will also use the notat ion 

Dt. 4 i £ 

to refer to the ditnensionless t ime derivative, which appears frequently. Also, in a signal flow graph. 

we represent the operation of shifting by Tj in direction tj by the symbol T j . In cases where the 

system or A'-port is linear and shift-invariant. we will be able t o replace Tj by zj . t he transmit tance 

of a shift in direction tj (see the next section). 

*\\'t' will rotum to tin' miillitlimensional generalization of the unit element in tj'1.10. 
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AC.D,) R=jf. 

(b) 

Figure 3.5: MDWD one-ports— (a) an MD inductor, with inductance L. direction tj and its MDWD 
counterpart, for step-size Tj and Ii = 2L/Tj and (1») an MD capacitor, of capacitance C. direction 
tj and its MDWD one-port, with step-size Tj and port resistance Ii = Tjj'lC. 

All the oilier elements for which we will have a use. namely the resistor, transformer and gyrator . 

as well as scattering junctions are rnemorylcss and hence their point wise behavior in MD is identical 

to that of their lumped counterparts. Their graphical representations are also identical (see §2.2.4). 

We must keep ill mind however, that these are still dis t r ibuted elements. For example, a resistor of 

resistance R(t) in an MDKC represents some resistivity at every point in the domain of the problem. 

A network made up of Kirchoff connections of .Y-ports which are individually MD-passive can 

be shown (through the use of Tellegen's Theorem [13C]. which is unchanged in multiple dimensions) 

to be be MD-passive as a whole [44]. 

3.5.3 Discretization in the Spectral Domain 

If our network or A'-port is linear and shift-invariant, it is also possible to view the discretization 

procedure as a spectral mapping, just as in the last chapter . Consider now the case where the 

problem domain is some n-dimensioual space, with coordinates u = [f\ r „ . f ] ' . and where we 

have changed coordinates to t = [t\. . . . . / * ] ' . with k > n + 1 via a transformation of type (3.21). 

The defining equation of an MD inductor of direction tj for any j = 1 A- is 

D = L-
0i_ 

'Otj 

and for an exponential state at frequencies s t . we have 

("' = L*ji 

where v — De** ' and i = ie** ' . T h e "impedance" is here Z = L.s^ and clearly satisfies MD positive 

realness criterion given in (3.31) (and furthermore is MD-lossless) If L > 0 . As in the lumped case. 



82 CHAPTER 3. MULTIDIMENSIONAL WAVE DIGITAL FILTERS 

the trapezoid rule, now applied in the tj direction! can be interpreted a*, a spectral mapping 

2 i - f - s / ' j 2 1 - 2 , ' 

where Tj is some arbitrary step-size in the tj direction. For Rotational purposes, we have used 

to represent the frequency domain equivalent of a unit shift in the tj direction. In complete analogy 

with the lumped case. (3.43) implies that 

iM*, - ) |o <=> Ke(</V)|» ^=> M l 1 

This shift can of course also he written in terms of delays and shifts in the u coordinates. For 

example, consider the coordinate transformation defined in (3.18). In this case we have, in the 

frequency domain. 

i i 
•St 7= ST 

where s, ami sr are the frequency variables conjugate to t and x respectively. (We assume that 

our spatial domain is of infinite extent, so that sa corresponds to an imaginary Fourier transform 

variable.) Suppose we have also chosen the step-sizes in the two coordinates such that the grids 

overlap, that is, T\ = \/2A = \/2rnT. where T is the shift in the pure time direction. Then, for a 

shift of Tj in the t\ direction, we can write 

or 

z;i = z~iu~i (3.44) 

where c _ 1 represents a delay of duration T in the time direction, and if1 corresponds to a shift 

over distance A in the positive space direction. Similarly, we can write 

c.;1 = . : - ' . / • (3.45) 
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For a more complex example, consider again the transformation defined by 

H = 

1 0 - 1 0 0 

0 1 0 - 1 0 

1 1 1 1 1 

which maps coordinates [.;.//./]' to a five-dimensional coordinates [h • '2- ' : t - ' t - ' r>] ' • A shift of 

T\ = A in direction / | corresponds to a t ransmi t tance of the form 

- - 1 = r - * i T l _ r - < * , + ^ * , | A 35 C-(«*A+*,T) _ j - l u , - ! 

where «> represents a unit shift (of length A) in the x-direction, and as before. : ' corresponds to 

a unit delay of T = A/( ' n . The other shifts can be written as 

~2 — - " y ~:t — * w* z4 ".« *S — -

where ws represents a unit shift (of length A) in the // direction- At a given grid point in t h e old 

coordinates , the unit delays 2j" z± , interpreted as directional shifts, refer to points on the 

grid at the previous time step, and located one grid point away in the — .r. — IJ. .r and 1/ directions. 

respectively. T h e unit delay z$l is simply a unit time delay. 

It is impor tant to note the manner in which the special character of the coordinate transformation 

manifests itself here. Due to the positivity requirement on the elements of the last column of H . 

a unit delay in any of the directions tj will always include some delay in the pure time direction. 

Bj means of this requirement, and the introduction of wave variables. MDWD networks can. in the 

same way as their lumped counterparts, be designed in which delay-free loops do not appear. Such 

networks, when used for simulation, will give rise, in general, to explicit numerical schemes [176]. 

3.5.4 Other Spectral Mappings 

One could well ask whether the spectral mappings of the form (3.43). which correspond to an 

application of the trapezoid rule, are the only means of deriving an MD-passive discrete system from 

a continuous one. The criterion for a passivity-preserving mapping is that it map multidimensional 

positive real functions (i.e.. functions whose real parts are positive when tin' real parts of all of their 

a rguments are positive) to functions which have the same property in a generalized multidimensional 

outer disk. 

Ill a brief section of one of the original papers on the subject of WD integration [Gl]. a differ­

ent type of mapping is proposed, in a discussion of boundary conditions for the transmission line 

equations. Suppose that , in the (1+1)D case, our transformed coordinates ate given by (3.18). The 



84 CHAPTER 3. MULTIDIMENSIONAL WAVE DIGITAL FILTERS 

alternative mapping can lie written as 

8] - > O) 83 - » 0-2 

where the frequency variables 0\ and o2 are defined in terms of the variables tf>\ and c 2 from (3.43) 

by 

a j± = 1 ( l - c f ' x i + c.r1) 
l'+3i2*0iVs/4 Ti l + af1*̂  '•1 - rr^^1- —=--- , . -1 V I3-468) 

°'-' = , >TT ~Tk = W 1 . - 1 - 1 — (3.4Gb) 
1 + T, T-.fi t-2/4 T% 1 + 2, c2 

We then have that 

„ , . . Re ( t , ) - r r , 7 2 | f 1 p ! Re(v 2 ) / 4 _ . . R e ^ + T . T ^ p ' R e U - . i A l 
Re(©i) = Ke(o2) = , ,—rTTrl 

from which we can conclude that 

Re(i',) I 0 and Re(f2) = 0 = > Re(oi) | 0 and Re(p2) | 0 

Another simple way of seeing positive realness is by rewriting (3.4G) as 

61 = . . . , I T , , , (3.47a) 

& - 771—, T T 1 1 A (3.471)) 
l/i'2 + riT2vi/4 

in which case 0\ and <>> can be viewed as impedances of parallel combinations of passive (indeed, 

lossless) elements. For example, 0\ is equivalent to the impedance of a parallel combination of an 

inductor of impedance v\ and a capacitor of impedance 4/(T'iT2i'2). Second-order accuracy is also 

obtained under these mappings; this should be clear from (3.47) as well. This spectral mapping 

differs from the trapezoid rule in that the discrete spectral images of the two continuous frequency 

variables 8\ and 83 are now mixtures of the two discrete frequency variables z[ ' and z^ ' . In addition. 

the transformation does not have a unique inverse, but this is of little consequence because we will 

never have any occasion to invert such a mapping. We mention this particular mapping, because it 

will serve as the bridge between multidimensional wave digital filters and digital waveguide networks 

(to be discussed in Chapter 4). We will spend some time in §4.10 elaborating this link. It will also 

allow us to introduce higher-order accurate methods, which we will discuss in §3.13. 

http://T-.fi
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3.6 The (1 + 1)D Advection Equation 

Perhaps the simples! hyperbolic partial tlifferential eciuation imaginable is the so-called scalar ad-

vection or one-way want equation in (1 + 1 )D. defined by 

where a is a real constant [17G]. It is complemented by the initial condition 

i(.rA)) = iu(.r). - o o < a r < o o (3.49) 

Here, the solution i(.r,t) is assumed continuously differentiable (though it need not be'), and is 

defined over the entire x-axis. and for t > 0. The solution is simply 

i(r.t) =„ , ( . ' • - - . / ) (3.50) 

That is. the initial data travels to the left or right (depending on the sign of n) with speed |Q|. 

Despite its simplicity, it is often used as a model for numerical schemes [95]. 

3.6.1 A Multidimensional Kirchoff Circuit 

We Brsl change coordinates via transformation (3.18), which gives 

i'o -f o Oi I'Q — a di _ 

y/2 dti v/2 dh ~ 

The basis of the WD integration approach is to view this equation as a loop equation for a multi­

dimensional circuit, i.e.. a circuit in which voltages and currents may depend not only on time but 

on Bpace ih well. The equation above is to be interpreted as describing a series connection of two 

inductors, where the dependent variable i is considered to be the current passing through them. The 

MD-indiietors have inductances 

, A (to + o ) * ( v o - q ) 

As explained in !j3.3, these two inductors are associated with the directions t\ and l>. The circuit 

representation of the connection is shown in Figure 3.0(a). 

It is important to note that the circuit pictured here is merely a graphical representation of 

(3.18) in particular, it represents the point-wise or differential behavior of (3.18) anywhere in the 

'Given the solution (:).5U) to (:M8), it is easy to sec that it remains unchanged even if irj is not different iahlc 
everywhere, lu this rase, i must be considered to be a solution to the integral form of (H.48). 
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d i . O , ) (£. .£>,) 

(a) (b) 

Figure 3.G: Tin (1 + 1)D iidmvtion equation (a) MDKC and (b) MDWD network. 

\t\.t-i) plane. It does, however, permit an immediate discretization via wave digital filters, in exactly 

the same manner as described in the previous chapter on lumped networks. That is. we can replace 

the circuit by two MDWD inductor one-por ts connected through a series adaptor. This complete 

wave digital network is shown in Figure 3.0(b). where we have defined the port resistances to be: 

/?. = 
2L, «'o + <> IL-i to - a 

Ra '17 = —ET 
(3.51) 

where we have used T\ = T> = V2A. Figure 3.0(b) is an abbreviated notation for a numerical 

integration routine. We can expand out the spatial dependence into a full signal flow graph in order 

to better perceive the flow of data . This is shown in Figure 3.7, where we have indicated unit lime 

delays by T: series scattering junctions a re separated by a distance A. 

— - A 

X... 
Figure 3.7: Signal flow graph for Figure 3.6(b). 

This signal flow graph can be interpreted as follows: At every grid point in the domain, and at 

every time step there are three computa t ional stages: 

1. Retrieve the incoming wave variables from the registers. Referring to Figure 3.0(b). this means 

that for the port of port resistance Ii\. which accepts a wave variable shifted by T i , we must 

use the sign-inverted wave quanti ty output from the corresponding port , one time s tep earlier, 

and one grid point to the left. This shifting operation is to applied at every grid point, as 
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per Figure 3.7. Similarly, the input to the port of port resistance II, takes the sign-inverted 

output of its corresponding port one t ime step earlier, and one grid point to the right. 

2. Perforin scat ter ing operation. 

.'5. Insert output wave variables into registers. 

If t'o = |o | . then either Ii\ or R-> is zero, depending on the sign of a . In this cast', the associated 

inductor can be dropped from the network entirely (i.e.. we can treat it as a short-circuit). For 

example, if a < 0. then VQ = | o | implies that /?i = 0. and we get the simplified network of Figure 

3.8. Here, we in fact have an exact solution to (3.48); the signals in the delay registers are shifted 

repeatedly to the left, and directly implement the traveling wave solution given by (3.50). Note that 

the sign inversion of t h e inductor is canceled by that of the reflection from the port . 

R, = 0 R, = 0 ffi = 0 

i i ; 

//. 
i i 

Figure 3.8: Simplified signal flow graph for Figure :j.6(b). for Vg = \n\. a < I). 

3.6.2 Stability 

It is easy to see that the MDKC of Figure 3.0(a) will be MD-passive if the inductances L\ and L-j, 

and consequently the por t resistances /?, and R< of the MDWDF in Figure 3.0(b) are non-negative. 

From (3.51). this gives a constraint on r0 . the space s t ep / t ime step ratio, namely that we must have 

t'o = — > |M| (for passivity) 

Any lUcb value of r„ yields a passive, and thus stable algorithm. 

It is important to mention, however, that the instances of the MDWDF, sampled at every grid 

point as in Figure 3.7 are not connected port-wise, as must be true for a traditional lumped WD-

network. The output wave at the bottom port at spatial location z = /A is sign-inverted and then 

sent as input to the same por t , at location .r = (;' — 1 )A at the next time step. Thus the realization 

of Figure 3.7 can not be analyzed directly as a chain of lumped elements: passivity follows from the 

multidimensional representat ions shown in Figure 3.6. 
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3.6.3 An Upwind Form 

One of the interesting (and only briefly mentioned [8G]) features of the ML)KC represent at ion is that 

it can easily be manipulated to yield what are known as upwind difference methods; such methods 

are usually applied to problems for which there is a directional bias in the propagation speed, and 

are heavily used in fluid dynamical calculations [89]. 

We can rewrite the advection equation (3.-18). where we assume, without loss of generality, that 

(i > 0 as 

A Oi , 
0t\ .. Of 

which can be writ ten as the MDKC shown in Figure 3.9(a). We now have 

Lx = */ia L2 = t'o — a 

In this case, we have left a directional derivative in the pure time (or scaled time) direction in 

(L,.D, (L..D,.) 

(a) (b) 

Figme 3.9: An upwind-differencing form for the advection equation (a) MDKC and (b) MDWD-
network. 

the MDKC: for this inductor, we apply the generalized trapezoid rule discussed in §3.5.1. with a 

step-size of T' = A. The resulting MDWD network is shown in Figure 3.9(b). with port resistances 

given by 

R 1 - - 7 - R> = TP (MB - O ) (3.52) 

(Note that a directional shift of length A in the scaled time direction t' = i<ot corresponds to a pure 

time shift of durat ion A / r u = T, and so we have indicated this shift in Figure 3.9(b) by a T ) . T h e 

signal flow graph, with spatial dependence expanded out. is shown in Figure 3.10. 

This s tructure is in a sense, a better model for the advection system: recall that for a > 0. the 

solution at any future t ime instant / > 0 will simply be the initial distr ibution shifted to the right 

by an amount a/ . By using upwind differencing, we have dispensed with the unphysical leftward 

traveling wave which appears in the signal How diagram in Figure 3.7. As before, the network will 
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r». 
— • — 

i_ T _i 

- T 

1 

Figure 3.10: Signal flow graph for Figure .i.9(b). for a > 0. 

be MD-passive for i>o > '>• It also degenerates to a simple delay line when i>n = a (in which case we 

will have It, = 0. and the right-hand inductor in Figure 3.9(1)) can be dropped from the network). 

Because all t he systems that we will subsequently examine do not have any directional disparities 

in the wave speed, we will not pursue the subject of upwind differencing further here. We do mention, 

though, that digital waveguide networks [1GG. 198]. which are intimately related to MDWD networks, 

are incapable of performing upwind differencing for the simple reason that they are constructed 

from bidirectional delay lines (or unit elements), which carry information symmetrically in opposite 

directions. In this respect, the two approaches stand in stark contrast: the advantage of having an 

MD representat ion is very clear in this case. 

3.7 The (1 + 1)D Transmission Line 

As a slightly more involved example, which highlights some of the issues which typically arise in the 

construction of these algorithms, consider the (l-f-l)D transmission lint or telegraphei 's equations 

[03]: 

,0i du 

/ _ + _ + „ + ,. = 0 
On Oi 

(3.53a) 

(3.53b) 

Here. i{.r.l) and u(x.t) are the current and voltage in the transmission line. /. C, r and g are 

inductance, capacitance, resistance and shunt conductance per unit length respectively, and are all 

non-negative functions of J- (/ and c are strictly positive'). e(x,t) and h(r.t) represent distr ibuted 

voltage and current source terms. System (3.53) is symmetric hyperbolic; it has the form of (3.1). 

Mn fact, / and c should be bounded away from zero, so that the local wave speed (given by l/x/iV) remains finite 
everywhere. 
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with w = [i. u}1. and 

/ 0 

0 c 
A, = 

0 1 

1 o 
B = 

r 0 

0 g 
(3.54) 

Phase arid Group Velocity 

In the constant-coefficient case, where r = g = 0, the dispersion relation, defined in (3.10). will be 

\-l,.U:.i)=-Jlc + 0'm1l 

in terms of real frequencies u and waventimbere ,i. and has solutions 

1 
w = ± 

y/Q 

The phase and group velocities, from (3.1*2) are then 

and if / and c are functions of x, the maximal group velocity will be 

9 _ I 
ITL,max ~ \/(MmiM 

(3.55) 

(3.5G) 

where (/c),ni„ = min,€p(/c). 

3.7.1 M D K C for the (1-f 1)D Transmission Line Equat ions 

hi order to put tliis system into the form of an MDKC. let us first change dependent variables by 

(3.57) »i = ' l a = — 

where /o > 0 is a free constant parameter which has dimensions of resistance. The primary reason for 

introducing this parameter is so that the numerical algorithm may later be tuned to be optimally 

efficient (in terms of the largest allowable time step for a given grid spacing). After changing 

variables, and multiplying the second equation by ro. we obtain: 

,0i\ di-z 
I) 

•,di-i 0i\ 2 . 

(3.58a) 

(3.58b) 
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At this point, it is already possible to write the above system in the form of an MDKC". which is 

shown in Figure 3.11(a). 

( - r 0 , « , ) ! 

I r . / > , ! ] 

r—W V\An 

I1 «a 

" ' 1 

( > 

L-^JF W ^ 
(l( P.) r 

(a) 

( t 'a r j r - i-u, l>,f I grl 

i-^WlT W - . 

C) 
(r„,D,. - »,) 

(r /»,. - / ) , ! 

f a .O , 
n«a 

hr 

• • 

c> 
^ - w \AA-J 
( . ' i , / - r ( , , / ) , , I r 

(b) 

Figure 3.11: MDKCs for the (1 + 1)D transmission line system. (3.58) (a) a direct representation, 
and (b) after splitting and shifting inductances. 

Kirchoff's node equation tells us the current in the common branch, which is i\ + i-2. then the 

loop conditions yield system (3.58). This representation, however, can not give an explicit algorithm, 

because of the purely spatial MD inductors which form a T-junction between the two loops: that is, 

if one tries to treat these as one-ports, their W D counterpar ts will be found to contain delay-free 

pa ths from input to output; in other words, the algorithm will be implicit. Nor can it be considered 

to be MD-passive, since there are negative inductances. By performing a few network theoretic 

transformations to this MDKC. we can obtain a representation which is MD-passive, and which will 

give rise to an explicit numerical method. The idea here, grossly speaking, is to make sure that eacli 

inductance is positive, and that every inductor "points" in the direction of a transformed coordinate, 

as per conditions (3.14). 

First note that we can split and shift the differential operators around at will, as long as the loop 

equations remain unchanged. In particular, we can redraw the circuit as in Figure 3.11(b). where 

we have introduced the scaled time coordinate t' = t<ot and its associated derivative £>,<. Now, 

examine the three inductors which form a T-junction connecting the two loops. If we are planning 

to use coordinates defined by (3.19), then the two inductors on the vertical rail can be identified as 

MD-passive we have Df — Dz = \/2D±. The inductance in the common branch, however is not yet 

in proper form. It is now possible to apply transformations from classical network theory so as to 

ensure that the resulting equivalent two-port is composed of only MD-passive elements. Although 

the system as a whole does not change under these manipulations, we would like it to be concretely 

file:///aa-j
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passive*, so that it may be decomposed into a connection of simpler passive Mocks. Since the two-

port containing the T-junction will always be, by itself, linear and shift-invariant (i.e.. shift-invariant 

with respect to any coordinate, because the inductances are constant) . we are justified in describing 

it by means of impedances and applying spectral transformations. When it is connected to the other 

components which are not shift-invariant, the spectrally transformed two-port may be interpreted 

in terms of differencing formulae. 

»i 1 / 1 <J 

a _j 
(a) (bj (c) 

Figure 3.12: Equivalent two-ports— (a) T-junction, with impedances Z,\ and ZH and (b) and (<•). 
lattice and Jaumann equivalent two-ports, both with Z\ = Z,\ and Z-i — Z\ + 2Z/ ( . 

The symmetric T-junction, and its la t t ice [55. 131] and Jaumann [132] equivalents are shown in 

Figure 3.12. for arbi t rary impedances ZA and ZH- Replacement of the T-junction in Figure 3.11(b) 

by either of the two-ports in Figure 3.12(b) and (c) gives an MDKC which is indeed concretely 

MD-passive: this circuit is shown in Figure- 3.14(a). Note that in this representation, we have left 

inductors (with symbols Df) in the circuit, instead of rewriting them as D,> = (D\ + D^)/*/?- hi 

this case, we must proceed as such because their inductances are possibly spatially-varying (note 

that they depend on / and c): for this reason these elements cannot be split into inductances acting 

along directions t\ and t% without giving up passivity. For these inductances, we will apply the 

generalized trapezoid rule, which was discussed in §3.5.1. 

3.7.2 Digression: Derivation of an Inductive Lattice Two-port 

We have derived the W D equivalents for all the s tandard circuit elements, but the two-ports pictured 

in Figure 3.12 need a special t r ea tmen t . Fettweis and Nitsche find the lattice form to b e the 

most straightforward derivation, but we would especially like to call a t tent ion to the fact that the 

resultant WD two-port is the same regardless of which of the equivalent s tructures we choose: use of 

a concretely MD-passive two-port, however, makes the passivity of the resulting circuit obvious. We 

•By concretely passive, we simply mean that all elements in the network should he individually passive. A network 
(or A port [\'1\\ may he abstractly passive, but not concretely passive: the MDKCs shown in Figure 3.11 are of this 
type. 

., Z > Z< ia 

1*1 

' 

ZH e, t>, I'j t>i 
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will continue to use the J a u m a n n equivalent in all future diagrams (though we could equally well 

use the lattice form). Basu [10]. as well a- Fettweis [10] make the point that an electrical network 

equivalent is a convenient formalism for developing MD-passive discrete networks, but it is by no 

means necessary. 

Beginning from any of the equivalent two-port s t ructures in Figure 3.12. We can immediately 

Write down the impedance matr ix , which we will denote by Z: 

1 Z-, + z, 

z> - z, 
z> - z, 
ft + ft 

1 

2 

1 

1 

1 

- 1 

7,<t 

II 

(1 

ft 

1 1 

1 - 1 
= N ' A N z = 

where we have set N = [ ] _ ', ] and A = [ ̂  J! ] . 

We now introduce a port resistance matrix R = [ [' J!f] > 0, where we can choose equal port 

resistances because the tWo-port is symmetric. The scattering matrix is then, from (2.21), 

S = ( N - ' A N R - 1 + i j ) _ 1 ( N - ' A N R - 1 - I , ) 

where I2 is the 2 x 2 identity matrix. Tliis is easily rearranged to become 

S = N - ' ( A R _ I + I 2 ) ( A R - ' - I 2 ) N 

Return ing to the problem of the (1 + 1)D transmission line, for the two-port in question in Figure 

3.14(a). we have Z\ — v/2»'o«2 and Z 2 = \/2rus\. Notice in particular that for these choices of 

impedance, any of the two-ports of Figure 3.12 are described by MD positive real matrices. We now 

discretize using the trapezoid rule, i.e. 

- * Vi = 
2 1 " = / 

Tj i + . ; _ - i j = 1.2 

where we also will set 7'| = T-> = \ /2A. If we make the choice li = 2f'o/A, we obtain the discrete-

t ime, causal scattering matr ix 

S ( . 1 . c 2 ) = N - 1 - i 

0 

0 

"~2 

N (3.59) 

The resulting MD two-port is shown in Figure 3.13. 

It should be clear that the same procedure can be used for arbitrary impedances Z\ and Z2 : it 

should be remarked, however, that we can not always get a simple form without a through path like 

that pictured in Figure 3.13. Since this two-port is strictly causal, it may easily be connected to 

other por ts without the risk of the appearance of a delay-free loop. 
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Figure 3.13: Signal flow diagram for the MDWD lattice or Jaumann two-port. 

3.7.3 A M D W D Network for the (1+1)D Transmission Line 

Returning to Figure 3.14(a). and making use of the discrete two-port derived in the last section, we 

can now write the complete wave digital network. It is shown in Figure 3.14(b). 

i>" 

~^m-
n M 

-^flsr-
( i />•;> (Lo.Di) 

(i.i.O,») 

(a) (b) 

Figure 3.14: (a) MD-passive network for the (1 + 1)D transmission line equations and (b) its associ­
ated MDWD network. 

The inductances in the MDKC of Figure 3.14(a) are 

L\ =• v0l - m L-i = t'o'V' - r() / - ' " (3.60) 
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and the port resistances of the MDWD network of Figure 3.14(b) are 

2m ^Li 'Lv 

RO = ZY n^ = 1X- fl»= A ^ = •'"'> " ' • = ' (3G1) 

The MDWD network is MD-passive if all the porl resistances are non-negative over the entire 

spatial domain: from (3.6(1) and (3.61). the only port resistances which are possibly negative are R\ 

and Ii->. Requiring their positivity gives the constraints 

i'o > ; ' ( I > 
'ruin rot'tniii 

where /„„•„ = miiij./ and <•„„„ = minxc. A judicious choice of I-Q = t / ;™ 1- [131] allows the largest 

possible t ime step for a given grid spacing; the condition is then 

|'u > \ A — | — > of-/..™, (3-62) 
T tmint min 

where -)•/7. ,„„, is defined by (3.56). 

HI and c are constant, and (3.62) holds with equality, so that we have 

"" =\h-= T^*.«« ( 3 G 3 ) 

then the MDWD numerical scheme is said to be operat ing at the Courant-Friedrichs-Leury (CFL) 

bound [176]. For varying coefficients, however, t'o is bounded away from 7 ^ m o # , SO the time step 

will have to be chosen smaller than might be expected; we will look at how to improve upon this 

bound in §3.12. 

3.7.4 Energetic Interpretation 

Let us now reexamine the passive MDKC in Figure 3.14(a). The total stored energy flux in the 

network is contained in the four inductors and will be . from (3.35). 

E,,„„/ = r i i t fe , . + -L'i'ie,, + - I u ( ' i + *»)*©] + -^»('i - 12)% 

where the e»< is a unit vector in direction t', and ei and e„> are unit vectors in directions t\ and /•_> 

respectively. Applying tlie definitions of the inductances, from (3.60). the current definitions from 

(3.57). and the fact that d = (e,> +er)/\/2 and e 2 = (e,- — ex)/\/2, then this to ta l energy flux 

can be rewritten as 

Etotat = ^ i ' o ' ' 2 e r + -r0cu'2er + uieT = -li2e, + -ore, + nieT 
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Here e, = i'oe/< is a unit vector in the t ime direction. The total scalar energy at time / of this 

network will, from (3.30). !>'• 

S(t) = f e'!'Elota,dx = f - ( / , ' + ,-n-) ds = I lwTPwdx 
J—at J—>c - «/—oc * 

and thus coincides with the energy definition of the symmetric hyperbolic system, from (3.G). This 

is certainly not surprising, but the important point here is that in an M D K C such as that of 

Figure 3.14(a). the scalar energy has been broken down into contributions from several interacting 

components (the inductors), each of which is passive individually: this useful energy subdivision has 

been exploited here as a means of developing passive numerical methods. 

3.7.5 Simplified Networks 

In the particular case for which / and c are constants , and where we do not have sources, the 

MDVVD network shown in Figure 3.14(b) can be simplified considerably. If we pick «'o = l/vh-

and to = \fljc, then Ii\ and /?2 become zero, ami their associated inductors may be dropped from 

the network (that is. they can be t rea ted as short-circuits) . The two series adap to r s then reduce to 

simple multiplies of the signals output by the lat t ice two-port as in Figure 3.15(a) where we have 

writ ten 

01 = 
»A tro 
rS + 2ru 

;h = 
Wo A 

yr0± + 2 

-0 

-o-

T, 

-o 
(a) (l>) 

Figure 3.15: Simplified MDWD network for the (l-hl)D transmission line equations— (a) for con­
stant I and c and (b) further simplified tn the distortionless case. 

file:///fljc
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If, in addition, the transmission line is distortionless [28]. so that we have Ig = rr for all values of 

./• (though as mentioned above, we require / and c to be constant) . then the network can be simplified 

further giving Figure 3.15(b). wliere 8\ = i> — 0. Now the M D W D network has decoupled into two 

independent loops, each comprised of an MD shift and a scaling. Examine the expanded signal flow 

graph of Figure 3.16. where the value of the multiplier coefficient ~.i at location J- = /A is writ ten 

as If. Values input into the upper array will be shifted repeatedly to the left and a t tenuated by 

the factor —3, and similarly, those in the lower array are shifted to the right and a t tenuated by 

the same factor. We thus have a traveling wave formulation of the solution to the transmission line 

equations, to be compared with t h e digital waveguide implementation to be discussed in Chapter 4. 

/ 
-A . -fit 

T h*-0-

• o - H 
-Pi-2 

-o-H 
- A - 1 

-o-H 
-A 

T 

X — (» - 214 x = (I - 1JA x = (i 4 I lii 

Figure 3.16: Signal flow graph for the MDWD network of Figure 'i. 15(b). 

Two special cases are of note here. If the transmission line is lossless, so that r = g = 0, then 

$ = — li The initial values in the storage registers are shifted without attenuation. We would like 

to note, however, that if A > — , then 8 > 0. and the traveling waves will be oscillatorv. and the 

solution is thus non-physical. More disturbing is the case A = — , in which case we have 8 = 0, and 

all energy leaves the network immediately! Though these examples would seem to indicate that the 

MDWD network is not behaving correctly, it should be kept in mind tha t , by construction, it is stable 

and consistent with the continuous t ime/space transmission line equations, and is convergent in the 

limit as A —> 0. by the Lax-Richtmeyer Equivalence Theorem [176]. A can always be chosen small 

enough so that ,i is negative, and that thus the solution will be well-behaved (i.e.. non-oscillatory). 

This important extra restriction on the grid spacing, which is independent of the t ime step, is purely 

a result of the use of the t rapezoid rule as our integration method. The lesson here is that passivity, 

while providing a guarantee of s table numerical methods, does not ensure that we necessarily get a 

physically acceptable solution in all cases. 
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3.8 The (2+1 )D Parallel-plate System 

Generalizing the above procedure to several dimensions is straightforward. We examine here, as a 

practical example, the (2+1 )D jnuiillt-l-platr system, which is written as: 

0iz du 

/ 
.&i 

+ 
On 

dt dy 
+ >>„ + 1 = 0 

du Oij 

dt 
f 

9»'. 
+ -7T + U" + 1' = () 

Ox dy 

(3.64a) 

(3.G4b) 

(3.64c) 

This system was treated using MDVVDFs in [62. 211]. Now the dependent variables are a voltage «, 

and current density components ix and iy: these, and the sources e, / and h are functions of time 

I and two spatial variables, .r and y. I. c. r and g are arbitrary smooth positive functions of x and 

// (/ and c are strictly positive). It is worth mentioning that the same equations can be used in the 

contexts of (2+l)D linear acoustics, the vibration of a membrane, and. with a trivial modification, 

(2+1 )D electromagnetic field problems (involving TE or TM modes). 

System (3.64) is symmetric hyperbolic, and thus has the form of (3.1). where w = [ j j . , i v ,«] ' . 

and with 

P = 

/ 

II 

II 

0 (1 

/ 0 

0 c 

A, = 

II 

(1 

1 

II 

0 

II 

1 

0 

0 

A, = 

U 0 () 

0 0 1 

o i Q 

B = 

r 0 () 

0 r 0 

0 0 o 

f = 

e 

f 
h 

It will follow, as in the case of the (1+1 )D transmission line system (see §3.7.4), that the total energy 

of the MDKC that we will derive in the next section will be equal to the energy <>f system (3.61). as 

per (3.6). 

Phase and Group Velocity 

For the constant-coefficient. lossless and source-free case (i.e.. r = g = I = / • /) = 0). the numerical 

dispersion relation, in terms of the frequency U) and waveilumber magnitude ||/3||u = \IPi + •?„ will 

be, from (3.10). 

u ; ( ^ - i ||/3||^=0 

which has roots 

w = 0 1/^11011? 
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Discounting the stationary mode with u = 0, the phase and group velocities are then, from (3.12) 

1 
, r . .</ L 

VPP — li'l' — ^ v ^ 

and if/ and C are functions of ./• and y, the maximal group velocity will be 

1 
1PP,ma* 

\/(l<-)mm 
(3.G5) 

where (/'•)„„•„ = mmiTy^p(lc). This bound is the same as for the ( l - f l ) D transmission line equa­

tions. 

/iru gr0 

il.a.'h) (La, Da) 

-^m—HT-

-0WW-W—' 
n i , 

I 13 

r | / . , , D S | 

1(1 = ^ 

/ . ] = /... = C()/ — l o 

/ . i = fn 'ot - 2r „ 

Figure 3.17: MDKC for the (2+l)D parallel-plate system in rectangular coordinates. 

3.8.1 M D K C and MDWD Network 

The circuit can be derived along the same lines as for the (1 + 1)D case: we deal here with the 

discretization on a rectilinear grid, and will thus apply coordinate transformation defined by the H of 

(3.22). Rewriting system (3.G4) in terms of the new coordinates [ t i , . . . ,<gj using V u = V H V t . 

with the pseudo inverse (3.23) gives 

( r , , / - r „ ) D „ i + ~ A ( » i +/ ; , ) + y £>:,(', - ' : i ) + n'i + e = 0 

(•',)' - r„)D-,,2 + ^ £ » , (l2 + i , ) + jD4 (i-> - »3) + vi-, + / = 0 

r„ re |V l l- iV--2»u)£'5t a + -^£>. (»3 + l l ) + - £ l > 3 ( » 3 - » l ) 

+ ^ A (':. + ia) + yP< (is - »s) + ;/r0
2t;, -I- /MO - 0 

(3.66a) 

(3.66b) 

(3.6GY) 
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where we have used the new current-like variables 

• A . 

' l = 'i IJ = ';, '3 = — 
»0 

and »|, is. as in the ( l - f l )D case, an arbi t rary positive constant (which has also been used to 

scale (3.CGc)). Ds = Dt> will be t rea ted as a simple time derivative, according to the generalized 

trapezoid rule discussed in §3.5.1- Figure 3.17 shows the M D K C that results from the transformed 

set of equations (3.GO). The MDWD network corresponding to the MDKC is shown in Figure 3.18. 

where we have used step-sizes Tj = A. j = 1 5. 

I 

O O £^ O 

«„. = « / r = r 

Ri = «i = | ( m / - n ) ) 

/?3 = 
-'(rorgc--'ro) 

Figure 3.18: MDWD network for the (2+1 )D parallel-plate system, m rectangular coordinates. 

Passivity follows from a positivity conditiun on the network inductances, in particular L\, L> 

and L:) ( the values of which are given in Figure 3.17). These conditions are 

«'o > 
r0 

'min 
V0> 

fOCmi„ 
(3.67) 

The choice of IQ = J y ™ . where /,„;„ = inulC | S / and <•,„,•„ = min*>tl £ gives a stability bound of 

"" ^ \li • ! * ^ / > - (3-68) 

which is the best possible hound for this network [Gl]. Note t ha t ro is again bounded away from 
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the maximum group velocity, even taking into account the scaling factor (\/2 in this case), which is 

a consistent feature of explicit numerical me thods in multiple spatial dimensions. 

If/ and c are constant , and in addition r, </. <. f and h are zero, and (3.C8) holds with equality, 

i.e.. we have 

"o = \ / 2 T P R , (3.G9) 

then the network of Figure 3.18 simplifies to the structure shown in Figure 3.19. This particular 

structure hears a very strong resemblance to the (2+1 )D waveguide mesh [157. 198] which we s;iu 

briefly in §1.1.2, and will examine in detail in Chapter 1. 

Figure 3.19: Simplified MDWD network for the (2+l)D transmission line equations, in the lossless. 
source-free and constant parameter ease. 

3.9 Finite Difference Interpretation 

It should be clear thai a MDWD network corresponding to a particular MDKC (and thus to a given 

set of FDEs) is no more than a particular type of finite difference method, and can be analyzed 

as such. We will do so here for the case of the (1 + 1)D transmission line, in order to compare the 

schemes that arise from the WD approach to the simple centered difference schemes which will he 

introduced in the next chapter in the waveguide context, and which can also be put into a scattering 

form. 

3.9.1 M D W D Networks as Mul t i -s tep Schemes 

Recall that the discretization step discussed in IJ3.5.3 consisted of the application of a spectral 

transformation of the form 

si - » ™ i 
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where SJ is the frequency domain transform variable corresponding to any MD-causal coordinate t r 

and zj is the frequency domain unit shift in the same direction. 

For spatiaUy inhomogeneous problems, this spectral mapping is equivalent to the application of 

the trapezoid rule in direction tj. We can thus write, using operator notation. 

^ 7 - » y - 0 + < j ) " l ( l - * i ) (3.70) 

where Sj is a shift operator defined by 

$Mh tj tk)=p(tj tj-!) tk) 

when applied to any continuous function ;>(t). Consider again the lossless (1 + 1)D transuiission line 

equations 

which can be written as 

(3.72a) w--.>$+J|£«.+M+a£ti.-M-t 

under the application of coordinate transformation (3.19) and using scaled variables i\ = i and 

i2 = n / r 0 . as well as the scaled time variable /' = r0t. Under the substitution of (3.70), for j = 1.2. 

and using the generalized trapezoid rule in tune, defined by 

JL-*±(i+tV)-»(i-tV) 

where <S,< is a shift in the scaled time direction r' of duration X". we get 

( ' o / - r o ) ^ 7 ( l + ^ ) " l ( l - ^ 0 ' 1 + 4 * (1 + *1)"' (1 - <*,) (*l + '•>) 

+ •p-{l-¥Si)'
x{\-82)(il-,1) = » 

+ ^ ( l + ^ r 1 ( 1 - ^ 2 ) (»2 - M ) = O 
-12 
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to second order in -V This can be rewritten as 

(1 + rfi) (1 + fi-i) TT (1 - M»'i +(1 + *») (1 - # ) *'i + (1 + *«') (*a - *l) »'a = " (3.73a) 
'Co 

U + *i)(! + **)•=/ (1 -*,•) h + (1 + o V ) ( l - Sf,) i-2 + (1 + 5,,) ($, - *,) i, = 0 (3.73b) 

where we have used T' = i'o!T = A. T\ = T> = \ /2A. the fact that 6{H> = 6"j,. and also the definitions 

of the port resistances of the MDWD network of Figure 3.14(b). given in (3.61)*. Upon replacing 

the quantities »] and i> by their respective grid functions /i,{(n) and /•>,)(")• which take on values 

for ii and i integer. (3.73a) and (3.73b) define recursions on a regular grid, of spacing A. (3.73a) 

can be written as 

ct</i,{(n) + ft+)/i,i+i(n - l ) + A - i / i , t - i ( n - 1) + - , / • . , ( " - 1) 

- / a , i - i (n - l ) + / s , l + 1 (n- 1) 

- Hi+iIu+i(„ - 2 ) - ft_,/,,,_i(n - 2) - - , / , . , ( / . - 2) 

- /• . , ,_,( , , - 2 ) + /,,,>,(/> - 2 1 

- ( » , • / , , , ( , . - 3 ) = 0 (3.74) 

with 

The recursion corresponding to (3.73b) is very similar, under the interchange of I\ and /•>. Note 

that if / and c are constants, and if the difference scheme is operating at the CFL bound (so that 

/?i = /?., — (). then (3.74) can lie simplified to 

/,,,(>,) - ; , , , ( ; , - 2) + / 2 . i + i (H - 1) - ia , , - i (n - 1) = (1 (3.7C) 

wliich is a simple centered difference approximation to (3.71a) and which we will see again in the 

waveguide mesh context in ?j4.3.2. Unlike the case of the mesh however, away from the passivity 

bound we have a multi-step scheme [170] wliich involves three steps of "look-back" in order to upda te 

a grid variable at a particular location. The introduction of wave variables, then, can be considered 

to be a means of expanding the s tate of the system so that using the new s ta te , the recursion (now 

in the form of the MDW'DF of Figure 3.14) requires access only to wave quantit ies at the time step 

immediately preceding the current one. 

hi order to generate a scheme which operates on alternating interleaved grids (called offset 

'We have also used tin- fart that because this system is linear and time-invariant (though not shift-invariant). 
time-shifting operator* such as St> commute with purely spatially-varying quantities such as li\. 
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sampling in [61]). it is possible to use a doubled t ime s tep of T' = 2A in order to implement the 

generalized trapezoid rule applied to the t ime derivatives in (3.72a) and (3.72b). i.e.. 

§f, - jr> (1 -#)"' (1 + 4) - \ (!-«)"' (1 + 4) 

in which case we get. as an approximation to (3.71a). 

" , / , . , ( » ) + A-+1/ , , , -+ , ( I I - l ) + A + | / , , i _ , ( » - 1 ) + / „ . < + , ( » - l ) - / 2 , i _ , ( « - 1) 

- A + I / ) , I + I ( I I - 3) - ft+i/i,{-i(n - 3) + fa,i+l(n - 3) - /2 . , - - I (H - 3) 

- a, / , , , -(»»- 4) = I) (3.77) 

where a and d are defined as per (3.75). but where i? | is now equal to ^ (i>o/ — PQ), This form also 

reduces to simple centered differences when / and c are constant , and when we are operating at t he 

CFL bound. 

The computational stencils corresponding to the two different schemes are shown in Figure 

3.20: the top black dot in either picture represents the location of the grid variable currently being 

updated (either I] or ijj)i a , R ' the Other dots cover the discrete region of influence of the difference 

scheme. Notice in particular that each scheme has a width of only three grid points, corresponding 

to nearest-neighbor-only updating. Also, because these are multi-step methods , one might expect 

that we will have to take special care when initializing the scheme: we discuss this issue in §3.10. For 

the offset scheme of Figure 3.20(b). the stencil can be shifted one s tep to the left or right without any 

overlapping: thus such a scheme can subdivided into two mutually exclusive subschemes (operating 

only for n + i always even or always odd) , one of which may be dropped from the calculating 

scheme entirely. This behavior appears in many of the difference schemes which we will come across 

subsequently; we will pay particular at tention to such schemes during a spectral analysis of finite 

difference schemes in Appendix A. One of t h e interesting features of the MDKC representation of 

a Bel of PDEs is that the same circuit can give rise to an entire family of MDWD networks, or. in 

other words, of difference met hods, all of wliich are consistent with the original set of PDEs. In the 

case of the MDKC for the transmission line equations derived previously, although we have defined 

the directions of the various inductors (along wliich we will be integrat ing), at the circuit stage we 

have not as yet specified any spectral mapping which will de termine the type of differencing to b e 

applied. Any passivity-preserving mapping which is correct in the low frequency limit will give rise 

to a passive, consistent MDWD algorithm. We will examine the important implications of a more 

exotic tjrpe of mapping in §4.10, but it is tilso interesting to note that we can apply the trapezoid 

rule using different step sizes for all the reactive elements. The constraint on our dioices of these 

step sizes is that all shifting operations refer, ultimately, to another grid point (for coinputabilily). 

Finally, we note that in general, the determinat ion of stability for a multi-step scheme can be 

quite difficult: even in the constant coefficient case, it will in general be necessary to perform Von 
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• # 

• • • • • 

• • • l ' = { n - 2 ) T ' 

• = <n- 3|T' • •• • • ' • 

r' = (n - «)T' 0 
i . - i IA IA (i + x IA 

(• — 1)A lA (i + 1 |A 

(a) (1») 

Figure 3.20: Computational stencils of tin equivalent multi-step schemes of MDWDFs for the (1 + 1JD 
transmission line equations (a) scheme (3.74) and (1>) "offset" scheme (3.77). 

Neumann analysis [17G] (sec Appendix A for such an analysis applied to difference schemes for 

the wave equation in ( 2 + l ) D and (3+1 )D). which can be quite formidable. Here, however, we are 

ensured stability through the passivity condition on the network. 

3.9.2 Numerical Phase Velocity and Parasitic Modes 

Because, in general, the image M D W D F of a given MDKC for a system of PDEs is a multi-step 

numerical integration scheme, it is reasonable to expect that parasitic modes [176] will be present in 

the solution. Energy in such modes often travels at speeds other than the desired wave speed in the 

medium, and may be highly oscillatory. If the scheme is consistent with t he original system of P D E s . 

and stable, as is an MDWD network derived from the equivalent MDKC under the application of the 

trapezoid rule, then these parasitic modes must disappear in the limit as the t ime step is decreased 

(by the Las-Rtchtmeyer Equivalence Theorem [170]). They have not as yet been addressed in the 

wave digital theory, and the subject is related to how initial conditions should be set in a M D W D F . 

The subject of initialization has been touched on only very briefly in [106]. 

Analysis of parasitic modes is easiest in the constant-coefficient case. We will examine the 

simplest possible non-trivial MDWDF. namely that of the const ant-coefficient lossless source-free 

( l + l j D transmission line. Because at the stability limit, this scheme becomes equivalent to simple 

centered differences (see previous section), for which we do not have parasitic modes at all. we will 

look at the M D W D F of Figure 3.14(b) away from this limit1. We have chosen rt) = \flj~c. The 

'Analysis of H numerical method away from its stability limit is useful because it rati give some indication of how 
the scheme will lichave in the presence of material variations; if the system does exhibit such variations, then, locally 

file:///flj~c
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MDWDF is redrawn in Figure 3.21, where we have 

/?. =/?2 = ^ ( < o / - r „ ) nn- — 

forsomei'o > l/vh: Note that because the syst em is now linear and shift-invariant, we have replaced 

•Uu 
* ! 

+' *+ 

Figure 3.21: Steady-state MDWD network for the lossless, source-fret constant-coefficient (I + ljD 
transmi&sion-tine equations. 

the shifts T i and T2 in the two directions t\ and t> by their frequency domain counterpar ts ;,' 

and r._, ' . Recall also that we have, from (3.44) and (3.45). tha t 

- » - |
w - ' ^ ' = , - « > 

where z ' represents a unit delay in the t ime direction, and tc a unit shift in the x direction. We 

have written the outputs of the delay registers, in an exponential s ta te , as 

.^(A-A, nT) = xjz"uh. for j = 1 , . . . ,4 

where the }j are complex amplitudes. The updat ing of the values in the delay registers can be 

written, in terms of these amplitudes, as 

•h 
X-2 

-•''•'. 

. - 1 

—Q 
( l+o) . 

^ a - 1 

1 - 0 
2 

aw 

0 
l - n 

2 

l - o 
2 

f i l l 

o - l 
2 

0 
( l + o ) , 

2 ' 
. < ' + " » , 

speaking, WB will necessarily be operating away from this limit in at least part of tin* problem domain. 
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which is parametrized by a reflectance 

a = n0 + /?, 
(3.78) 

If we introduce the variables 

y\ =x\ + .r4 

the updating decouples into two subsystems, namely 

.'/I = •''! - ' ' I 

•r-2 

•i'.t 

= z~l 

- 1 

aw 

J l - n ) 

( 1 - a ) 

(1 + a)u> 
— ri 

(l + a)iu 
—ii 

- i 

'•2 

8/4 

= : - ' A , , 

= c - ' A : u 

J- 2 

A21 and A34 are known as spatial amplification matrices (see Appendix A). 

(3.79a) 

(3.79b) 

The symbols [176] of the two subsystems. Q21 and Q31 are defined by 

Qv, = l 2 - c - * A 2 1 Q a ^ I . - c - ' A ; , , 

where IL> is the 2 x 2 identity matrix. Nontrivial solutions to the upda te equations (3.79) occur when 

the determinants of the symbols vanish. In the absence of boundary conditions, we may assume 

tr = cJ"*A. where J is a real wavenumber. in which case we have four solutions in terms of z given 

by 

*2i,± = e * 

Z34.± = e = p. s 

jas in(—)£ t/l -a2sin2(—) J (3.80a) 

(3.801)) 

which are simply the eigenvalues of the spectral amplification matrices. T h e corresponding eigen 

vectors of these same matrices are 

U21,± -
Q COS ( M ) ± N / l - « W ( ^ ] 

(1 — ( i )r 2 
u.M,± = 

Q c o s ( ^ ) ± ^ l - « 2 s i n 2 ( # ) 

( 1 — <t)c 2 

All four eigenvalues are of unit magni tude, and thus, using z = e* . we can rewrite solutions (3.80) 
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as 

, j - ; i±7 _ ± c . - ! f ( r i± i / | f.J~n±T - ±f.~
lrir>±<'l (3.81) 

for some real // defined by sin(f A / 2 ) = a Bin(/3A/2). (;/ always exists because we have |o | < 1. from 

(3.78).) For small wavenumbers. we have 

and we thus have in this limit, for the roots subscripted with + in (3.81). 

I... T j a i l + a) . W 2 1 + 1 

J.J X j A d + a l j W 3 4 + 1 

where we have used the fad that ( l + o ) / 2 = l /( t 'o\/7r), which follows from (3.78) and the definitions 

of the port resistances in (3.G1) as well as v0 = S/T. The quantities Wji+//9 and u.'-.u+/i3 are called 

numerical phase velocities [176]: they approach the propagation speed in the medium, from (3.55). 

and these two solutions are to be interpreted as approximations to the traveling wave solution to the 

transmission line equations, The other modes, however, are parasitic, in that they do not propagate 

near the physical velocity. They are not problematic, provided initial conditions are set properly: 

Uldeed, in the limit as A becomes small, any reasonable initial conditions tend to align the system 

with the dominant traveling modes of the system. 

Clearly, if we are at the passivity limit, where rH = \/vk; then R{ — 0. and thus a = 1. which 

implies, finally that v = i. so that we have, from (3.81). that uJ2i+/^ = l / v / ' - a n d ii.';)j+/-i = — 1/v/c: 

wave propagation is thus (Iispersionless. As mentioned in the previous section, at this limit, the 

M D W D network reduces to an exact digital traveling wave solution (this was also noted in §3.7.5). 

It is also interesting to note that when R\ = 7?2 = ^o- 80 that a and 1/ are zero, then (3.81) implies 

that wave propagation is also (Iispersionless in this case as well. It is easy to see here, from Figure 

3.21, tha t because /?] = /?,> = 7?o, there will be no scattering through the adaptors; the pure time 

delays may thus be shifted directly into the lattice two port, and we can perform a manipulation 

similar to that of §3.7.5 to give a simplified digital "traveling wave" network, with doubled time 

delays. Here, we are in effect implementing a traveling wave solution on a different grid, but the 

implication is that for the corresponding problem with material variation, the MDWD network gives 

a good approximation to the numerical phase velocity even for certain values of i'o which are far 

from the local physical wave speed. This is not true for digital waveguide networks, where the 

numerical phase velocities degrade considerably away from the passivity limit. We will re turn to 

these expressions (which provide complete information regarding the numerical dispersion properties 
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of the scheme) in }{4.3.8 in a comparison with the digital waveguide network for the same system. In 

anticipation of the discussion in §3.10, we mention that for constant rn. we have for the eigenvectors 

corresponding to the dominant modes, that 

lim u-n+ = lim U344. = 
A-HI A-+0 

Because we also have, from Figure 3.21. that ii\ = —s\ = —(yj + i}.\ )/2. and O2 = — {£2 + J3 )/2. we 

can also write, for the dominant mode. 

lim 
A-X) 

= - - lim (uL.,+ + U:n.+ ) = 
2 A->0 

0 4 1 

1 - Q i?i+/?o 

R, 

Re 

Thus in this limit, the wave variables incident 011 the left adaptor occur in the same ratio as the 

pott resistances, and are in fact aligned with an eigenvector of the scattering matrix corresponding 

to the adaptor. A similar statement holds for the quantities incident on the right adaptor. We will 

return to this observation in 'he next section. 

3.10 Initial Conditions 

Numerical simulations for time-dependent systems of P D E s must necessarily be initialized; while 

this is a relatively straightforward matter for WDF-based integration schemes, it has only been 

addressed in passing [10G] in the literature. 

We will examine here the initialization of the MDVVD network for the source-free transmission 

line system (3.53) with e — h = 0. This system requires initial distributions for both the current 

and voltage, which we will call io(.r) and Uo(z), respectively. For the initialization of the MDVVD 

network for this system (shown in Figure 3.22). we will also need their spatial derivatives (assuming 

they exist), which we will write as /,',(./) and u'0(x). We note that in the approach considered in [10G], 

spatial derivative Information has not been taken into account. For the M D W D network of Figure 

3.22. we must initialize all t he wave variables incident upon tin- scattering junctions, writ ten as aj, 

j = 1 4: because we have assumed no sources. 110 wave enters through the loss/source port . This 

circuit is a MD representation, and each of these wave variables refers to an array. Assuming that 

the spatial grid spacing is A, and the time step is T. we can index the elements of these arrays as 

Ujml't)- f"1' ' " a l " l n integer: this represents an instance of the MD wave variable Q)j at grid location 

.r = DiA, anil at t ime r = 11T. For initialization, we must thus set (ij,„(0). over all grid locations 

,r = uiA included in the domain of the problem, in terms of the quantities »o(mA), i/»(;uA) and 

their spatial derivatives. 

We will consider only the set tings for the wave variables in the left-hand adaptor : one proceeds 
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Figure 3.22: MDWD network for tile source-free (1 + 1)D transmission line equations. 

in the same way for the right adaptor. We recall that the port resistances are defined by 

i?i = ^ (<„ / ->„ ) flo = 
2'-() 

If, r = r 

Since the port resistances R\ and /?,,. are functions of position, we will write R\m = R\{mA) and 

i ? e r m = /? f I .(»iA). /?u is independent of jr. It is easy to see, from (2.30). that the initial values 

(ii,„(0) and M2ni((J) must be arranged such that we produce the initial current ig(n)A). Thus we 

need 

i«(mA) = — («„„(()) + a,,„(())) 
t<n + Rim + iff rm v ' 

(3.82 

Another condition is required to fully specify the wave variable initial values. Referring to the 

generating MDKC for this MDWD network in Figure 3.14(a), we call see that the voltage across the 

inductor of inductance L\ will be L\^,. We intend to relate this voltage to the associated digital 

voltage across the inductor of port resistance 7?i in Figure 3.22. We have 

di (at") L\ 0i 

or vo Ot 
(3.80) l»o' — »'0 0i 

t'o d~t 

'-' GH(£+") (3.83) 

At time f = 0, and at location x = I / I A . we may write this voltage as 

di | ci ij 11 /?i , 

Of \z=m6.l 
= ~ n . n—(t'n('"-M + 'm'o('»A) 
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The wave digital voltage across the same pott, at location J- = tiiA is defined by 

Wm = T (aim + »im) = -^——7z — j ; ((/?() + Rf,ml«im - A i m a 2 m ) (3.84) 
- ''(I + Wlm + 'term v y 

rhus, for initialization, equating the voltages in (3.84) and (3.83). we must have 

_/?,,„(/?,„,+ fl,,+ /?.,.,„) ( f i , ( n i A ) + / ? f r m l- l ) ( , / l A ) ) = {Iin + ^ r i „ l m ( o ) _ j?,a2m(0) 
'Mm + J«0 

This requirement, along with (3.82) fully specifies the initial values of the wave variables at the 

left adaptor. We thus have 

«„„«))= (/?•„, - ! | " , " f ' ' " ) > l l ( » l A ) - Ru2n " " ( " ' A ) ( 3 8 5 a ) 

r,,m((J) =f /? n + /«V,.„, + '? '""f'"' ) tu(»iA) + „ / ? ' ; " „ »;,(mA) (3.85b) 
\ J ' IFI I + I'll/ H\m + 1<0 

We note that u'0(inA) may be obtained From the initial voltage distribution u{>(.r) by any reasonable 

(i.e.. consistent) approximation to the spatial derivative. 

It is important to recognize that for constant t'n. we have 

lim («!,„(()) = AiM,t0(mA) lint a2m(0) = /?o'o('»A) 
A-+0 A-»0 

These values occur in the same ratio as those of an eigenvector of the scattering matrix for the 

left series adaptor. In particular, they follow the distribution of the principal eigenvector (i.e.. the 

unique eigenvector whose elements are all of the same sign) of the scattering matrix. Thus the proper 

setting for the initial conditions (except at the loss port) should be aligned with the dominant mode 

of the numerical scheme in this limit (and the fraction of the initial energy injected into the parasitic 

modes will vanish)—see §3.9.2 for a discussion of parasitic modes in this particular system'. We 

also suggest the following very simple "rule of thumb" for setting initial conditions: 

' We would like to note here that the eigenvectors of the scattering matrix will give extremal values for the quantity 
a ' P b for an A'-porl with A'-vector input waves a and output waves b and a diagonal weighting matrix P containing 
port conductances. This quantity, at least for some simple lumped systems, can be identified with what is called as the 
lAiyranyiun [HID]. Many physics problems (indeed, all the systems treated in this thesis) can he recast as variational 
problems involving finding an extreme valne of the Lagraugian integrated ovei all possible system states. Though we 
have not worked out all the details in the distributed case, it would appear thai the alignment of the discrete system 
with an eigenvector of the scattering matrix ia the scheme's "at tempt" to conform to Lagraugian mechanics (which is 
to be expected), 'this is interesting for two reasons; first, the wave digital Lagrnngiau could form the basis for a in u 
set of quantization rules, which, in addition to (or perhaps instead of) ensuring passivity, nudge the system toward 
a preferred slate. Second, the variational or Lagraugian formulation of a physics problem i> a necessary first step in 
developing what are known as finite element method* (FEM) [!)5]: these methods are not restricted to operating on 
regular grids, as MDWD methods are. Could MDWD networks operating on unstructured grids be arrived at through 
surh a formulation'.' This is, admittedly, a very vague notion. 
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For a given series .U-pori MD-adaptOT 

/. port resistaiu 

value of i at th 

valuables to be 

es 7?j and input wave 

• adaptor is to be i». 

^(i)) = o 

O i ( 0 ) = Rjio 
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variables Oj 
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network. 
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with associated current 

. ..M. then if the 

should set the initial values of the 

at a loss/source port 

otherwise 

initial 

• wave 

This rule is to be interpreted in a distributed sense, i.e.. it holds for every instance of an adaptor 

on the numerical grid. A similar rule holds for a parallel adaptor. These settings ignore spatial 

derivative information, but give a simple way of proceeding in general, especially during the first 

stages of programming and debugging, and are correct (to first order) in the limit as A approaches 

0. If losses are large, though, one may prefer to use exact conditions like (3.85). This rule applies 

regardless of the number of dimensions of the problem (but may need to be amended if sources or 

reflection-free por t s are present) . 

3.11 Boundary Conditions 

Boundary terminat ions have been discussed hi [01. 107. 131, 211]. We have not done significant 

work on this problem, but would like to mention the several disparate approaches which have been 

proposed. The problem of general passive termination of a MD network is very involved, and would 

probably merit a long t reatment in a separate work: termination of a (1 + 1)D MD circuit, which is 

all we will be able to discuss here, is a simple mat te r , and the ideas can be extended to cover certain 

important cases in higher dimensions. The most straightforward method was put forth in [107]. We 

will refer here to Figure 3.22, the MDWD network for the source-free transmission line equations. 

This network represents the signal behavior at any grid point in the domain, hi particular, the 

signals x% and J : I are obtained at each time step from signals input into the shift registers at grid 

locations immediately to the left and right, respectively. Suppose now that we have a left boundary 

terminat ion at .r = 0, and that the domain has been sampled such that a grid point coincides with 

this point. Then at this location. .r2 cannot be directly obtained because there is no grid point to 

the left to which the shift register refers. 

Let us now examine some simple lossless boundary conditions of the form of (3.8). Suppose that 

we would like the boundary condition for the transmission line to be that of an open-circuit at the 
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left terminat ion, so that we have 

i(0. M = 0 Open-circuit termination 

The wave digital approximation to the physical current at any grid point is calculated from the wave 

variables incident on the left series adaptor , so that we have 

' = n0 + L + n, l'" + '"> = Bo + L + *, ("" ' 5 ( " + ^]) 
If we set. at the left-most grid point, 

X2 = -.(:i - 2.r, 

then the calculated current will be identically zero, and s? is easily obtained from .r:j and x\, bo th 

of which are available. A short-circuited termination, i.e.. 

ii((),t) = 0 Short-circuit termination 

can be accomplished by treating the right-hand adaptor in a similar manner. It is possible to mix 

these conditions, and to introduce loss and a lumped terminating source as well [107]. 

This idea is also easily extended to multiple dimensions for rectilinearly sampled grids, if the 

boundary is parallel to one of the grid axes. We would like to add. however, tha t such a termination 

has nevtr been shown to be passive, and that there is no general theory applicable to boundary 

terminat ion of MDWD networks [142](though we will provide a possible foundation for such an 

approach in ^G.2.3). While it is easy to prove that the simple cases above correspond to passive 

lumped terminations, there are si tuat ions in higher dimensions when this approach becomes difficult 

to apply reliably: in several instances, (see Chapter 5 for some added discussion), this approach has 

failed in simulation. The difficulty with approaching boundary termination in this way is that the 

physics of the problem (in particular the passivity at the boundary) is not being taken into account: 

this method , though easy to apply, is essentially no different from what is done using conventional 

Quite difference methods. Fettweis and Nitsche [Gl] provided an alternative method which is more 

satisfying from a physical point of view: in this case, the region beyond the boundary is modeled as 

a mater ia l with extreme parameter values (typically r = 00 or g = oo, for the transmission line or 

parallel-plate problem). These regions are still passive, though it may now be necessary to employ 

a "layer" of this material, which will incur extra calculation costs. 

Other recent work has involved more general lumped boundary terminations [5, 211, 212], as well 

as the termination of the ( 2 + 1 ) 0 parallel-plate problem in hexagonal coordinates: we mention that 

these approaches are unwieldy in the extreme: in at least one case [210]. the proposed modelling of 
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a passive boundary condition requires active elements! 

T h e problem with the termination of MDWD networks is that when spatial dependence is ex­

panded out to get a signal flow graph, we do not end up with a lumped network of port wise-connected 

elements: see. for example, the flow graph for the simple advective system, shown in Figure 3.7. Such 

is not the case for digital waveguide networks, which are in fact formulated from the outset as large 

lumped networks. For this reason, boundary termination is much simpler in a DVVN. In Chapter 

4, wliich is devoted to digital waveguide networks, we will discuss boundary termination for the 

(1 + 1)D transmission line problem in ?{4-3.9. and for the parallel-plate problem in *j4.4.4. Boundary 

te rminat ion for vibrating beam and pla te systems is discussed in detail in Chapte r 5. 

N o t e o n Per fec t ly M a t c h e d L a y e r s 

An interesting and related direction in current research into boundary termination (and one into 

which we invested some considerable t ime and effort) involves the use of so-called perfatlii mutt In <l 

layer* (PMLs) [13, 14] as boundary terminations in problems to be solved over an unbounded spatial 

domain. The idea, generally speaking, is to surround a numerical problem domain with a layer of 

a mater ia l wliich creates as little numerical reflection as possible, while also a t tenuat ing waves that 

enter from the problem interior. 

Absorbing boundary conditions (ABCs) [18-5] were long used for this purpose in ( 2 + l ) D and 

(3+1 )D electromagnetic problems: in terms of the (2+1 )D parallel-plate problem (which is equivalent 

to ( 2 + l ) D T E or TM mode electromagnetics), the layer is chosen to be matched to the characteristic 

Impedance of the plates, namely ^/T/c: As such, it can be though t of as an extension to (2+1 )D of the 

reflectionless matched termination tha t can be applied to a (1 + 1 )D transmission line. Unfortunately, 

in higher dimensions, such a termination is reflection-free only for waves at normal incidence, and 

there will be significant backseatter into the problem interior at oblique incidence: furthermore, the 

amount of reflection is frequency-dependent. 

Berenger [13] solved this problem, at least in theory, by proposing a new uiiphysical medium as 

an absorbing material. For the parallel-plate problem, the dependent variables in this new medium 

are the current density, and two orthogonal ("split") voltage components : if the layer is infinitely 

thick, then it indeed absorbs and a t tenuates waves of any frequency or angle of incidence. The 

problem here, as has been pointed out in [1. 2. 189] is that the proposed medium can be described 

by a system which, though hyperbolic, is not symmetric hyperbolic and thus not of the form of 

(3.1), and what is worse, is not even strongly hyperbolic [82]: s t rong hyperbolicitv is the necessary 

requirement for the initial value problem to be well-posed. As a result, lower-order perturbations 

such as those that might result from numerical discretization, can render such a system ill -posed, 

and susceptible to numerical instability. (It is worth noting that the MDKC representations that 

we have disussed in this chapter have only been applied to symmetr ic hyperbolic systems of the 

par t icular form of (3.1). An MDKC representation of a (3+1 )D P M L medium has been proposed 
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in [129]. but in this case, the asymmetries in 111«- system were lumped into dependent source te rms, 

and MD-passivity does not immediately follow.) Other more physical reformulations of the P M L in 

tr ims of an anisotropic frequency-dependent medium [153. 21G] and stretched complex coordinates 

[185] do not alleviate this problem significantly, and other similar aproaches, such as sponge layers 

[ 1 -38] and the transparent absorbing boundary [137] and Lorentz materials [217] appear to have 

similar problems. 

New PML-type media, which can be described by symmetr ic hyperbolic systems, were put forth 

in [2. 189]: they are of the form of (3.1). but for these media the symmetric part of the B mat r ix is 

not positive semi-definite, so an energy est imate of the form of (3.7) is not available. In part icular , 

though one can indeed develop MDKC representations for these systems, the noii-positivify of the 

symmetric part of B leads to active ( though purely resistive) coupling between the various circuit 

loops. This is somewhat curious, because it is shown in [2] that Held quantities in the absorbing 

medium decay as a function of distance from the boundary in any direction, so it would be expected 

thai these media are indeed passive. Several questions arise here which are related to the general 

issue of the when a passive MDKC representation can be derived from a physically passive system. 

In particular: what kind of symmetries are required of the various system matrices.' Is it possible to 

represent systems which are not symmetric hyperbolic, but only strongly hyperbolic (in which case 

non-reciprocal reactive elements would be necessary)? 

Finally, we mention that although these absorbing layers have been proposed for use in elec­

tromagnetic field simulation problems, they apply equally well to the associated mechanical and 

acoustic systems: a version of the layer intended for use in fluid dynamic problems was put forth 

in [93]. Applications in musical and room acoustics would seem to be manifold (calculating the 

sound fields radiating from the open end of a musical instrument into a large space, or in open-air 

architectural acoustics problems come to mind as two possible examples). 

3.12 Balanced Forms 

Consider again the (1 + 1)D transmission line, with spatially-varying coefficients. It has been noted 

in th«' past [130. 131] that the restriction on the t ime step, namely 

V ' i r i i n ( ' m i i i 

with /,„,„ = miiij. / and r„,,„ = mln, c is ra ther unsatisfying: the local group velocity at any point in 

our domain is given by i l / v / t t " . so we would hope that a more physically meaningful bound such as 

<'o > 7r/.,„,„, - »*«* \J Yr
 (3'8G) 
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(which is obtained in using, for example, digital waveguide networks, which will be discussed in 

Chapter 1) could be at tainable. Depending on the variation in / and c. the new bound can allow a 

substantially larger time step. We will show that this is in fact possible via a MDWD approach. 

The transmission line equations given in (3.53) can be transformed in the following way: first 

introduce new dependent variables 

i i = vZi i> = uj\fZ 

where Z . the local line impedance is defined by 

Z(.r) A 
Such a transformation in fact changes to variables which both have units of mat power. After a few 

elementary manipulat ions (namely scaling (3.53a) by l/VZ and (3.53b) by vZ). we have 

v / ^ % - + ^ + | - ( l i i ( v / Z ) ) / , + r M / ^ + ' ' / v / Z = 0 
at u.r OT 

v^-^f + ^ - 4 - (ln(>/Z))M+ gZh+hy/Z m 0 
Ot a.r as 

(3.87a) 

(3.87b) 

System (3.87) is still symmetric hyperbolic: referring to the general system from (3.1), for w = 

[l]. i j ] ' . we now have 

\ffc 0 
0 y/fr 

0 ll 

1 0 
B = 

r/Z & ( l n ( i / Z ) ) ' 

&(hl(\/I)) !)Z 
(3.88) 

Note that because P is now a multiple of the identity matr ix , there is near complete symmetry 

between the variables »i and i2. We use the term "balanced" to describe such a system. Note 

also that new off-diagonal terms have appeared in B (compare (3.88) with (3.54)), but they appear 

antisymmetrically', and thus do not give rise to loss in other words these terms do not appear 

in ( B + B ) 7 , which determines the growth or decay of the solution, as per (3.5). In fact, these 

off-diagonal terms yield a lossless (but non-reciprocal) gyrator in the circuit setting. 

h i terms of the coordinates defined by (3.18). we can then rewri te (3.87) as 

LtDr'ii - r L o D , (ij +l2) +L()D2(i] -~i-2) + V ? « » 2 + >"•», +v = 0 

L-.Dvh + L0D1 (i-2 + ' i ) + L0Dj (l2 - u) - RGii + /)':- + h = 0 

* Recall from tj:t.2 that tin- term "symmetric hyperbolic" does not refer to the coefficient of the constant-proportional 
tiTtii B, which is not constrained to be of any particular form. 
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(a) (b) 

Figure 3.23: (a) Balanced MD-passive network for tin (l + l)D transmission line equations and (b) 
its associated MDWD network. 

where 

L , = L 2 = i'nv/c— 1 L0 = 
v/2 

ft,-£(*(%£)) 
(which should be compared with (3.GO), for the s tandard form), and 

r = ,/z I = vj\fz [) = n'Z it =hVz 

As mentioned previously, in a MDKC sett ing, the terms with coefficient //<,• can be treated as a 

gyrator. T h e network and its wave digital counterpart are shown in Figure 3.23. The port resistances 

are given by 

It, = /,, = - (,.„y/tc-1) 7?o = j n,,. = r 7?,,,, = g 

In order to accommodate the gyrator. we have been forced, in order to avoid delay-free loops, to 

set one of the por t s to which it is connected to be reflection-five (see *j2.3.o). In (1 + 1)D. we can 

choose either of these ports , but picking the bo t tom port in figure 3.23(b) allows us to extend the 



118 CHAPTER 3. MULTIDIMENSIONAL WAVE DIGITAL FILTERS 

idea to ( 2 + l ) D easily. This port resistance is then const rained to be 

/?,;, = /?, +/?,,. + /?„ 

We have two simplifying choices for Ra2\ either we can choose it to be reflection-free as well, so that 

we will have a general gyrator described by (2.25). or we can choose 

in which case the gyrator equations (2.25) reduce to a pair of throughs, scaled individually by 

Ri;/Rn\ and its inverse: this latter choice may be problematic if /?<; approaches zero, because one 

of the multipliers becomes unbounded. If RQ is small over some part of the problem domain, how­

ever, it is probably wiser to remove the coupling from the network altogether over these regions 

(it can be replaced by a simple two-port short-circuit). We have assumed, throughout this devel­

opment, that /(j-) and r(.r) (or rather, the local characteristic line impedance Z(.r) = \/l{.r)/c{x)) 

are differentiable. An offset-sampled version of this network is also possible, if we halve the port 

resistances R\ and 7?2 and double the delays at the same ports . 

The stability bound, from a requirement on the positivity of R] and R> will be exactly (3.8G). 

hi an implementat ion, then- will be of course the slight additional costs due to the extra gyrator 

and the rescaling of the new dependent variables it and /•_> at every t ime step in order to obtain i 

and u. We note that this scaling can be fully incorporated into the MDKC by t reat ing the scaling 

coefficients as transforiner turns-ratios, though there is no advantage in doing so (other than pu t t ing 

one's mind at ease regarding whether such a scaling is a passive opera t ion) . 

We will examine how this same technique can be applied to more complex systems when we 

approach the Timoshonko beam equations in §5.2: in that case, the maximum allowable t ime s tep 

can be radically increased for a system with only mild material pa ramete r variation. 

E x t e n s i o n t o ( 2 + 1 ) D 

We briefly note that the same approach can be easily extended to the parallel-plate problem as well; 

beginning from system (3.64), we can introduce new variables 

l'j = vZiT i-2 = vZi;/ >3 = tl/vZ 

where Z( . r . w ) = ^ / ( . r , n)/r(s, t/). and then multiply (3.G4a) and (3.G4b) by 1/v/Z and (3.64c) by 

\/Z. The new system is again symmetric hyperbolic. We do not show the network here, but we 

mention that we will require two gyrators; one linking the series adap tors with associated currents 

i] and /;(. the other between the adaptors for /•> and 13. One reflection-free port must be chosen for 

each gyrator: choosing both reflection-free por ts at the adaptor with current 13 must be ruled out . 
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but other configurations are acceptable. 

The stability bound for the balanced ( 2 + l ) D network will be 

/

Y r 
- = V2-)9

PPmar 

which is superior to (3.G8). the bound for the s tandard form. 

3.13 Higher-order Accuracy 

WDF-bascd numerical methods are. in general, second-order accurate in bo th the time step and the 

grid spacing. In all the schemes that have been examined in the l i terature, these quantities occur in 

a fixed ratio (usually written as i'o), so we can say that such schemes are accurate to second order 

in either one (or of any of the shift lengths in the new coordinates) . A numerical approximation 

to a system of PDEs obtained using a M D n ' D network will converge to the solution to the model 

problem with a truncation error [17G] proportional to the square of any of these spacings. 

While this is true in general, in this section we would like to point out that it is indeed possible to 

devise MD circuit-based schemes which exhibit a higher-order spatial accuracy. Temporal accuracy, 

however, remains fixed at second-order*: for this reason, such schemes must operate using a small 

t ime step: this limits their usefulness somewhat. Even more importantly, however, we note that f lie 

schemes we will develop here can be rewritten as very simple finite difference schemes of the form 

corresponding to digital waveguide networks (to be discussed in Chapter 4). We include this section 

merely to show that higher-order spatial accuracy is not incommensurate with MD-passivity. and to 

indicate a possible direction for future research. 

Consider again the lossless source-free transmission line problem, defined by 

• £ • £ - • 

, . | + | = 0 

(Losses and sources may be reintroduced at a later s tage in these schemes without any difficulty.) 

Because higher-order spatially accurate explicit me thods will require access to grid points other than 

•We remark here that this restriction may be fundamental. It should be recalled that Ml) system* arc passive with 
respect to the time coordinate—coordinate transformations are simply B means of distributing this passivity property 
among all the independent variables of the problem. It is well-known [65] that lumped passive systems of lirst-order 
can be approximated by passive numerical methods which are at best second-order accurate, this restriction would 
appear to carry over in Ml), though we have not attempted to prove this. Passivity does not hold, however, with 
respect to the spatial coordinates, and it may be this distinction which we an- able to exploit in this section. 
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nearest neighbors, we introduce the following coordinate transformation. 

H = 
1 - 1 2 - 2 . . . q -q 

1 1 1 1 . . . 1 1 
H " = H ] 

:t 

o I 
(:3.90) 

for some positive integer q (if q = 1, then we get the coordinate transformation defined by (3.18), 

scaled by a constant factor). 2r/ will shortly be shown to be the order of spatial accuracy of the 

resulting difference scheme. As before, we have 

u = V ' H t t = H " V u 

with u = [.r./]'. and t = [/) + ./i-,/•_.+ ./•_>- ',+ . ' , , - ] ' : the coordinate transformation defined 

by H thus describes an embedding of the ( l - f l )D problem in a 2(/-dimciisional space. A uniform 

sampling of the new coordinates with spacingsX,+ =T\- = . . . = Tq+ = Tq- = A merely regenerate-, 

a uniform grid with spacing A. The first two pairs of unit shifts are as shown in Figure 3.24. 

/ • 

<n + I I T 

(n - 1 IT 1 

fl - 1 ) 4 ( i - l ) A iA (i + l l - l d + 2 i a 

Figure 3.24: Unit shifts in the coordinates defined by (3.90). 

We now rewrite system (3.89) as 

Oi 1 ^—> Oi-i 

"°'7^ + rnZ^ar" 

,dij 

= 0 

9 
« 1 

when-, as before, we have i\ = I, 13 = u/r0 for some positive constant r0, and / = vut. The <\,u. 
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j = 1 (j. are constants which satisfy 

9 
£ > , ; = ! (3.91) 

We may continue and write 

( « j - g 1 ? 1 ) $ + » £ ¥ ( $ • * " * " £ ) • • 

Because, from (3.25). We have thai 

n & fl 9 . fl _ A fl 0 . 0 . 
D^=0i]: = 0P+Jd-s D>-=0J- = 0T>-JQ-r J = l q 

we can immediately write 

LUlDvix+Y. Mqj (DJ+(i, + i3qji-2) + Dj^(il- pyis)) » 0 (3.92a) 

L2qDt.i, + 51 M,, Pi*(»> + V i ) + ^i-(»« - V » » = ° <3-92b) 

with 

' ' I I ' ' I I i i 

£l« = ''o/ - r0 2 ^ —• £*</ = "o"o - 2 ^ — • Mii =
 2 ''•' = SRI1<°''J I 

j = i J j=i J * 

(3.93) 

The system (3.92) can immediately be identified with an MDKC as in Figure 3,25. 

Each of the .launiann two-ports can be discretized according to the trapezoid rule: as long as 

our choice of the constants t*«j satisfies the constraint (3.91) and L\q and L>,, remain positive, the 

resulting MDWD network will he a second-order stahle accurate approximation to system (3.89). 

Suppose, however, that we apply a different set of discretization rules, namely 

DJ+ -^ 4(i+jj-fyi-r>(i<-'j+)(i'Mj-) <3-9 4 a) 
DJ- -» Trfl + ' i - ' i+r ' f l - ' j -Ml + V ) (3-94b) 
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i-

l ~ W Vv^ 

—IBlh- - W ~ 

" a 3 
AA/^ 

-^IffiS^ -w-^ (Af„.«1+) (A/,,,0,-1 <A/,„.;VI (A/,2,D,_) 

—1RRT— 

V \ A - AAA—' 

-L-/51Hh- m 
(«„.»,+ ' !•"«.'V 

Figure 3.25: MDKC for the lossless so am-free transmission line equations, according to the decom­
position given by (3.92). 

for j == 1 , . . . ,q. Here. <5j+ and Sj- are the shift operators in the directions tj+ and ts- defined by 

6j+e(t) = c(t - T y ) 6j-c(t) = r ( t - T y ) 

for a function r( t) . where T;+ and T j - are vectors of length A in directions fJ+ and t r respectively 

(see Figure 3.24 for a graphical representation of these shifts on the computational grid). These rules 

correspond, in the linear shift-invariant case, to pairs of spectral mappings of the type mentioned 

briefly in §3.5.4, with shift lengths equal to A: they are also MD-passivity preserving, and are in 

general second-order accurate [61]. To the scaled time derivative, we apply the trapezoid rule with 

a doubled time step T' — 2A. as defined hy 

Dr * jr, (1 +*?.)"' ( 1 - 4 ) = J ( 1 + 4 ) " ' ( 1 - 4 ) 

Equation (3.92a) then becomes 

Liq(l + S;,y ( 1 - 4 ) ' . + ^ A / , j ( l + ^ - V ) (l-Sj+)(l + 6j-)(il+ ,i„jii) 

= 6>(AJ (3.95 

Because, however, ftj+fij- = S{, and our system is time-invariant, the Operator l + b~j+6j- commutes 
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with L\q and Mjq and may be factored out of (3.95). giving 

•/ 
£ i , ( l - $ ) i i + ^,Mqi(l-S^){l + Sj-){it+ffqii3) 

•I 
+ £ \ \ / , „ ( i - ( 1 j - ) ( i+<V) ( '> - V--> 

= 0(A?) 

which can he further simplified to 

a 
vul (1 - i f , ) , , + ,-„ ^ - ? i (J,- - 5 i + ) , , = 0{A2) 

J - l J 

or. writing Sj- = SfiSj1 and Sj+ = <V<S;j where Sr is a simple shift in the ./• direction of A. as 

» = v > = 1 J 

which is easily seen to be a simple difference approximation to (3.89a). The approximation is nomi­

nally second-order accurate in A. but we have not as yet made any special choice of the nqj. This can 

be done via a conventional finite difference approach [17G] in such a way as to yield a higher-order 

accurate approximation to the spatial derivative. 

We i an write, expanding the shift operators in Taylor series. 

j = l JtXlodd j=l 

There are q degrees of freedom, corresponding to the parameters n,(J. j = 1 </. We require, 

from (3.91) that the coefficient of the first derivative on the right-hand side of (3.96) equal one. We 

may then additionally require that the other coefficients, for A- = 3 2r/+ 1 be zero: the resulting 

difference approximation will then be accurate to order '2q. This yields the linear system 

C a , = e, (3.97) 

where C is aqxq matrix with [C,j] = j 2 , ' ~ " . aq = [<\q\ <><N]' • and e^ is a qx 1 vector whose first 

entry is one. and whose others are zero. C is always full rank, so there is a unique solution for any q. 

I lie same aq will also give a higher-order approximation to (3.89b). and thus system (3.89) will be 

approximated to higher-order accuracy as a whole. For a fourth-order approximation, for example. 
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<.. + 11 r 

i .• - 11 r i_i 

3 lA I I - 1 l i (. + i l i l i t | i i 

Figure 3.2C: Unit shifts in the coordinates defined by (3.98). 

we obtain a? = [4 /3 . — 1/3] ' . and for a sixth-order approximation, we get Q :I = [3/2, —3/5, 1/10] ' • 

These values completely determine the MDKC pictured in Figure 3.25. 

The passivity requirement is. as before, a condition on the positivity of L\q and L-^q. Choosing 

'(( = S/Lninh'min gives 

t'O > 

•'0 > 

- V ' i n i i i C m i n 

11 

O V i rrjinC^nin 

Fourth-order accurate scheme 

Sixth-order accurate scheme 

It is interesting to note that in the constant-coefficient case, this bound is distinct from the stabil­

ity bound obtained from Von Neumann analysts (see Appendix A) applied to the same difference 

method. For example, for the fourth-order accurate scheme defined by a?, the stability bound is 

i>o > 1.3?7, with 1 = \/\fh-: there is thus a range of values of v0 for which the scheme, will be stable. 

but not MD-passive. We will comment extensively on the distinction between passive and stable 

methods in Appendix A. 

It is also of interest to define a similar scheme with respect to the coordinate t ransformation 

defined by 

H = 
1 

1 

i 
2 

1 

1 
•_> 

1 1 
• 

1 

2 a - l 
2 

1 
(3.98) 

Keeping the same notat ion for the new coordinates, the shifts are as shown in Figure 3.2G; now we 

have a grid ideal for a staggered or interleaved algorithm, with a l ternat ing grid points a t a l te rna t ing 

time steps. 

For tliis coordinate system, we follow through a development very similar to that in the previous 
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pages. We again have an MD circuit representation as in Figure 3.25. where now we have 

/ - .. / ,. V* &s£ I - , ,.,-' ,. V - ^ i U • - '""I"'"I 
fcl« -» Vol — r» } ^ . ™\ L?1 - ' " "*> ~ ' » / , _ \_ *™« = ni-_ \\ 

, = l J -J j=] J I -\J V 

for some set uinqj. j = \ ij which sum to unity. The symbols Dj+ and Dj- in the figure now refer 

to directional derivatives in the coordinate directions defined by (3.98). For higher-order accuracy. 

constrain) equation (3.97) will apply, now with [C,j] = (j — l / 2 ) " , , _ " . For fourth-order accuracy, we 

obtain a 2 = [ 9 / 8 . - 1 / 8 ] ' . and for a sixth-order approximation, we get a a ss [1.179. -0.195,0.0234]T. 

Because here we are using an alternative discretization rule, the resulting MDWD networks are 

more appropriately discussed in the context of digital waveguide networks (which are the subject of 

the next chapter). We will return briefly to waveguide network representations of these higher-order 

accurate methods in §4.10.5. 



126 CHAPTER 3. MULTIDIMENSIONAL WAVE DIGITAL FILTERS 



Chapter 4 

Digital Waveguide Networks 

4.1 Introductory Remarks 

We now turn our a t tent ion to a different approach to numerical integration which is. in many re­

spects, very similar to the multidimensional wave digital filtering technique discussed in the last 

chapter. Digital waveguide networks (DWNs) [1GG] are also based oil ideas of scattering and prop­

agation of wave variables in multiple dimensions: indeed, the basic signal processing block of the 

DWN. the scattering junct ion, is identical to the wave digital adaptor. As such, a waveguide network 

will possess the same discrete passivity properties as a wave digital network, and passivity in finite 

ar i thmetic also follows accordingly [165]. 

The process I hrough which one arrives at a particular DWN intended to simulate the behavior 

of a distributed physical system has been, to date , qui te different. Following the wave digital 

approach, one first obtains a multidimensional circuit representation (MDKC) of a system of PDEs, 

then applies a set of coordinate transformations and spectral mappings in order to obtain a discrete 

t ime/space algorithm. As discuss,.,1 in the previous chapter, all MD circuit elements (as well as 

Kirchoff connections between elements) are to be interpreted as distributed, from the outset through 

to the final wave digital network. The integrity of each multidimensional circuit element (including 

its energetic properties) is preserved through the discretization step, as is network topology as a 

whole. As we mentioned in §1.1.2, however, the DWN is usually thought of as a collection of lumped 

elements, and as such, there has not as yet been a convenient multidimensional representation for 

such a network. We will address this point in some detail in the last section of this chapter. A DWN 

always operates on a predefined grid, at the points of which are located scattering junctions. Even 

though the paired delay elements (waveguides) which connect the various scattering junctions behave 

like transmission lines, we will persist in calling them lumped elements, because they are typically 

connected between junctions at neighboring grid points, and their behavior is hence localized in a 

way that that of a M D W D element is not. 

1_>7 
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A multidimensional W D network will behave consistently with tin- generating system of PDEs 

because the continuous-to-discrete spectral mapping applied approximates differential operators con­

sistently: for a DWN. we must first show consistency of a DWN with a part icular physical system. 

For both approaches, convergence of simulation results to the t rue solution of the physical system 

follows from this consistency as well as stability implied by passivity [170]. 

It was shown in [200] and [198] that the DWN structures designed to solve the wave equation in 

(2+1) and (3+1 )D could be recast as finilt differena approximations [17G] (and in particular centered 

difference approximations) to these- equations; we looked at the ( 2 + l ) D waveguide mesh briefly in 

§1.1.2. In infinite-precision ari thmetic, these DWNs and centered differences yield identical results. 

A similar correspondence holds for the MDWD networks examined in the last chapter, though the 

equivalent difference methods are more involved (see §3.9). The distinction between a DWN and 

a finite difference approximation is in the types of signals used. Finite difference methods opera te 

using grid variables which are approximations to the physical dependent variables of the problem 

at hand, but the DWN propagates wave variables; in this formulation, the solution to a system of 

PDEs is obtained as a by-product of the scattering of these waves. It is perhaps best to think of 

the difference between the finite difference scheme and DWN implementations as analogous to the 

distinction between direct form and latt ice/ladder form digital filters [79] both can be designed 

to Implement the same transfer functions, but for the latter forms, stability is tightly controlled by 

the range of values which the filter multipliers ("reflection coefficients") can take. And indeed, as 

we saw in §1.1.1, a part icular type of (1 + 1)D DWN can be shown to be directly related to these 

lat t ice/ladder forms [1G5]. One goal of this chapter and the next is to show how this correspondence 

between the DWN and centered differences may be extended to a wide variety of physical systems. 

The immediate question which arises is then: If the DWN is equivalent to finite differences, 

then is there a compelling reason for using it? Finite differences, after all. a r e more straightforward 

to implement. The answer is two-fold. First, although the approaches are equivalent in infinite 

precision arithmetic, this is no longer true when we are forced, inevitably, to t runcate bo th the 

signals and multipliers in a computer implementation; stability of a DWN can be simply maintained 

even in finite arithmetic. Second, the stability criterion for a DWN is. as for MDWD networks, a 

positivity condition on the values of the elements contained in the network (i.e.. the inunit tances of 

the transmission line segments) . It thus becomes very simple to check stability of a given DWN. 

even in the presence of boundary conditions. Checking the stability of a finite difference scheme 

is considerably more involved, especially considering that a difference scheme which is stable over 

the interior of a domain may become unstable when boundary conditions are applied [82]. There 

is a theoretical machinery for performing such checks (known as GKSO theory [82, 17G]). though it 

can be formidable even in the (1 + 1)D case. It is quite possible, of course, to design a convergent 

numerical method using a DWN. and then to apply it as a finite difference scheme: as mentioned 

above, however, its stability in finite arithmetic is then no longer guaranteed. 
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A full technical summary of this chapter appeared in §1.3. 

4.1.1 F D T D and TLM 

Numerical integration met hods for tin' transmission line equations and electromagnetic field problems 

have developed along two important directions. The first approach was pioneered by Yee [21-1] 

in the mid 19G()s. and has since blossomed into what is now known as the finite difference time 

domain me thod , or FDTD [184]. The idea behind the method is a straightforward application of 

centered differences to (in Vee's case) the defining equations of electromagnetics, namely Maxwell's 

equations. ( 2 + l ) D simplifications of Maxwell's equations which describe the evolution of transverse 

electric (TE) and transverse magnetic (TM) fields can also be treated as well, and are. with some 

trivial modifications, equivalent to the ( 2 + l ) D parallel-plate problem. The impor tan t advantage 

of Vee's me thod is that , due to the s tructure of the system of equations to be modeled, it is not 

necessary to calculate all the field components simultaneously the field components are interleaved 

both temporally and spatially. We will examine FDTD in the (2+1 )D case explicitly in ?j4.4. The 

l i terature on FDTD is quite large: we refer to chapters 2 and 3 of [184] for a succinct technical 

overview. 

The transmission lim matrix method, or TLM [4. 29. 90] appeared a bit later, in the early 1970s 

[97. 100]. It (like the wave digital filtering approach) is a descendant of the ground-breaking work of 

Kron [109]. who developed circuit models of electromagnetic field problems before the widespread 

availability of electronic computers. TLM is very similar to the DWN. in that it employs a network 

of discrete transmission lines connected at scattering junctions in order to simulate the behavior of 

a distr ibuted system. The first formulation, known as the expanded nodi- formulation was derived 

from a lumped (RLC) model of the ( 2 + l ) D transmission line equations [90]. and is identical to the 

type III DWN we will present in <j4.3.G. TLM has developed in numerous ways since its inception: 

the most significant thrust has been towards formulations for which the various field components 

are not staggered, but computed together at larger nodes. T h e symmetric, condensed node [99] and 

its numerous offspring, such as the hybrid symmetrical condensed node [159] are the results of this 

work. 

F D T D and TLM have been compared and linked in various ways [38. 98]. most significantly 

through the use of field expansions [110], and new variants of FDTD have been developed using TLM 

as a s tar t ing point [27]. We will take a different approach here. Beginning from t h e observations 

that have been made regarding the equivalence of certain DWNs to difference me thods [67. 157. 198. 

200] we will show that Vee's algorithm is equivalent to a family of scattering s t ruc tures , some of 

which appear to be quite different from those that have been proposed in the T L M li terature. The 

correspondence holds for media with spatially-varying material parameters : numerical integration of 

the equations defining such materials has not. as yet. been approached using DWNs. We also note 

that the T L M community appears to l>e aware neither of the many valuable numerical properties 
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which scattering-based numerical methods possess [4G. 1G5]. in particular their behavior in finite 

ari thmetic, nor of other useful signal-processing manipulat ions (such as power-normalization of wave 

quantities and dynamic range minimization [107]) which have their roots in electrical network theory. 

4.2 Digital Waveguides 

We surveyed the basics of digital waveguide networks in §1.1.2. In this section, we review the main 

principles of waveguide networks, now in the transmission line setting. For a full t rea tment , we refer 

the reader to [1GG]. 

4.2.1 The Bidirectional Delay Line 

The basic element in a waveguide network, and the one which does the work of moving energy from 

one part of the network to another , is the bidirectional delay line, shown in Figure 4.1. It is no more 

mT 

mT 

Figure -1.1: Bidirectional delay line. 

than a pair of digital delay lines, whose delays are equal length (HI samples of durat ion T in Figure 

4.1). It should be understood tha t , for readab i l i ty , all delay lengths in a given network should be 

multiples of a common smallest ("uni t" ) delay. We will use the terms waveguide and bidirectional 

delay line interchangeably in this work. 

Associated with the bidirectional delay line are two sets of signals, called waves: voltage waves 

V, and current waves I. Only voltage waves are shown in Figure -1.1. Waves of either type ate 

indexed with respect to a par t icular end of the delay line: in Figure 4.1. waxes at the left end of the 

delay line pair are subscripted with a " 1 " , and those at the right end with a "2" . In addition, one 

of the waves at either end enters t he waveguide, and one leaves; the waves are superscripted with -

or + respectively*. We can immediately read the relationship among the variables from Figure 4.1: 

U+(n) = U-(„-,n) ^ ( n ) s ^ ( n - m ) (4.1) 

4 We have chosen here to break with the notaUonal tradition in [167], in which the superscripts are reversed. We 
choose the above notation so that signal nomenclature in a waveguide network is well-defined. That is. a signal 
leaving a bidirectional delay line, and a signal entering a scattering junction (to which each end of the waveguide 
will ultimately be connected) are both superscripted by a + . This will simplify the derivation of difference schemes 
later in this chapter. The other indexing method is more useful from the point of view of a unified treatment <>r both 
scattering junctions and bidirectional delay lines as digital it-port devices (where we would want -f and - to denote 
incoming and outgoing signals, respectively, for any A-port) . 
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The delay duration T is implicit, so that a wave variable indexed by n refers to the value of that 

quantity at time / = nT. In terms of ^-transformed quantities [133] (which we will denote with a 

hat), 

U+ = ;-"'{\- Of = z~m&2 (4.2) 

We also define, at either end of the waveguide, the so-called physical voltage by 

V}~V} + UJ j = 1.2 (4.3) 

4.2.2 I m p e d a n c e 

From the point of view of a programmer, the above description of the operation of an isolated bidi­

rectional delay line is complete. In order to connect one bidirectional delay line to others, however. 

we must introduce the impedance Z, a positive number associated with a particular waveguide. The 

impedance allows us to define the relationship between the voltage waves and the current waves 

which were mentioned in the last section, which is: 

Uf = Zlf (4.4a) 

UJ = -ZIJ (4.4b) 

where j = 1.2 referring to Figure 4.1, which implies, from (4.1). that we have 

/.+ (»») = - / , - ( ! , - m ) /+(„) = _ / - ( „ _ , „ ) (4.5) 

Thus current waves entering a bidirectional delay lint' are delayed by the same amount as their 

voltage wave counterparts, but with sign inversion, hi view of (4.4). we need only propagate a 

particular type of wave (i.e.. either voltage or current) in a particular waveguide. In a waveguide 

network, however, we are free to use different types (,l' waves in different waveguides, converting 

between the different types with (4.4) where necessary. 

The admittance Y of the waveguide is defined by 

and we define the physical current at either end of the waveguide, like the voltage, to be the sum of 

the wave components. Thus we have 

/ , = / / + / / J = 1.2 (4.G) 
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4.2.3 Wave Equation Interpretat ion 

The second-order PDE describing the voltage distribution u{.r.t) along an electrical transmission 

line with constant inductance and capacitance / and <• per unit length and which runs parallel to I he 

./•-axis is 

where the wave speed 7 is l / v / r . As we saw in §1.1.1, the solution to this equation, if we set aside 

boundary conditions for the moment , can be written in terms of traveling waver. 

. /( .r , /) = ( / ' ( . r - r - 0 + « r ( . r - l O (4.8) 

That is. the solution at any time / > 0 is made up of a sum of two shifted copies of the initializing 

functions n'(.r) and «'(-r). which have traveled to the left and right respectively with velocity -, over 

a d is tance 7/ . For any A we have, for the leftward-traveling wave, the identity 

u ' ( * + yt) = « ' ( ( * + A) + 7 ( < - A / 7 ) ) (4.9) 

If we set 7 = A / T , then at t ime / = nT, 

u'(.r + 1nT) = u'((r + A)+~l(u-l)T)) (4.10) 

Associate now with a particular waveguide a delay T and a physical length A. so that in Figure 4.1 

Uy represents an outgoing voltage wave quantity at position .r, and U% an incoming wave at position 

x + A . It is then clear that if we have A / T = 7, then (4.10) is equivalent to the second equation of 

(4.1), wi th / / / = L a n d with ./ '(x + T ' ^ ) = U?(n) and u ' ( x + A + 7 ( n - l ) T ) = f ' 2 " ( n - l ) . A similar 

correspondence holds for the right-going traveling wave component ur and the wave variables at 

ei ther end of the rightward waveguide. £r, a l , ( l ^ '?• A chain of bidirectional delay lines, connected 

in cascade will then implement an exact traveling wave solution to the Wave equation. The physical 

voltage // may be obtained (as should be clear from (4.8)) by summing the leftward and rightward 

traveling components at any par t icular location in the cascade, as per equation (4.3). Note that 

because 7 = S/T. the delay per iod and the waveguide length cannot be chosen independently, if 

the discrete wave quantities are to behave as traveling wave solutions to (4.7). 

4.2.4 Note on the Different Definitions of Wave Quantities 

Waveguides are sometimes defined in a slightly different way [105], as pictured in Figure 4.2. Now 

the superscripted + and — refer to a direction of propagation (to the right or left, respectively) 

ra ther t h a n to outputs and inputs to the delay line pair. If we still assume (4.4a) and (4.4b) to 
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17 mT U} 

mT <-•! 

Figure 4.2: Oriented bidirectional delay tine. 

hold for sonic positive impedance Z, then this definition of wave quantit ies implies that there is a 

direction associated with a particular waveguide that is. a leftward ( —) traveling current wave is 

sign-inverted with respect to the leftward traveling voltage wave, but the same is not t rue for the 

rightward traveling waves. It should be obvious that this definition of wave quantities also leads to 

a traveling wave solution of the wave equation (indeed, the bidirectional delay line of Figure 4.1 is 

identical to that of Figure 4.2 if we are using only voltage waves). The difference here is that we can 

now interpret the traveling wave pair {1,1) to be a solution to the transmission line or telegrapher 's 

equations [28]. a set of two first order P D E s (from which the wave equation is often derived): 

(4.11a) 

(4.11b) 
ui u.r 

which, for constant / and C has a solution 

u(i,i) = t/;(.r + - / ) + i / , . ( . r-- . r) 

i(.r.t) = i|(at + 7«) +»>(*- 7*) 

di du 

On di 

'"bl^ol 

= 0 

= 0 

where 

"> = -\J;.» ». = / , ' ' 

and 1 is again given by l/v/7c. It should In- remarked that if we had chosen the relationship between 

the wave variables to be such that ( + ) superscripted current wave were to be sign-inverted with 

respect to the ( + ) voltage wave, then we would be solving the "mirror-image" P D E s that one would 

get if one replaced x by —x in system (4.11). The definition of wave variables (which we might call 

the "input-out pi it" definition) given in *)4.2.1 solves the Wave equation which results from eliminating 

variables in system (4.11), or its mirror image, and hence does not have an orientation. 

In practice, in order to proceed with numerical methods in systems of PDEs for which direction 

is important , we can either use the oriented wave variable definition given in this section, or we can 

use the input -output formulation, and reintroduce directionality into the network where appropria te . 
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We have chosen the latter course, and we will indicate which changes must he made (usually th rough 

the u^c of transform! is) explicitly on the signal How graph. From a programmer's point of view. 

there is no substantial difference between the algori thms which develop using the different definitions. 

Both definitions lead to the same scat ter ing equations (to be discussed in the next section) and arc 

identical from a power conservation point of view (that is to say. sign-inversions of wave quanti t ies 

do not affect the energy measure of the network). 

An additional reason for choosing the input-output definition of wave variables is that it will 

require less notatioual juggling when we eventually link DWNs to MDWD networks in §4.10. 

4.2.5 Scattering Junctions 

Returning to the "input-output" waveguide defined in §4.2.1 a n d §4.2.2. we now must deal with 

connecting bidirectional delay lines; this is done in the same way as in the wave digital filtering 

framework, namely through the use of KirchofFs Laws, which conserve instantaneous power at 

a connection. The resulting equations relating input to ou tput waves at Mich a connection or 

.icatteiing junction are identical to the adaptor equations for wave digital Biters already mentioned 

in §2.3.5. For completeness sake, we will re-derive the scattering equations for a series connection of 

M bidirectional delay lines, of impedances Zj. j = 1 M. 

At such a series connect ion. we must have 

/ , = / , = . . . = / „ ±1., (4.12) 

( j ,+ r 2 + ... + uM =o (4.13) 

where /./ is defined to be the junction current common to all waveguide*. 

Thus, we have 

( ) U , 3 , ^ t , ^ , ^ ( f 7 + [ 7 ) H , a M ^ ^ Z j ( / ; _ / _ ) ^ ^ Z j ( 2 / ; _ / j ) 

;=1 j=l j= l j = l 

where the equation numbers appear over the equalities to which they pertain. Using (1.12), we can 

then write the equation used to calculate the junct ion current from the incoming current waves 

as well as the scattanitj njiuitwii 

K=-n+f-iz^n- *-J « 
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where we have defined the junction impedance Z.i by 

In terms of voltage waves, using (4.4a) and (4.4b). the scattering equations can be written as 

tv = ^ - ^ X > ? - *»i w 

This is identical to the definition of a wave digital series adaptor (2.31) for voltage waves, where we 

replace Ui by bj , LTjj by <u- and Z j by /?*-. for A- = 1 . \ / . 

The scattering equations for a dual parallel connection are similar under the replacement ofl/£ 

and i/jT by l£ and /^ , Zjt by i'^ and Z./ by the junction admittance, defined by 

M 

MI that we have 

0 •" r' = rEr^7 (414) 
>=• 

and 

9 '" 

^ = -f-7 + ^}2y>L7- A = 1 -u <4-io) 

The representation we will use for scat ter ing junctions in the waveguide networks in this and the 

subsequent chapter will usually be as shown in Figure 4.3 (in the case of a connection of four 

waveguides). 

A waveguide's i inuiit lance is placed at the port at which it is connected to the junction, and 

the junction quantity to lie calculated from incoming waves appears at the center of the junction. 

Sometimes, if there is no room in the figure, we will indicate the innnit tai ice of a waveguide by 

an overbrace (see. e.g.. Figure 4.8). hi the case of electrical variables, a junction current Ij is 

calculated at a series junction, and a junct ion voltage i'j at a parallel junct ion , but when we move 

to mechanical systems in the next chapter , we will of course use different variable names. A small 

"s" or "p" is placed in a corner of the junct ion in order to indicate that the junction is series or 

parallel, respectively. In addition, because it is only necessary to propagate one type of wave in a 

bidirectional delay line, a araphical representation of a waveguide network will always imply tin USi 
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Figure 4.3: Graphical representations of scattering j-port junctions— (a) aerie* onrf (b) parallel. 

of voltage waves everywhere. This is the same convention that is used in wave digital signal flow 

graphs . This is impor tant , because it will be recalled from §4.2.2 that current waves require an 

additional sign inversion that is not shown in the network diagrams. 

Instantaneous power is preserved at the scattering junction (here again, as in the W D F case, 

the scattering junct ion is no more than a wave variable implementation of Kirchoff's Laws, which 

preserve power by definition)- The power-normalization strategy employed in the wave digital filter 

netting can also be used here as well, and gives rise to the same orthogonality property of the 

scattering junct ion in either the series or parallel case (see §2.3.5). Power-normalized waves can be 

used in order to construct time-varying passive waveguide networks [165]. though for time-invariant 

problems, the use of such power-normalized quantit ies involves more ari thmetic operations. 

4.2.6 Vector Waveguides and Scattering Junct ions 

It is also possible to extend a DWN to the vector case [167, 169]: this has also been done in the W D F 

framework in [46, 131], as discussed hi §2.3.7. We briefly introduce vector waveguides, because it 

will be necessary to apply them when simulating the behavior of stiff systems and elastic solids: we 

will examine this problem in depth in Chapte r 5. 

A vector waveguide accepts two incoming signals Uj" and U J and outputs U+ and U.J; all are 

assumed to be q x 1 vectors (note that we have used ;-transformed quantities here). The waveguide 

itself, like its scalar counterpart, is described by two parameters: its impedana Z. a q x q mat r ix , 

which we will a ssume to be constant and symmetric positive definite (though it may be generalized 

to a para-Hermit ian matrix function of the uni t delay c" 1 [169]) and its generalized delay. H ( : ' ) . 

a '2q x 2q matr ix function of the unit delay, which we assume to be para-unitary (lossless) [193]. T h e 

input and output voltage waves are related by 
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uf(*-»; I I - - ! < 
U . 7 ( c - ' ) 

(In applications in Chapter 5, where bidirectional delay lines are extracted from an MDKC. we will 

always set H ( ; _ 1 ) to be a multiple of t h e 2<y x 2q identity matrix.) We can define instantaneous 

current wave vectors Ii" and I J , for j = 1,2, and Ohm's Law becomes, in the vector case. 

ur Z I u ; = - z i ; 

The mat te r ing equations at a series or parallel junction of k waveguides generalize in a straightfor­

ward way to the vector case we have 

I * = - I + + 2 z ; l ] T z J i ; 

M 

u;*-u++2Yj12>iu; 

Series junction 

Parallel junction 

(4.16a) 

(4.1Gb) 

for A- = 1 Af, where Y j = Z ~ ' is the admit tance of the j t h waveguide, which must exist because 

Zj is assumed positive definite (for passivity ) [107]. The vector junct ion admit tance and impedance 

are defined bv 

Series junction 

Parallel junction 

By virtue of the fact that they are sums of positive definite matrices, they will also be posil ive definite, 

and thus their inverses, used in the scat ter ing equations (4.1G). must exist. Vector waveguides were 

explored extensively in [169] in the context of artificial reverberation. Power normalization may also 

be applied by scaling the wave variables by a square root of the impedance (which is non-unique) 

[1G7]. Vector junction passivity has been shown to hold in the fixed word-length case in [107], 

V e c t o r / S c a l a r W a v e g u i d e C o u p l i n g 

In a few cases, it is useful to have a means of connecting vector and scalar network elements. This 

comes up when designing networks to simulate mixed vector/scalar systems of PDEs: in particular, 

it will be necessarv to use vector m e t h o d s when working in non-orthogonal coordinate systems l ^ r 

§4.8) and in the W D F context for some of the mechanical systems of Chapter 5. 
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We will always assume that for any given scattering junction, the number of components of 

any approaching wave is the same at every port: it may not be, however, that every junct ion in 

the network accepts waves with some universal number of components, hi particular, a vector 

waveguide, one of whose ends is connected to a vector junction may be split into several scalar 

waveguides, or more generally into a number of vector waveguides each with a smaller number of 

components , Similarly, it is possible to "bundle" several waveguides into a single larger waveguide. 

Let us assume that all splittings and bundling? are from vector to strictly scalar and scalar to 

vector respectively. An element which splits a single three-component waveguide into three scalar 

waveguides is shown in Figure 4.4(a). arid its simplified graphical representation for arbi t rary q in 

(b) . In (b) the admittance of the j t h scalar waveguide, j = 1 q is l j . and the voltage waves 

• •+ • • - . .+ if— . -+ .-— 

w 
v- v+ 

(a) (b) 
Figure 4.4: (a) Element for splitting of a victor waveguide into three scalar waveguides and (b) a 
simplified graphical representation in the genual case of q scalar waveguides. 

entering and leaving the splitter at the connection with this waveguide are C/+ and ( r ~ . On the 

other side of the connection, we have a single (/-vector waveguide, of matrix admit tance Y . T h e 

column vector voltage waves entering and leaving the connection are V + and V ~ . In order for this 

connection to make sense, we must choose Y = diag(Vj I i ;) . and order the splitt ing such tha t 

the j t h components of V_ and V + are equal to Uf and VJ respectively: such an ordering for a 

1:3 split t ing is shown in (a). In this case, it is easy to see that energy is conserved across such a 

connection (indeed, if the scalar waveguides are thought of as acoustic tubes, then the black bar in 

(b) is merely equivalent to a "rubber band" joining them). The power entering the connection from 

the vector side can be written as 

(v+ + v-) rY (v+ - v-) = -J2 (r/ + 17) i) [Vf-Vj) 
j = i 

which is the total power leaving the connection through the scalar waveguides. It is impor tan t to 

note that such a connection can not be viewed as a multi-port element. In addition, passivity is 

contingent upon this choice of Y . It is easy to generalize this picture to a connection which splits a 

i 
. 
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vector waveguide into various smaller vector waves (instead of scalars). In that case. Y should be 

chosen to be the block diagonal "direct sum" of the various matrix admi t tances on the other side of 

the connection. 

4.2.7 Music and Audio Applications of Digital Waveguides 

Digital waveguide networks have been widely applied towards the synthesis of musical sound. Sig­

nificant portions of many musical instruments can be simply modeled as nearly lossless uniform 

transmission lines: strings support transverse wave motion, and stiff strings and bars allow longitu­

dinal and torsional motion as well: acoustic waves travel in the tubes that make up brass and wind 

instruments, organ pipes, as well as the human vocal tract, as we saw in §1.1.1. As such, there is a 

traveling wave decomposition of the motion in these systems. 

As we already mentioned in *j4.2.3. a bidirectional delay line can be thought of as a discrete-time 

description of traveling wave propagation in a uniform transmission line. Thus a single waveguide, 

which is in itself no more than a pair of delay lines, can be used to model an uninterrupted s t re tch 

of a tube or string, without requiring any machine arithmetic. Scattering occurs only at the ends of 

the waveguide, and in fact, it is possible to use bidirectional delay lines to model wave propagat ion 

even in lossy [160] or dispersive [199] media by consolidating these effects at the terminat ions. If 

the length of the string or tube does not correspond to an integer number of delays at a given 

sample rate, then it is possible to employ fractional delay Inns [114, 195). which approximate non-

integer delay lengths using all-pass (lossless) filters'. A typical si tuation is shown in Figure 4.5. The 
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Figure 4.5: Typical digital wavegutdi configuration for musical sound synthesis. 

string (or tube) is modeled as two bidirectional delay lines: at the ext reme left and right, digital 

filters may be employed which model bridge terminations [ 164]. horn bells and acoustic radiation 

[15, 100], coupling with an instrument body or resonator such as a stringed instrument body [102], 

and. conceivably, coupling between different strings, and for a stiff string, even coupling between 

' T h i s is often e s sen t i a l , because working at t h e aud io s a m p l i n g ra te often forces a la rge grid spac ing . In an a c o u s t i c 
t ube , for e x a m p l e , t h e wave speed is -> = 330 m / s . At t h e a u d i o s a m p l i n g r a t e we will h a v e a wavegu ide de lay of 
T = 1/11100 s. which impl ies a waveguide length of A = 330 / 111(111 m = 0.75 c m . For a woodwind i n s t r u m e n t , 
th i s d i s t ance is on t h e o rde r of the tone hole sepa ra t ion d i s t ance , and will t hus lie far l o o c rude for good phys ica l 

modelling. 
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different types of motion (i.e. transverse, longitudinal and torsional) . Excitation mechanisms (such 

as mouth pressure for a woodwind instrument [1G4] and lip pressure in brasses [15]) may be modeled 

as sources, are also used to terminate the waveguide: these may b e linearly or noiilinearly coupled 

to the instrument body. If wave propagation is dis turbed along t h e length of the tube or str ing. 

either by an excitation (such as a piano hammer [197] or bow [164]). or by an impedance change 

(due perhaps to a woodwind tone hole [160. 194. 190]. or a change in the cross-sectional area of the 

vocal tract [30]), then these effects may be modeled at the junction between the two waveguides. In 

some situations, it may be necessary to employ a larger network of interconnected waveguides, as 

when the vocal tract is to be coupled with the nasal passageways. A full articulately model of the 

human vocal tract has been built in this way to simulate the singing voice [30]. 

Digital waveguide networks have also been used to simulate wave motion in higher dimensions, 

in which case they are sometimes called waveguide meshes [198. 200]: cases of particular interest 

have been ( 2 + l ) D meshes (see §1.1.2) used to simulate the vibrat ion of a uniform membrane [G7]. 

and (3+1 )D meshes used to model acoustic spaces [156]. Many different types of mesh have been 

proposed: they differ chiefly in their numerical dispersion propert ies [157], and we will analyze these 

forms in detail in Appendix A. A good deal of recent work has gone into the problem of correcting 

numerical dispersion by introducing terminating filters at t he boundaries , and by using interpolation 

and frequency warping techniques [157]. A (2+1 )D rectilinear mesh is shown in Figure 4.0(a). Unit-

sample bidirectional delay lines (here represented by two-headed arrows) are connected to scat ter ing 

junctions (white circles) located at the nodes of a rectangular la t t ice. Such a mesh has been used 

to model drum heads as well as gongs (where a nonlinear mesh terminat ion has been applied) [197]. 

We mentioned in §1.1.2 that tliis mesh indeed solves the ( 2 + l ) D wave equation numerically [198]. 

We will elaborate on this idea extensively throughout the rest of t h e chapter. 

Waveguide networks have also been used in a quasi-physical manner in order to effect artificial 

reverberation [103]. In this case, an unst ructured network of waveguides of possibly lime-varying 

impedance is used: such a network is shown in Figure 4.0(b). where the number of samples of delay 

hi each waveguide (integers a through li) may be different. Such networks are passive, so that signal 

energy injected into the network from a dry source signal will p roduce an output whose ampl i tude will 

gradually a t tenuate , with frequency-dependent decay t imes dependent on the delays and inmii t tances 

of the various waveguides—some of the delay lengths can be interpreted as Implementing "early 

reflections.* [103]. Such networks provide a cheap and stable way of generat ing rich impulse responses. 

Generalizations of waveguide networks to feedback delay networks (FDNs) [149] and circulant delay 

networks [150] have also been explored, also with an eye towards applications in digital reverberation. 

We will call these DWNs used for reverberation un.itriu tun d: by this we mean that t he waveguides 

and scattering junctions are not necessarily arranged according to a regular grid in any coordinate 

system. Vet such a network is. by construction, passive. This cont ras ts sharply with the M D W D 

networks discussed in the previous chapter, hi that case, discretization is performed through the use 
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Figure 4.G: Otlia wiinymdc network configurations— (a) n (!i+l)D waveguide mesh, and (b) an 
unstructured network suitable for implementing artificial reverberation. 

of a spectral mapping or integration rule: implicit in such an approach is that the algorithm operates 

on a regular grid in some system of coordinates (and the same will be t rue of the DWNs that are 

derived through an MDWD-like discretization procedure, as will be discussed in §4.10). The reason 

For fl'is ' s that the DW'N. as we have described it in this section, is essentially a large network of 

lumped elements, whereas the MDW'D network is a multidimensional object. In certain cases (see 

§4.9), unstructured DWNs may come in handy. 

4.2.8 Transitional Note 

We have now finished reviewing the fundamentals of digital waveguide networks. On the more prac­

tical level of the implement at ion of DWNs. there are many more topics which deserve elaboration, 

including strategies for reducing the numbers of delays, and also various normalization techniques 

which can be used to vary the number of required arithmetic operations. In this last respect, we 

note that it is possible to establish formal links between chains of bidirectional delay lines and other 

similar filter designs such as the normalized ladder form [80], etc. We refer the reader to [10G] for 

an in-depth t reatment . 

4.3 The (1 + 1 )D Transmission Line 

We return now to the transmission line, which served as a useful model problem for MDWD network 

methods in §3.7 of the last chapter , and show that its numerical solution can also be approached 

using waveguide networks. The material hi this section has also appeared hi [19]. 
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4.3.1 Firs t -order System and the Wave Equation 

We recall that the set of PDEs which describes t h e evolution of the voltage and current distributions 

along a lossless, sou ice-free transmission line in (1 + 1)D is: 

r— + — = 0 4.17b 
at or 

Where i(x,t) and u(x.t) are. respectively, the current in and voltage across the lines, and l(x) and 

r-( J-), bo th assumed strictly positive everywhere, are the inductance and capacitance per unit length. 

For the moment , we will leave aside the discussion of boundary conditions, and deal only with the 

Cauchy problem (i.e.. we assume the spatial domain of the problem to be the entire x axis). Note 

also that this system includes the vocal tract model (1.20) as a special case, under an appropriate 

set of variable and parameter replacements. 

As discussed in §4.2.3. if we assume that / and c are constant, then the set of equations can he 

reduced to a single second order equation in the voltage alone*: 

W = i*W* ( U 8 ) 

where the wave speed -: is given by 

1 

y/Tc 

This (filiation and its analogues in higher dimensions (see Appendix A) are collectively known as 

the WIIIU- equation. T h e solution, as mentioned in §4.2.3. can he written in terms of traveling waves. 

In the (1 + 1)D case, we can write an identical wave equation in the current alone, but this does not 

hold in higher dimensions. 

4.3.2 Cente red Difference Schemes and Grid Decimation 

Suppose we are interested in developing a finite difference scheme to calculate the solution to (4.17) 

numerically. We first define grid functions / , ( " ) . and I',•(»/) which, for convenience, will run over 

half-integer values of ;' and n, i.e.. 

I n l I , I I = . . . - l , - i , 0 . i , l . . 

'Even if / and c arc functions of J . il is still possible to reduce system I 1.17) to a second order equation in the 
voltage alone, hut it does not have the simple form of (4.18). 
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They are intended to approximate i and u at the points (iA,nT), where A is the spatial grid 

s tep, and T the time step. We note that we have used the same variable, i, to s tand for both the 

continuous-time current which solves (4.17), as well as the discrete-valued variable representing the 

spatial coordinate on the grid. 

We have the centered difference approximations 

dw 

Of 

Or 

ir(,A. (n + k)T)- i('(iA.(n - i ) D 
= — - 2 V • ILJ + OiT2) (4.19a) 

JA,n7 •* 
«•((/ + i ) A . n r ) - i r ( ( i - \)A.nT) 

= * —— 2- - + (9(A2) (4.19b) 
/a,nT " 

where W stands for either of i or n. 

Employing these differences in (4.17). and replacing the continuous t ime/space variables i and u 

by their respective grid functions yields the difference scheme 

/,(/, + i ) - /,•(» - J ) +-j (c'1+i(») - f',_i(»)) = 0 (4.20a) 

{',(»+ i ) - r , ( n - i ) + - L ( / . + i („) - / , -_ . («)) = 0 (4.20b) 
in''; v ' 

Here, we have chosen 

!',:^/(/A) + 0 ( A 2 ) (4.21a) 

6, = c( iA) + 0 ( A a ) (4.21b) 

for half-integer i. Because the centered difference approximations (4.19) are second-order accurate. 

/ and C may be approximated to the same order without any decrease in accuracy. VVe leave the 

exact form of these approximations, / and <• unspecified for the moment, but will re turn to various 

sett ings in <;4.3.G. Also, in order to remain consistent with the notation in the MDVVD schemes of 

the last chapter, we have set 

"o = j 

Thus difference equations (4.20) are consistent with (4.17). and accurate to 0 ( A 2 , T 2 ) . 

h i a difference scheme for a general system of PDEs, it would be necessary to upda te all the 

grid functions every time s tep, and at every grid point - that is to say, at every increment in n 

and i of one-half, new values of the grid functions would have to be calculated, and indeed, we can 

proceed in this manner in with the scheme (4.20) as well. In this case, however, it is easy to see that 

upda t ing L:i,-{tn). for 2A- and 2m even requires access only to /jt(ni) at the previous t ime step, and 

at neighboring grid locations ( thus for 2m odd and 2A' odd), as well as U at t he same location, two 
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t ime .steps previously (2m and 2A- again even) [131. 184]. Similarly, upda t ing h{m) for 2m odd and 

2A- odd involves only values off* for 2m even and 2fc even, and 7 for 2m odd and 2A' odd. It is then 

obvious that only values of I t (in) for which 2m is even and 2A- even (and values of /fr(w) with 2m 

odd and 2A- odd) need enter into our scheme. We can thus decimate the grid in the manner shown 

in Figure 4.7. We calculate the values of tr,(»i) at the grey dots in Figure 4.7. and / , -+ i (n + i ) at 

I V I I I V I T 

G O O 

( i - J ) A ( | - I ) A l i - ^ I A l i l .+ ^ l i l i + I I A l i + i j i a 

Figure 4.7: hit< ihanil sumpling grid fox Ilit (1 + 1)D transmission line.. 

the white dots. The difference scheme on the decimated grid can be writ ten as 

/,+ i(n + i) -Ii+i(v - i ) + — i — ( r , + 1 (n ) - r ; (»0 ) = 0 (4.22a) 
''O'. + i 

ri(n)-ri((i-i) + —(/ j + i (n- i ) - / H (»- i ) ) = 0 (4.22b) 

for i, n integer. We perform the calculation on the decimated grid with no decrease in accuracy, 

although We are of course approximating the solution at fewer grid points. In analogy with the 

continuous case, when / and c are constant it is possible to combine the difference equations (4.22) 

into a single equation for the voltage grid function U, which is 

r , ( i , + l ) -2 t* , (n ) + t*,(i>-l) = ^ ( r i + 1 < n ) - 2 r , ( n ) + [*,•_,(».)) (4.23) 
•'J 

and which solves the (l-f-l)D wave equation (4.18). For the so-called magic t ime step [184], 

A ! 

the difference scheme (4.23) reduces to 

Ut(n + 1) + Ui{n - 1) = Ul+I(n) + £-•',•-, (;i) (4.24) 

a form which has great relevance to the discussion to follow on the waveguide implementation. It 

is interesting that in this case, the grid may be further decimated; we need only calculate f ,(n) for 

i + n even (or odd), for /. n integer. We will examine this point in further detail in higher dimensions 

in Appendix A. 
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4.3.3 A (1 + 1)D Waveguide Network 

Consider the waveguide network pictured in Figure 4.8. Each scattering junction (in this case 

parallel) is connected to its two neighbors by unit sample bidirectional delay lines. The spacing 

of the junctions is A and the waveguide delavs are of duration T. The voltage at a junction with 

coordinate 'A and at time nT is denoted by (./ . ,(«) for integer i and n*. 

v . + . , = >. *.+.<=n-.i+1 

- j , t - i 
^H-

?r-®-. 
I'./, Uj,i + 1 

Figure 4.8: (1 + 1)D waveguide network. 

We can name the voltages and current flows in individual waveguides in the following way. At 

junction t, the line voltages are: 

Va+ ,- = voltage in waveguide leading east 

£ ' , - , = voltage in waveguide leading west 

and the flows are: 

Ir+ ,- = current flow in waveguide leading east 

Ix- j = current How in waveguide leading west 

The constraints, imposed by Kirchoff's Laws at a parallel junction, are: 

£ J,< — U*+.i — U*-.i / ,* j + / , , , , = 0 (4.25) 

As discussed in '<>4.2. the voltages and current flows in the individual waveguides can be further 

broken up into incoming and outgoing waves. That is, we have, at a junction at grid location i: 

V • — l,+ 4-U~ / = f+ 4- I~ 
J < 7 . ' 1q,i ^ 'q.i 

where 7 is either of s+ or s . The variables superscripted with a + refer to the incoming waves. 

*ln any case whore the time index n is omitted, we mean for the statement li> ln>ld .u any time step. 
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and those marked — to outgoing waves. In a particular waveguide section, the current and voltage 

waves are related by: 

C = *>**% i* = -Wtf < 4 - 2 6 > 

where l v , is the characteristic admittance of the waveguide connected to junction i in direction q. In 

addition, because the junctions at i and i + 1 are connected to opposite ends of the same waveguide. 

we have 

l.r-,i+l — **+,i 

As before, we will also define the impedance of any waveguide to be 

Z , - J -

At a particular parallel junction, the junction admittance will thus be 

In this case, from (4.14), the junction voltage can be written in terms of incoming wave variables as 

i.i, = £- (y,-,iU+. .,+n+i,i/+ .) (1.27) 

and the outgoing voltage waves from any junction are related to the incoming waves by 

1-;, = - ^ + !-.,, 

where r refers to either of the directions j , + or J-~. 

The incoming voltage wave entering each junction from a particular waveguide at time step n 

is simply the outgoing voltage wave leaving a neighboring junction, one time step before. Reading 

directly from Figure 4.8. we have 

*C+>) = &,".*+!("-1) <4-28a> 

vt- /») = [ 7 + , - l ( » - 1 ) <4-28b) 

The case of flow waves is similar except for a sign inversion that is. we have 

C+,,<"> = - C + . f " - 1 ) (4-29;i> 
If. An) - - / ; , ( „ - ! ) (4.29b) 
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As discussed in *>4.2. we can perform all calculations using voltage waves: in the waveguide networks 

pictured in this chapter, we will always assume, without loss of generality, that we are dealing with 

voltage waves. 

4.3.4 Waveguide Network and the Wave Equation 

Now consider the case in which ji,f, = 1" is invariant over i (and thus q. where again, q s tands for 

either .r+ or X~). At all junctions, then, we have Yj,i = 2Y. From (4.3.3) and (4.28). it is possible 

to obtain a finite difference scheme purely in terms of the junction voltages £'./,. Beginning from 

(1.27). we have 

U.,A» + « • » « - (Y m - , iU+ .(» * 1) + Y.< ,,cr+ > + 1)) 

= r.i.,--,(ii) + r J .1-+ 1(ii)-r+ ,._,(«) - r ; _ i + 1 ( » j 

= f./,,_,(n) + Uj,m(n)~ u;__,.(» - i) - 1 / - + .(« - 1) 

= r J , ,_ l(n) + tr./,,_f.,(;0-c"./,,('>- 1) (4.30) 

This is identical to (4.24) if we replace Uj by V. In this case of identical impedances in all the 

waveguides, there is no scattering, so the parallel junctions in Figure 4.8 reduce to simple "through*." 

and Figure 4.8 becomes Figure 4.9. Thus we have a discrete equivalent to the traveling wave solution 

to the wave equation, ><> be expected when the impedance does not vary spatially along the line. 

This par t icular case, which is trivial to implement (as a single many sample bidirectional delay line), 

has enormous applications to (1 + 1 )D problems in homogeneous media, as were mentioned in '(4.2.7. 

We also note that if the impedances do vary from one waveguide to the next, as in Figure 4.8. then 

we have a useful model of a system such as a tube with varying cross-sectional area or horn [GGj. a 

system whose impedance varies along its length, but whose wave speed remains constant. (In order 

I 
^ L » L - H ^ r 

BFE; '.- •+>• 

;ir;+ ,+• 
- I—*• J" 

p i -r+ .1+1 

<i+ l )A 

f igure 4.9: Simplified (1 + 1 )D waveguidi network. 
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to deal with local changes in the wave speed, we will have to introduce self-loops, which we will do 

shortly in §4.3.6.) This waveguide network is essentially equivalent to the Kelly-Loehbauin model 

used in speech synthesis [104]. which we discussed in §1.1.1. It is interesting tha t linear predictive 

coding (LPC) [124]. which is used to design filters to fit the spec t rum of ail analysis signal, essentially 

synthesizes a waveguide network like the one shown in Figure 4.8 (in effect it produces, as a by­

product of the main calculation of direct -form filter coefficients, the reflection coefficients at the 

scat ter ing junctions, from which impedances can then be deduced). 

C o m m e n t o n N u m e r i c a l I n s t a b i l i t y 

We have just shown, in the derivation ending with (4.30), that scattering in a par t icular waveguide 

network can be rewritten as a finite difference scheme purely in terms of the junction quantities. 

Thus all numerical solutions obtained using the waveguide network implementat ion could also be 

obtained (at least in infinite-precision arithmetic) using such a scheme. It is interesting to note 

that cer ta in solutions to the finite difference equation (4.30) can not be obtained using the DVVN. 

if we require that the wave variables in the network be bounded in magnitude. As a very simple 

example, consider initializing scheme (4.24) with t r ,(0) = —1 and t , ( l ) • 1. for all *'. Then we 

will have C/,(2) = 3. t ,(3) = o. and in general. £/,-(n) = 2?i — 1 for all /'. Similar lineal growth 

will result from setting t , ( 0 ) = f/j(l) = ( — 1)'- We will then have, at any future t ime step n, 

r,(u) = (2»- l ) ( - l ) ' + "- ' . 

Though these solutions would appear to be completely unphysical. it is worth mentioning that 

the (1-f l )D wave equation (to which (4.24) is an approximation) admi ts linear growth as well: u = », 

for example, is a solution to (4.18). It is possible to view this solution as the sum of two traveling 

wave solutions {j/~t + 0 / 2 and (—.r/~) + 0 / 2 : these, however are unbounded in magni tude, ami 

thus the wave variables used to initialize the DWN will be as well: the finite difference scheme, on 

the o ther hand, produces this behavior for the bounded initial conditions mentioned above. It is 

impor tan t to note that this linear growth occurs at the spatial DC and Nyquist frequencies; it is 

simple to show that these are in fact the only spatial frequencies for which scheme (4.24) will admit 

such behavior. We will return to this point in some detail in Appendix A. because the analysis is 

somewhat easier in the frequency domain. 

4.3.5 An Interleaved Waveguide Network 

The simplified waveguide network described above solves the wave equation for voltage, at the magic 

t ime s tep , T = A/ - ) . That is, the junction voltages Uj solve the difference equation (4.24). and hence 

approximate u. We would, however, like to be able to have direct access to a discrete equivalent of 

the other variable as well, the current /'. 

Bearing in mind the discussion in §4.3.2 on interleaved grids, examine the identity pictured in 

Figures 4.10 and 4.11. We have merely split the unit sample bidirectional delay line into two half-
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1 

1 

Figure 4.10: Bidirectional </< • 
lay line. 
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Figure 4.11: Sjilit equivalent to the bidirec­
tional (May line. 

sample delay lines of equal impedance, and placed a series junction (in cascade with sign inverters) 

in between. In this case, since there is no scattering, the net behavior of the junction and sign 

inversion is that of a simple "through," with sign inversions exactly canceling those that appear in 

the signal pa th (these can be added formally using transformers). Later we will add additional por t s 

to this new junction. We introduce these series junctions so as to be able to associate a junct ion 

current with them, which we will identify with the physical current in the transmission line. 

If we now replace all the bidirectional delay lines in Figure 4.8 by the split pair of lines, then 

we get the arrangement in Figure 4.12. As al the parallel junctions, we can define wave voltages 

^ T 7 = * ' -
z** . - i = r J : 

UJ 
r 

; 2 -

» T/2 — 
I, v., 

T / 2 r — 

I * T/2 

*T+.i+i-vrr, 

i 

T/2— -
Vj 

Figure 4.12: (1 + 1)D interleaved waveguide network. 

and currents at the series junctions, which we will index by / ' + ^ for i integer. Furthermore, we 

name the impedances al the left- and right-hand por ts of the series junctions Z x and Zr+j_i 

respectively. As indicated in Figure 4.12, we must also have 

^*+,i-4 = 
1 

Y,-> Z*-.i+i = r 
Y,+.i 

The junction impedance at the series junctions will be 

Z . / , ,+i = Z , - , , + i -rZr+i+i = — h r ; 
2 " ! b * , i Ix- . i+ l 

Set" Figure 4.13 for a complete picture of the various wave quantit ies al the interleaved junctions. 

Assuming that the impedances in all the delay lines are identical and equal to Z (and so Z j ,-_i = 
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Figure 4.13: Wave quantities in the interleaved network of Figure 4.12. 

2Z). we can now define 

'./..-

We also have that 

and (4.2C) holds as before. 

We now show that this waveguide network performs a calculation identical to that which we 

would get for centered differences on a decimated grid, exactly as in Figure 4.7. For integer i and 

n. we have: 

r./,(n) = c',+ _,.(11 ) + r + _,.(») 

= - * ( c , + i ( ' < - ? > - ' ; + , - * ( » - * > ) 

= - z ( / / , + I ( l , - i ) - / . A ; _ i ( , « - i ) ) 

= - Z ( / ; , I + i ( n - i ) - / J , i _ , ( i . - i ) ) 

= - Z (/.,,,•+!(/< - §) - /.,,,_.(» - | ) ) + t/j,i(n - 1) (4.31) 
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If we now identify /,/ with / and U.j with V. we get (4.22b) (in the constant-coefficient case). 

with Z = l / ( t 'or) . A similar derivation beginning from the series (white, in Figure 4.12) junctions 

yields (4.22a). with Z = t<0I. for constant /. Together, these constraints imply that : 

Vo 
1 

7/̂  - & 

so that we are again a t the magic time step. Furthermore, the impedance of any waveguide in the 

network must be set equal to the characteristic impedance of the contmuous t ime/space transmission 

line described by (4.17). whereas in the network of Figure 4.8. the constant impedance value could 

be set arbitrarily, since it is not used in the simulation. It is import ant to realize that , at least in 

this constant-coefficient case, no scattering occurs at any of the junctions. We can still perform all 

operations at the original sampling rate, and on the original grid (i.e.. with grid Spacing A and t ime 

s tep T). It is, however, possible to see more clearly how initial (and boundary) conditions must be 

set, and also to extend the network to handle more complex problems. We will deal with one such 

generalization in the next section. 

4.3.6 Varying Coefficients 

We now return to t h e more general case in which the material parameters / and c have spatial 

dependence. The staggered, or interleaved network of delay lines and scattering junctions presented 

in the last section gives rise to a centered difference method which approximates the solution to 

system (4.17). Consider the waveguide network in Figure 4.14. 

liJf 

'*- Li Zx + 

s 

( 1 - t l-i 

1 

-1 , — . 
— O — r / a — « • 

• * - 0 — r / a -

i£ 

v,- Vj v 

a 

L T J 

i/i »• 

*• 111 

ut 
zc 

«•+ \\± 

A 

Figure 4.14: Waveguide, network jar the (1 + 1)D transmission line equations with spatially-varying 
coefficients. 

The picture is the same as in the constant-coefficient case, except that we have added an extra 

pot t to each scat ter ing junction, which is connected to a delay line of impedance Zc (marked as Yc at 

the parallel junctions). These self-loops [1G7] are bidirectional delay hues in their own right—since 
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both ends are connected to the same junction, we are free to drop one of the line pairs. Note that the 

loop connected to the series junction contains a sign inversion (like a lumped wave digital inductor) 

and the loop at the parallel junction does not (like a capacitor). Also note that the delay in this 

line is a full sample, so that we are able to operate on the interleaved grid. The reason for this 

choice should be clear from Figure 4.7. Now, the iminittances of the delay lines are in general no 

longer identical, so we expect non-trivial scattering to occur, due to the spatially-varying mater ia l 

parameters. The admit tances of the lines connected to the parallel junct ion at grid point J, / integer, 

are denoted by YT+ ,-. Yr- ; and }'<-,-. The impedances of the self-loops at grid points i' + i for i 

integer will be called Zc , + i . (We have marked these new iminittances in Figure 4.14.) The junct ion 

iniinittances are now 

1 j , , — Yx+ , + YT- ,,- + Ye,i Parallel junction 

Zli+j_ = Zx+ ,-+i -I- Z±-i+i + Zci+i Series junct ion 

at parallel junct ions at grid point i and series junctions at grid point i 4- A, for integer ?'. We will 

call the new voltage wave variables entering and leaving the parallel junction from the new port 

t /p,(n) and U~j(n) respectively, and those entering and leaving the series junction from its new port 

U . . . ( n + j ) and U".,i (n+ kh for integer values of i and n. In addit ion, we will adopt the notat ion 

for half-integer values of A-t. 

One physical interpretation of the need for these self-loops is that if / and c vary over t h e 

domain, the effective local wave speed does as well. Thus, if we choose a regular grid spacing, there 

are necessarily grid points at which the space s tep / t ime step rat io is not the magic ratio (it must 

be greater, by the CFL criterion). Thus if we were to try to use a s t ruc ture such as that pictured 

in Figure 4.12, regardless of how the waveguide impedances are set, energy would be moving "too 

fast" through the network. The extra delays at the junctions serve to slow down the propagation 

of energy, by storing a portion of it for a time step. The amount of slowdown is locally determined 

by the values of self-loop admittances and impedances. Self-loops are used for the same purpose in 

TLM [29, 90]—in this context they are called inductive or capacitive stubs, depending on whether 

or not they invert sign. 

Beginning from a parallel junction in Figure 4.14, we can proceed through a derivation similar 

'We take care to distinguish these quantities, which are simply values of the continuous functions / and c from the 
indeterminate quantities tj and c, defined in (-1.21). 
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to that leading t<> (4.31): 

= YT (;'++ •(") + # - . « ( n , + Y''i^{")) 

+ ^ - ( C , ! + i ( " - 5 ' - C i - i ( » - 7 ) - A : , ( " - n ) 

= ^ - ( - / / , + i ( n - | ) + / . , , ^ ( » - i ) ) 

= ^ - ( - / . / , i + i ( " - ^ ) + / ; , , - i ( » - i ) ) + f r . / , ( » - l ) (4.32) 

Iii order to equate this difference relation with (4.22b). we must have, recalling (4.21b), 

Yj.i = 2vtCi (4.33) 

Beginning from the series junct ions at .r = (/' + i ) A , for i integer, we obtain similarly an 

interleaved central difference approximation to (4.17a). under the constraint 

Zj,+ i=2rJi+, (4.34) 

Under the further condition that all impedances in the network be positive, these constraints give 

rise to a family of stable centered difference approximations to (4.17). We can distinguish three 

specicnl types; 

T y p e I: V o l t a g e - c e n t e r e d N e t w o r k 

We set the admit tances of the waveguides leading away from a parallel junction to be identical, i.e.. 

l'x-,f = 1'J-+,I = <n<-, (4.35) 

and set 

Vdj = o 
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which satisfies (4.33) with f-,- = ct. From (4.35). we have that 

1 „ 1 
Z'+,i+± = - J - - . . + J 

Thus ih«- series junction impedance at location i + A will be 

Z j ;+i = 1 H Z. i+i 
•'+* "0c, voCi+t '-'+-> 

We can I hen sel 

Z , , I + i = <•«(/,-+ / ; + 1 ) - - | - ( ^ + — ) 

which satisiies (1.31) with / . + i = i ( / ; + /,+ , ) . 

Only the scries self-loop impedances are possibly negative, so the network will he passive if 

Z..-. i > 0. This will certainly he t rue if we choose 
1 • ' > i — 

• VV '.•'•.•/ 
to > max ( \j-— 1 (4.36) 

i VV'.'-./ 

Recall that in our earlier (liscussion of group velocities for symmetr ic hyperbolic systems in §3.2 and 

for t h e transmission line in particular in §3.7. the maximum group velocity for the transmission line 

is 

-4L,m„ = ' » - ^ (4.37) 

The optimal space s tep / t ime step ratio from (4.3G) is exactly the maximum of t h e local group 

velocity of the transmission line, at least over the range of values of / and c sampled at the parallel 

junction locations: thus it approaches the maximum group velocity for the continuous system in the 

limit as the grid spacing A becomes small. 

T y p e I I : C u r r e n t - c e n t e r e d N e t w o r k 

This arrangement is the dual to the previous case. We now set 

^x+.i+i = Zz-J+i - r 0 / , + i Zci+i = 0 

and 

^ - o ^ + c ^ , ) - ! ^ - , ^ - ) (4.38) 
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We have I bus chosen r, = f(Cj+ i +C,-_i ) and li+L = /, + i - Now we must have 

'" - " , aX ( \ 1 

wliidl is very similar to condition (-1.3G). except that the maximum is now taken over the series 

junction locations. 

Here, scattering at the series junctions is trivial, since the impedances at the two connecting 

ports are identical, and the self-loop impedance is zero (and we thus drop entirely any calculation 

of the value in the self-loop at the series nodes). We can opera te at the down-sampled rate, with 

scattering occurring only at the parallel junctions. In this case, we are directly computing only 

junction voltages, and are in fact solving the second-order reduction of system (4.17). namely 

We could have made a similar statement about scattering at the parallel junctions in the previous 

case. This efficient configuration, unlike type I. however, generalizes to the ( 2 + l ) D case, as we will 

see in §4.4.2. 

T y p e I I I : M i x e d N e t w o r k 

Suppose we set all the impedances which connect one grid point to another to be equal to some 

constant Zconsl which is independent of position. Thus 

' / - , i = **+,i = *-fJ"conat 

We then choose, to satisfy (4.33) and (4.34). 

2 
YcJ = - ' »C; — — 

•^,.,+ i = 2('(|/,+ i — 2Zconlti 

and this leads to the conditions 

»_ ,_ '"const ^con&t 
to > max — = ii0 > max = 

* Ci tCconst '"mm £ canst ' 't'4- i ' rnin 

where 
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The lower hounds on Ho coincide when 

in which case we have 

'« > \ -, ; — 
V 'min^tniri 

Since in general. /,„,,,<•,„,„ < inin,'(/,c,). for 2/ either even or odd, we are no longer at the optimal 

bound, and are forced to use a smaller t ime step than in the previous two cases, if we wish the 

network to remain concretely passive. This arrangement bears a s t rong resemblance to the MDWD 

network in [107] and [131]. and discussed in p . " . We will explore this similarity in more detail 

in ?j4.10. Many other choices are of t h e waveguide iininiltances satisfying (4.33) and (4.34) are of 

course possible. 

C o m m e n t : P a s s i v i t y a n d S t a b i l i t y 

At this point, we would like to mention an interesting property of the interleaved waveguide net­

works discussed in the earlier part of this section. We showed, in the last few pages, that three 

different types of immit tauce set tings for the waveguide network could be used to solve the ( 1 + 1)D 

transmission line equations, and could, in fact, be interpreted as centered difference approximations. 

The three types of network integrate system (4.17) using slightly different effective inductances / 

and capacitances c which converge to / and c in the limit as the grid spacing becomes small. We 

had. for integer /. 

li+i = - (h + l,+ i) c, = C\ Type I 

c, = - ( c , + i + r , _ i j Type II 

/,-+i = / , -+ i c, = c , Type III 

'.+| = '.-+i 

The three types, however, yield different requirements for passivity on the space s tep / t ime step ratio 

t 'o-

t>o > max . / - — ) Type I (4.40) 

v0 > max | , / — Type II (4.41) 

t'o>J— 1—; Type III (4.42) 
y min , + i /; mm,- r, 
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The first two bounds are roughly the same, and are close to optimal, in the sense that in is bounded 

by (in the limit ;is A approaches (I) the maximum of the local group velocity over the transmission 

line. The type III bound, however, may be substantially poorer, and is similar to that which arises 

in MDWD networks (see §3.7). 

If we choose /(.;•) and r(.r) to be positive affine functions (linear in .r with a constant offset). then 

/ and c are the same in all three cases, so the three networks will, in infinite-precision arithmetic, 

calculate identical solutions. But there will be a range of values of r„ (namely, the range of r„ greater 

than the bounds given in (4.40) and (4.41). but less than that of (4.42)) for which the type I and 

II networks are concretely passive [12]. but for which the type III network is not. Over this range, 

some innnit tances in the type III network will necessarily be negative. 

We can conclude that there is a large middle ground between passivity and global stability of 

networks. One impor tant difference would seem to be that wave quantities in a concretely passive 

network are power-normalizable, whereas if a network is only abstractly passive that is. its global 

behavior is passive, even though it contains elements which are themselves not may not be. We 

do not investigate this further here, but comment that it would be of great interest to make clearer 

the distinction between passive and stable numerical methods for solving PDEs. This subject has 

been broached in some detail for ODEs [32. 75]. and we will see some other interesting examples of 

this distinction in Appendix A. 

4.3.7 Incorporat ing Losses and Sources l 

We now reconsider the full (1 + 1)D transmission line equations, including the effects of losses and 

sources; this system was presented earlier in *{3.7. and we repeat its definition here: 

Ot ox 

<%+^ +.</« + /' = 0 (4.43b) 
at us 

Here r(x) > 0 and y(x) > 0 represent resistance and shunt conductivity at any point in the domain, 

and ( and It are driving terms and can be functions of .r and t. 

In order to add these terms to the centered difference approximation in such a way that we may 

still use an interleaved scheme, we can use tin- .semi-implicit [184] approximations to i. and » given 

by 

i(.vj) = i (,(,-. 1 - T/2) + H.r.t + T/2)) + OCT2) 

u(s.t) = \(u{.r. t - T/2) + «(.r. t + T/2)) + G(T2) 
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We also define 

ri+, =r((i+ i)A) </,- = .'/(''-M 

c,+ i ( " + ?) = ' ((' + |)A,(n + | ) r ) M'<) = ft(iA,nr) 

and use the second-order approximations 

c ,+ i (») = - ( P , + I ( ' I + i ) + r ; + i ( » - | ) J 

Mtt-i) = |(M»)+M»-D) 

We then get. as an approximation to (4.43). 

li+i(n + j) - I'l.i+iji+ii't- k) 

+ <TiM ( P m ( n ) - U,(n)) + ±crLi+iei+i(n) = 0 (4.44a) 

Ui(n) - pu,iUi(n-l) 

+ truj ( / i + i(n - i) - /,_i(n - £)) + A<r, ,,/,,(;, - | ) = 0 (4.44b) 

with 

P , ' , + *~2/ j + !+rjT ^ ' - 2 c i + //;r 
2 2 

f T ; • , l = = (Ti; i 

2r 0 / , + i + r , + i A 2t>0f, + <y,A 

Losses and sources can be added to the waveguide network scheme ra ther easily, by introducing 

new ports at each series or parallel junction. In fact, as pet wave digital filters, each pair of t e rms 

ri + i . and gu + h can be interpreted as a resistive source [40], and only requires the addit ion of 

a single new port at each junction. (The resistive voltage source was discussed in §2.3.4.) For 

any parallel port we will call the new port admi t tance YRJ, and the voltage wave variable entering 

the port t ' f t , . For a series port, we call the new impedance ZH , + i , and the incoming voltage 

wave variable Vt . ,. The generalized network is shown in Figure 4.1a. with the new loss/source 

port innnit tances marked. As a result of the addition of this port , the junction admi t t ances and 

impedances become 

*J.i = **-,< + **•,< + Jc,i' + *B,i 

ZJ,i+\ = Zr*.i+i +Z,-.i+L. + Z,-.i+k +Zlii+i. 

Beginning again from a parallel junction, and proceeding through a derivation similar to that which 
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LJ 

Figure 4.15: Waveguide network for system (4.43). 

leads to (4.32), we obtain a difference relation among the junction voltages and currents: 

Uj,i{n) - Yji ~ 2YR'1 Uj,i(n - 1) + - ? - (lj.i+iU>- i ) -IJJ-L ( n - i ) ) 

- ^ ( ^ > ) + t-£,.(,.-i))=o 

In order to equate this relation with (4.44b). we can set 

Beginning from a series junction, we obtain an analogous relation, which becomes (4.44a) under the 

choices 

•H,i+! 
ri+h& 

t " « , + i ( ' » + ^ ) = 
A r , + i ( n + +) 

2 

Note that in the case where the IDS-, parameter g is zero, or close to zero, L ^ , ( " ) will become 

infinite, or very large. For this reason, it will be necessary in this case to use the dual type of 

wave: i.e., if <jj is small, set / £ (. = K ^ j t / t , = — y/»;. a , 1 ( l , l s ' ' current waves at the series junctions. 

The other impedances in the network remain unchanged under the addit ion of losses and sources: 

thus all the stability criteria mentioned in ^4-3-C remain the same. It is r a the r interesting to note. 

however, that in the case of the current-centered network, for example ( type II) . scattering at the 
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scries junctions is no longer trivial if we have non-zero sources t or loss r . That is. the series 

junctions cannot be t rea ted as simple throughs. A similar statement holds for the dual case of the 

voltage-centered network (type I) in (1+1 )D. but will not be true when we generalize to the (2 + 1 )D 

mesh (see §4.4). 

4.3.8 Numerical Phase Velocity and Dispersion 

We now make a few comments regarding the spectral properties of these difference methods; a 

detailed summary of spectral methods is provided in Appendix A. 

Consider again the type II DVV'N for the (1 + 1)D transmission line equations, as discussed in 

tj4.3.6. In the lossless, source-free case, the difference scheme can be writ ten purely in terms of the 

junction voltages, and for integer t ime steps n as 

t'./.,•(II + 1) + U.iA» - 1) = ^ - ( l ' , - , ! C r . / , I - 1 ( n ) + l , + ,,t-.,,,+ 1 ( „ ) + i ; „ r . , , , ( „ ) ) (4.45) 

where i'x-,,- = l / ( t ' o ' , - i ) anil Yt*ti = l / (« 'o ' ;+i ), and the self-loop admi t t ance is given by (4.38). 

In effect, we are numerically solving the reduced form (4.39) of (4.17) obtained by elimination of 

the current i. 

If the material parameters are constant , then (4.45) can be rewrit ten as 

(/.,,,(» + 1) + l'.,.,-(» - 1) = \2(Uj.i-i{") + I 7 , + i ( » ) ) + 2(1 - X3)UJti(n) 

where A = "Y/VQ and ~: = \/\fh- is t he wave speed, It is possible to examine this scheme in terms of 

discrete spatial frequencies 8, as per the me thods discussed in [1~C]: the range of spatial frequencies 

which are available on this grid of spacing -^ are — TT/A < .1 < n/A. T h e spectral amplification 

factors (defined in fjA.l) for this scheme are given by 

Gfi* = \ (~Bfi ± yjBl - 4) 

where 

Z?^ = - 2 ( l + A 2 ( l - c o s ( r ( A ) ) 

These spectral amplification factors define the numerical phase velocities i',-j,P/ia.,e[17G] (see ^A.1.4) 

and thus the numerical dispersion of the scheme (in general, the numerical phase velocity is different 

from the physical velocity -)). It is of interest to plot the numerical phase velocity of this scheme 

versus that of the MDYVDF for the same system: the spatial frequency dependence of the various 

modal frequencies of t h e MDYVDF were discussed in §3.9,2, 

In Figure 4.1G. the quantity »'PAose/7 ls p lot ted for various values of the parameter A. At the 
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stability bound, for A = 1 (i.e. t 0 = 7 — l / \ /7r) . both schemes arc dispersionless. For the DWN, 

all spatial frequencies are slowed increasingly as A is decreased, but for the MDWD network, wave 

speeds decrease for A > 1/2. then are exact again at A = 1/2, and finally faster than the physical 

speed if A < 1/2. This curious behavior of the phase velocities in the MDWD network was also 

mentioned in §3.9.2. In general, the phase velocities of the MDWD network are closer to the correct 

wave speed over the entire spatial frequency spectrum for a wide range of A this is mitigated. 

however, by the fact this M D W D network corresponds to a three-step difference method (compared 

to two-step for the DWN). and is thus more computationally intensive. 

-

Figure 4.1G: Numerical dispersion curves for various values of X— (a) for the DWN and (b) for tin 
MDWD network. 

4.3.9 Boundary Conditions 

The (1+1)D transmission line equations, if they are to be solved on a domain of finite extent. 

require one supplementary boundary condition at any end point [82]. Suppose that s = 0 is such 

an end point, and furthermore assume that our grid has been constructed such that the point .r = 0 

coincides with one of the parallel (grey) scattering junctions of the interleaved waveguide network 

shown in Figure 4.15. We now are faced with terminating the waveguide network, by replacing the 

left-hand peart of the parallel junct ion at x = 0 with a lumped network. If the lumped network is 

passive (that is. if its reflectance is bounded), then it should be clear that the network as a whole 

will be passive as well. 
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The two most important types of boundary condition are 

i / ( ( ) . / ) = 0 

i(U.t) = () 

Short-circuit at s = 0 

Open-circuit at x = 0 

Both are lossless, ami have the form of (3.8). The first of these conditions is easy to deal with 

by short-circuiting the left-hand port, hi this case, we may also remove the self-loop, as well as 

the combined loss/source port from the junction at .r = 0, Ujfl is forced to zero by the short-

circuit condition: this boundary termination is shown in Figure 4.17(a). We have assumed that 

1',+ 0 = Yg-fi, so that the termination degenerates to a simple sign inversion of the wave incoming 

from the right-hand side. T h e other boundary termination requires a bit more analysis, because we 

i t'«.o 

- l L'J.O 

L r+.O 

U~ 

(a) (b) 

Figure 4.17: Boundary termination* of tin waveguide network for the (1 + 1)D transmission line 
equation* at J- — 0 when (a) ti(i).t) = 0 and (b) i(tt.t) = 0. 

do not have access to Ij at a parallel junction. It is sufficient to drop the left band port entirely in 

this case (or, equivalent lv, to terminate the junction with an open circuit, which, when connected in 

parallel, may be ignored). In this case, though, we must retain the self-loop and the loss/source por t . 

We now show that such a termination does indeed approximate the boundary condition »(()./) — 0. 

T h e resulting termination is shown in Figure 4.17(b). 

Beginning from system (4.43), where we assume no source (to avoid conflicting conditions at the 

boundary) , we can apply centered differences in time, and use a one-sided [17G] approximation for 

the spatial derivative. 

0i_ 

Ox jr=0,f = lr .+ ±|7 
= !(«(£,(" + 7>r> - '(0, (« + £)r)) + 0(A) 

= | , ( i . ( n + i )r) + (-;(A) 

where we have set /'((),(n + ^)T) = 0 in accordance with the boundary condition. This yields the 
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difference approximation to (4.43b) given by 

U6(n) - :C°'""Zt^in - 1) + — r 4 r / j (»• - | ) = «» (4-46) 

The difference formula obtained from the network termination of Figure 4.17(b) is 

' ./.IP 1 J , 0 2 ' 

where we now have 

Yj,0SkYt+fi + Yfifi + Yefi (4.47) 

It is easy to see that if we set 

YH,„ = gSbA JO = rvo (2r-0 + ffor) (4,48) 

then the waveguide network is indeed performing a calculation equivalent to (4.4G). Jc,u and ) T- „ 

may be set according to the type of network we are using (i.e.. I. II or III in *{4.3.6) as long as 

(4.47) and (4.48) are satisfied: the stability bounds are unchanged. It is important to note that 

this realization of the boundary condition ' ( 0 . 0 = 0 will be first-order accurate in the grid spacing 

A. due to our use of a one-sided difference approximation. It is recommended, then, to align the 

waveguide network such that a series junction lies at the left-most grid point, where it can be simply 

terminated by an open circuit. Such a termination will be second-order accurate. 

Because any bounded reflectance may be used to terminate the waveguide network, it has been 

proposed [9G] (in the context of the Karplus-Strong algorithm [103]. which can be shown to be equiv­

alent to a part icular digital waveguide configuration [1G8]) that one can model wave propagation in 

a dispersive medium (like a beam [77]) by using a non-dispersive waveguide for the interior with an 

all-pass terminat ing reflectance. Such an all-pass filter will introduce a frequency-dependent phase 

delay which can be chosen so as to match the dispersion of the medium itself, without dissipating 

energy. It should be kept in mind, however, that one means of synthesizing such an all-pass filter 

would be by adding an additional chain of junctions on the opposing side of the boundary junc­

tion, and terminat ing it with an open- or short-circuit. Synthesis (for a given dispersion profile) 

presumably proceeds along the lines of methods used in related filter-design areas [215]. 

4.4 T h e ( 2 + l ) D Parallel-plate System 

We return now to the parallel-plate transmission line problem that was discussed in the previous 

chapter in >{3.8. As we mentioned before, this is a useful model problem in that it can be simplified 
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to model the transverse motion of a membrane , and (2+1 )D linear acoustics. It can be modified in 

a trivial way to model transverse electric (TE) or transverse magnetic (TM) fields in ;i substance of 

spatially-varying dielectric ((instant, magnet ic permeability, and loss characteristics. 

4.4.1 Defining Equations and Centered Differences 

The set of P D E s describing a lossless, source-free parallel-plate transmission line in (2+1 )D is a 

direct generalization of system (4.17): 

(4.49a) 

(4.49b) 

(4.49c) 

Now ij.(x,y, t) and /',,(.»•, i/./) are the components of the current density vector in the s and ;/ 

directions, respectively, and u{.r,y,t) is the voltage between the plates. I{x,y) and c(.r,i/), both 

assumed positive everywhere, are the inductance and capacitance per unit length. 

If we assume that / and c are constant , then as in the (1 + DD case, the set of equations can be 

reduced to a single second order equation in the voltage alone: 

0iT On 

~b7 + fc 
,0iu Oxi 
1—- H 

Of Oy 
On 0ix 0iu 

Ot Ox Oy 

= 0 

= 0 

= 0 

U ifO'1!! 0'2ll\ 

Of2 ' \0s2 Oy 

and again, the wavr s/uul •) is given by 

_ 1 

The centered difference scheme for system (4.49) also generalizes simply. Define grid functions 

Ij. ,\j{ti). ly,ij(n) and U,j{n) which run over half-integer values of i, j . and n. i.e.. 

i \ j , n = . . . - l . - i . 0. i . l . . . 

We will furthermore assume that the spatial s tep in the J- direction and the y direction are the same 

and equal to A / 2 . As before, the t ime s tep will be T/2. We can use the approximations (4.19), as 

well as an approximation to the derivative in the y direction. 

Ow 

Oy 

u - ( » , j + ^ . » ) - n ' ( » . j - ^ , n ) | 2 j 

(AJA.nT -^ 
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where u- stands for either of is or n. We obtain the difference scheme 

1 
4.51a) 

4.51b) 

[ ' , , > + i ) - tf,j(n - I ) + ~ (iMjin) - 7,.,-_4.;(»•)) 

+ - ^ - ( W i ( » > - f».«j-|(»»>) • () (4-51c) 

where we have written 

f< ( jAj(»A,jA) + 0(A a ) 

'0 — ~ 

As in the (1 + 1 )D case, it is possible to subdivide the calculation scheme (4.51) into smaller, 

mutually exclusive subschemes. Using a decimated grid for the variable coefficient difference scheme 

amounts to rewriting scheme (4.51) as 

(4.52a) / r , i + . J ( » . + i ) - / T , i + i , j ( » » - i ) + - r (i-i+iJ(,>)-d j(n)) = 0 

/ * ! , ! + * ( » + i ) - W « . i ( » - 5 ) + - ^ — (LriJ+\(n)-Vij(n)) = 0 (4.52b) 

Uu(n) - i:.j(n - 1) + - i - ( / , . j + i > - i) - / , , _ ! , > - J)) 

+ - 4 - ( / ; / , , . J + i ( n - i ) - / ! / , ; J _ i ( n - i ) ) = 0 (4.52c) 
* 0C| J v / 

where we now compute solutions for 1, j and 11 integer. The interleaved grid is shown in Figure 4.18; 

a grey (white) dot at a grid location indicates that the adjacent named variable is to be calculated at 

times which are even (odd) multiples of T/2. This interleaved form was originally put forth by Yee 

[214] in the context of electromagnetic Held problems, and forms the basis of the widely used finite-

difference time domain (FDTD) family of difference methods [184]. which were discussed briefly in 

!j4.1. If system (4.52) is rewritten as a TE or TM system, the interleaved arrangement of the Held 

components also has an interesting physical interpretation as a discrete counterpart to the integral 

form of Ampere's and Faraday's Laws [184]. This result also extends easily to the discretization of 
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Figure 4.18: Interleaved computational grid for the (:'+l)D parallel-plate system. 

Maxwell's equations in ( 3 + l ) D [214]: see (J4.10.6 for more details. 

T h e ( 2 + l ) D analogue of (4.23). which holds in the case where / and c are constant, is 

2 

+ zO^-ljUijin) (4.53) 

T h e magic t ime stej) will now be 

MO = \/2~. 

and (4.53) simplifies to 

r , , j(n+l) + f , . J ( , . - l ) = i ( r , + 1J(».) + fV1. j(,0 + [",,J+1(».) + r , J _ I (n) ) (4.54) 

As in (1 + 1 )D. when we are solving the wave equation by centered differences at the magic t ime Step 

(or at C F L ) . the calculation further decomposes into two independent calculations: we need only 

u p d a t e Utj(n) for i + j + u even (or odd) . We will examine this interesting decomposition property 

in detail in Appendix A. 

4.4.2 The Waveguide Mesh 

Consider t he original form (2+1 )D waveguide network, or mesh [198], operating on a rectilinear grid. 

Each scat ter ing junction (parallel) is connected to four neighbors by unit sample bidirectional delay 
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Figure 4.19: (2+l)D wat'i.tiunli mesh and a representative scattering junction. 

lines. The spacing of the junctions is A (in either the .r or ;/ direction) and the t ime delay is T 

in the delay lilies (see Figure 4.19). We now index a junction land all its associated voltages and 

currents and wave quantities) at coordinates (/A. j A ) by the pair (i.j). As in the (1 + 1)D case, at 

each parallel junct ion at location {i.j). we have voltages at every port , given by 

U*+,tj 

' •J '" . i . j 

V - • • 

voltage in waveguide leading east 

voltage in waveguide leading west 

voltage in waveguide leading nor th 

voltage in waveguide leading south 

and current flows 

I,-J, 

A'/+ .i.j 

current flow in waveguide leading east 

current flow in waveguide leading west 

current How in waveguide leading north 

current flow in waveguide leading south 

as well as wave quanti t ies 

1 '1.1.3 — L q.i.j ^ L q.i.j 

•l-'.J - n,,+^,. 
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where (j is any of .r+. .r~, y+ or y~. The variables superscripted with a + refer to the incoming 

waves, and those marked — to outgoing waves. The voltage and current waves are related l>y 

Iq,i.j = ^'i'.jl ,,j.j Iq.i,} — _ i «/.<'./,,.;,j (4.55) 

where 1,, , j is the admittance of the waveguide connected to the junction with coordinates (iA, jA) 

in direction iy. The junction admittance is then 

y.i.i,j - K-.iJ + Yr+,i.j + Yu-,iJ + rv+ . . , j <4-56) 

and the scattering equation, for voltage waves, will he. from (4.15), 

fV:,j = - ( r ^ + j f - ( n - . , i t ^ , . J + l ^ , j f ^ , . , + l w + . , / ' + , ^ + 1 ; - , , ^+ , , ) (4.57) 

where r is any of ,r+. j - - . i/+. or //". Voltage waves are propagated by: 

The case of How waves is similar except for a sign inversion. The complete picture is shown in Figure 

4.19. 

Similarly to the (1 + 1 )D case, it is possible to obtain a finite difference scheme purely in terms 

of the junction voltages VJJJ, under the assumption that the admittances of all the waveguides in 

the network are identical, and equal to some positive constant V. Thus, from (4.56). YJ,JJ = 41". 

We have, for the junction at location .r = iA. y = jA, 

U . J , 

= \ ((-;-,+ ],J(n) + U^,_l](») + U!i_.j+l(n) + I-^i]_1(ni) 

= ^ (t-rj..-+i j(") + r . / . , -u(») + Uj,ij+i(n) + Vj,ij-t(n)) 

- ^ ( r ^ , I + 1 J ( » ) + tC; , i _ 1 J (n) + t ^ , f , j + 1 ( n ) + t ^ , , J _ l ( » ) ) 

= » (tr./,,+i.j(») + Ujj-uin) + Uj,u+l(n)+ Uj,ij-i(n)) 

1 J - ' } „ 

= |(t^,<+ij(«) + C/j,^u(n) + t"./,,J+i(») + Vj,ij-i(n))-Ujjj(n - 1) 
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This is identical to 4.5-1 if we replace U.i by V. 

If WE now replace all the bidirectional delay lines in Figure 4.19 by the same split pair of lines 

shown in Figure 4.11. then we get the arrangement in Figure 4.20. We have placed the split lines 
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Figure 1.20: (2+l)D interleaved waveguide mesh. 

such that the branches containing sign inversions are adjacent to the western and southern ports of 

the parallel junctions. We also introduce new junction variables lmj at the series junct ions between 

two horizontal half-sample waveguides, and /„./ at the series junct ions between two vertical delay 

lines, as well as all the associated wave quantities at the por ts of the new series junct ions . It is 

straightforward to show that upon identifying lTj. lyj and Uj with Ix and Iy and Uj, t h e mesh will 

calculating according to scheme (4.52) with constant coefficients, if we choose 

"" = n- ,/f 
where Z is the impedance in all the delay lines. We are again at the magic t ime step, but the 
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impedance has been set to be larger than the characterist ic impedance of the medium. Also, notice 

that the speed of propagation along the delay lines is not the wave speed of the medium, which is 

") = l/v/Tc. Such a mesh is called a slow-wave s t ruc ture [90] in the TLM literature. At this point, 

it is useful to compare Figures 4.20 and -1.18. 

Losse s , S o u r c e s , a n d S p a t i a l l y - v a r y i n g Coef f i c i en t s 

We can deal with spatially-varving material parameters as well as losses and sources in a manner 

similar to the (1+1)D case. The full (2+1 )D transmission line equations, as originally presented in 

§3.8, are 

,0i. On 
l-sf + A-+™. + e = () 

at ox 

,0i„ On 

On 0ir 0iu 

(4.58a) 

(4.58b) 

(4.58c) 

where we have r{jr,y) > 0 and g(x,y) > 0. and e, / and h are driving functions of x. y and 1. 

The centered difference approximation to (4.58) is 

/,.,-+$ j ( " + r2)-i>li+ijIri+Lj(n- i ) + ( r / ( , + i j (Ui+i j(n) - tf{j(n)) 

+ Arr , , . + , j c 1 - + i j ( n ) = () (4.59a) 

/ v . ' , j + i ( " + ^-t'l.ij+kju,i,j+^n- £) + aU.j+{ ( f r / J + i ( ' 0 - l r , , ; ( " ) ) 

+ A r x M J + i / , . J + i ( , , ) = 0 (4.59b) 

Uij{n)-putijU{j{n- 1) + «ry,,j [fm,i*$j(n*j)^^,<-|j{»»^a)) 

+ *«/,«J ( / .v . . - . i+ i ( " -2)- / . . / . . - . i -^" -5)) 

+ A ( r , , , J / » , J ( ; , - i ) = () (4.59c) 

where 

2/fc,,. - rkpT 
p,'k'P = of—TZ—T 

i'k,p = r(A-A.jjA) 

'T ' 'A•' , 2r0/*.,, + nb,A 
(4.G0) 

(4.01) 

for k. }i half-integer such that 2(fc + p) is odd. and 

P t . i j 
_ 2c,-j -tg.jT 

9i,i = tf('A.jA) 

ffi'.».i — ' , , ; 2t'0c,-.j;+.7i,jA 

i*,««o(*A,/A) + 0(A*) 
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for /'. j integer. For the sources. We have used 

2(ei+il i{n + £) + e f+ | i i(n-£)) 

| ( / ^ ( " + i) + / , - j+ 4("- i )) 

I (hij(,i) + //,.;(;< -1)) 

where 

- ( ( ( + i ) A . 7 A . ( N + i ) T ) 

h(,A.jA.nT) 

Again, we have applied a semi-implicit approximation to the constant-proportional terms of (4.58). 

The waveguide network shown in Figure 4.21 is a direct generalization to (2+1 )D of Figure 4.15. 

To the s t ructure of Figure 4.20 we have added an extra port to each scattering junction, series or 

parallel, which is connected to a self-loop of impedance Zc and doubled delay length, as well as a port 

with impedance Zu to introduce losses and sources. All inunittances are indexed by the coordinates 

of their associated junct ions. As before, we set the admittance Y — l/Z for any impedance Z in the 

network. In Figure 4.21. the linking admi t tances of the bidirectional delay lines are indicated only 

at the parallel junction, since we must have 

Y - 1 V - 1 y _ 1 Y - 1 

The junction admit tances and impedances are thus 

1 J.iJ = Y$~ ,i,j + i x+ ,i.j + 1 y- ,i,j + 1 u+ .i,j + Yc,i,j + J H.>.j 

Z-l.i+{,} = ZT~,i+iJ + Z T + , i + i , j + Zr, i+i,j + ZRS+1,J 

Zj,i,j+\ = Zu~ ,>,j+h + ^ i r M J + l + Z'-,i.j+k + ^J t ,U+ | 

Beginning from series and parallel junctions, and proceeding through derivations similar to (4.32) 

yields the difference scheme (4.59) in the junction variables Uj, Ix.i and Iyj. provided we set 

Yj,ij = 2vo£ij + Af/.j Y,I,J = A<I,.J
 Uti,i.j = -fyjAfcj 

Z J , ; + i , j = 2 « . ( | ( ; + , J + A r ; + i t i ZfiJ+iJ = ±ri+LJ I+.+ l_. = -,-i+kjl2vi+kj (4.62) 

Aj+i(») = 
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T/2 r/2 

F T •' 

Figure 4.21: (2+l)D waveguide mesh for the varying-coefficient system (4.58). with losses and 
sources. 

We can again identify three useful ways of setting the imniittances: 

T y p e I: Vo l tage -centered M e s h 

At a parallel junction. We set the self-loop admittance 1,-;j to zero, and the admit tances of the 

branches leading away from a parallel junction at grid point (i.j) to be identical, thus 

n,<j = » 
Ha \- \' \- \- » 

1r-,i,j — 'r+yi.j — i J / - , i , j "" 1 y + ,«J ~ .) '<J 

and set 

Zc ,.+ i • = t'o(/,,j + h+\.j) ( + ) 

zc.i.j+^ = * 'o( ' . j + hj+i) - — ( — + ) 
•0 \ C , j C I J + 1 / 
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The positivity requirements on Ze j+i •. and ZCJJ+I force us to choose 

'"-'^(/ST) (4C3) 

Thus we have a simple CFL-type bound on the space s tep/ t ime step ratio, which must be chosen 

greater than v 2 times the maximum value of the local group velocity 1 /v /c over parallel junct ion 

locations (/'A, jA). T h e bound (4.G3) converges to \f2."l
gpPmar. as defined by (3.G5), in the limit as 

the grid spacing A becomes small. 

T y p e I I : C u r r e n t - c e n t e r e d Mesl i 

This arrangement is the dual to the previous case. We now se( 

Z , + I + i j = Z , _ , + i j = <•„/,+ , , (4.64) 

V . ; j+ i = zu-,i,i+k_ = , ' o ' . j + i < 4- 0 5) 

ZrJ+Lj = Zcij+i=i) (4.GG) 

and 

1 1 1 1 \ i'o / \ 

We then have 

Mo > max [ i / j — — (-4.G7) 
2(fc+p) odd y y /*.,,,a-,,.y 

for half-integer A- and /J. It is rather interesting that in (2+1 )D. if we have ;• = 0 and (• = / = 0, this 

arrangement (and not that of type I) allows the series junctions to be t reated as through* (with sign 

inversion)- We may thus operate at a reduced sample rate in this case. This particular choice of 

immittaiices. in the constant-coefficient, lossless and source-free case with VQ = ^ /2 / ( /c) , yields the 

original form of the waveguide mesli proposed in [198]. and mentioned in §4.2.7. We also note that 

networks such as this and type 1. for which the connecting imniittances may vary spatially have also 

been explored in TLM [29, 159]. 

T y p e I I I : M i x e d M e s h 

We set 

2,-,,+ !;.} = Zr+j+L J ~ Zy- j j+L = Z v + , j + i = Z,.c„,.,, 
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where Zconst is some positive constant, and then choose 

1 
*C,tJ = 2('|)C, j - — 

^ const 

^c,i+±,j = ~l'a'j+lj — -£,;.i,st 

Zc.i.j+L = 2 r 0 / ( , J + i - 2Z--,,,,,, 

The optimal value of ZCi>nst is easily shown to be 

„ /2nui i 2 ( t+ , . | odd U-,r 
^consl — \ : 

and tliis leads to the constraint 

/ 2 
_ Y min 2 ( t+ , , | „d,i{lk,v)in'Mjj{cjj) 

for i, j integer and k and p half-integer. As in (1 + 1 )D. this bound is inferior to those obtained using 

the type 1 and type II meshes. Because the immit tance settings are simpler, however, this form may 

be preferable, from a programming s tandpoint . 

4.4.3 Reduced Computat ional Complexity and Memory Requirements in 

the Standard Form of the Waveguide Mesh 

The s tandard form of the waveguide mesh [198] was proposed as a means of solving the ( 2 + 1 )D 

wave equation (4.50). We would like to note that it is possible, in this special case, to reduce bo th 

computational complexity and memory requirements by taking advantage of the fact that the mesh 

calculation can be subdivided into two mutually exclusive schemes. We represent this subdivision 

graphically in Figure 4.22 by coloring the two subgrids white and grey. Voltages are calculated at all 

the junctions, at every time step. However, it should be clear from the figure that the calculation of 

/ .; al a grey-colored junction w'ill only depend on wave variables scat tered from the white j imct ions 

at the previous t ime step. We then only need calculate half the junctioii voltages at any given t ime 

step: at the grey junctions at even multiples (say) of the t ime s tep , and at white junctions for odd 

multiples. 

We can go further as well- -if we have dropped half the junction calculations at any given t ime 

step, then we are in fact only using one of the two delay registers in any bidirectional delay line 

(grey or white in Figure 4.22). Thus only one delay register will be required for any waveguide. In 

addition, because in calculating the junction voltage at a grey junct ion (say), we make use only of 

incoming wave variables, and not the junct ion voltages at the white junctions, calculated one t ime 

step previously, one set of registers may be used at al ternat ing t ime steps to store both the grey and 
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! _ ! Li 

n 

Figure 4.22: Grid decomposition for the standard waveguide mesh. 

white voltages. 

This amounts to a factor-of-two savings in terms of both memory requirements and the operation 

count. We are, of course, approximating the solution at only half the mesh points at any time step, 

but there is no reduction in accuracy, because the separate sub-calculation which has been removed 

operated completely independently. (It is t rue, however, that we have sacrificed the higher end 

of the range of spatial frequencies which can be approximated without aliasing.) One additional 

advantage is that under tliis simplification, there will be no need for temporary registers (normally 

necessary during the scat ter ing operat ion): at a given t ime step there is no danger of overwriting an 

incoming wave variable at a particular junction, because if we have just scat tered there, we will not 

scatter (here again for two time steps. T h e savings in terms of memory is of a factor of 14/5 over the 

s tandard mesh implementation, though the reduction in the spatial frequency range should be taken 

into account. We note that in this implementat ion, each pass through the main loop in the computer 

program will contain two t ime steps worth of scat ter ing operations. Once one has programmed a 

mesh a few times, the possibility of performing such a computational trick becomes obvious, and for 

this reason it is rather surprising that it has apparently not been explicitly mentioned in the TLM 

literature, even in papers specific to parallel computa t ion [170]. We will look at grid decomposition 

issues in much more detail in Appendix A. 
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Such memory-sharing ideas also appeared early on in wave digital filters which use unit elements 

[41] and in YVDF-based numerical integration schemes [131]. We note that this idea can he applied 

here only for the wave equation at CFL: otherwise, if we are using, for example, a type II mesh, 

we necessarily have unit-delay self-loops at the junctions, so that the mesh calculation can not be 

similarly decomposed, 

4.4.4 Boundary Conditions 

We now examine the termination of the waveguide mesh which simulates the behavior of the (2+1 )D 

parallel-plate equations. The two most important types of boundary conditions are 

ii = 0 Short-circuit termination (4.68) 

i„ = 0 Open-circuit termination (4.69) 

where i„ refers to the component of (ir.iy) which is normal to the boundary. Condition (4.68) 

corresponds to a transmission line [date pair which are connected (and thus short-circuited) at the 

boundary: the same condition holds for a d a m p e d membrane for which it is interpreted as a trans­

verse velocity, and (>*,ty) as in-plane forces. Condition (4.G9) is an open-circuited termination; 

current can not leave the plate at the edges. This second condition is analogous to the rigid ter­

mination of a ( 2 + l ) D acoustic medium, where (<*,'y) are interpreted as flow velocities, and u as 

a pressure. Both conditions are of the form of (3.8). and are lossless. We will examine only the 

terminat ion of t h e mesh on a rectangular domain (though the result extends easily to the radial 

mesh to be discussed in §4.6.2). 

In the case of the (1 + 1)D transmission line, we could treat a staggered mesh terminated by a 

parallel junction, arid through the duality of / and u extend the result to include termination by a 

series junction (see §4.3.9). This is no longer the case in (2+1 )D. and we must treat the two types 

of termination separately. Consider a bo t tom (southern) boundary at y = 0 of an interleaved mesh 

of the type shown in Figure 4.21. The two possible types of termination are shown in Figure 4.23. 

i r i / j . I V i f , i d 

0---O--©—0---0--
1 , 1 , 1 

I / „ , I I,J I t / „ 

o o- o-
(b) 

Figure 4.23: Grid terminations at a southern boundary. 

•«— * —»• 
i i i i i 
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(a) 
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G r i d A r r a n g e m e n t R e q u i r i n g V o l t a g e and T a n g e n t i a l C u r r e n t D e n s i t y C o m p o n e n t o n 

B o u n d a r y 

Consider the termination arrangement of Figure 4.23(a). In the source-free case, if for y = 0 we 

h a w ti\.r.[).n = I), then from (4.o8a). 

f - s f + r i . - O for !, = {) 
at 

Thus the current density component tangential to the boundary is uncoupled from the other depen­

dent variables. It is convenient to assume, then, that ir(x.i).t) is initially zero, so that it will remain 

so permanently. In this case, we can drop the series junctions corresponding to iT on the southern 

boundary from the network. Otherwise, we may allow the junctions to remain, as lumped damped 

(by a factor ;•//) elements, still uncoupled from the rest of the network, hi either case, the parallel 

junct ions at the grey points in Figure -1.23(a) may be short-circuited as in the ( l - f l ) D case in order 

to realize boundary condition (-1.G8). The waveguide mesh termination corresponding to (4.C8) is 

shown in Figure 4.24(a). 

To deal with the boundary condition /,,(./-.()./) = 0. we may proceed as in the (1 + 1)D case, and 

write down a difference approximation to (4.58c). where we use the one-sided difference approxima­

tion 

= | i» (x , | , t ) + 0(A) 

and centered differences in the t ime and ./• directions. 

Uii0(n) - pv,ifiUi,o(n - 1) + n, ,„ \Jr 1 + i , ( , ( " - 2 ' _ Ar. i- i .n(" _ 2 ' ) 

+ 2a / | i , ( , / u , . i ( n - i ) = ( ) 

where fTj,, 0 and I'r.i.u are as given in (4.GO). 

Here, the voltages on the boundary are related to the tangential currents, which, from Figure 

4.23(a). are also calculated on t h e boundary. This implies that the corresponding junct ions will 

be connected to one another by waveguides which lie directly on the boundary. Also notice the 

doubled weighting of the I,, grid function at the boundary: this requires special care in the DWN 

implementation, though it also follows from a structurally passive termination, provided we make 

use of transformers along the boundary waveguides. Though we have not discussed transformers in 

the DWN context [1GG], they are identical to wave digital transformers, which were mentioned in 

§2.3.4. In effect, we may int roduce multiplies by K and 1/K, for any real K in the two signal paths 

of any waveguide without affecting losslessness, provide we scale impedances at bo th ends of the 
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waveguide accordingly. The DWN termination corresponding to i,, = 0 at a southern boundary is 

shown iii Figure 4.24(h). We have used transformers of tu rns ratio 2. implying that the ininiittances 

on the boundary satisfy 

y * - , i , 0 = T 7 i j - ' • ' • " = T T ( T 7 0 ) 

The corresponding difference equation at a parallel boundary junction is then 

Uj,ifl(n) - — t O , , \ o ( " - 1) + v. ( / , . / , ; + i . o ( " - h)-Ix.i,i-i » ( " - £ ) ) 

where 

lj,i,0 = **-,ifl + l.r+,1,0 + ^J/+,i,0 + *e,i,0 + ^ li,i,0 (4.71) 

T h e junction updating will be equavlent to the centered difference scheme if we choose 

i.;..,() = '•»'•,,,, H — 1 njA = — - — (4.<2) 

Given tha t the northward iniinit t ames at the boundary junctions must be set as interior values, the 

sett ings for the remaining ininiittances for the type I and II meshes discussed in ?j4.4.2 will be 

Type I: 

V V - ''0<"''° 7 - l 7 
*»-,i,o ii+,i,t» — ~A

 z/-+,;+i,o — ; &X- ,i+ i ,u 4 T^ ,t-t- ± ,u ~ j r ,!-(- = ,u 

l'r,i,0 = to Z,- f + I fl = l'o/j+1,0 + i'i)/;,o 

' 3 ' iV'i+i.n Vqctfi 

Type II: 

*»*-,«+4,0 = » * - ,1+4,0 " M0»<+1,0 V*,.,o = -; -. J 
2 -*''o', + i,o 

t'QC,ii ' '0'V+I 0 + l ' | )C_i „ 1 
r,i+I,0 - U J r . i . O — — = r 

,. 
x~ 

1 
4r„/,_ 

1 1 

4 4 voli ,i 4t '0 / ,+ |,o 4 t o / , _ i 0 

T h e passivity conditions which follow from the positivity of the boundary self-loop iinniittances will 
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('o > max | 
<i,0ri',0 

t'o > max max -. max li,kCi,h <+i V 'i + i / i + i , 0 

Type I 

Type II 

and clearly are leaa restrictive than the conditions (4.G3) and (4.07) over (In- mesh interior, and 

hence do not affect the overall stability bound on c(). 

•CH 
i 

> 

(a) (b) 

Figure 4.24: (2+l)D waveguide mesh terminations at a southern boundary, for the grid arrangement 
of Figure 4.23(a) (a) for ti(j-.O.r) = 0 and (b) »(a;,0,f) = 0. 

Grid Arrangement with N o r m a l Current D e n s i t y C o m p o n e n t Required o n B o u n d a r y 

Termination of the other type of mesh, as shown in Figure 4.23(b) is comparatively simple, because 

the series junctions are isolated from one another along the boundary itself. Terminations for both 

types of boundary conditions are shown in Figure 4.25. T h e boundary condition iy = 0 can be 

simply implemented by terminating the series boundary junctions in open circuits. T h e condition 

ii = 0 can be ensured by through proper adjustment of the self-loop impedance, depending on the 

type of waveguide mesh. The sett ings will be 

Zci+±.a = • V f j - i "+5.5 

^ , + i.O = '» 

Type I 

type II 

The positivity condition on the boundary self-loop impedances for the type I mesh again does not 

degrade the stability bound over the mesh interior. As for interior series junctions, we will have 

Zn = r A / 2 at the boundary junct ions. 

This type of mesh possesses an additional advantage—if we are working on a rectangular domain. 
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J 1 

(b) 

Figure 4.25: (2+t)D waveguide mesh terminations at a southern boundary, for the grid of Figure 

123(b)- for (a) H ( J \ ( U ) = 0 and (b) i v (x ,0 , t ) = 0. 

then the "holes" in the staggered grid (that is. those points at which neither V nor / is calculated, 

as per Figure 4.18) may be placed at the corners of the domain. The extra programming task of 

specializing the waveguide mesh at the corners can then be safely ignored. 

All results can of course be extended, by symmetry, to any edge of a rectangular domain. 

4.5 Initial Conditions 

We have dealt, so far, with a method of integrating the transmission line and parallel-plate trans­

mission line systems, but have not examined the necessary initialization of the algorithm. We will 

deal, here, with the lossless source-free cases. 

In (1 + 1)D, the hyperbolic system (4.17) requires two initial conditions. That is. we require the 

knowledge of initial current and voltage distributions along the line. We would like to enter the 

discrete equivalent of this d a t a into the delay registers somehow at the first time step n = 0. From 

Figure 4.14, it should be clear that four sets of da ta are required: tr^"_ .(0), U?+ ,(0), 17^(0), which 

are the initial incoming waves at the parallel junctions, and r \ + i ( f ) ( the values initially stored in 

the self-loops at the series junct ions . 

T h e first problem we encounter is that , on our decimated grid, we calculate values of L'j and /./. 

the grid functions corresponding to voltage and current, at a l ternat ing time steps. We have chosen 

our grid such that for k anil in half-integer, hi"') is calculated for odd values of 2m. and Uk{fn] 

for 2m even: at t ime zero, then . Uj is accessible (as a combination of wave variables). How then 

do we enter the current initial d a t a into the algorithm? It turns out that this problem is rather 

simply addressed. We can do one of two things: set the value of Ij at time step i to be equal to 

a sampled version of i ( x , 0 ) , and accept the error that this introduces, which will be 0(T). or we 

can use any available numerical method (i.e. one which does not operate on a staggered grid) to 

propagate the initial da ta I'O(T) forward by J / 2 . Such a method should be at least G(T2) accurate. 

'O '6! 
'.-/../ 
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but it is allowed to even be unstable, since we will only be using il to upda te once [liO]. 

Assume then, that our initial da ta are (/,"(") = u(»'A,0), and IT, (^), some approximation to 

i(( i + 4 )A, j ) obtained by cither of the methods mentioned above. At t ime step n = 0, we can write 

the junction voltages (/./.,{()) as 

t0..(0) = Y~ (rx+,,r;+,.((» + r,-,(;_,(()) + i;,,r+(0)) (4.73) 

a n d / , , + i ( i ) as 

=j^— (-r./,+1(0) + t/j,,(0) + U+ .+I(0) - r + ,.((» + 2C(1+ji++i(£)) (4.74) 

T h e safest and most general way of proceeding, given that the iuunit tanees Zc i+i and Y(. / may be 

zero, depending on the type of network we are using, is to set the initial values in the self-loops to 

zero. In thi> case, we can set 

t£,-(0) = / c
+ , + i ( ^ ) = 0 (4.75a) 

r-, /(()) = i ( A ^ l + z,,,_,/;_ | (i)) (4.75.» 

^ , ( 0 ) = i ( M ^ ) - ^ i r f f i ( i ) ) (4.75C 

It can b e easily verified that with these initial values for the wave variables, the junction voltages 

t 7 , (0) and currents tji+i{^) calculated from the DVV'N by (4.73) and (4.74) respectively will be 

consistent with the initial values of the continuous problem to first order in A. These settings may 

be used with any of the three types of network mentioned in §4.3.6. 

We may ask. however, whether there is a way of setting the initial values such that we achieve 

be t te r initial accuracy. For a network of type I, say. we have Ye,i = 0. Then, if Zcj+i is non-zero 

everywhere (this can always be arranged by operating slightly away from CFL) . we may use 

i:-;-,«» =f'V+
+,,(0) = ^7(o i 
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in which case the waveguide network reproduces the initial currents and voltages with no error. 

Similarly, for a type II network, we may set 

t?+,(o) = f7(ci) -^—i;+k a) 

tr;_,.(()) = r-(o) + -i—/;_,(!) 

t%(0) = - L ( ( i ; , 1 . - r , ,,-i,t,,)t?(()) + /^ , ( i ) - / r_ , ( i ) ) 
- l f , i v i » / 

which also yields an exact calculation. Either of these two means of initializing wave variables may 

also be used in the type III DWN. 

These initialization procedures generalize amply to (2- f l )D. where the parallel-plate equations 

require three initial conditions u ( x , y , 0 ) , ix{x,y,0) and iy{x,y,0). In general, we now have seven 

wave variables to set: the waves approaching any parallel junction with coordinates (i, j) at n = 0. 

namely U+. f J ( 0 ) , C++ ( J ( 0 ) , Uf-i(J{0)t U++ , , ( 0 ) and t r
c

+
t J ( 0 ) . as well as the values stored in the 

self-loop registers at the series junctions. / + . • .(£) and / + , . - . 1 ( 5 ) . For the sake of brevity, we 

provide only the settings for the general case, analogous to (4.75): 

v* in)-1 W » z ,r *j\ 

with, in addition, 

when" 

^,J^=i:„+i,M^=iLJ+^)=l) 

( 7 , ( 0 ) = l i ( / A . j A . O ) 

i;w+i(*)-<»«A.(i+l)A,j) 

Because DWNs of the forms discussed in the previous sections are equivalent to two-step finite 

difference methods, problems with parasitic modi's do not arise as they do in wave digital networks 

which simulate the same systems. This problem was discussed in detail in jj3.9. 
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4.6 Alternative Grids in (2+1 )D 

We have looked, so far. at waveguide mesh solutions to the (2+1 )D parallel-plate equations on a 

rectilinear grid. We now mention some other possible grid arrangements , Brs< hexagonal and trian­

gular regular grids, then a radial grid. Because Appendix A is devoted to an in-depth exploration 

of the various types of mesh which have appeared in the l i terature, we will only take a brief look at 

these meshes here, with an emphasis on spatially-varying media. 

4.6.1 Hexagonal and Triangular Grids 

Two other ways of regularly sampling the (,r. i/) plane are shown in Figure 4.2G. It was shown in [157] 

and [200] that a waveguide mesh can be constructed which solves the (2+1 )D wave equation on a grid 

of either type. We will extend this result to include the lossless, source-free hut varying-coefficient 

parallel-plate problem (-1.49). 

' I " 
• 4 * 

f l I I 
j':': • 

r 

(a) 

Figure 4.26: Alternative sampling grids — (a) hexagonal ami (b) triangular. 

For both types of grid, lines between the grid points (marked by black dots in Figure 4.2G) 

indicate that the points are to he connected by bidirectional delay lines. Connected points arc 

separated by a distance A. We will look at meshes of the type II form that is. meshes for which we 

will need to calculate using only parallel junctions (recall that if we did not have losses or sources 

in (4.58a) and (4.58b) for the type II mesh of §4.4.2, the impedances of the bidirectional delay lines 

were set so that the series junctions degenerated to simple throughs) located at the grid points. We 

still allow / and c to vary smoothly over the domain. Additionally, we could allow sources and losses 

in (4.58c). but as mentioned above, we consider only the fully lossless source-free case here. We 

remark that we now have a mesh for which all delays are of equal durat ion (i.e., in both connecting 

waveguides and self-loops), unlike the interleaved mesh of type I or III . 

The derivation of the waveguide mesh equivalent difference schemes on a hexagonal or tr iangular 

grid is very similar to the rectilinear case, and we will omit most steps. Referring to Figure 4.20(a). 
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for the hexagonal mesh we have a four-port parallel junction at each grid point. At grid point 

0. for example, we have unit sample bidirectional delay lines connecting the junction to those at 

locations 1. 2, and 3. and we will name the admit tances of the three connecting lines 1 ni - I02 and i'u:i 

respectively. In order to allow variation in local wave speed, we also add a self-loop of admit tance 

Ycfi- The junct ion voltages at points 0, 1, 2. and 3 will be named UJJB, I .i \. I .i.< and UJJZ, and we 

have for the junct ion admi t t ance at point 0, 

V.j,o = i 01 -f Y02 + 103 + Ycfi 

The scattering junction at grid location 0 is shown in Figure 4.27(a). It should be clear from Figure 

(a) 

Uj,B 

^ ^ . 

(b) 

Figure 4.27: Scattering junctions— (a) on a hexagonal grid, and (b) an a triangular grid. 

4.26(a) that the scattering junct ions will be upside-down with respect to that of grid point 0 at half 

the grid points in the domain, but the waveguide mesh we will develop holds, by symmetry, at such 

points as well*. 

Beginning at junct ion 0. and performing manipulations similar to those on a rectilinear grid 

(i.e., breaking the junct ion voltage into wave components, and tracing their movement through the 

network), we get a difference relation among the voltages at point 0 and its neighbors: 

Ujfi(n + 1) + Vjji(n - 1) = ^-(Y0iUJtl(n) + V0!U.,,2{n) + Y„Uj,9(n) + Ye,,Vj,0(n)) (4.76) 

which we would like to identify with 

dt* ~ C \d.r \10xj + By \l0yj) (4.77] 

'In fart, we are being somewhat cavalier liere (as we will be again when we look at (he tetrahedral mesh in §<1.7), 
because the updating is not the same at every junction. We will deal with this aspect in full detail in Appendix A. 

file:///10xj
file:///l0yj
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which is simply the reduced form of system (4.49) where we have eliminated i a and iy. If we were to 

identify this mesh with the type II mesh of §4.4, we might guess that we should set the impedances 

of the bidirectional delay lines to be equal to <o times the value of / at the midpoint of the line, 

where we again have VQ = A/T. Thai is. if grid point (1 i* s i tuated at coordinates (x.y). then we 

should set 

ioi = —;— lo2 = —;— }<>:i = / — Mi, 1 — U J I 

. 01 ' o ' 0 2 l'ii'ii:i 

with 

-i 4 4 4 I 

With this choice of the waveguide admit tances , we must have, in order to force consistency of (4.7G) 

witli (4.77). 

3 
Yjfi = -f'0co (4.78) 

where cn is some second order approximation to c at the location of junction I). We can now choose, 

in order to satisfy (4.78), 

, . i'„ , . 1 1 1 
*e.O — "7T ' ' o l ~*~ ° w "*" ( ' 0 3 ' » i i— 

- ' i i ' i t i ' i i ' i i . ' «;o'i>:i 

where n H and C02 and c,,:t are values of c{x,y) at the midpoints of the waveguides connecting the 

junction at point 0 to its neighbors. 

The stability bound for this mesh, resulting from a positivity condition on the self-loop admit­

tance 1,. \ over all grid points A' is 

fi 
VQ > max W — (4./ 9) 

wsvf-RuM.- midpein t i y lc 

The approach to tin- triangular mesh is very similar. We now have, at each grid point, a seven-port 

junction, to accommodate waves incoming from six directions and a self-loop (see Figure 4.27(b)). 

We now make the choices, at a grid point 0. of 

y 0 j = -^-- J = I 6 

where /oj . j = 1 ,6 are the values of the inductance at the midpoints of the at tached waveguides 

in directions 1 through G. The relevant condition for consistency with (4.77) can be shown to be 

Yjfl - 3coc 
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and We choose 

f^\2 r„/(1J; 

where r 0 j . j = 1 G are the values of the capacitance at the adjacent waveguide midpoints. The 

stability hound is again 

r0 > max s/2JU- (4.80) 
•rfevcguid* midpoint* 

If/ and c are constant , and we are operating at the CFL hound (i.e.. c0 = \ / £ ) . then in both the 

hexagonal or the tr iangular meshes Vc 0 vanishes, and we have, respectively, three-port and six-port 

scat ter ing junctions, all of whose port admittances are identical. These meshes, although they arc 

slightly more difficult to program than the rectilinear mesh, possess better numerical dispersion 

propert ies [157]: a comparison of the directional dispersion of various types of (2+1 )D meshes in the 

const ant-coefficient case is given in §A.2. We also note that in this same constant-coefficient case, 

when we are at CFL. the hexagonal mesh, like the rectilinear mesh, can be decomposed into two 

meshes which opera te on half the grid points, and thus a cut in computational and memory costs of 

a factor of two is possible (see §4.4.3). This is not t rue for the triangular mesh set' Appendix A. 

We do not include any material about boundary terminat ion of hexagonal or triangular grids, 

a l though we do conjecture that it should be comparatively less tricky than the termination of 

M D W D F networks in the same coordinate systems (we mentioned a hexagonal coordinate system 

in passing in §3.3.3). where the available results are extremely unsatisfactory [211. 212]. 

4.6.2 The Waveguide Mesh in Radial Coordinates 

We will look at waveguide meshes in general curvilinear coordinates in §4.8, but radial coordinates 

are an important special case, especially for musical instrument physical modelling applications 

(considering how many ins t ruments exhibit some form of radial symmetry). 

In te rms of radial coordinates {/>.»). where 

x = pcos9 y = psintf (4.81) 

the parallel-plate system (4.58) becomes 

. di0 du 
<r -Qf+fy, + ' V , + ' , =<» (»-82a) 

'o~- + % + >nio + fo=0 (1.82b) 
at OH 

On di0 dio 

'•''7F + ^ + A W + •''",' + "•'=,, (482c) 
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where we define radial and angular current densities by 

»p = p(»'*cos0 + itf s ind) i« = - (— i*sinW + /„ cos 9) (1.83) 
A 

and the effective radial material parameters and sources by 

',. = - Iti = /'/A c„ = pc 

r« = - i» = prA g u = pg (4.84) 
P 

t•(, = ecosfl + fsinft eg = p (— rsinW + /cosH) eu = ph 

A is a scaling coefficient which we will set. in anticipation of discretization, equal to g i , the rat io of 

the grid spacings in the H and /> directions. We will allow these spacings to be, in general, different. 

It is evident that system (4.82) has a form similar to its counterpart in rectilinear coordinates, 

apart from the extra factor of A in (4.82c)- T h e chief difference is that we now have different effective 

inductances I f, and /,/ in the two coordinate directions, but, as we shall see. this anisotropy is easily 

taken care of (indeed, we could have defined anisotropic inductances lT and lv in the rectilinear case 

without greatly complicating mat ters) . We can see immediately that when centered differences are 

applied to system (4.82). We will be able to operate on an interleaved grid in the (f>J>) coordinates. 

A version of Vee's algorithm in arbi trary curvilinear coordinates first appeared in ['Jl]. and is also 

discussed in [209]. The interleaved grid, viewed in rectilinear coordinates, is shown in Figure 4.28, 

where, as before, the dependent variable to be calculated at a particular grid point is indicated 

next to the point. Grey and white coloring of points indicates operation at alternating time steps. 

Centered differencing yields a scheme nearly identical to (4.59). with, again, the difference that the 

inductance has a directional character. We can thus proceed directly to the waveguide mesh, and. 

furthermore, can use the same indexing as in the rectilinear case: now. the grid indices [i.j.n) will 

refer to points (/).#,/) = (iAr,jA$,nT). Due to the interleaved na ture of the resulting difference 

approximations, we will have series junctions at locations (» + h,j,n + ^) and ( i , j + j , n + f ) for 

i > 0, j and n integer (with associated junct ion currents tpjj+iAn + j ) and Ilhlij+i(» + ^)) """d 

parallel junctions at locations (i.j.u) where we will calculate junction voltages I'.i,ij(n). for i > 0, j 

and n integer (we return to the central grid point at ; = 0 later in this section). The computat ional 

molecule of the mesh is shown in Figure 4.29. 

Referring to Figure 4.30. which gives the immittance nomenclature in the waveguide network, 

and where in addition we have the junction imniittances defined by 

Yj.iJ = ^'p-,t,j + lp+ , , j + "tfl+.rj + Ye- tiJ + Ye.iJ + "< li.i.j 

Zj.i+t.j = ^r*,i+ij + Zp-i+ij-\-Zrj+ij + ZHi+ij 

Z.l.i.j+k — Zp+,i,j+\ + •Z/.-.ij'+f +^<V'J+! +^H. . J+i 
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Figure 4.28: Interleaved grid tn radial coordinates. 

for i > 0 and 7 integer, we can perform an analysis similar to the rectilinear case in order to determine 

that we must have 

KMJ = 2A, ( ^ + jfcu) 

zn,ij+h = A ' " ' « . . j + i 

(The junct ion admit tance i];.u,ii will be dealt with shortly.) The source waves should be chosen as 

" • • ' + i j l - * > * » j 
c9,,-J>i(»+ h) 

/ » , , + i ( " + ?) 2i s.iJ+4 

where we may of course use the dual type of wave in regions where the loss parameters b e c o m e small, 

;i- discussed in ?j4.3.7. .lust as in the rectilinear case, these conditions define a family of waveguide 

networks which solve the radial transmission line equations. We here provide the impedance settings 

for voltage- and current-centered meshes, as well as stability bounds . 
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m 
Figure 4.29: Waveguide mesh for the (2+1)D parallel-plate system, in radial coordinates. 

Type I: Voltage-Centered Mesh 

*P+.«".j — 'l'-.'J — i»+.i.j — tH-.ij — ^ '••••J — U (1.85) 

Z <v+ i . j = 
- \ 'p • i 2T A,,/ p'p.i+l.j 2T 

•1 ^Pe'i','j ~±pt'u.i+ I J 

A«/rt,,-j _ IT Aoln,i,j+\ 2T 
<\'J+5 7- " \ r • • / A r 

j + l 

(4.8G) 

(4.87) 

The stability constraints (which follow from the requirement of positivity of Z,. everywhere) are 

^ n u u e . / j — -£ > max I — . / - (4.88) 
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Figure 4.30: Represi ntativt scattering junctions for the waveguide mesh for the (2+1)D parallel-plate 
si/sti in. in radial coordinates. 

Then- is thus a dependence on /> in the second condition (relating the angular spacing A« to T), 

which We expect, since the spacing between the junctions at a given radius now varies linearly with 

the radius. Stability bounds are, for a radial mesh, necessarily more severe than in the rectilinear 

case, due to this variation in grid spacing. 

T y p e I I : C u r r e n t - C e n t e r e d M e s h 

ZP+,<+h.i - Zp-,i+?j,j 

Z0+ ,i,j+l — Z()- jj+l 

JC,,+ L,J 

'C , t J+J 

V P , J + } , ) 

T 
(4.89) 

(4.90) 

(4.91) 

(4.92) 

V — 
1 >v J — 

4 

2 A p C t t i < + i J T 2Apcui_ij 

•^r'r.i+Lj ^PlP,i-hJ 

2 - V . , , , - j + ' T 2 - V U i l J _ i 

'e.i.j-k 

The stability bound is the same as given by (4.88). except that we take maxima over the series 

junction locations. 

We leave out a discussion of the type III mesh because it was already shown in Sj4.4.2 to be 
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relatively inefficient in te rms of the maximum allowable time step for a given grid spacing (when 

compared to types I and II). 

C e n t r a l G r i d p o i n t in a R a d i a l M e s h 

We have so far restr icted our attention to interior points of the grid (for which i > 0). If the center 

of the ii>.V) coordinate system is to be contained in the grid, a special t reatment is required. We 

have indexed the grid variables such that , in our interleavetl mesh, a single parallel junction lies at 

t he origin (for ;' = 0). If t he problem domain includes a full circle, we also must assume that A<» 

divides 2?r evenly so tha t we have a positive integer N such that 

A = - T -
Art 

Thus the central parallel junction will be connected to .V series junctions at locations (-V-.jAo), 

7 = 0 V — 1. We will name the admittances of the .V waveguides radiating from the central hub 

1'jo.o. j — 0 N — 1. and the admittance of the self-loop and loss/source ports will be Yc 9,8 and 

iff,o,o respectively (see Figure 4.31). 

B,0,0 

' » U i l 

1 
r U U 

Figure 4.31: Ce.ntiul smtttrmg junction for the waveguide mesh in radial coordinates. 

The difference scheme relating the junction voltage at the central grid point to the radial currents 

at the surrounding junct ions will then be 

l'.lM.x(ll) 
I.y.o.o — 21 //.no 

V - l 
i - 21 B,o,g 2 r-^ 1 
77 I.l.O.oi'l- 1 ) + T T 2^ V U J ( " - 9 
'J.0.0 J./.u.o 7—' 1 

' . / . O i l v ' 

j=0 

II (4 .93) 
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The sum over the junct ion currents, which we now look at in the continuous t ime/space domain 

so as to develop a series approximation) may be rewritten using (4.83) in terms of the rectilinear 

current variables as 

\ i 

A N~i A N~1 

= -^ix(0,0) 5 3 co8{iAtf) + -^.„(0,0) 5 3 sin(iA#) 
j =0 

4 k \ 0r 

NA* ( di. 
8 I Ox 10,01 fl0 

j=0 

cos ./A,,) + —-
,0,0, °y 

10.01/ 

sin (j'Ap) 
(0,01 

(4.94) 

where we have neglected higher order terms in A,, ami used, in the last line, the identities 

j=o v ' j=o x ' j=o v ' j=o v ' 

which hold for N > 2. Using approximation (4.94) and by comparing (4.93) with (4.82c). we must 

choose the junct ion ami loss/source port admi t tance to be 

1 
1 J.o.o = -.-vA,, ^ — + —^-1 ) Huu = - . \_ \ ( )</ 0 u 

and the source wave variable ( ? j j 0 | |( i i ) to be 

Vu(") 
fr/t,o,o(») = 

.'/0 I. 

A mesh of type I is infeasible because it would require access to /p.o.o in order to set Zc i .• as 

prescribed in (4.86). but /,, as defined in (4.84) is singular at the origin (al though if we are working 

with a radial geometry which does not contain the origin, this problem does not arise). For a mesh 

of type II, we have, from (4.89). 

1 T T 
1 j.o.j = •= 

and so we may set, for the self-loop admit tance at the central junction. 

T \ 
y ii H — 2_^, 

j=0 

- y \ .J 
AT 2/ 
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which is positive when 

4^> max ,/T—=— 

Thus the stability requirement at the central junction does not interfere with the requirements over 

the interior of the mesh given for the type II mesh. 

We note that a different type of central node, proposed for use in radial TLM simulations, is 

described in [24]. 

S i m u l a t i o n : C i r c u l a r R e g i o n w i t h V a r y i n g I n d u c t a n c e 

We show here a simulation of the parallel-piste problem over a circular region, radius 1. with short-

circuited boundary conditions (H = 0 on the outer r im). The capacitance is 1 everywhere, as is 

the inductance except over four circular regions of radius 0.2 with centers at radius 0*5 and equally 

spaced around I he circle (circled in black in Figure 4.32). In these smaller regions, the inductance 

has the form of a 2D raised cosine distribution—I takes on a maximum value of 3 at the centers, and 

decreases to 1 at the edges. The initial voltage distribution is a raised 2D cosine of radius 0.15 and 

ampli tude 1. centered at radius 0.5, directly between two of the circular regions of higher inductance. 

T h e grid spacings are A,, = ^ and A« = fijjr, and we use a radial waveguide mesh of type II. 

The t ime evolution of the voltage distribution is shown in Figure 4.32, where light- and dark-

colored areas indicate regions of positive and negative voltage respectively. The plot is normalized to 

show voltages between —0.3 (black) and 0.3 (white). We remark that the voltage distribution on this 

pair of plates will behave identically to the transverse velocity distribution on a clamped membrane 

which has regions of increased density. Interpolation has been performed for be t te r plotting results. 

4.7 The (3+l )D Wave Equation and Waveguide Meshes 

In this brief section we summarize, for completeness sake. ( 3 + l ) D waveguide meshes, introduced in 

[200] and [156], We will return to these mesh formulations in !j4.9.5. where we will discuss interfaces 

between meshes of different grid densities. We will also analyze the spectral characteristics of these 

methods in some detail in Appendix A. 

The transmission line problem with spatially-varying material parameters does not generalize 

in a meaningful way to (3+1 )D: there is no commonly-known physical system that would behave 

according to such a set of equations (though linear acoustics in non-Cartesian coordinates might serve 

as one example). Physical systems of interest in (3+1 )D generally have a more complex form than 

would be implied by such a straightforward generalization. We will have occasion to examine two 

such systems in detail, namely the (3+1 )D equations describing the vibration of a linear, isotropic 

elastic solid, in i.o.O. and Maxwell's equations (see §4.10.6). 
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I = 0.1 / = 0.4 
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-1 

t = 1.4 

Figure 4.3*2: Simulation of a circular parallel-plate system using a radial waveguidi wish. 

T h e (3+1 )D wave equation, however, is of interest in linear acoustics (and it is arrived at by 

linearizing a system of conservation laws, namely Euler's equations [112]. to which we will return 

briefly in Appendix B). It is writ ten as 

1 a2;; _ cfp D'V 32p 
-)* Of2 ~ Sxa + On- + 0z- (4.95) 

where p(.r, u. z,t) is pressure deviation from ambient pressure, and •) = y/h'/p is the wave speed 

(K and /; are the bulk modulus and density of t h e medium [15, 06]). In order to enforce notations] 

consistency, we will assume that we can write 7* = l / / r , for some positive constants / and c 

Obviously, any such choices of/ and o will be appropriate , if we are only interested in solving for 

the pressure. (In particular, a reasonable choice would be / = p and c = l / /v .) 

Tlu'ee regular grids are shown in Figure 4.33. and we have indicated waveguide couplings between 
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- • - -

(a) (c) 

Figure 4.33: Regular grids in (S+1)D (a) rectilinear, (b) octahedral and (c) tetrahedral. 

neighboring points (where scat ter ing junctions will be placed) by double-headed arrows. Delays in 

these bidirectional delay lines a re assumed to be of length T, and are identical over the entire 

network, in all three cases. Junc t ions are separated by a distance -V The first, shown in (a), 

is the s tandard rectilinear mesh [15G, 198], and the second, shown in (b) is a mesh obtained by 

superimposing one rectilinear grid on top of a shifted copy of itself, then connecting each point to 

its eight nearest neighbors; an appropr ia te name for such a configuration might be an "octahedral 

mesh." A third s t ructure , the so-called tetrahedral mesh [200]. is shown in (c). Self-loops, necessary 

when we are operat ing away from the CFL bound, are not shown, and the innnit tances of the 

connecting waveguides are assumed to all be identical. Other structures are also conceivable. 

We remark here on a computa t ional aspect of these junctions as mentioned in [200]. if we are 

at CFL (and so do not need self-loops), it is useful to have the number of waveguides connected 

to a particular junction be a power of two: if this can be arranged, then all multiplies carried out 

during th'1 scattering step may be Implemented as simple bit-shifting operations in a fixed-point 

implementation. Because this is not true for the rectilinear mesh. (i.e.. there are six waveguides 

connected to each junction), t h e tetrahedral mesh was proposed as a more efficient s tructure. We 

note, however, that the octahedral mesh, with eight waveguides connected to each junction, also 

can be implemented efficiently in fixed-point. Furthermore, it may be easier to deal with from the 

programmer 's point of view, because unlike the te t rahedral mesh, it will not involve any special 

indexing strategy (for a te t rahedra l mesh, half of the junct ions will have an inverse orientation with 

respect to the other half). 



19G CHAPTER I. DIGITAL WAVEGUIDE NETWORKS 

If we are at the CFL bound that is if we have 

ue = V5l (4.96) 

where .A is the physical length of a waveguide in any of the three types of mesh, then we may choose 

any constant to he the admi t t ance of the connecting waveguide. In this case, all three types of mesh 

can be decomposed into two meshes, to he used at alternating t ime steps: as in (2+1 )D. this can be 

exploited to increase computat ional efficiency (see §4.4.3). If we are away from CFL (as we may be 

in a multi-grid setting see §4.9). then we must set, for the self-loop admittances, 

Ye = 2VQC Rectilinear mesh 

4 -"v/3 # w i. i i 
),. = —=t'o< Octahedral mesh 

v/3 <„/ 
4 4 

1,. = -( 'of Ii ' l iahedral mesh 
3 vol 

Where the connecting waveguide admit tance has been chosen as -jr. 

4.8 The Waveguide Mesh in General Curvilinear Coordi­

nates 

A generalization of the waveguide mesh to arbitrary curvilinear coordinates is useful in that it 

becomes possible to model boundary conditions which may not be simply aligned with a rectilinear 

grid. T h e resulting s t ructure is quite similar to the interleaved forms discussed earlier, and for this 

reason we will give only a brief description of the coordinate transformation p rocedu re Consider 

the following system: 

/ x ^ f + Vxii + r x i x + e x = 0 (4.97a) 
at 

On 
c J - ^ - - r V x i x + y x w + /ix = 0 (4.97b) 

at 

Here we may assume any number k of physical spatial coordinates x = [s\ , r< . ] ' , so that V x = 

^ = [ g j - a f - ] ' • 'x and e x are both assumed to be A-dimensional column vectors. / x , c x , r x 

and <yx are all positive functions of x (<x and rx are strictly positive), and e x and hx are the source 

terms. If A* is I or 2, then we have the transmission line or parallel-plate transmission line system 

respectively, and if A = 3, we have the system describing linear acoustic phenomena (assuming that 

the material parameters are cons tant ) . 
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Consider the mapping 

x = C(w) 

where w = [«•) wt] ;u-e the transformed coordinates. A rectilinear grid in the w coordinates 

can be mapped to a curvilinear grid in the physical x coordinates. We can then define the A- x A 

matrix of partial derivatives J by 

[J«,n] = IT-2' "- a~ 1 * 
du 

where C> 18 'he nth component of £. We assume J to be nonsingular everywhere in the problem 

domain (though this assumption may be relaxed as will mention later in this section) . Defining the 

differential operator Vw by Vw = ^ = [ ^ j ^ ] ' • it t"™ follows [69] that 

V w = J f V x V x . a = | J i V v v . . ( | J | J , a ) 

for any A- x 1 column vector a. Here. |J | is the so-called Jacobian determinant [172]. Using these 

relationships, the system (4.97) may be rewritten as 

' x J ' ^ f 4-Vw« + r x j ' i x + J T e x = 0 
at 

f x | J | ^ 4 - V w . ( | J | J - | i x ) - | - | J | / / x ( , + |J|/.x = 0 

c i 

where 

and 

Lw~ 4- Vwn 4- Rwiw 4- ew = 0 (4.98a) 
at 

rw~ + Vl\w.+!iwu + hvl = 0 (4.98b) 

iw = |J |J ' i . 

L 'x j / j | j ' x T / | -t'l 

w — TT[ w — TTT ^ w — ^ x 

<'w = |J | 'x </w - |J|flx ky, = | J | / l x 

System (4.98) is similar to (4.97), except that we now have "vector" inductance and resistance 



198 CHAPTER 4. DIGITAL WAVEGUIDE NETWORKS 

coefficients (note that both L w and R w arc positive definite matrices, if J is non-singular). In 

particular, it is still symmetric hyperbolic (see *j3.2). so we may expect that it is possible to derive 

a waveguide structure. 

Consider now the transformed system (4.98) in (2 - f l )D. If J ' .T is diagonal, then L w and R w 

will be as well: in this case, system (4.98) is in the same form* as the parallel-plate system in radial 

coordinates (4.82), so we need not discuss this case further here. Indeed, the radial system is a 

special case of (4.98) with w = [f>.0]1 and 

.1 
cos ft —psinB 

sin # pcosG 

On the other hand, if J ' J is not diagonal (so that we are working in non-orthogonal or oblique 

coordinates), then the situation is more complex. Due to t h e cross-coupling between the components 

of i w through the matrices L w and R w . it will no longer be possible to stagger all the components 

of the solution: in particular, it will be necessary to use vector scattering junctions. Let us look 

at the case A = 2. so that (4.98) are the equations of the parallel-plate system in the curvilinear 

coordinates w. Furthermore, we will set W\ = p and HJj = q. A centered difference approximation 

to (4.98). over grid points with coordinates p = iA and ij = j 'A , and at times / = nT for /'. j and n 

half-integer is 

t'oLw , + i j ( l I + i j f n + | ) - I.+ i . ^ n - ^ ) ) + 

«'0C, 

l',+ \,j{n)-I'ijin) 

L t ' I . J + , ( » ) - r i , M ( n ) J 

+ ^ R w , i + i , j ( l ; + i . J ( n + i ) - r I 1 + i J ( » - i ) ) 

+ f ( e w , I + i>+±) +ew . j + i j-(»-£))=0 (4.99a) 

rjj(Vij(n)-Vij{n - 1)) + /,,,I+i,J(n- i) - /„,,•_!,_,(" - |) 

+ W ^ ' ' - 7 ) - ' . , , / j - i ( » - i l > 

^ -9w, r j ( t r i , j ( " ) + Uij{n - l ) j 

y ("*. , .>(») + / iw. . - j{ i i - 1)) = » (4.99b) 

+ 

+ 

Here, we have the vector grid function I 1 + i -(»i + 5 ) . which is a two-vector with components 

/ n « ' + 4 , j ( n + 2 ' a l K ^ ^«.«'+iJ*n "*" 2^ as w e " a s " " ' S ( a l a r Kr '(l function Uij(n). L W , + J . J + I and 

f'w.ij are second-order approximations to L w and r w at t he indicated grid points. The scheme 

above has been written so that it is clear that it can opera te for n integer, and for 1 and j such that 

/ + j is integer: notice that V and I are calculated at a l te rna t ing t ime instants and grid locations. 

*ll is in tin- same form except for the scaling parameter A which was introduced so as to allow a different grid 
spacing in the two radial coordinate directions; such a scaling parameter may he used here to exactk the same effect. 
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Figure 4.34: (2+l)D DWN for the parallel-plate system (4.98) in general non-orthogonal curvilinear 
coordinaU s. 

but the components of I can not . in general, be calculated at separate locations. r0 . again, is equal 

to A / T . and (4.99) will be a second-order accurate approximation to (4.98). 

We will skip the tedious procedure of deriving a waveguide mesh, and simply present the resulting 

structure in Figure 4.34. Junct ion vector currents I,; are calculated at the series vector scattering 

junctions: the black bars surrounding this junct ion in the figure are the splitting elements that were 

discussed in |{4.2.6. Although we have not drawn them in the figure, there will be similar vector 

junctions at the four grid points neighboring any of the parallel junctions where the voltages l / j 

are calculated. This vector junction has four 2 x 2 matrix impedances associated with it: Z,.. the 

self-loop impedance. Zw, the loss/source impedance, and Zi and Z2, which are constrained (see 
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§4.2.6) to be 

' i , i + i . j 

!_ 
*£ . 

0 
Z - i+Aj ~ r -

T J 1 . 

I) 
(4.100) 

The junction impedance Z./ is defined to be the sum of these four mat rices. The admittances at the 

parallel junct ions are defined in a manner similar to those of the DWN in rectilinear coordinates. 

Also, we have the source voltage waves (~^y at the parallel junct ions and vector source current 

waves I"t ., , . a t the series junctions. 

This D W N can be identified with the difference system (4.99) if we set 

Z./ = 2 r 0 L „ + ARW 

Yj = 2n„cw + _yvw 

Z,t = AR W 

1 11 = -\</w 

I+ = - A R w ' e w / 2 

U+ = - A f l w / * w / 2 

at the grid points for which such quanti t ies are defined. 

There a re . of course, various realizations, depending on how the self-loop and connecting inmiit-

tances are chosen. First, note that because Z,/ is not diagonal, it will not be possible to dis t r ibute 

it equally among the two connecting impedances Z\ and Z-j. which are constrained to be diagonal 

from (4.100). Thus a type II (current-centered) realization analogous to that which was discussed 

in the case of the rectilinear mesh will not lie possible, even in the absence of losses and sources. 

A type I realization is certainly possible, but for brevity sake, we will only provide the sett ings for 

the type III DWN. Here all the connecting impedances are all set to be some constant value Zconat-

This then implies that 

Z,- — 2/'nLw — 1Zcons<\l Yc = 2 r 0 c w - \/Zconst 

where l> is the 2 x 2 identity matrix. Requiring the positivity of Yr and the positive definiteness of 

Z r gives the constraint 

t'o > 
Jw,min* w.rmn 

for Cff.min ' h e minimum of c w over parallel junction locations and L w ,„,-„ the minimum of the 

eigenvalues of L w over series junction locations, and where we have made the choice 

^coiiat — 
2L, 

In general, this bound will depend on the choice of coordinates. 
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F D T D in general curvilinear coordinates has developed in a similar way: most formulations 

are slightly different in that they are based on a tensor density formulation [91. 209] and employ a 

double set of variables (covariant and contravariant) in the non-orthogonal case: differencing involves 

interleaving these two sets of components at alternating t ime steps. They have also been used as 

a start ing point for developing F D T D methods in "local" coordinates defined with respect to an 

automatically generated grid [72. 73]. Curvilinear coordinate systems have been touched upon in 

the MDWD framework as well; An approach similar to the above is discussed in [69]. and a tensor 

density formulation is given in [131]. 

4.9 Interfaces Between Grids 

In (2+1 )D. we have looked so far at numerically solving the parallel-plate transmission line system 

over regular grids tha t is to say. grids whose points can be indexed with respect to some regular 

coordinate system. We now examine ways of connecting grids of different types, and in particular 

grids of differing densities of points. The ability to decompose a domain into regions of different grid 

point densities is especially useful when dealing with boundaries a n d irregular features (i.e.. variations 

in material parameters) throughout the problem domain: we may use a fine grid to calculate the 

solution to a problem in such regions, and then a coarse grid everywhere else. The problem, then, 

is in connecting the various subgrids so that consistency of a numerical method with the original 

set of equations to be solved can be maintained at the boundaries between the regions. The use of 

multi-grid techniques in numerical integration had developed into a very large field recently, and we 

can not hope to summarize the many developments that have taken place, nor even the basic theory. 

Unfortunately, there is not as yet a single good basic reference: we refer the reader to [140] for an 

general introduction. Multi-grid methods have been used in the TLM framework, but the structures 

there employed are somewhat different. In particular, the methods proposed in [88] and [87] (and 

reviewed in [29]) do not . in general, enforce passivity at an interface between a coarse and fine grid, 

though they are capable of operat ing using different time steps in the coarse and fine meshes. The 

method of [207] is perhaps closer in spirit to that presented here, in that the time step is everywhere 

the same, but in that case, certain n priori assumptions are made about the fields at the interface. 

We will show that it is in fact possible to devise passive connections between waveguide networks 

(themselves generally passive, unless sources are present) which operate on different types of grids, 

so that passivity can b e maintained in a global sense—there is. as before, an energy measure for 

the network which can be expressed as a weighted sum of the squares of the wave variables in the 

network. In this section, we will look in particular at the lossless, source-free parallel-plate equations 

in (2+1 )D (system (4.58) with r = g = e = / = hI = 0 everywhere). Furthermore, for simplicity, we 

will confine our at tent ion to waveguide networks of type II as described in §4.4: it will be recalled 

that for type II networks, when r = e = f = 0. there is no scattering at the series junctions, and 
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We need only calculate voltages at the parallel junctions. / and C will still he allowed to vary over 

the problem domain. (It may be possible to extend the multi-grid methods to be described here t " 

the full lossy system including sources, but we will not pursue this direction here.) 

4.9.1 Doubled Grid Density Across an Interface 

/ / 

(a) (b) 

Figure 4.35: Interface between mesh and mesh with doubled grid density— (a) grid arrangement, 
where boundary junctions are labelled D. and (b) scattering junction at such a boundary junction. 

In Figure 4.35(a) is shown an interface between a regular rectilinear grid with spacing .A (region 

/ ) and a grid with spacing A / \ / 2 (region / / ) whose orientation is rota ted by 45 degrees with respect 

to that of region / . Clearly then, the density of grid points in region / / is double that of region 

/ . At any point in the interior of either regions / or / / . if we are interested in solving the parallel-

p la te transmission line equations, we can use the rectilinear mesh described in ?)4.4. We indicate 

Waveguide connections between junctions located at the gridpoints by black lines. At points lying 

on the interface between the two regions (labelled D) however, we need to develop special scat ter ing 

junctions. The most straightforward arrangement requires a six-port junction at a boundary point 

(waves enter the junction from five irregularly Spaced directions, as well as through a self-loop). 

Such a junction is shown in Figure 4.35(b). The problem, then, is in finding the correct admi t t ance 

sett ings for the Waveguides connected to such boundary points. If these admit tances can be chosen 

positive and in such a way that the resulting scheme is consistent with the parallel-plate system, 

then we are assured convergence over the entire problem domain. We note that such interfaces bear 

a resemblance to the very early work of MacNeal [123], who developed asymmetric resistive networks 

as a means of solving elliptic problems via relaxation. 

We assume that the boundary is aligned with the (/-axis, so that the boundary junct ions are 
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located at coordinates (O.jA). for j integer. We also assume, for the moment, that all delays in the 

network will be unit sample delays (we will return to interfaces between grids with differing delay 

lengths in the next section). As before, we will set i>8 = A / 7 \ At a boundary junction at coordinates 

(l).y'A), we will have six port admit tances: l x - , 0 j i ^ir.OJ a l , d ^y+.OJ corresponding to waveguide 

connections with junctions to tin- west, south and north respectively. Jx+y+.oj a l , d ^*+y-,0J f ° r 

connections to junctions to the northeast and southeast, respectively in region II and a self-loop 

admit tance l ^ ( o j . The junction admi t tance at a boundary point D is then 

1 .1.0 J — **- .O.j + Vv.O.j + Vv+.0,j + ^r+i/+ .O.j + ^ *+y~ .o.j + ^ c,9,j 

Because this waveguide mesh is an extension of the type II mesh described in §4.4.2, we might expect 

that the waveguide admittances will be related to values of the material parameters / and C at the 

midpoints of the waveguides. This is. in fact. true, even at the boundary junct ions, though because 

of the asymmetr ic na ture of these junctions with respect to the coordinate axes, we must perform 

a judicious scaling of some of these admittances. In fact, we must only scale the admit tances of 

the waveguides which lie along the boundary itself, and that of the self-loop. The admi t tances of 

waveguides connected to interior points in region / or / / should be t rea ted as "interior," so tha t the 

scattering will be correct at junctions neighboring the boundary) . 

The difference scheme operating at a junction on the boundary will be 

-^L(Ujfij[n + l) + UjAJ(n-l)) = l ^ s + , „ J r , . i . J + i ( » ) + l ^ r i » J ( :
J , i j - i ( » ) 

+ Ym-fljUj.-ijin) + Ys+ .o.jL'j.oj+] (") 

+ i 'w-.ojt j . o , j - i (» ) + Yr.ojf-'j.o.ji") 

If we now treat the junction voltages as samples of a continuous function </. then the difference 

scheme above can be expanded in a Taylor series about ( H . j A . n T ) to give 

/ 1 \ 1 
+ 2A N'v+.OJ -Yy-,0,j + ^O.i-+y+,0,j *" Yr+y-fl,j) J Q-

+ ^ hx-,(),J + ]j0x+V-,0,j + Yf+D+flj)} -rjyj 

+ A* ( i w-.oj + Vv+.o,j + 7 ( b * r , o . i + Y**t+,0j) J *~J 

A 2 D'u 

2 i*"'"'» —» '"••" OxOy 

+ ()(A\T4) (4,101) 
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In order to associate this expansion with the reduced form of the parallel-plate equations of (-1.77). 

we may wei 

Y _ _ L _ y _ 1 y _ ! 

v _ _J , 

and for the self-loop admittance, we set 

1'r.oj = JgVO ( 2 f _ l j . + 2 r i j - + i + 2 r i Y i _ l + r U j - + 4 + c 0 J _ i ) 

— 1 j - ,(ij — Vv~ .o.j — Vv+.u,j — ^ J-+.V+ ,o,j — 1 j-+j/-,o,j (1.102) 

These settings yield a difference scheme which is consistent with the transmission line equations, 

and which is lirst-order accurate in the grid spacing A. It is important to note that the admi t tances 

of the waveguides connecting two junctions on the boundary itself are set to be half what they would 

be in the interior of region / . Also note that the mixed derivative term in (4.101) becomes 0 ( A 3 ) 

(because Yg+u+flj and Ym+y-fi.j a r e ttw same to zeroth-order. and hence their difference, which is 

the coefficient of the mixed-derivative term, will be O(A) ) . 

The additional stability requirement, from (4.102) is 

to > max 
hounHsry wavegnnif 

midpoint! 

which is marginally more restrictive than the requirement on the interior of region / (by a factor of 

t / | ) . This deterioration in the stability bound is offset, however, by the fact in region / / . t h e grid 

spacing is A / \ / 2 we must have 

-̂  fit „ /T" 
r r > max w— =*• i'o > max -~\/7~ 

i / ^ J wavegtitd* midpoints in y tC waveguide midpoint' in y / ( ' 
region II region II 

because we are by necessity operat ing away from the CFL bound in this particular multi-grid sett ing, 

which incorporates different grid spaciugs and yet maintains the same time step throughout the mesh, 

The choice of Yx- 0,j = ^rj^ means that all other admi t tances in region / may be set as 

previously discussed in §4.4.2 for a type II mesh. 

C o r n e r s 

If we are interested in using a grid of doubled density over a par t icular region of the problem domain 

(in order to surround a particular feature or an irregular part of the boundary), then we are faced 
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with corners. ;ui<l must develop special scat ter ing junctions for them. An example of an irregular 

partitioning of the problem domain into two regions. / and / / . is shown in Figure 4.30(a). Boundary 

< 

' ./ 

' *+v: 

(b) 

(a) (C) 

Figure 4.30: (a) A particular grid anangement between a rectilinear me.sh I and one of doubled grid 
density II. (b) a scattering junction at a corner point (labelled C). and (c) a scattering junction at 
another type of corner point (labelled C). 

points (labelled B) were t rea ted previously, arid it was found that waveguides connected to points B 

which lie along the boundary must have their admit tances set to one-half what they would be hi the 

interior of region / (i.e., to gj'-j, where / is the inductance at the center of the particular boundary 

waveguide). 

There are two types of corners which can arise in an irregular domain decomposition of this 

kind: those which are concave with respect to region / (the grid point at such a corner is labelled C 

in Figure 4.30(a)). and those which are concave with respect to region / / (labelled C). There are 

obviously four possible orientations for each type of corner, though, by symmetry, we need only t reat 

the type shown. Because the admi t tances of the boundary waveguides (represented by thick lines 

connecting boundary points) are now prescribed, then for a corner junct ion the linking admit tances 

are fixed: only the self-loop admi t tance may be varied. Scattering junctions corresponding to corners 

of type C and C are shown in Figure 4.30(b) and (c). 

Suppose we have a corner point of type C located at coordinates (0 .0) . Then, from the results 

previously given in this section, the admi t tances of the five waveguides connecting this coiner to its 
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neighbors will be 

V - * Y - 1 V 
J . V + , U , 0 — i J j - - , 0 , 0 — , * r + ! ''It'll.i ' 'u'- i .o °0'1,-1 

ij-+,U,0 — n_. , J y - , 0 . 0 

and the difference equation relating the corner junction voltage t.;,o,o to those of its neighbors is 

^ 7 £ ( r J . o , u ( » + l) + t : . / . o , « ( N - l ) ) = -^— l'j.- i.n + - / — t'.,.„., 
2 WB*_|,0 ' ' 0 ' U , I 

* J r • * " 
+ o—;—L./.i,o + 7,—; L M I , - i 

2t '0 / i ,0 2 r 0 ' o , - i 
H ; U i i _ i + le,o,8W,D,0 

I'U' i _ i * 

where we have yet not specified 5 .̂,o,o or 10,0,0- A Taylor expansion about (().()) gives, in te rms of 

the continuous variable u and neglecting higher-order terms, 

7v0 dt2 \ 0 x \ l ) ldy\l))dx \ 0 y \ l ) 7 dx \ I )) dy 

+ 7 \dx? + dy~2~) + TldxOy 

We can thus conclude that the differencing occurring at the corner junction is not consistent with the 

lossless source-free parallel-plate system, regardless of our choice of the self-loo]) admit tance. Tin* 

coefficients of the spatial first derivative t e rms are incorrect, and there is an extra mixed-derivative 

te rm: neither vanishes in the limit as A —> 0 (although if/ is constant in a neighborhood surrounding 

the corner, then the first derivative te rms vanish). 

T h e corner junction is. however, still lossless, as are all junct ions in this waveguide network, 

and hence a simulation of the parallel-plate system using such a mesh will be stable, regardless 

of inconsistencies at the corners. It is possible to argue, loosely speaking, that if the number of 

corners in t h e interface does not grow as the grid spacing is decreased (an example of this would 

be an enclosed rectangular doubled density grid, for which the number of corners will be four, 

independent ly of the grid spacing), then the error at the corners will become negligible. Although 

we will make no at tempt to prove this, t he simulation which we will present later in this section 

concurs readily with this assertion: indeed, in all tests we have run. any anomalous scattering at the 

corners is certainly far less important than the first-order scattering error (i.e.. numerical reflection) 

along the interface itself. In the interest , however, of making any scattering error at the corner 

junctions as small as possible, we should set. a t a corner with coordinates C (in order that the wave 

file:///0x/l
file:///0y/l
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speed at the corner is correct, in a gross SCUM) 

v -
Ye,c = ~, ' V r -4 c„/, 

where /(- and c< • are the inductance and capacitance at a corner point C. T h e stability requirement 

at such a corner is then 

**lR Corner C 
'•<• 

which is. like the stability condition at boundary points D. only marginally worse than the CFL 

bound, and mitigated by the somewhat worse bound to be found in region / / (due to the decreased 

inter-junction spacing). See the discussion earlier in this section. 

A similar argument follows for points C". and we also ideally have / constant in the neighborhood 

of such points. The sett ing of the self-loop admit tance Yetc' should be 

4 vole1 

T h e resulting stability bound is 

ro * V ^ Corner C" 

S i m u l a t i o n 

To demonstrate the behavior of the interface discussed above, we will s imulate the parallel-plate 

system (4.58), assuming no losses or sources, over a square region with side-length 1. with short-

circuited boundary conditions (i.e.. u — 0). Over a central square region with side lengths of )-, 

(bounded by the white square in Figure 4.37). we use a mesh of doubled density with respect to 

the outer region, where a simple rectilinear mesh is in place. The grid spacing in the outer region 

is A = 0.01. We set the capacitance per unit length c = 1 everywhere, and the inductance per unit 

length / is equal to 1 in the outer region. In the inner region, it also takes the value 1, except in the 

interior of the black circle in Figure 4.37(radius 0.1. center at ,r = 0.6. y = 0.5), where it rises, in a 

2D raised cosine distribution, to a maximal value of / = 11. 

The initial voltage distr ibution takes the form of a 2D raised cosine over a circular region of 

radius 0.07. centered at coordinates jr = 0.4 and y — 0.5. The initial voltage takes a maximum of 1. 

and is zero everywhere outside this circle. 

The voltage distribution is shown at three successive time instants, with light and dark coloring 

indicating areas of positive anil negative plate voltage, respectively: the plots have been normalized 

and interpolated for bet ter plott ing results. At time t = 0.15. the voltage distribution has spread 

and begun to scatter from the inductive region inside the black circle. Note that the local wave 
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Figure 4.37: Simulation of a parallel-plate system, with an inductive feature surrounded by a region 
of doubled grid density. 

speed decreases in the interior of the circle. By / = 0.3, it has progressed through the interface, 

with little visible numerical reflection, and by / = 0.45, the outward moving voltage distribution has 

reflected with inversion from the boundary at x = 0. 

4.9.2 Progressive Grid Density Doubling 

The delays in the bidirectional delay lines of the combined coarse/ l ine grid of the previous section 

were everywhere identical. In this section, we will look at networks for which this is not true—all 

delay line lengths, though, will be multiples of a common smallest unit delay, in order that t h e 

network remain synchronous [46]. It should be said, though, that even in a portion of the network 

where the delay line lengths are longer than a single sample delay, we will still be scattering at the 

rate of the smallest delay line length in the system as a whole. We will, however, be performing 
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scattering operations at fewer points in the coarse regions. We will call such s t ructures (for lack of 

a bet ter word) multi-rate, though it should be unders tood that such networks are not multi-rate hi 

the sense of [193] (see above comment) . Specifically, we will focus on the use of such structures in 

order to extend the grid refinement technique introduced in the previous section. 

it 
/ 

1 1 > _ 

/ / 

i / 2 

(a) (b) 

Figure 4.38: (a) Mesh I. with grid spat tin/ A. is adjoined to a doubled density mesh II. which is in 
turn adjoined to a quadrupled density mesh III. with grid spacing — and a halved waveguide delay. 
(b) A scattering junction at a point D on the boundary between layers II and III. 

Consider the grid arrangement of Figure 4.38(a). T h e interface between region / and region / / 

was discussed in the previous section; in that case, we assumed the waveguide delays to be identical 

everywhere in regions / and / / . including the boundary. We can. of course, apply the same idea 

again in order to introduce a grid of quadrupled point density, by adjoining it to region / / . In this 

case, however, we would like to take advantage of the fact that waveguide lengths in region 111 are 

half those of legion / : it is more natural , then, to use a delay of half that of region / throughout 

the interior of region / / / . Waveguides which run along the boundary will still opera te at the rate 

of regions / and / / . as will t he self-loop (of admi t t ance \,.. not shown). A scattering junction at 

a typical point D on the boundary between regions / / and / / / is shown in Figure 4.38(b). Here, 

we have abbreviated the depiction of a bidirectional delay line to a single double-headed arrow, and 

have omit ted the self-loop (which contains a full unit delay). Note in particular that for such a 

boundary junction, the delays of the connecting waveguides are now not all identic.il. As might be 

expected, the difference scheme relating the junction voltage at such a point to those of it s neighbors 

is no longer a simple two-step difference method, but a four-step scheme, where each time step is 

now t j a full derivation of this difference scheme is very lengthy but rewarding, in the sense that 

it becomes clear why it takes four steps for the wave variables to fully "recombine" into junction 

voltages. We will, however, only present the resulting difference equation for a boundary junction 

http://identic.il
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at location D as in Figure 4.38(b). Here the junct ion voltage will be £'./,/<, and the junction voltages 

at the neighboring points are. referring to Figure 4.38(b). I . ; ; • . . . . , Ujy- The admittances of the 

connecting waveguides will be called Yps ) i B- the self-loop admit tance YC,B and the junction 

admi t tance at point D is defined as 

} .1,11 = 1 ni + YQB + 1 nn + YSB + 1 VB + 5'r,H 

We have 

^-V.,.ii(n + 1) = 1\-nl J.» (n + £) + Vs/fr./,.s(n + £) 

+ YQBVj,Q(n) + Yri<l.i.r(>i) + Yi<„U.Ui{i>) 

+ 0 ; , „ - i s B -v w , ) r . , . , ( ( " ) 

+ YvBUJy(n-$) + YsBVjMn~$) 

2 - t r , / i B ( n - 1) 

A Taylor series expansion allows us to set the admi t tances of the waveguides to be 

YPB ——j ^QH = ~—j }RB = 
t \)l I'II 2V0IQH ~I»IRH 

Ysn = T,—;— YVB 
2VOISB 2 i ' 0 / \ « 

where / \ v is the mater ia l inductance at the point midway between points X and Y. Note in 

part icular that t he se t t ing of 1V« coincides with an interior point setting of a connecting waveguide 

admi t tance in the interior of region / / . from (4.64) and (4.Co). These relative strengths of the 

connecting waveguide admit tances are indicated by adjacent small numbers in Figure 4.38(b). 

Because We now have a four-step scheme, the determination of YC,B ls "<> longer as simple as in 

the two-step case, but it can be found, nevertheless, to be 

YClB = -^ (2cpB + <QH + Cffft + CSB + <v«) 
o 

5 / 2 _ 1 _ J _ J _ 1 \ 

12ru V ' P B IQB hin Isn l\ II J 

where c\\ signifies a waveguide midpoint evaluation of c between any points X and V 

T h e positivity requirement yields the bound 

rw 
VQ > max W — 

l l / l l l boundary ]/ O f f 
w»vc(iuide midpotnti 

Corners present essentially the same problems as before, and we will not discuss them further, 
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other than to repeat that , given the settings derived above for the waveguide admit tances at the 

III III boundary, which determine completely the scattering behavior at the corners (an example of 

which is point D in Figure 4.38(a)). the mesh will not be consistent with the parallel-plate system 

at these points. 

4.9.3 Grid Density Quadrupling 

\V^\ 

J IV /?\ 

(a) (b) 

Figure 4.39: (a) Grid I. with grid spacing A. u adjoined to a quadrupled density region II with grid 
spilling y . (b) Detail of tin interface. 

Instead of progressing, in two steps, from a grid to one of quadrupled point density, as we did in 

the last section, we might ask whether it is possible to design a direct passive interface in order to 

quadruple grid density in one step. Such an arrangement is shown in Figure 1.39(a): a quadrupled 

density region ( / / ) , for which the delay in all waveguides is one-half time step, or y is adjoined to 

a rectilinear mesh (/) via a matching layer composed of various waveguides connecting each point 

on the boundary of region / with five neighboring points in region II. The admit tances and delays 

of the waveguides in the matching layer must be set to particular values relative to the values in 

the interiors of regions / and II so as to satisfy the transmission line equations at all grid points 

(junctions). These delays and admi t tance settings are shown in Figure 4.39(b). where we have used 

the following notation for the admi t t ance settings: hist suppose that admittances in the interior of 

region / are set to the normal values for a type II mesh namely, the admit tance of a particular 

connecting waveguide is equal to -£j , where / is evaluated at the midpoint of the waveguide. All 

other connecting admittances in the network, including those in region II and in the matching later. 
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will also be set to -^r, where / is evaluated at the center of the particular waveguide, and multiplied 

by a scaling coefficient. In Figure 4.39(b). this scaling coefficient is shown next to the Waveguide. 

For example, for the waveguide connecting point P to point .S'. the admittance should be Bel to 

' ps — ~' 
8 vol ps 

where lps is the inductance evaluated midway between points P and S. Note in particular that 

even though the space step/time step ratio is the same in region / / (both quantities are halved), 

the admittances of the interior Waveguides should be scaled by a factor of 5. This, however, has no 

bearing on stability, since scaling all connecting waveguide admittances in a network by the same 

factor does not affect the 11 flection coefficients (though we must change the self-loop admittance 

settings in region IT. we provide this setting shortly). 

It i-- simple (after some tedious algebra) to set the self-loop admittances at the junctions in the 

matching layer such that the transmission line equations are approximated at these points. We first 

define average capacitances and inverse inductances at a junction at point A' by: 

(Ox'cfe^t? ~cx'%m^PxiC 
Xj 

where the index j runs over all the junctions to which the junction at point A is connected and 

where fixj >s the scaling factor of the waveguide connecting point A to point j . Ixj and cxj are the 

inductance and capacitance at the midpoint of the same waveguide. Obviously, we have (j) = j -

and <~.\ = c'.\ r o first order in A. For example, we would have, from Figure 4.39. 

/ I 1 1 1 t \ ~ ' (\ 1 1 1 1 \ 

'V = U + 4 + 4 + 4 + 4j U''1 * + 4 * Q + 4 ^ * + I''"' + V T " J 
Referring to Figure 4.39(a), it is easy to see that we need only examine self-loop admittances Yr r-

Ycy and YCJQ at points P. V and Q: all other junctions in the matching layer will behave similarly 

(because they map to these three points under translation in the vertical direction). We eel 

and, at an interior point in region / / (such as point IF). 

It is interesting that, in contrast to situation at the grid-doubling interface presented in the last 
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section, the positivity conditions that arise from these self-loop admit tances do not degrade the 

stability bound which arises from self-loop admit tances in the interior of cither region / or 11. We 

note that it would appear (through trial and error) that this is the simplest density-quadrupling 

layer possible. 

10"2 

I r••• ! I 

10"6 

10"8 

101 102 

A 
A 

Figure 4.40: Lay plat af the ratio of reflected energy to incident energy versus number of yrtd points 
per wavelength, far a wave normally incident from a region containing a standard rectilinear mesh 
an two types of interface density-doubling (solid line) and density quadrupling (dashed line). 

We also show some numerical results, Comparing the numerical reflection error of the density 

doubling and quadrupling layers for normally incident waves. Waves (one period of a raised cosine) 

impinge on the layer from the side of smaller grid density (region / ) in both cases. In Figure 4.40. 

we have plotted the log of the ratio of the reflected energy to the incident energy ( / ,
r , / l ) versus the 

log of the number of grid spacings A per wavelength A. Erefi and £,„,• Were Computed by taking 

the sum of the squares of the junction quantit ies Uj over region / . before and after the passage of 

the wave through the interface. 

The density doubling layer (solid line in Figure 4.40) leads to a smaller reflected energy than the 

quadrupling layer (dashed line). This is to be expected—in general, the more abrupt a change in 

grid density, the more numerical reflection will result. As exemplified by Figure 4.40. however, the 

reflected energy will always tend to zero as grid density is increased on both sides of the interface. 

The case of oblique incidence has not been examined: it would appear , also, to be possible to derive 

an analytic expression for the numerical reflectance, though we have not done so here. 

It would be very interesting to know whether the coarse/fine mesh arrangements discussed in this 

section and the last could be made truly multi-rate that is. could we have scattering operations 

~-x 

. -. ^ . - • • 
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which recur with period 7" in the coarse mesli. and period ^ in t h e fine mesh? As mentioned earlier, 

there arc TLM structures which are capable of this, but they in general perforin time-averaging of 

wave quantit ies which may render the interface non-passive [87, 88). 

We also note that because interfaces between grids operat ing at different rates by necessity cor­

respond to multi-step methods , we may also see parasitic modes [17G] appearing along the interface 

( though we are assured convergence in the limit as the grid spacing becomes small). A discussion 

of parasitic modes in M D W D F s appears in §3.9.2. 

4.9.4 Connecting Rectilinear and Radial Grids 

As another example of a passive interface between different types of waveguide meshes, we examine 

the means by which grids defined in different coordinate systems may be connected, for the special 

(but quite practically impor tan t ) case of the connection between a rectilinear and radial grid. Such 

a grid would be useful in cases where it is desired to solve the parallel-plate system or wave equation 

over some region which has boundar ies which are are straight in some places, but circularly curved in 

others. One could in general proceed by at tempting to find a global coordinate transformation which 

maps an irregular region to a regular one (like a rectangle), and then developing a waveguide mesh 

in the new coordinates, as per the methods discussed in §4.8. It is perhaps simpler, however, to use 

rectilinear find radial meshes at appropr ia te places in the domain, and then define a matching layer 

at the boundary between the regions, which should also be locally consistent with the equations to 

be solved. Consider the grid arrangement of Figure 4.41. We have a type II radial waveguide mesh in 

Figure 1.41: Interface between radial and rectilinear meshes. 
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j- > 0 and a type II rectilinear mesh in x < 0; parallel junctions are to be placed at all the grid points, 

and waveguide connections (bidirectional delay lines of delay T) are indicated by connecting lines. 

Special boundary waveguides, which lie along the </ axis, are drawn in bold. All interior waveguide 

admit tances in either region (i.e.. all admi t tances except for those of the boundary waveguides) arc 

assumed to be set to the values that they must take in the interior in order to solve the lossless 

source-free transmission line equations, as given in (4.64) (4.GG) and (4.89)—(4.92). Self-loops are 

of course required in general at all junct ions, though for simplicity, they are not represented in 

Figure 4.41. T h e spacing A between junctions in the rectilinear mesh is assumed to be equal to 

the radial grid spacing in the radial mesh. The angular spacing in this same grid. A»j. may be sei 

independently. We will use r„ = A / T here. 

In order to derive the admit tance and self-loop settings at the boundary, we may examine a 

junction at coordinates (0. j A ) . j integer (one such point is labelled D in Figure 4.41). In keeping 

with the notat ion for a rectilinear mesh (used in J- < 0). we call the admit tances of the four connecting 

waveguides at such a point Yg-jgj, Yg+^j, Y«-,oj a l , ( l V'/+.o,j- mn^ ' ' " ' self-loop admittance Y,-,u,j-

The junction admi t tance Yjfij is then the sum of these five admit tances. The junction voltage at 

point D will be called Ujfij, and we will call the junction voltage at point Q directly to the right 

Uj%Q, The difference scheme in the junction voltages resulting from such a mesh is then 

-^LL(r.,.„.;(/< + i) + r. , .0 j(H- 1)) = YM-,ojVj-ij(n) + Ym*,0jUj,q{n) 

+ ^ y- ,0jt ./.i),j-i(») + Yu+fijU.ifl,j+\(«) 

+ Yc,ojUjfij(n) 

Expansion in te rms of a Taylor series about (0. j A . nT) gives, in terms of the continuous function 

u ( x , y , t ) , 

A 2 . 0-u 

+ y ( n - . 0 j +P J
2 A 2 r r + , „ , J ) ^ (4.103) 

where we have discarded higher-order terms in A. and used A = A # / A and /JJ as in §4.6.2. 

First examine, in (4.103), the coefficient of | j on the right-hand side. Notice that in order for 

this term to behave as 0(A'-'). we must have 1*-%OJ = /'j-^.r+,0,; + <^(A). Since 1',+ -0j- is assumed 

x t a- an interior admit tance in the type II radial waveguide mesh, namely, from (4.90) as 
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where InQ is the value of the inductance at the midpoint of the waveguide connecting points B and 

(). we may choose 

y 1 
' " • , , J ~ A r „ / _ l i 

Because Vg-flj is to be interpreted as an interior admittance in the rectilinear mesh, it is clear that 

all connecting admit tances in this mesh should incorporate this same scaling factor of A. 

Since a boundary waveguide can be interpreted as lying in both waveguide meshes, a good initial 

•j,inss as to its admi t tance might be a simple linear average of the admi t tances of interior radial and 

rectilinear waveguides located at the same position. This would give: 

n+.oj - n-.o,/+i - §^Wj y1 + JJ^J) 

It is straightforward (but tedious) to show that these admit tances do indeed yield a difference scheme 

which is consistent with the lossless source-free parallel-plate system, provided that we set 

~^ r~ ,U,j — 1 T* ,0 J — 1 I/" ,U,j — 1 y+ ,0,j 

where CBQ is the capacitance at the midpoint of the waveguide joining points 13 and Q. for any j . 

The stability bound is identical to tha t obtained in the interior of the radial mesh, and this type of 

matching layer requires very little extra programming effort in an implementation . 

Simulat ion: S o l v i n g the Acoust i c W a v e Equat ion in a U - S h a p e d T u b e 

As a simple application of an interface between radial and rectilinear meshes, we solve the (2+1 )D 

acoustic wave equation (1.18) in a U-shaped tube—that is. a t u b e consisting of two straight segments 

connected by a semicircular radial tube: we note that the (3+1 )D version of this problem was first 

solved using a waveguide mesh by Tim Stilson at CCRMA, in t h e context of physical modeling of 

brass instruments [200]. In that case, a rectilinear mesh was used over the entire domain, which forces 

a staircase-type approximation to the radial boundary. Here, however, because we are modeling 

the semicircular t ube in radial coordinates, boundary conditions can be implemented in a well-

defined manner ; the trade-off will be in the added numerical reflection at the radial /recti l inear mesh 

interface. 

We assume a wave speed of 1 throughout the interior, and an open-circuited boundary condition 

( i n , the normal current density component is zero everywhere on the boundary) . The thickness of 

the tube is 0.2, the inner radius of the circular portion is 0.1, and the lengths of the two straight 

tube segments a re each 0.3. The grid spacing is set to A = 0.005, and white lines indicate the 
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Figure 4.42: Simulation of wave propagation in a U-shaped tube. 

interfaces between the radial mesh and the adjacent rectilinear meshes. The input signal is a raised 

Cosine voltage of period 0.2 at the upper left-hand entrance to the tube. The evolution of the voltage 

in the t ube is shown in Figure 4.42. Here, u can be interpreted as a pressure in a tube with ha rd 

boundaries: this situation comes up in the modelling of brass instruments, in part icular in curved 

sections of tubes, such as t rombone slides or crooks (though we have used, for illustrative purposes, 

an unnatural ly short wavelength: longer wavelengths in the musical range can be modeled more 

cheaply using a coarse grid, and numerical reflections will be even smaller as the number of grid 

points per wavelength increases). 

4.9.5 Grid Density Doubling in (3+l)D 

It is straightforward to extend the grid density doubling technique presented in !jl.9.1 to ( 3 + l ) D . 

As in 5)4.7. we will assume that our mesh is to simulate the (3+1 )D wave equation (4.95). If we have 

a rectilinear mesh (region / in Figure 4.43(a)) with inter-junction spacing A to which we would like 
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Figure 4.43: (a) Gnci / . with qiid spacing A . is adjoined to a doubled density region II with i/"i/ 

I* 
•J 

spacing ^-^-. (b) a junction at the interface. 

to adjoin a mesh of doubled grid density, we may introduce an octahedral mesh (region / / ) with a 

grid spacing of v/:}-X to be connected to region / across an interface: special matching waveguide 

connect ions at this interface are shown in bold in Figure 4.43(a). The spacing of v / f A in region / / 

is chosen so that the octahedral grid may be decomposed into two offset rectilinear grids of spacing 

A. and may hence be aligned with region / at the interface. 

T h e relative admittances at the special boundary 10-ports (nine connecting waveguides and a 

self-loop) are shown in Figure 4.43(b): only the waveguides in bold in (a) take on special values: all 

o thers may be set as interior admittances. For consistency with the wave equation, we must choose 

the admi t tances in region / to be double those in region / / . In addition, the self-loop admittance 

at a boundary junction (labelled D in Figure 4.43) must be chosen to be 

v 3 5 
ic.B = r«'0c 

2 r„l 

Boundary junction 

where we have chosen the connecting admit tance in region / to be - S , and where we must have 

-) = »/ 4- as discussed in §4.7. The stability requirement at such a boundary junct ion B is then 

''" ̂  v?-1 Boundary junction 

which is worse than the bound over the Interior of region / , as given in (4.90). On the other hand. 

because the grid spacing is 1/7A in region / / , we must set. at an interior point in region / / , 

Ye = ''''II 7 
«'o' 

«'o > 27 in region II 
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Tins bound is. as expected, worse still than the boundary requirement, and hence boundary Bcat-

tering, as in the ( 2 + l ) D case, does not compromise the overall requirement on space s t ep / t ime s tep 

ratio which is forced by the settings in region / / . 

We briefly mention that at edges and corners of a doubled density region, the waveguide mesh 

cannot be made consistent with the wave equation. We may invoke the same argument that was 

ventured in the (2+1 )D case, namely that numerical reflection should be minimal, and should 

vanish in the limit as the grid spacing becomes small. Special admi t t ance values for the connecting 

waveguides along such edges, and for the self-loops at bo th edges and corners may be chosen such 

that numerical reflection is made as small as possible, though we do not provide here those values, 

due to the ease with which they can be calculated, and relatively large number of cases that must 

be considered (two edge types and four corner types) . 

We have not investigated ways of redoubling (quadrupling) grid density as was done in the 

(2+1 )D case, though we would conjecture that it should be possible, either via a direct quadrupling 

layer with a special interface (analogous to the scheme of §4.9.3) or via successive redoubling (as per 

M-9-2). 

4.9.6 Note 

We would like to add that an interesting future direction of development of waveguide meshes might 

involve the use of hilly unstructured grids—that is. grids whose points cannot be ordered according 

to some regular indexing system. An uns t ruc tured DWN is certainly conceivable (and has been used 

for artificial reverberation [1G3]). though it is difficult to design a s t ruc ture which is locally consistent 

with the continuous parallel-plate problem (though it will be passive, regardless). Such a s t ruc ture 

would, of course, be very useful for dealing with the irregular geometries which typically arise in 

almost all musical Instrument bodies. On the other hand. F D T D has evolved in this direction. 

specifically by making use of thv finite volume method [89, 140]. long known in the fluid dynamics 

community. The FVTD (finite volume time domain) me thod is the result—the general idea is tha t 

instead of using finite differences to approximate derivat ive t erms. the integral forms of the governing 

equations (Maxwell's, for the FDTD people, but mechanical systems can be treated equally easily) 

are discreti/ed over cells of finite si/e which may not have any particular ordering. For a look at 

some recent work in this area, we refer the reader to [21] and [1-18]. 

4.10 Incorporating the DWN into the MDWD Framework 

At this point, the reader may have noticed more than a few similarities between the t reatment of 

transmission lines in this chapter and the last. It should be recalled from Chapter 3 that the multi­

dimensional wave digital networks that numerically integrate the parallel-]date system are derived 
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Figure 1.44: Signal flow diagrams of tin- DWN and MDWD networks for tin (1 + 1)D lossless source-
fret transmission line. 

from multidimensional Kirchoff circuits under a set of coordinate transformations and spectral ma]>-

pings from the continuous to discrete domain. A DWN, on the other hand, is constructed entirely in 

the discrete rime and space domain, and is then identified with a finite difference method consistent 

with the problem. 

It will be shown in this section that certain DWNs may in fact be derived from an MDKC 

under an alternative spectral mapp ing (also passivity-preserving), provided new wave digital circuit 

elements (multidimensional unit elements) Are also defined. In this way. the DWN may be considered 

to be a multidimensional wave digital network in its own right, depending on how a t tached one feels 

to the trapezoid rule as an integration method. The behavior of TLM and wave-digital numerical 

integral ion methods have been previously compared in [131] and [71]. anil the material in this section 

also appears in [18]. 

It is instructive to first reconsider the (1 + 1)D transmission line system in the lossless source-free 

case. In Figure 4.44 are presented both the type III DWN. and the MDWD network for the same 

system using offset sampling, with spatial dependence expanded out. For the MDWD network, we 

have chosen a grid spacing of A / 2 , and a t ime step of T/2 so as to align it with the DWN. (In other 

words, we have used T\ — T? = A / \ / 2 — see §3.7 for details.) 

First, notice that for the D W N . we have one three-port scat ter ing junction at each grid point. 
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and that parallel junctions arc interleaved with series junctions. Approximations to / and u are 

calculated at a l ternat ing grid points, and at alternating multiples of the t ime step, Tj'2. For the 

M D W D F . we have two two-port series adaptors at each grid point; we are approximating both / and 

ii tui/i tin i at the same locations, though due to offset sampling, these locations alternate from one 

time s tep to the next. Both variables are t reated as currents. For both networks, all the material 

variation of the transmission line is expressed in the imiiiitfauces of self-loops at every junction or 

adaptor , the delay in which is twice that of the linking delay between adjacent grid points. It is also 

useful to compare the waveguide innnit tances to the port resistances of the MDWDF. We have 

2 2 .. 4r() 

/?i = -^ ( ' ,> / - in) 1*2 = x (I'o'of - r 0 ) i?0 = — 

and 

Z,. = 2 (rul ~r0) Yc = 2 ( i u c ) Zr- = Zx+ = —— = —— = »•„ 

V ' o / Y9- Y*\ 

where we recall, from the discussion of the type III waveguide network in ?j4.3.G. that the connecting 

impedances were chosen to be some constant Zronst. in this case Zconsl = r<(. 

Enforcing the positivity of R] and R> or Zr and Ye leads to identical stability conditions, and 

the self-loop hnmi t tances and inductances are simply related to one another by 

Zc = A/?i Yr = AR-2/yf) 

at locations for which both quantities coexist in their respective discrete networks. 

Most impor tan t , though, is the observation tha t , whereas the DWN can be considered to be made 

up of an array of lumped two-port bidirectional delay lines, the signal flow diagram of the MDW'D 

network in Figure 4.44 does not have such an interpretation the port in this setting is defined only 

as a multidimensional object, and instances of this port in the discrete domain are not connected 

port-wise. It is crucial to recognize that passivity of such a discrete network is reflected by the power 

conservation of the scattering Operation, and not by where wave variables go in the network after 

they have been scattered; in particular, they need not be paired as they are for Waveguide networks, 

as long as the shifting operation which they undergo subsequently does not increase energy in the 

network. On the other hand, as we shall see in Chapter 5. boundary conditions are much easier to 

implement in a lumped network. 

4.10.1 Mtiltidimensional Unit Elements 

As a first s tep towards reintroducing this port s t ructure to a MDW'D network (and hence towards 

relating the DW'N to the MDWDF). we can extend the definition of the unit element (and recall from 

§4.2.1 that the unit element N a wave digital two-port which is equivalent to a single bidirectional 
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delay line) to multi-D in the following way*. Suppose that we are dealing with a (1 + 1)D system, 

and new coordinates t\ anil t-> are as defined by (3.18). We thus have two transform frequencies 8] 

and «2i «,s well as two frequency-domain shift-operatorsz,~' and z.J1 in the two directions ' i and t->. 

The multidimensional two-port defined, at steady-state, by 

. - I 
~2 

li 
(4.10-1) 

and shown in Figure 4.45(a) bears some resemblance to the l umped unit element discussed initially 

in §2.3.4; it is clearly lossless (because it merely implements a pair of shifts), bu t . unlike the unit 

element, it is no longer reciprocal. In this last respect, we remark tha t a multidimensional element so 

defined is perhaps closer in spirit to a generalization of the so-called quasi-reciprocal line (QUARL) 

proposed by Fettwels [4G]. The two port resistances are assumed identical and equal to some positive 

constant / i . When the spatial dependence is expanded out, it appear s as an entire array of unit 

elements, as in Figure 4.45(b). where we have assumed 

-2 
1 -•!• A 

where ; i and w > correspond, respectively, to unit shifts in t ime and space by T/'2 and A / 2 . We 

have thus chosen T\ = T? = A/\/2. 

= d• + A |A 

(a) (b) 

Figure 4.45: (a) Multidimensional unit dement at steady state making use of shifts tn directions /, 
and 1y and (b) its steady state schematic when spatial dependenei is expanded out. 

This element, like the standard unit element, is defined in the discrete ( t ime and space) domain, 

and using wave variables. Rewriting the scattering relation in t e rms of s teady-state discrete voltage 

and current ampli tudes. (4.104) becomes the impedance relationship 

R 

1 ~1 - 2 

1 + - - ' - - ' 1 "t- ~, -2 

2*,-' 1 4- - - 1 - - 1 
1 + ~ I - 2 

(4.105) 

' Ketlweis has already defined a multidimensional unit element in [44], hut In that case, shifts in a single direc­
tion were used in both delay paths: the multidimensional unit element defined here can be thought of as a simple 
generalisation of this structure. 
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4.10.2 Hybrid Form of the Multidimensional Unit Element 

We now have an impedance relationship describing the multidimensional unit element in terms of 

the discrete frequency variables cj"1 and z% . It is of interest, however, to introduce a particular 

type of hybrid form [12). The reason for doing this ultimately has to do with the fact that in a 

DWN in interleaved form, such ib thai shown in Figure -1.1-1 or 4.21, a typical linking waveguide (or 

unit element) is connected in parallel at one port and in series at the other; it is somewhat easier 

to make the transition from wave digital filters to digital waveguide networks if we take account of 

this asymmetry. 

Suppose we have a two-port which is defined, at s teady-state, by the relationship v = Zi, or 

«'2 

Zu 

Zn 

Z\i 

Z-n 

This can be rewritten in a so-called hybrid form as 

1_ 

ZT> 

Z\ i Z-ii — Z\-iZ-i\ Z\ 2 

-Zn 1 

or as 

P = K 

For the multidimensional unit element defined by (4.104). the hybrid matrix is. given the 

Impedance relation (4.11)5). 

-- i - - h -K „ e ( c , ,C2 ) — 
i 

i+*rV 
/?d -1 ~2 

1 

- > : . ; 
. - 1 _ - l l _ 2 ~ - ' L[\ _ - - ' - - « \ 

It should be clear that the definition of the unit element holds regardless of which complex frequencies 

we choose. In particular, the delays .; ~' and : 7 ' could be replaced by delays in higher dimensional 

spaces (we will make use of this in §4.10.4, §4.10.5 and ^4.10.0). We will enforce the order of the 

arguments of K,„ so tha t , for example. K „ r ( c j ~ ' . z-Jl) and K , / f ( : . ; ' . : ^ ' ) refer to unit elements of 

mirror-image orientation. 

Suppose now that we have N two-ports defined by their impedance and hybrid relationships 

v* = Z t U Pit = K/tqj A = 1. ,JV 

If we are interested in connecting the first ports of all A' two-ports to each other in series, and the 
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MI 

n 

I 13 

>l\ 

• l V 

z. 

Figure 4.46: Series/parallel connection of N two-ports. 

second ports in parallel as in Figure 4.4G, then we will have, for the total voltages and currents 

and 

' l i t = ' I »'2fc = <'2 k= 1 v 

which hold instant aneously, and thus, in order to describe the two-port resulting from the connection, 

we may write 

\ A / A \ 

k=l u-=i 

Thus for such a series/parallel combination of two-ports, the hybrid matr ix of the connection is 

simply the sum of the hybrid matrices of the individual two-ports, and thus 

\ 

t = i 

Scries/parallel combination of N two-ports 

4.10.3 Alternative M D K C for the (1 + 1)D Transmission Line 

We now reexamine the lossless, source-free (1 + 1)D transmission line equations and show that how. 

after a simple network manipulat ion and under the alternative spectral mappings mentioned in 
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§3.5.4, we cud uj) with an interleaved DWN identical to that discussed in [{4.3.6. 

We begin by first scaling the (1 + 1 )D transmission line equations by a factor of A, and where, as 

before, we introduce a scaled t ime variable defined by / ' = rnt. giving 

* * » * 4 s - • 

Ar 0 e—+ A — = 0 
at' ox 

(4.10Ga) 

(4.1()Cb) 

It should be clear that the scaling by A will have no effect on the solution to equations (4.100). 

even in the limit as A —> 0. The MDKC for this system is shown in Figure 4.47(a). where we 

have used the coordinate transformation defined by (3.18). Aside from the scaling of the element 

values by A. this is identical to the MDKC of Figure 3.14(a). where the resistors and voltage sources 

(corresponding to loss and source terms) have been omit ted (they can be simply reintroduced at a 

later stage). 

<ii,J>,») 

(La,lh)] 

( to.D.l i 

u . j . / v i U - I . ' V I 

i i.n, ih i 

( / „ , / > i i 

=^<r2 , /V) 

(a) (b) 

Figure 4.47: MDKC* for the lossless source-free (I + ljD transmission line equations (a) the stan­
dard representation and (b) a modified form. 

The element values a re given by 

Lt = A (e0l - r 0 ) f*% = A (i'i(cr„ — r 0 ) Lu = A r 0 / v / 2 

In this representation, t h e transmission line voltage 1/ is considered, after a scaling by l / t | j . to be a 

current. This is somewhat unsatisfying from a physical point of view: it is easy, however, to rectify 

this: by a simple network transformation, the inductor in the right-hand loop (through which current 

ti/ro flows) may be replaced by a gyrator of gyration constant ro terminated on a capacitor. The 

voltage across this capacitor of capacitance C-i = A (inf— j M will then be exactly u. See Figure 

4.47(b). 

Consider now the two-port of Figure 4.47(b). with terminals A. A'. 13 and D'. The hybrid matrix 
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for this linear shift-invariant two-port is. in terms of the frequencies S] and s-j. 

K(.s,..s2) = 
v*> 

'"n (*i + *%) »i - «a 
i 

«1 - «2 
> \ j (•-i + «a] 

We now apply the alternative spectral mapping introduced in !|3.5.4. namely 

1 ( 1 - _ - i 

•si 
)(1 + =2~V 

1 + 2 
*2 

1 ( l - - ' ) ( l + c r ' ) 

1 -1 T-2 1 + „ - J ~ - i 
(4.107) 

with T\ = T> = A / \ / 2 (recall that the for the interleaved scheme, we will have increments in the 

t ime step of T /2 and in the space step of A / 2 , and thus we have chosen T\ and Ti to be half the 

values they previously took) . It will be recalled that this mapping, like the trapezoidal rule, is 

passivity-preserving. The hybrid matrix becomes 

K ( c r
1 , ^ ' ) = 

•o( i - . rV) 
-2 

1 , - . - 1 - - 1 i -r - , Zj 

which, upon inspection, can be written as the Bum 

, - l _ „-1 
-2 ~1 

_L (1 _ - - 1 - - M 
(4.108) 

K ( r , ,2 j ) = K„, (.:, ,z.2 ) + K„,(-z., ,—zt ) 

where it will be recalled that K.ue{z^1, c-71 ) is the hybrid matrix for t h e multidimensional unit 

element defined in (4.104). with /? = ;-0. Because for a series/parallel connection of two-ports, 

hybrid matrices sum. we have thus decomposed our connecting two-port into two multidimensional 

unit elements of opposing directions, one of which incorporates a sign-inversion in both of its signal 

paths . The MDWD network can then immediately be constructed as in Figure 4.48. The port 

resistances are 

/ . , = - ^ L , = 2., , / - 2r0 «, = ^ = 2C-2 2 r u c - 2 / r a 
fin = Hi 

We have chosen here a doubled delay length (of T' — A) in the self-loops, according to the offsrt 

scheme mentioned in §3.9 (for these one-ports, we use the trapezoid rule as for MDWD networks). 

This network is. when spatial dependence is expanded out. identical to the DWN shown in 

Figure 4.44. under the replacement of the series and parallel adaptor symbols by series and parallel 

scattering junction symbols recall that they perform identical operations. This M D W D network, 

then, (if it can be called tha t ) operates on a decimated grid, unlike the s tandard form shown in 

Figure 4.44. Losses and sources can easily be added back in to the al ternat ive MDKC of Figure 

4.47(b). and the resulting MDWD network will be identical to that of Figure 4.15. 

We would conjecture that it is possible to find similar equivalences for the type I and II DWNs for 



4.10. INCORPORATING THE DWN INTO THE MDWD FRAMEWORK 227 

T 
H„ 

T , T, s T «, ><: I 

: i 
/A, 

Figure 4.48: MD network equivalent to type HI DWN for the lossless source-free (1 + 1 )D transmission 
line equations under an alternative spectral mapping. 

the same system (which have better stability bounds); In these cases however, recall from jj4.3.6 that 

the immit tances of the connecting waveguides did indeed vary from one grid location to the next. 

In order to design a MDKC corresponding to such a network, it would be necessary to extend the 

definition of the multidimensional unit element to include spatially-varying port-resistances (indeed, 

this extension is automatic, since the port resistances do not appear explicitly in the definition of 

this element in (4.104)). The problem, then, is that the two-port connecting the series and parallel 

adaptors will no longer be shift-invariant, so we must take special care with application of the 

discretization rule, which can no longer be treated as a spectral mapping. 

4.10.4 Alternative MDKC for (2+l)D Parallel-plate System 

The same idea extends simply to the (2+1 )D parallel-plate equations (3.64). In this case, we again 

look at the lossless source-free system, scaled by a factor of A. and can develop an MDKC along 

the lines of Figure 1.47(b). with a now treated as a voltage instead of a current as in Figure 3.17. 

We remind the reader that we use the notation D/t. k = 1 . . . . . 5 in circuit d iagrams to indicate 

directional derivatives in the directions fjt defined by the coonl inate transformation (3.22). Also, 

we have writ ten i] and (•_> for ir and iy. in keeping witli the W D F l i terature [62). The alternative 

MDKC is shown in Figure 4.49, and the element values are given by 

I , = L, = A (, „/ - r„) C3 = A (loc - ^ - \ U = A r „ / 2 

ro > 0 is. as before, a free parameter which can be scaled to achieve an opt imal space s tep/ t ime 

step rat io. 

The two two-port* with terminals .4), .4',, B. D' and .42 , A'.2, B, B' are both linear and shift-

invariant, and their right-hand pairs of terminals are bo th connected in parallel with the capacitor. 
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Figure 4.49: Alternatiei MDKC for the (2+ 1)D para I It l-jdatt system in rcclanaular coordinates. 

The hybrid matrices tor these two-ports a re 

K , ( . s , . S 3 ) = 1 -

K 2 ( * 2 . « , ) = -

'ii ("l + .s:i) *] - «3 

* 2 - *1 ^ ( # 2 + *4) 

two-port .4 ,.4 \DD' 

Two-port A.A'.yBD' 

and under the spectral mappings 

• - j 

1 

! 

(1 

(1 

: i 

1 + 

- z.2 

l)(l + H 

- 1 - 3 

'J 

') 
T, i + = 2 - l c ; , - ! _ - ! 

•s;t 

S j 

l ( i - , 3 - ' ) ( i + =,-') 

r3 i + . r V 
1 ( 1 - = • , - • ) ( ! + ~-2~') 

n I + ^ V 

(4.109a) 

(4.109b) 

with T| = T2 = T-,i = T\ = A/2, we again have a decomposition of the discrete hybrid two-ports 

into pairs of multidimensional unit elements ( impedance rf>) connected in series/parallel, i.e. 

K i ( ; ,~ ,JSJj" ) = K u r (C | " ,z^ ) + Ku({-:.j , - : , ) 

K 2 ( c 2 . ; . t ) = K l j e ( r 2 •-^ ) + K U f ( —;4 ,— z% ) 

1 'be MDWD network, corresponding to "checkerboard"-type sampling, is as shown in Figure 4.51). 

and where T i T4 are the shifts in t h e coordinate directions / | (4, and the port resistances 
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Figure 4.50: A/Z) network equivalent to type III DWN for the lossless source-free (2+l)D parallel-
plate system under an alternative spectral mapping. 

For the one-port inductors and the capacitor, we have again applied the trapezoid rule, with a 

step-size of T-, = A (implying a delay of T, written as T in Figure 4.50). 

When spatial dependence is expanded out. the signal flow graph is identical to the interleaved 

type III DWN for the parallel-plate equations shown in Figure 4.21, without the loss/source ports . 

As in (1 + 1 )D. loss and source elements can be reintroduced into the MDKC of Figure 4.49 without 

difficulty. 

It should also be possible to derive DWNs from MDKCs for the same system on alternative grids, 

such as the hexagonal and t r iangular grids mentioned in §4.G.l, though we have not investigated 

tliis in any detail. In this case, one would presumably begin from the MDKC under the appropriate 

coordinate transformation. One of these coordinate transformations (which generates a hexagonal 

grid under uniform sampling in the new coordinates), was discussed briefly in §3.3.3. The full MDKC 

for the parallel-plate equations in these coordinates is given in [02]. 

4.10.5 Higher-order Accuracy Revisited 

Recall t ha t in §3.13, we derived two MDKCs that were suitable for solving the transmission line 

equations to higher-order spatial accuracy: we were forced, however, to employ a set of alternative 

spectral mappings very similar to those that have appeared earlier in this section. For this reason. 

we postponed showing the full scat ter ing network until now. This is a good opportunity to sec the 

flexibility of having a multidimensional representation of a DWN. 

The M D K C in Figure 3.25 represents the lossless source-free (1-|-1)D transmission line equations, 

in a set of 2q coordinates defined by (3.21) using the transformation matrix of (3.90). These new 
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coordinates allow us to define directional shifts that refer to points other than nearest neighbors. 

T h e general approach to deriving a DWN for this MDKC* is the same as in the previous sections; first 

we perform some network manipulat ions on the MDKC. and then we apply alternative spectral map­

pings or integration rules to the connecting LSI two-ports, which then reduce to multidimensional 

unit elements, which are then interpreted as arrays of digital waveguides. The circuit manipulat ions 

in th is case are slightly more involved; skipping several steps, we note that we can rewrite the MDKC 

as shown in Figure 1.51. 

( t , , .o , 

B 
a 

" , j r < 

D' 
o 

—w—u—w— 

A* 
« 

(a ) ( b ) 

Figure 4.51: (a) A modified MDKC for the lossless, source-five (1 +1 )D transmission line system and 
(b) it detail of connecting two-ports Aqj.A' :.D. D' for any j . j — 1 , . . . .7 /rem (a) . 

As before, we treat u as the voltage across a capacitor, and have introduced a gyra tor in each 

of the connecting two-ports with terminals Aqi. A'-. D and D'. j = 1 q, in addit ion, we 

have ext rac ted a transformer, of turns ratio nqj for each of these two-ports: the gyrator constant is 

similarly scaled in order to compensate . The effect of this extracted transformer will be to weight the 

port resistances of the various multidimensional unit elements that result (and hence the waveguide 

impedances in the resulting DWN). In addition, we will also need to re-scale the inductances from 

(3.93) by a factor of A. giving 

Llq = A M-r„£™ 
;=• 

C7q = A W,j -
•^'•ohflil 
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The two-port shown in Figure 4.51(b) contains two inductors of inductances Af»j defined with 

respect to the directions /j + anil tj~. I ts continuous hybrid matr ix will be. in terms of the two 

associated complex frequencies 8j+ and «.•-, 

K„-(«i+, 8,-) = 

Under the spectral mappings from sj+ and MJ- to the frequency domain unit shifts z •+ and z. 

given by 

i ji-zj'm + zp) 

!.-» 1 + - , : 

l (l-=r_')(i +--+') 

A " l + c - : - ' 

(which are passive and correspond to the integration rules (3.94), with a shift length of A) , the 

discrete hybrid matr ix becomes 

9 

li should be clear that in general, this hybrid matrix does not reduce to a pair of series/parallel 

connected multidimensional unit elements (in which case it should have the form of (4.108), with 

zjl and z~+ in place of z.J and ; , ' ) • Under the special choice of nqj = 2j/aqj, however, it does 

reduce lo such a connection, so we have 

K<7j(;J+ - - j - ) — K u e ( r j + .z._ ) + K„,(— Zj_ , 

where the port resistances of the unit elements are 

. _ — 1 ' 

Rqj = -.n» 

'•li 

The two-port multidimensional unit elements are connected to transformers, of turns rat io nqj. 

its per Figure 4.51(a). The port resistance at one end of each transformer can be set to thai of the 

unit element to which it is connected, which is R,u. It is possible to implement these transformers 

as multiplies by n-j and \/nqj directly in the signal paths, if we make the choice of the other port 

resistance (which we call R'q-) according to the rule discussed in §2.3.4; we thus choose 

R- - R , / „ i ._ r°K>l 
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Figure 4.52: Multidimensional DWN suitable for a qth-order spatially accurate solution to the 
(l + l)D transmission line equations. 

For the one-port inductor and capacitor (of inductance Liq and C-iq respectively), we use the t rape­

zoid rule with a doubled time step T' = 2A, and the wave digital one-ports (of port resistances 

R\q = L\q/A and I\>q = A/C->()) result. The multidimensional network shown in Figure 1.52 can 

be interpreted as a DVVN. and if the parameters aqj are chosen according to the method discussed 

in §3.13. then the DWN will give a f/th-order spatially accura te solution to the (1 + 1)D lossless 

source-free transmission line system. In order not to belabor this point any further, we leave the 

explicit construction of the expanded signal flow graph for this multidimensional DWN from Figure 

4.52 (as well as the interleaved DWN which results from the use of coordinates defined by (3.98)) 

as an exercise to the reader. 

It is interesting that not all DWN topologies permit a higher-order spatially accurate scheme; in 

'jA.2.5. we will look at a stable fourth-order accurate difference scheme for the (2+1 )D wave equation 

whicli cannot be realized in a straightforward way as a D W N . T h e topology of the DWN in this 

section follows directly from a passive MD circuit representat ion. 

4.10.6 Maxwell's Equations 

We now take a brief look at Maxwell's equations, the ( 3 + 1 )D system of PDEs which describes 

the time evolution of electromagnetic fields. This system was the original motivation behind the 
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development of FDTD [181. 214]. and MDWD network methods for Maxwell's system were explored 

early on in [50]. In the interest of solidifying the link between these two types of methods , we show 

how a passive circuit representation yields a DWN. which is no more than a scattering form of 

FDTD. 

Maxwell's Equations, for a linear isotropic (though not necessarily spatially homogeneous) medium, 

are usually written in vector form* as 

<9E OH 

"or 
- V x E (1.110) 

where E = [ET.Ey.E-]' and H = \HT, / / „ . H:\' are, respectively, the electric and magnetic held 

vectors, e(ar, //,.:) and //(.r.//, : ) are the dielectric constant and magnetic permeability of the medium, 

assumed positive and hounded away from 0. (We have left out losses here.) This system has the 

form of (3.1). with w = [E7 , H 7 ] ' . and 

P = 
€la 

• / ' l i 
A, = 

A' 
. } x 

Ai>: 
j = 1.2,3 

where I:) is the 3 x 3 identity matr ix . • s tands for zero entries, and where we also have 

A i x = 

II 

(1 

II 

II 

II 

- 1 

II 

1 

0 
A 2 x = 

(1 0 

0 0 

1 0 

- 1 

0 

0 

A 3 x = 

II 

- 1 

0 

1 

1) 

II 

II 

I) 

II 

P h a s e a n d G r o u p Veloci ty 

If e and ft are constant, then from (3.10). the dispersion relation for Maxwell's Equat ions has the 

form 

^( e / l w
2HI0l l l ) =o 

in rerins of frequencies u and wavenumher magnitudes ||/3||'2- This equation has solutions 

w = 0 w = ± 
s/fT' 

'We leave out tin' supplemental relations 

V -E = p V H = U 

vhere p i-. the charge density. These can l»- viewed as extra restrictions on the allowed solutions to (4.110), 
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Leaving aside the non-propagating mode with U = 0. the phase and group velocities will then be 

given by 

-v? = <v? = i 1 

'Maxwell I Maxwell -"• r—-

For spatially inhomogeneous problems, (lie lnaxiinum group velocity will be 

1 

I Max well.max n \ 
v

/(eu)mi«i 

S c a t t e r i n g Ne tworks for M a x w e l l ' s E q u a t i o n s 

This system has been represented by an M D K C in [50, 131], where the coordinate transformation 

defined by (3.24) has been employed, and the current variables are defined by 

(11 • ' j - ' : ) • ' i• i»»»«) = (ET/r0, Ey/ro, E,/r0, HT, Hu, H-) 

for some positive constant VQ. We have reproduced this MDKC in Figure 4.53. This network can be 

viewed as two coupled (2+1 )D parallel-plate networks (see §3.8). and this is not surprising, given 

that the (2+1 )D parallel-plate system is essentially equivalent to the transverse electric (TE) or 

transverse magnetic (TM) system alone. T h e resulting MDWD network is shown, at bot tom, in 

Figure 4.53; here, we have assumed the directional shifts T j . j = 1 7 to be of length A. (And 

thus Ty = T' = A/r t i = T.) The passivity condition is again a condition on the posit ivity of the 

network inductances in the MDKC; these values are given in Figure 4.53. and the result ing conditions 

are 

. 2 2,o 
l>0 > t>0 > 

f'O^min M*nfa 

Under the choice of ra = . / ^ ! U J 1 , the stability condition becomes 

"0 > , 2
 f > 2lita,mU,ma. ^ m > 

with 

fmin = IHUlf fhnin = Ulill/( 
z.y.z r.ji.z 

and the numerical scheme is passive and hence s table over this range of Va, 

In order to generate a digital waveguide network, we may proceed as for the (1+1 )D transmission 

line and (2+1 )D parallel-plate systems discussed in §4.10.3 and §4.10.4. and apply t h e by now familiar 

network transformations to yield the modified circuit shown in Figure 4.54. Electric field quantities 
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are now t rea ted as voltages across capacitors, and the six LSI connecting two-ports will all become 

multidimensional unit elements under the application of a l ternat ive spectral mappings. 

The coordinate transformation from coordinates u = [x,y,z, t] to coordinates t = [/; t-]T 

defined by (3.21), using the transformation matrix of (3.24) gives us. in the LSI case, seven fre­

quencies S] 87. Lor the connecting two-ports, we may use pairwise spectral mappings defined 

by 

« j - » F ' - . . V + »»*->* ' + . J _ , . v J: = 1.2.3 (4 .H2) 

where zj , j = 1 , . . . ,G corresponds to a unit shift in direction fj , and the step-sizes I). j = 1 ,6 

are all chosen equal to A/2. For the one-port time inductors and capacitors, we use the trapezoid 

rule with a step-size of TV = T' = A . T h e resulting multidimensional DYVN is shown at bo t tom in 

Figure 4.54. and the stability bound is unchanged from (4.111). 

When the spatial dependence is expanded out, we have a DYVN operating on an interleaved 

numerical grid as shown in Figure 4.55. with the electric and magnet ic field components calculated 

at parallel (white) and series (grey) junct ions respectively. The connecting waveguide impedances 

(of delay T / 2 , shown as solid lines) are all equal to ro, and the self-loops (of delay T. not shown) have 

impedances 2t'o/' —2»"o and admi t tances 2ttyC —2/ro at the series and parallel junctions respectively, 

where these expressions are evaluated at the junction location. It is also possible to derive DWNs 

of the type I and II forms (see JJ4.3.6), for which the stability bound is improved to CFL. 

It is easy to verify that this scheme is indeed a scattering form of FDTD. Referring to Figure 4.55. 

we will have six sets of junct ion quanti t ies: at the parallel junct ions , we will h a v e £ x ; , J + I ; . + i ( » + i ) . 

EyJ.ij+i.ki" + 2 ) a n ( l ^-.J.i+-J+k.k('1 + i ) - a l l ( ' a t the series junct ions , we will have HxJj+i j ,fc(n)i 

Hylij+i k(n) and tttjjj,n-l(»»)• The indices i. j . k and ;i take on integer values. Examine the 

DYVN at a parallel junction with "voltage" £',./,,;,j+i,Jt+i (" + j ) - The DWN updates this grid 

function according to 

Er.i.ij+{.k+^(" + •>) = ETji j+ik+i(n - ±) 

+ — (H--J.i.j+1 ,*+ 1 (") - Hz.l.i,j,k+ 1 (") 

-^ . /^ j+ i .^ i fn l+Z i , , . , , .^ ! ,^ ' ! ) ) 

with 'j j+i fc+i = e('-^-(J + 2")-^-C'' + ^ ) A ) . This is exactly centered differences applied to the 

equation in Ex. Hu and //_-. according to the Yee algorithm [184]. It is also worth comparing this 

DYY'N to the T L M version, discussed in [4]. 



23G CHAPTER 4. DIGITAL WAVEGUIDE NETWORKS 

in ft. 

Figure 4.53: MDKC and MDWD network for Maxwell's equations (4.110). 
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Figure 1.54: Modified MDKC and multidimensional DWN for Maxwell's equations (4.110). 
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:tk+l >A 

:lk-% 1A 

• = |.-$IJ 

(j+i |A 

; = (.!-£ l i 

Figure 4.55: Computational giid for FDTD applied to Maxwell's equations (4.110); electric and 
magnetic field quantities are calculated at alternating multiples of T/2. and at alternating gi~id lo­
cations. In the DWN implementation, waveguide connections (of delay length T/2) between series 
junctions (grey) and parallel junctions (white) are shown as dark lines; waveguide sign inversions 
and self-loops an not shown hen. 



Chapter 5 

Applications in Vibrational 

Mechanics 

In the previous chapters , we dealt with the numerical integration of systems of PDEs that were all. 

in some sense, generalizations of the wave equation. In the case where the material parameters (/ 

and C in the case of the transmission line) h a w no spatial variation, tliis amounts to saving that 

wave propagation in these media is dispersionless, a plane wave travels at a fixed speed, regardless 

of its wavelength. We now turn to Bets of equat ions which finidanientally engender some degree of 

dispersion, namely those describing the motion of stiff systems such as beams, plates and shells. As 

a result, we move toward the use of mechanical quantities, as opposed to electrical, but the analogy 

should be clear. We will show how waveguide and wave digital filler principles can be used in order 

to obtain numerical solutions of such equations. 

We will develop these algori thms in order of increasing dimensionality of the system: first we 

look at classical beam dynamics, and then proceed to the more modern beam theory devised by 

Timoshenko. We then look at stifr plates, and in particular the thick pla te formulation of Mindlin. 

and then at two types of cylindrical shell theories, first the so-called membrane shell, then the thick 

shell system of Naghdi and Cooper. Finally, we look at the general ( 3 + l ) D system which describes 

the motion of a linear elastic solid. 

It will be necessary to introduce several new techniques in order to develop numerical methods for 

such systems, which are considerably more complex than the transmission line test problems which 

we examined in the previous chapters. First , a l though these systems are all (with the exception 

of Euler-Bernoulli beam system) symmetric hyperbolic, we will need to make use of non-reciprocal 

circuit elements in order to model some asymmetr ic couplings that occur. Second, we may have to 

perform some additional initial work on these same systems in order to symmetrize them, as they 

are not always symmetric hyperbolic in their Commonly encountered forms. Third, in some cases we 

239 
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will be forced to make use of vector-valued wave variables and scattering junct ions [131] (set- §2.3.1 ). 

A lull technical summary of this chapter appeared in §1.3. 

5.1 Transverse Motion of the Ideal Beam 

Consider a thin beam, or rod. aligned parallel to the .r axis. We will be interested in the transverse 

motion of the beam, which we will assume to be restricted to one perpendicular direction: we will 

call the deflection of the beam from the x axis w(x,t). The relevant material parameters of the 

beam are the mass density /), the cross-sectional area .4, Young's modulus E and / . the moment of 

inertia of the beam about the perpendicular axis. The material parameters are, in general, allowed 

to be slowly-varying functions of I . Under the further assumptions that the beam deflection w(.r.t) 

is small, and that the beam cross-section remains perpendicular to the so-called "neutral axis", it is 

possible to arrive at the Elder-Bernoulli equat ion [77]: 

Notice t ha t this equation contains a fourth order spatial derivative, resulting from the fact that the 

beam provides its own restoring stiffness, proportional to its curvature, in marked contrast to the 

equat ion for a string, which requires externally applied tension in order to support wave motion. In 

par t icular , it does not result from the elimination of variables in a hyperbolic system (see §3.2). If 

the mater ia l properties of the beam do not vary spatially, then (5.1) reduces to the more familiar 

form 

where b = i / ^ f i In what follows, however, we will deal with the more general case. 

P h a s e a n d G r o u p Ve loc i t y 

Though equation (5.2) is not hyperbolic, it is simple to obtain a dispersion relationship by considering 

wave-like solutions of the form , ; i Q - ' + " i x | , where u> is the Frequency variable, and j3 is the spatial 

wavenumber. The relationship can be wri t ten as 

w2 - tfii4 = 0 

which has solutions 

w = ±l,.{2 
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T h e phase and group velocities can then be written, from (3.12). as 

-;>ril = ±l>i 7ls*±26/? 

These velocities are now dependent on the spatial waventuubers. and hence wave propagation is 

dispersive. Notice also that the group velocities are unbounded, so we will expect to run into some 

numerical difficulties (recall that for all the systems dealt with in the previous chapters, stability 

bounds on c0. the space s t ep / t ime step ratio were dependent on a maximum group velocity). 

We also mention that a good model for the piano string is based on the wave equation, and 

complemented by several per turbat ion terms, among which are a fourth spatial derivative term like 

the above [25]; such a te rm models frequency-dependent dispersion in the string. 

5.1.1 Finite Differences 

There are many ways to approach the numerical integration of (5.1). If the material parameters are 

constant , then a simple explicit method can lie obtained by applying centered difference approxima­

tions to both the time and space derivatives, yielding the scheme 

T~l>'2 

Wi(n + 1) + Wi(n-1) = —^j-(Wi+i(n)-4Wi+l(n)-4Wi.i(n) + rVi-t(n)) 

+ (2+^T1) , r 'f"» <5-3) 

where H'f(n) is a grid function defined for integer / and n. and represents an approximation to 

w(iA.nT). where A is a uniform grid spacing, and T is the time step. This scheme is accurate to 

()(A2, T2). but is stable only for 2b-^ < 1. so it is effectively only first-order accurate: this is typical 

of explicit methods for systems with some parabolic character [176]. 

In order to deal more effectively with the varying-coelficienf problem, we can divide (5.1) into a 

system of two PDEs. and differentiate with respect to time, to get 

Or 1 0-m 
^7 = T^TT ( : ' - l a ) 

Ot //A Ox2 

w - ^ 
Here, r = ^ is the beam transverse velocity, and m can be interpreted as a bending moment . We 

have chosen these variables in order to make clear the relationship of the classical beam theory with 

the more modem Tiinoslienko theory (see §5.2). Applying centered differences to this system yields 
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r , ( „ + l ) - r , ( ; 0 = --JlT-(Mi+](ll+^)-2M,(n+k) + M,-A'>+r,)) (5.5a) 
[pAU 

. U , | n + i ) - . U , ( n - ± ) = f,(El),(Vi+i(n)-2V,(n) + Vl-l('>)) (5.5b) 

where V and M are the grid functions corresponding to u and ro, Similarly to the case of the 

transmission line (see ^1.3.0). we have used 

(p~5)i = P(iS)A(iA) + 0(±J) 

{El); = E(iA)I(iA) + 0(A*) 

and in keeping with the li terature [17G], we have also defined 

As for the transmission line, we can evaluate the grid functions V and M at alternating time steps. 

Due to the nature of the difference approximation, however, we cannot interleave these variables on 

the spatial grid. Tha t is. we are forced to calculate both V and M at every grid location (at their 

respective time steps) . We have written the difference scheme above such that temporal interleaving 

is evident, i.e. l\.(n>) and Afjt(m), m half-integer, are calculated only for (say) 2m even and odd, 

respectively. 

5.1.2 Waveguide Network for the Euler-Bernoulli System 

It is possible to design a waveguide network which simulates the behavior of equation (5.1). but 

there are some extra features we must add which were not necessary in the case of the transmission 

line. In addition, the overloaded symbols for the wave variables become even more overloaded, due 

to the fact that We can no longer interleave the two dependent variables spatially, and are faced 

with a double set of wave variables at every grid point. (This can be remedied with recourse to 

other more involved difference methods, but we will not pursue this subject here.) The structure of 

interest is shown in Figure 5.1. This is still a ( H - l ) D waveguide network, like that which simulates 

the (1 + 1)D transmission line equations, but we have drawn the junct ions which calculate Vj and 

Mj separately; it should be kepi in mind that they operate at the same spatial locations. As before, 

we use grey/white coloring of junctions to signify operation at different t ime steps. Here we have 

interpreted Vj (which we will identify with V of difference scheme (5.5). and thus with r ) as ;i 

voltage-like variable, and Mj as the current-flow. Also as before, the diagram above is correct when 

we are using voltage-like wave variables as our signals. Figure 5.2 gives the complete picture of the 

wave quantities and iminittances in the network. 
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p 

T 

Vjj. 

" 

I 

Figure 5.1: (l + l)D DWN for the Eulet-BernovlH system (5.4). 

We note that the wave variables at the series scat ter ing junction at location J- = iA are indicated 

by a tilde, to distinguish them from those at the parallel junction at the same location, even though 

the two sets of variables are calculated at a l ternate t ime steps. As for the (1 + 1)D transmission 

line, we index wave variables and inunit tanees at the left and right ports of any junct ion by JT~ 

and s+ respectively, and the same such quantities associated with any self-loop are subscripted with 

r. We also have new waveguides connecting parallel and series junctions at the same grid point: 

immittances and wave variables are subscripted with a / in this case. With reference to Figure 5.2. 

we can define the junction admi t tance at the parallel junct ion, and the junction impedance at the 

series junction to be 

yj.i I j - J + Yg4 ,• + Jr-,1 + ^ t,i 

Z.i, — Zx- j + Zx+ , + Zci -+- Zt.i 

(5.6) 

(5.7) 

It should be clear that this waveguide network is really a pair of coupled (1 + 1)D transnnssion lines: 

the coupling is via the waveguide connecting the series and parallel junctions at the same grid location 

(the vertical waveguide in Figure 5.1). The factors of -2 and — r, in the "coupling" waveguide in 

Figure 5.3 deserve sonic extra commentary. Figure 5.3 shows an equivalence between two waveguide 

Configurations. On the left., we have two identical waveguides with delay m t ime Steps and impedance 
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t 
p 

\ , -

\ + 

i' 
+ i / 

V 

v t v.- r+ i -+ 

i' .1 ' • • ' •* J -+ . I 

Figure 5.2: Scattering junctions of Figure 5.1. with incoming and outgoing voltage waves indicated. 

Z connected between a parallel junction and a series junction: in approximating a second derivative 

by centered differences, as we are indeed doing in (5.5). we need such a configuration so as to double 

the strength of the wave variable coining from the same grid location at the previous time step 

relative to that of those entering from the neighboring junctions. The equivalent form on the right, 

which introduces a transformer with torn ratio -2, serves to reduce the pair of waveguides to a single 

one, accompanied by two multiplications (the waveguide transformer is identical to the wave digital 

transformer, discussed in §2.3.4). This implies that the port impedance i", , at a parallel junction 

at grid point i in Figure 5.1 and the port admi t tance Z, , at the series junction at the same point 

must be related bv 

arall 

V 

Ytti 

•1 Junction 
y / 

' Z,.i 

/ 
/ 

Parallel 
. Junctioi 
\ 2V 

mT niT mT ml 

in 0-1 ^O 0-1 

z z 
Series Junction 

T mT 

(5.8) 

2 0 0 " 2 - Transformei 

Series 
Junction 

Figure 5.3: An equivalent form for duplicate bidirectional delay lines running between a parallel ami 
a series junction. 
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(This equivalence can easily be derived through the manipulation of hybrid matrices for bidirectional 

delay lines, as per the methods discussed in §4.10.2.) Also note the sign inversions in fhi* central 

coupling waveguide with respect to the left- and right-going waveguides. 

We now trace the signal How in the network to show thai it does indeed solve the Euler Bernoulli 

system. Beginning from a scries junction at grid point i. we have: 

M.,,,(n + i) = i - (r,t {(n + i) + f+ ,(« + i) + v+(t, + i) + r+(/, +£)) 
A/.» v ' 

= -f- fc,i_1(r»)+ V-M1(n) - 2 t > » - V-,(n - |)) 

= J-(r./,,_1(,l) + v/,,+1(»)--,i;,,,(;/)-i-V;-(n-i)) 

- f - ( r / + , _ 1 (n ) + r+,+l(n)-2i;+(n)) 

= J-(V/,,-1(n) + i:;,, + l ( ,<) -2\ ; , , , (n) ) 

= ^ ( V , , , _ , ( n ) + i : / , ,+ 1(;0-2r. / , , (n)) + A/ . 7 , , (»- i ) 

which is Identical to (5.5b) if we replace Vj by V and M.i by .U. and if we have 

Z ; , = ^ — (5.9) 
' {W)ifi 

Beginning from the series junction, we arrive at a similar requirement for YJJ. namely 

2(/>.4),-
i./,, = (5.10) 

/' 
As in the case of the transmission line, three families of waveguide networks are distinguishable: 

T y p e I: Voltage-centered Network 

In order to satisfy (5.10), with Vj defined by (5.G) we set 

_ (i>A)j _ (pA)j _ 

' / - . I • — Ir+i — —; If.i — 1,,, — U 2/i ,i 

Now, we have, recalling (5.7) and (5.8). 

Z = 2 / t I 2 / l I 4 / l \ Z 
•'•• {PA)i+1

 + ( M ) , - . (/>-!). ' v 
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and in order to satisfy (5.9). we set 

Z = ( 1 . 1 | l ) ( 2" I 2 / ' I 4 " ^ 
c" \-2,,(EI),+ ]

 T 2,«(£/),_ l
 T v(EI)i) \(f>A)i+i

 T (,,.4),_, T (,,.4),-,/ 

We have written here /», = /i(i'A). where /i is either of f>A or EI. In this case. Zr,, will be positive if 

1 • {pA)i ..... 

and we have an upper bound on the time step in tenns of the grid spacing. In the constant-coefficient 

case, we note that this is the same requirement as for the stability of scheme (5.3). 

T y p e I I : Current-centered Network 

This is the dual to the previous arrangement. Now we set 

"*~,i = Zr+,i = 0 / rr<. Zt,i = , r , , Zc i = 0 

2/i(£7); lt(EI)i 
and we thus choose 

f(pA)i+i (pA)j-i [pA)j\ 
Ye.i = —= + —^ 1- - - J - [2fi(EI)i+i + 2/i(£7),_, +4/i(£/),-] 

and we have the same stability condition as the previous case. 

. 1 • \{pA)i 

T y p e I I I : Mixed Network 

We set 

' T~ ,l = * x+ ,i = * nmsf X/,i — - * const 

(5.10) and (5.9) then require that we set 
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The optimal choice of 1 ].„„.«( = \/iiiiii;(^-4),) inax,(£J/) , yields the stability bound 

and we are thus forced to use a si nailer t ime s tep than is required by either of the above arrangements. 

5.1.3 Boundary Conditions in the Waveguide Network 

11 the ideal beam is of finite length, then we are required to supply boundary conditions at the 

termination; We show here how ro apply such conditions in the waveguide mesh described in the 

previous section. We will assume that one end of the beam is positioned at .r = 0; all discussion 

of boundary conditions applies equally at the other end (or we may assume that the beam is of 

semi-infinite extent) . It is of note that because the Euler-Bernoulli Equation (5.1) is of fourth order 

in the spatial variable, we are required to provide two boundary conditions at each termination [ 17G]. 

The simplest boundary conditions for the ideal beam are correspondingly simple to implement in the 

waveguide mesh. From [77]. the most physically relevant such boundary conditions are the following: 

F ixed E n d , Al lowed t o P i v o t 

In this simple case, we have 

w(i),t)=i) = > r(<)./) = 0 (5.12a) 

02w(ilt) 

dr* 
= 0 = > ,n(i).t)=i) (5.12b) 

c(().0 = 0 is ensured by terminating the parallel junction at / = 0 with a short-circuit, so that 

I J,o is forced to zero. From Figure 5.4(a). we see that as a result (really by construction), we have 

V^ 0 — —VS+ „• The second boundary condition. m((). f) — 0 can be enforced in a similar manner 

by terminating the series junction at grid location zero with an open circuit. 

F ixed C l a m p e d E n d 

Here the boundary conditions are 

«(() . /) = I) = > r ( ( U ) = (> (5.13a) 

* S ^ U 0 =* ^ = 0 (5.13b, 
ox ox 

The boundary condition tc = 0 is implemented as in the previous case. The condition <r'!-)j.' = 0 

requires some discussion. 
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Consider difference scheme (5.5) operating at the grid point i = 0. By condition (5.13a). lii(;i) 

will he set to zero, so we do not need to use (5.5a) at all. The difference scheme used to update MQ 

would be 

. \ / l , ( n+ i ) - -U„( , ( - i )= / i ( £7 ) 0 ( l - 1 (n ) -2U(n ) + r_1(M)) 

if we had access to V-\{ti), a value of the grid function V at the grid location to the left of the 

boundary point. Since we don't, we eliminate it by use of the numerical boundary condition 

Vl(n) = V_,(n) 

which is a second-order accurate approximation to g ' = 0. This leaves us with 

M0(n + i ) - M0(n - $) = 2/((£7)0V,(n) (5.14) 

Figure 5.4(b) shows the series junction terminated with a self-loop of impedance Zr,o. We now 

show that with the proper setting of this impedance, this termination satisfies a numerical condition 

identical to (5.14). At this junction, there will only be two incoming waves, V\ u and \'*0. and we 

thus have: 

-U/,,(» + i) = ^ 0 ~ ' , +
+ o ( » + ^ + r +

+ > + i)) 

= ^ - ( ^ , ( » > - r , - ) ( n - i ) ) 

= T
2 - ( K / . . ( » ) - V + , (» . ) - f c 7 0 (n - i ) ) 

- ^ - i r J . 1 ( » ) + -U/.u(n-i) 

Thus, by identification with (5.14), we require 

1 
Zjfi — Zcfi + Zr+ .o = 

l>(EI)o 

and we can set 

Zic I) = "-•"—— — _̂r + II 
' /<(£•/)„ 

where the value of Z,+ 0 depends on the type of network we are using (see previous section). For 
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a network of type II or III (see previous section). Zcfi as defined above i-> automatically positive, if 

the stability conditions over the interior network junct ions are satisfied, respectively (this is easily 

checked). For mesh of type I. we can show that it will b e positive if it is true that 

Since, for a Type I network, we already must have condition (5.11) for stability over the problem 

interior, then assuming that the material parameters do not vary greatly from one grid point to the 

next (In the limit as A -» 0. they must no t ) , this boundary condition is stable For the type I mesh 

;is well. 

In this case it can be seen that one of the benefits of the waveguide foiinitiation is that it is 

remarkably easy to check the compatibility of a par t icular type of boundary condition with a partic­

ular scheme. That is to say, the passivity condition, framed in terms of the posit ivity of the network 

immittatices, even at the boundary, tells us immediately which boundary condition implementations 

will be stable. Compatibility can be checked directly in the finite difference framework, but the 

procedure (which form part of what is known as GKSO theory [170]) may be quite involved. 

F r e e E n d 

The boundary conditions are now 

^ M = 0 _ » m«M) = 0 (5.15a, 

Ot a us 

The condition m — 0 is the same as for the fixed end which is allowed to pivot. Thus we terminate 

the series junction in the same way as in that case. For the other condition. "^ ' = 0, there is 

complete symmetry with the case of the fixed clamped end, where the condition was ' ';> ' = 0. The 

junction can be terminated as in Figure 5.4(c), and we choose }",. n = Yjfi—Yg-* o, where Yjto = 9, 

and ij+ „ follows from the part icular type of mesh configuration that we are using. Stability of this 

boundary condition for the three types of mesh follows as before as well. 

5.2 Timoshenko's Beam Equations 

Timoshenko's theory of beams const i tutes an improvement over the Eulet-Bernoulli theory, in that 

it incorporates shear and rotat ional inertia effects [77], This is one of the few cases in which a more 

refined modeling approach allows more t ractable numerical simulation: the reason for this is that 

Timoshenko's theory gives rise to a hyperbolic system, unlike the Euler-Bernoulli system, for which 
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Figure 5.4: Boundary terminations for the Enter-Bernoulli system (a) fixed end. allowed to pivot: 
(b) fixed, clamped end: (c) free end. 

propagation velocity is unbounded. It is this partially parabolic character of the Euler-Bernonlli 

system which engenders severe restrictions on the maximum allowable time step (at least in the case 

of explicit methods , of which type are all the scattering-based methods included in this work). For 

a physical derivation of Tiinoshcuko's system, we refer the reader to [77. 14G. 152, 187, 188], and 

simply present it here: 

pA 
d2w 

Of1 

,3V 
Ox 

d 

di 

(5.16a) 

(5.1Gb) 

As before. u{x. t) represents the transverse displacement of the beam from an equilibrium state, and 

the new dependent variable i '(.r.f) is the angle of deflection of the cross-section of the beam with 

respect to the vertical direction. Here, the quantities p, A. E and / are as for the Euler-Bernonlli 

Equat ion (5.1). G is t he shear modulus (usually called p in other contexts) and K is a constant which 

depends on the geometry of the beam. For generality, we assume that all these material parameters 

are functions of x. Losses or sources are not modeled. 

Nitsche [131]. in his MDVVD network-based approach preferred to use the more fundamental set 
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of four first order PDEs from which system (5.16) is condensed: 

Or 

>'Aol 
1 Oq 

AHTJOI 

dq 
Ox 
&v 
o~J-

(5.17a) 

(5.17b) 

OUJ 

1 dm 

~EI Ot 

dm 
= o7+« 

o~ 
0~x 

(5.18a) 

(5.18b) 

We have introduced here the quantities 

t' = -7T W = -r— III = L l - ^ -
~ Ot 

a. d*l1 

Ox 
q = AKG GH 

r is interpreted as transverse velocity. -' as an angular velocity, m as the bending moment, and (/ 

as the shear force on the cross-section. Each of the subsystems (5.17) and (5.18) has the form of 

a lossless (l-(-l)D transmission line system: they are coupled by constant-proportional terms, and 

it is tliis coupling that gives the Timoshenko system its dispersive character. The Euler-Bernoulli 

system (5.4) is recovered in the limit as AKG —> x and pi —• 0 [131]. 

This is a symmetric hyperbolic system of the form given in (3.1). with w = [r.q.uj.m]1. f = 0 

and 

p = 

Dispers 

pA 
n 
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The characteristic polynomial equation, from (3.10) with the system matrices given above, in tin-

case of constant coefficients, is 

w2
 (AKG » , „ „ \ EHG . 

(5.19) 

where w and j are frequency and spatial waveiiuniber. respectively. There are two pairs of solutions 

to this equation, which can be written as 

u-'l ± = ± 

\ 
T (nr + ̂ (E+GH) + V (nr + "J {E+GH)) "iEf;G 3' 

Wj± = ± , U ^ + 0HE + G,)-J(^f + .P(E + G,)y -4EHGA 
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and it is simple to show that in contrast with the Eulei-Bernoulli beam, the group velocities will be 

bounded. Indeed, we have in particular that 

•• >£ It , 3 ^ K 

Inn uJi± = ±p— Inn uJ-2± ± p 
fi->00 /I ft-*oo /> 

the first of these relations is similar to that which describes longitudinal wave propagat ion in a bar. 

and the second corresponds to shear vibration [77]. For the full varying-cocfltcient problem, the 

maximum group velocity, as defined in (3.13). will be 

^ . - = ^ V 7 (520) 

5.2.1 M D K C and M D W D F for Timoshenko's S y s t e m 

Nitsche [131] showed how to write a MDKC and MDWD network corresponding to Timoshenko's 

system. In order to deal with the asyimnetric coupling of the system of equations, he constructed 

a network using both MD capacitors and inductors, but here we will take the more conventional 

approach, and use a gyrator (For computat ional purposes, there is no essential difference between 

this representation and his.) 

Consider again the Timoslienko system of (5.17) and (5.18). We can scale the variables just as 

for the transmission line (see !j3.7). That is, we can write 

r = n ' i <j = i-2 w = »a »»= >"2'-i (5.21) 

where the constants n and )•_.. are strictly positive. We introduce, as before, the scaled t ime variable 

/ ' = r 0 ' where i•„ is the space s t ep / t ime step ratio. Then the Timoslienko system can be rewritten 

as 

voripAjr- = n — (5.22a) Vul>I~w = r ' 2 o 7 + ' 2 ( ' 

'D Oh Oil . Irnnls v0r%diA Oh 
n ^ - h (5.22b) - ^ r ^ 7 = ' ^ (5-23b) 

AKG Of Ox ' ' EI Of ' 0.r 

T h e constant proportional terms on the right-hand side appear anti-symmetiically, and can be 

interpreted as a lossless gyrator coupling. We can now write down a MDKC for the scaled system of 

equations; it is shown, along with element values in Figure 5.5. Its M D W D counterpar t is pictured 

in Figure 5.6. Here, we have used the coordinate transformation defined in (3.18) with step sizes 

T| = T-z = \ /2A. We have used V = A for the one-port t ime inductors. An M D W D network 

can obviously also be designed to operate on alternating grids, just as in the case of the (1 + 1)D 

transmission line. 

A comment is necessary regarding the gyrator in Figure 5.G. In order to deal with the delay-free 
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Figure 5.5: MDKC for Timoshenko'a system. 

loop which arises from the placement of a gyrator between two series junctions, we have set the 

corresponding ports of the series junctions on either side of the gyrator to be reflection-free. Tliis. 

however, means that the two port resistances of the gyrator are not . in general, equal to the gyrator 

constant, which, in this case, will be 1. In terms of wave variables, the signal How diagram of the 

gyrator will not be of the simple form of (2.2G). but takes the more general form of (2.25) mentioned 

in §2.3.4. It is of course also possible to set only one of the por ts connected to the gyrator to be 

reflection-free, (say lis = /?u + Ii>). and then the other port resistance to be /?(; = /?.-,, in which 

case the general gyrator form degenerates to a pair of scalings. As for the parameters r\ and /••>, an 

optimal choice can be shown to be 

' i 

' j 

= f max(.lCiK) inin(p.4) J 
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Figure 5.6: MDWD network for Ttmoshenko's system. 
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which yields the hound 

l>0 > max 
(max, (.4(7/.-) /max , (£7) 

m\nx{pA) V inin,(/>/) 
>19 

1 ,ma T (5.24) 

which is the same as that which is derived in [131]. We will show how to improve upon this hound 

in §5.2.6. 

5.2.2 Waveguide Network for Timoshenko's System 

Recall, from ?j4.1(). tha t for the ( 1 + 1 ) D transmission line problem, it is possible to obtain a DWN 

from an MDKC after a few network manipulations, and under the application of an alternative 

spectral mapping, or integration rule. We may proceed in the same way for Tiniosheiiko's system, 

and we will skip most of the steps tha t were detailed Li the earlier t reatment . We do recall, however, 

that the original system of equations should be scaled by a factor of A. the grid spacing, before 

making the switch to DWNs. 

We first transform the MDKC of Figure 5.5 such that the quanti t ies i and m represent voltages 

across capacitors, instead of currents through inductors. The t iansfornied MDKC is shown in Figure 

5.7. 

" i ' v . 

U-o. »lJ 

,i„ p, I \<„ n . 

.4' ? D' w P' 

Figure 5.7: Transformed MDKC for Timoshenko's system. 

The inductances are all as in Figure 5.5, except scaled by A, and the new capacitance values will 

be 

c, =,(„„-!) c< = *(lK) 
and the gyration coefficient /?«,- will be equal to A. As before, it is possible to interpret the two 

two-ports AA'BB' and PP'QQ' as MD representations of digital waveguide pairs, if we apply the 

alternative spectral mapping or integration rule as in tj4.10. T h e MD waveguide network is shown 

in Figure 5.8. 

Here we have chosen the s tep sizes sud i that an interleaved algori thm results, just as for the 

transmission line problem, as discussed in ?j4-l"- Thus, we have T\ = T2 = A / \ / 2 and T' = A so 
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Figure 5.8: Wa«e«7ti»rfe network for Timoshenko'a system, in a multidimensional form. 

that in a computer implementation, approximations to r and m are alternated with those of </ and w. 

The signal How diagram corresponding to Figure 5.8 is shown, as a DWN. in Figure 5.9. The junction 
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Figure 5.9: DWN for Timoshenko's system. 
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quantities Vj. Qj, ii.i and M.i approximate v, </. u and tn respectively and for consistency with the 

DW'N notat ion of Chapter 4, we have replaced the port resistances by waveguide admi t tances (at 

the parallel junctions) and impedances (at the series junctions). Because there are now two sets of 

imniittances at any grid point (corresponding to the upper and lower rails in Figure 5.9), we have 

indexed half of them with a tilde. Referring to Figure 5.9, the self-loop imnii t tances will be given 

bj 

2 - 2tfc 2 

n (Ei)i r-2 

at al ternating grid locations indexed by integer /'. The connecting iininil t a m e s will be, referring to 

the series junct ions. 

#*-,<+! = £**.i+i = ''< Z*~ ,i+\ - 3r+,i+J = r2 

The DW'N incorporates a gyrator between the two series junctions, and as such, we must employ 

reflection-free por t s at at least one of the two connected junction por ts . Though reflection-free po r t s 

and gyrators have not as yet appeared in the DW'N context, it is straightforward (indeed immedia te , 

if we are considering DWNs derived from MDKCs) . to transfer them from wave digital filters. These 

port impedances (subscripted with a /) at the series junctions can be chosen to be 

z i . ; + i = %c,i+\ +Zx-.i+\ +Zx+,i+L zt,n-k =Zcj+\ + z*-,i+!i + ^ + , . + i 

This is a s t ruc ture of the type 111 form (i.e.. the connecting imniit tances are spatially invariant: 

see §4.3.0). and the bound on in is suboptinial (and the same as that for the M D W D F s t ruc tu re 

discussed in the last section). The possible interleaving of the calculated junction quanti t ies in this 

structure is indicated, as in Chapter 4, by grey/whi te coloring of scattering junct ions. 

5.2.3 Other Waveguide Networks for Timoshenko's System 

For completeness sake, we mention two other DWNs for the Timo.shenko system for which there is 

no need for the coupling reflection-free ports; all junctions are isolated from one another by delays. 

They were derived separately, and not through the manipulation of an MDKC. In fact, they can 

be arrived at in this manner, but we will present only the resulting s t ructures . We mention them 

primarily because although they are quite similar to the DW'N of the last section, the passivity 

condition on the iuuiiit tance values leads to a radically different bound on t'o. the space s t e p / t i m e 

step ratio. 
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The difference between the two forms presented here is only in the coupling between the two lines. 

each type of which gives rise to a different type of offset sampling. For example, in the configuration 

shown in Figure 5.10. we calculate Qj and Mj at the same t ime instant , and at the same grid 

location, whereas in Figure 5.11. the Updating of Qj with respect to .\/./ is staggered in both time 

and space. 
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Figure 5.10: At) alternate DWN for Timoshenko's system. 

There are main' ways of setting the network innni t tances so as to approximate the Timoshenko 

system. Since both networks are simply just pairs of coupled (1 + 1)D transmission lines, the deriva­

tion of the constraints on the junction hninittances is familial-. Because the two networks are so 

similar, we will s late these constraints only for the network shown in Figure 5.11: 

- ' I ' , , 
'J.i+l ~ AGK)J+I; 

Zj,i+k =2v0(pl) Yj,i = 2vl)(f,A)i Yj,i = 
2i-p 

(EDi 

We use the bar nutation again to indicate an approximation to at least second-order accuracy in 

the spatial step A. and the tilde to distinguish between the innnit tances in the two transmission 
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Figure 5.11: Another alternate DWN for Titnoshenko's system. 

lines. Before we begin sett ing the i inmit tances values, however, we must comment oh the coupling 

waveguides which run between the parallel junctions which calculate Qj ami ilj: each such waveguide 

lias a non-reciprocal character (as evidenced by the sign inversion in only one of the two signal pal lis). 

We have left the admi t tance of this coupling waveguide independent of position. The reason for this 

is seen from the difference equations in the junction variables. For example, in the configuration of 

Figure 5.11, we have, after following through familiar manipulations, 

Q. • , - + . ( » + £ ) = Q . i , , - + i ( " - £ ) + - = - — (Vj.i+i(») -VJA") - Z&jj+Un)) 

which will approximate (5.17b) only if Z, = A. T h e same statement is t rue of the other configuration 

as well (where the admi t t ance of each coupling waveguide is set to Z / / 2 ) . 

It is convenient to set the inuni t tances such that the self-loops at the parallel junctions (recall 

the transmission line) can be dropped entirely from the calculation: in fact, in this lossless case, we 

can drop the explicit calculation of \j and Mj altogether if we wish, since when the self-loops at 

these junctions disappear, we are left with simple "through" junctions which do not scatter (recall 

Figure 4.1-1). Eventually, though, we may wish to have access to this variable because it is indeed 
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the time derivative of ui, the primary dependent variable of interest. We thus set 

1 - Erf 
Z,-.i+k = Z**,i-i = „ n.A. Zs-.i+k = Z*+.i-k = "T"1 Zt.i+\ = Zt.i+\ = A 

1 2 I'Ol'i ^i ' ( I 2 

and 

z = ' » , ''> } * A 
c , l + * (AGn)i (ACti)i+i vopjAi vopi+iAi+i 

A- ,+ i = ' '»(/'/), + r0(^/),-+i A 
- <'o Mo 

It is quite interesting to examine the posit ivity conditions on the self-loop admit tances. For 

example. Z,. ,-.i will be positive if. for all integer /'. we have 

•'o 1 A 
- — > 0 (.167,-), voipA 

which, using Vo = A/"i\ is equivalent to 

\(AGK)i 2j-(/>A)i 

It is easy to Bee tha t , in contrast to the stability conditions we derived for the various transmission 

lines, for the ideal beam, and for Thnoshenko's system in §5,2.1, for a passive realization there is 

now a maximum time, step for the scheme regardless of the spatial step. That is. the above condition 

can be t rue only when 

1 < nun 
I (.467,), 

Assuming that this condition is met. we then must have 

A > 7" max , / 

A posltivity requirement on Zc , yields a similar set of conditions. 

(EI), 
T < min (2nl); and A > Tinax ,, 

- < ' - ' \l(l>Di-\ 

In the limit as T becomes small, both conditions on the spatial step si/e A approach conven­

tional CFL-type bounds (recall the wave speeds implied by Thnoshenko's system, mentioned in the 
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beginning of this section); both must be satisfied for the waveguide network to be concretely pus-

sin, though they may be stable in the Yon Neumann sense (see Appendix A). It would appear 

that the special character of these passivity conditions on the scheme are the direct result of the 

approximation of the memoryless asymmetric line coupling by a reactive waveguide coupling. 

5.2.4 Boundary Conditions in the DWN 

T h e three common types of boundary conditions used to terminate a Timoshenko beam are similar 

to the classical beam conditions [14G] which were discussed in ^5.1.3. 

ir = i/i = () Fixed end. allowed to pivot (6.25a) 

w — i— 0 Fixed d a m p e d end (5.25b) 

q = tn = () Free end (5.25c) 

All of these conditions are of the form of (3.8). and are lossless. 

There are several possibilities for the implementation of these boundary conditions (5.25) at a 

boundary grid point in the MOWD network or any of the mentioned DWN structures. Through 

simulation, we have determined that the use of reflection-canceling waves at t h e boundary, as per the 

method of [11)7]. dues nut lead to a passive termination. This statement also holds for the termination 

of the plate and shell models that we will discuss shortly; violent instabilities may appear in these 

systems, even though the termination of the simpler transmission line and parallel-plate networks 

by this method is not problematic. At present, the termination of a MDWD network is very poorly 

understood, even by exper ts [115]. Indeed, as we mentioned in §3.11. there is not, as yet. a general 

theory of boundary terminat ion of MDWD networks [142]. We refer to §G.2.3 for a discussion of a 

possible avenue of approach. 

For this reason, we decided to retreat from this problem, and work with the termination of the 

DWN, in its conventional lumped form. When a network is viewed in this way, it is much simpler 

to see how boundary conditions may be set such that passivity may be maintained. The difficulty 

in working with the expanded signal flow diagram for a MDWD network is that unlike the DWN, 

there is no port s t ructure in this case: in the DWN. applying lumped terminat ions to junctions on 

the boundary is straightforward. 

Because we looked at the termination of the (1 + 1)D transmission line. (2-f 1)D parallel-plate 

and Eider-Bernoulli systems in this way in §4.3.9. §4.4.4 and §5.1.3 respectively, we simply present 

the terminations corresponding to boundary conditions (5.25). We have chosen here to work with 

the DWN shown in Figure 5.9. although the termination of the networks of Figures 5.10 and 5.11 is 

equally simple. In addition, we align the parallel junctions (at which \'j and Mj are calculated) with 

the left end point (say) of the beam, located at x = t). In this way, we avoid the slight additional 

complication of the coupling that occurs if the series junctions are placed at the boundary (though 
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we will be forced to face this issue when we set boundary conditions in the Miudlin pla te network 

in §5.4.2). T h e three terminations are shown in Figure 5.12. 

1 >< ; 

~L ' 

-1 \ I ' 

1 ; : 
- •'- • 

u ' : 
• L ' 

f, Mj MA 

(a) (b) (c) 

Figure 5.12: Boundary trnninations for the DWN for Ttmosftenko's system — (a) fixed end. allowed 

to pivot, (b) fixed clamped end, and (c) fru end. 

A condition a- = 0 (implying v = 0) or m = 0 is easily implemented by short-circuiting the 

appropr ia te junction. For the condition tf> = I), it is easy to show that we should choose the self-

loop admi t t ance to be \'r — r0/(EI) — l/r-> at the terminating junction at which Mj is calculated. 

Similarly, for the condition (j = 0, we should choose Ye = I'ofA — L/rj at the junction at which Vj 

is calculated. 

5.2.5 Simulation: Timoshenko's System for Beams of Uniform and Vary­

ing Cross-sectional Areas 

We present here some two simple DWN simulations of the Timoshenko beam equations. In both 

cases, we have made use of the DWN of Figure 5.9. which was derived directly from an M D K C (shown 

in Figure 5.7). We simulate the behavior of a square prismatic steel beam, of length L — lm. under 

the application of an initial transverse velocity distribution at the beam center which has the form of 

one period of a raised cosine, of wavelength 5cm and ampli tude ((.0005 in /s . In the first simulation, 

the beam is assumed to have a uniform thickness of 2 cm, and the boundary conditions are of the free 

type at either end: the evolution of the velocity distribution is shown in Figure 5.13. In the second 

simulation, the beam is assumed to be of linearly-varying thickness, from 1 cm at the left end to 3 cm 
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i = u.o« t = 4 . 3 2 x 10"".s 

04 0.6 0.8 

Figure 5.13: Simulation: evolution of thi transverse velocity distribution along a Ttmoshenko beam 
of uniform thickness, with free ends. 

at the right end. The area .4 thus varies quadraticallv. and the moment of inertia quartically. In this 

second case (shown in Figure 5.14), the boundary conditions are assumed d a m p e d . The material 

parameters for steel are taken to b e / ; • 5.38 x l O ' k g / m 3 . E = 1.4 x 1 0 l 2 N / m 2 . G = 5.39 x 1 0 u N / m 2 . 

and Timosheuko's coefficient for a beam of square cross-section is K = 5/G [83]. In bo th simulations. 

we operate using a grid spacing of 1/400 m. and the t ime s tep is chosen to be at the passivity limit. 

From (5.24), and given the above values of the material parameters of the beam, i'o is chosen to be 

5.1x10' ' m / s for the Uniform beam, and 4.59X 10' m / s for the beam of varying thickness. 

In both simulations, it is easy to see that due to dispersion, the coherence of the initial velocity 
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Figure 5.14: Simulation: evolution of the transverse velocity distribution along a Timoshenko beam 
of linearly-varying thickness, with clamped ends. 
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distribution is lost: short wavelengths tend to move faster (and hence reflect first from the boundary) , 

as can be seen in the plot at / = 8.65 x l(J~5s. In the beam with linearly-varying thickness, velocities 

are amplified in the thin region of the beam, and at tenuated in the thick region: the propagation 

velocities themselves, however, are not significantly altered. 

5.2.6 Improved M D K C for Timosheuko's System Via Balancing 

In the preceding simulation of the steel beam of rectangular cross-section and linearly-varying thick­

ness, we have, from (5.24). r 0 = 4.59 x 10 ' : the time step is thus restricted to be quite small. We 

will now show how the balancing or preconditioning approach applied to the (1 + 1)D transmission 

line problem in ?{3.12 can be used to drastically increase the maximum allowable time step for a 

given grid spacing. 

Suppose we scale the dependent variables according to 

«' = ' l ' l 'J = r-i'i-2 U — rsii ;;) = ;•,/1 

and allow the scaling parameters r\ r.s to be arbitrary smooth functions of x. Timosheuko's 

system (5.17) (5.18) can then be rewri t ten as 

(>-i\ ,0*1 0i-> r!, , , „ , 
V0{K)PAW = ar^cT (5>26a) 

>»(-) TT'IF = %• + % - * * <M») 
\ r i j AnG Of ox Pj n 

fr3\ r0i3 0i4 r\. ,-, 
v° I ~ M^77 = ^ - + —'i + —'-> (5.2Cc) 

\r.ij at' d.r ;_, rA 

'"{KjElor = ar- + c7 ' : ' (5-26<1) 

where primes above the r,. / = 1 4 indicate .(-differentiation. If we choose: 

r, = (PA2GK) ~ < r 3 = [PA*GK) * r , = (,,EI2)" * r , = (rEI2) * (5.27) 

Then system (5.20) becomes 

^ihw = ar+^ < - 2 8 a ) 

*t/£SSJ = Sr-^-r* <5-28b> 
V tr/,- at as r-, pj 

F ^ 7 7 = - ~ - + —'•« + — i 2 (5.28c) 
Eat' a.r Vi n 

/

p diA di3 r\. / r o a n 

EOT = a r " - n ' : ' (5-28d) 
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and t h e constant-proportional t e rms appear ant i-symmetrically (note, from (5.27), that r2/r.\ = 

r,\/r\). In the MDKC shown in Figure 5.15. these terms are all interpreted as gyrator couplings, 

where t h e gyrator coefficients are spatially Varying. It is easy to check that this system is still 

symmetr ic hyperbolic according to definition (3.1). 
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Figure 5.15: Balanced MDKC for Timoshenko's system. 

T h e M D W D network (not shown) implied by the MDKC will be slightly more difficult to program, 

because of the additional reflection-free por ts which will necessarily be introduced, but it has the 

same memory requirements, and the operation count is slightly larger (due chiefly to the post -scaling 

of the M D K C currents which must now be performed in order to obtain the physical dependent 

variables). We now have, however, tha t 

i'u > max 
f [E [GK 
I max </ —.max 1/ — 
V ' € P y /' rpp y p 

- -vs 

'7 .uitu 

where 7 | > m a , is the maximum group velocity given in (5.20). t'o is now optimal (iu the CFL sense), 

for a cons tan t grid spacing. Referring to the simulation of §5.2.5, it is easy to see that that due to 

the quar t ic dependence of the moment of inertia / on J- (for a beam of linearly varying thickness), 

the max imum time step allowed by the previous approach (also the maximum t ime s tep allowed 

in [131]) will be severely constrained. Using a balanced formulation and MDKC. we now have 

t'o = 5.10 x 10 . Thus for a given grid spacing, the maximum time step is now 9 times larger. From 

a practical standpoint , this is a huge computat ional advantage. 

We repeat that balancing is unnecessary if there is no spatial Variation in the problem parameters , 

and t ha t in a region of the material for which the parameters do not vary, we may simply drop 

the addit ional gyrator couplings RQJ and Rat from the network entirely. We also note that it is 

possible t o incorporate the scaling of t h e dependent variables into the MDKC itself by introducing 
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transformers with turn ratios r\ r t in all the circuit loops; while useful for showing the MD-

passivity of the system under scaling, then- is no practical reason for doing so. 

5.3 Longitudinal and Torsional Waves in Rods 

In addition to transverse waves, a one-dimensional stiif medium can support longitudinal and tor­

sional waves [66, 77). In these cases, the medium is usually referred to as a rod or bin instead of a 

beam [83. 146]. 

When a bar aligned with the .r-axis is vibrating longitudinally, motion within the medium will 

only occur in the x direction. If n(j-.t) represents the longitudinal displacement of the medium at 

position ,r and t ime t. the equat ion of motion of the bar [140] is 

which is easily identified the second-order equation describing the behavior of current or voltage in the 

(1+1 )D transmission line, as per (4.39). Thus all methods applicable to the (1 + 1 )D transmission line 

discussed in this work are applicable to this case as well. Note that in the case of constant material 

parameters and cross-sectional area. (5.29) becomes the (1 + 1 )D wave equation, and thus longitudinal 

waves travel non-dispersively (hi contrast to transverse waves). Here, lateral inertia effects have been 

neglected—that is. even though the medium undergoes axial compression and expansion, the bar is 

not allowed to compensa te for this by becoming "fatter" or "thinner" respectively. The so-called 

Love theory [77] is an a t t emp t to account for this important effect; it should be possible to apply 

scattering-based numerical me thods to the Love theory, a l though we have not a t t empted to do SO. 

Torsional motion involves the propagation of a twisting disturbance along the length of the bar. 

For a bar of constant cross-section, the equation of motion here is 

where 0(x,t) is the angle at which the bar is twisted relative to its equilibrium state. ./ is the polar 

moment of inertia, and C is a constant which depends on the geometry of the cross section [77]. 

Here again, we have the basic (1 + 1)D transmission line form, and the comments made regarding 

longitudinal waves apply equally well here. 

5.4 Plates 

T h e equations of motion of a stiff plate are the (2+1 )D generalization of those of a beam. We assume 

the plate to lie. when at rest, in the (.r. y) plane, and to be of thickness h{j-.;/): the deflection irf.r. u) 

of the plate from its equilibrium s ta te is assumed to be perpendicular to the (x.;/) plane. The plate 
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material has density p. as well as Young's modulus £ and Poisson's ratio i/, all of which are assumed, 

for the sake of generality, to be smooth positive functions of .r and y. In particular, u must be less 

than one-half. The classical development depends on neglecting rotational inertia effects and makes 

various assumptions analogous to the "plane sections remain plane and perpendicular to the neutral 

axis" hypothesis that was used as the basis for the Euler-Deruoulli beam model [77]. The resulting 

equation of motion [6. 113] can be written as 

, # « : r , 2 / ™ * 2 S „ J02D02tr d2D d2w 02D O2w\ 

where 

Eh3 

D 
1 2 ( 1 - , / - ) 

and used V 2 = -jfe + ^-y. If the material parameters and the thickness are constant , then 

which is easily seen to be a direct generalization of (5.2). As such, we expect to find the same 

anomalous behavior of the resulting propagation velocities, which can become infinitely large in the 

high-frequency limit. Numerical integration of these equations via a waveguide mesh proceeds along 

exactly the same lines as in the case of the Euler-Bernoulli beam; in particular, we find a restriction 

on the space s tep/ t ime s tep rat io similar to those that resulted in §5.1.2. 

Because the development is so similar to the (1 + 1)D case, we will proceed directly to the more 

refined model of plate motion, which is a direct generalization of the Timoshenko theory for beams. 

First proposed by Mindlin. the model [77. 120], can be written as system of eight P D E s [173]: 

ph:i dujr dm, 0mry 

•WeT = -ox- + -bT-'J* (a-32a) 

dv dqx 0qy ph*duv _ dmty 0my ** * « M 
,,hm = ~d7 + -dy- ( j 3 1 a ) lY-df ~ -dx- + ^y--fi» {o-32h) 

1 * + . * (5.31b) I 2 & = fe+'T? (M*) 
n2Gh dt dx ' * l ' D dt dx dy 

K2Gh dt dy v D dt dy dx y ' 

dniXy djjy ( duJx 

D(\-t>) dt dx dy 
-f — - (5.32e) 

Here, we have written 
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where w is the transverse displacement of the plate, and ( i > . f „ | is the pair of angles giving the 

orientation of the sides of a deformed differential element of the plate with respect to the perpen­

dicular. (In the classical theory, for which cross-sections of the plate are assumed to remain parallel 

to the pla te normal, we have (V>*»V'j/) = ( — jjj. — sj- ).) In addit ion, we have the shear forces (qT,qy) 

and moments (m., ,HI ,,.»/(.,,,). which are the (2-f 1)D generalizations of'/ and in. The system (5.31) 

(5.32) as a whole is known as Mindlin's system, although it is more commonly written s a system of 

three second-order equations in the variables w. if'x and t , ; [77]. We have writ ten Mindlin's system 

so that it is easy to see the decomposition into two separate subsystems, one in (v,qT,qy) and the 

other in ( u I , u . , m z , m , l m n ) i with the coupling occurring via constant-proport ional te rms in - v . 

k/y, qx and qy. In particular, subsystein (5.31) is similar lo the lossless parallel-plate system (see 

*jl.4). except for the coupling terms. 

It i-, easy to see that this systein is not. as written, symmetric hyperbolic. It is easy to symmetrize 

it by taking sums and differences of (5.32c) and (5.32d), in which case we get, in terms of t he variable 

W = [r. qT.ti„.~T,Wy,ffl* .ii)y.mTy]
T. 

P = P A / = 
P + 

* A / A! = A A / J = 

B = B „ -

At,, 

- B ' t • 

A u i _ 

B A , x 

A J = A A / 2 = 
A+ 

A/2 . 

(5.33) 

where the • s tands for zero entries, and 
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(5.35) 
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>\i 

0 

(1 

-1 

0 
(i 

0 

0 

II 

1) 

• 
II 

II 

II 

The system defined by (5.33) is lossless, due to the ant i -symmetry of B \ / . Also, note that P \ / is 

positive definite (recall that i' is positive, and less than one-half), but not diagonal ' : this did not 

come u]> in any of the systems we have looked at previously, and will have interesting consequences 

in the circuit representations in the next section. 

M a x i m u m G r o u p Veloc i ty 

For the constant coefficient problem, the characteristic polynomial relating frequencies ui to spatial 

waveniniibcr | | /3 | |2 = J3* + .1*. from (3.10), will be 

The first factor, which is similar in form to that which defines the Tiinoshenko system, from (5.19), 

has four roots. ui\±, wj± which behave as 

lim w 1 ± = ± | | / 9 | | 2 1 / — - ^ — - lira Wfct = ± | | £ | | 8 » / — 

and the second factor has a pair of roots ^':i±. which have the limiting behavior 

lim ws ± = ± | | i9 | | 2 

WI|2-+« fi 
All phase and group velocities a re thus bounded. For the varying-coefficient problem, the maximum 

global group velocity will be 

' M.mar x t P 1/ /•>( 1 — V* ) 

' i t is possible to write a symmetr ic hyperbolic form of Mindlin's system for wliicli the P matrix is diagonal by 
introducing the variables JIIJ = (rnT + rrij)/'J and ;»_> = ( i n , — r n , ) / 2 . Though the resulting M D K C will be simpler, 
boundary conditions become over-determined and dill icull l o set properly, because A | and A j are consequently lest 
sparse ( implyinggreater network connec t iv i ty ) . The form described by the matrices in (.r).:t:{) is more fundamental in 
tlii- respei t. 
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5.4.1 MDKCs and Scattering Networks for Mindlin's System 

We now introduce scaled dependent variables 

(/,. 'J- ' I - ' I. '-,- »a,»7i»8 ) = ('•! •'- <h-<l<r ->• Wj • ' j ' " i • '•-"'' y, ' : ) '»,„ ) 

where again, i\. r_> and r& are positive ((instants, as well as the scaled time variable / ' = rltt. 

The MD-passive circuit representation of Mindlin's system is shown in Figure 5.10. where we have 

used the coordinates defined by (3.21) with the transformation matrix (3.22). Here, the port with 

terminals .4 and .4' is assumed to be short-circuited (we will return to this port in §5.5.2). It is best 

to view this as a three-loop network (on the left, in Figure 5.1G) corresponding to the subsystem 

(•J.31). coupled to a five-loop network on the right (subsystem (5.32)). 

Because P » from (5.33) is not diagonal, the coupling between the loops with currents /'0 and ir 

(corresponding to the moments iux and m«) is of a type not previously encountered in the systems 

examined in this thesis. It can be interpreted in terms a coupled inductance between the loops (see 

§2.3.7); in Figure 5.10. self-inductances are indicated by directed arrows, and mutual inductance by 

bidirectional arrows. The clement values are as indicated in the figure. 

Optimal choices of V\. /••_. and c:). and the optimal stability bound on r0 are a little more difficult 

to find in this case. As before, however, they follow from a positivity requirement on the inductance 

values defined in Figure 5.16. This requirement is simply applied to L\. L->. La, L\. L-, and L$, but 

L 6 and L-, define a coupled inductance between the loops with currents tg and if. The coupling 

matrix will be 

' i s I v 

I T I B 

and is required to be positive semi-definite for passivity. This is t rue if 

l o > | I T | (5.30) 

An optimal choice for r\ is easily shown to be 

1/ min,,„(/»/») max, „(«'&/>) 

and gives a first bound on r». which is 

12 maxx J n2Gh) 
«'o > 'A/+ = \h •' " , • -— (5-38) 
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Flgure 5.16s MDKC and MDWD network for Mindlm'.s system. 
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Fitfuir j.17: Modified MDKC and multidimensional DWN for Mindltn's system. 
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From the posit ivity requirement on L i , Lr>. L«. as well as condition (5.3G). we have a second 

liDiuid on i»o, 

i,i > max —: TTTT- Ti • 7^— — 0.39 
-.->,,:i >u I nun*,„(p/i*) 12r2 12ra J 

This is a simple minimax-type problem—we would like to minimize the bound on VQ, which is the 

maximum of three quantities as per (5.39), with respect the pa ramete r s ;••_> and r.,. The solution is 

1 / Eft" \ / ••.ii.J.„[<,).') 

'"-• = !^T^)/„,„,,,fM1 + „m x , .„0 , M 0 > 

,, = 1 ,(*)(r^LZ (6.41) 

which Rives the second bound 

i>o > v 2 m a x I i / , 
'̂ V M i - " 2 ) 

«'o > <',\/- = \ / : TT l i l 5 - 4 2 ) 

V mm,,j,(/>/*J) 

and the overall stability bound for the combined network will be 

''n > »\w = max( t> A / - , t ' U + ) (5.43) 

When the material parameters and the thickness are constant , this bound reduces to 

The MDWD network, shown at bo t tom in Figure 5.10. follows immediately from the MDKC: here. 

as for the parallel-plate problem discussed in *j3.8.1. we have used s tep sizes Tj = A. j = 1 5. 

Recall that because coordinate t$ = t' = rut, a s tep size of X5 = A implies a time step of A/t 'o = T. 

and we have indicated pure time delays of durat ion T by T . As for the Tiinoshenko network of 

Figure 5.G. reflection-free ports will be necessary due to the memoryless gyrator couplings between 

the loops with currents i j and »•)• and /:t and *'r. in the M D K C . T h e coupled inductance has been 

treated as a vector scattering junction te rminated on a vector inductor , as discussed in §2.3.7. We 

also note in passing that this network may be balanced in the same way as the Tiinoshenko system 

(see f{5.2.6) in order to obtain a much bet ter bound on t'o (at the expense of increased network 

complexity). 

It is also of course possible to put the MDKC into a form which yields, upon discretization, a 

DWN. This new form is shown in Figure 5.17: now the transverse velocity r and bending moments 
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nij., mv and m*v are t rea ted as voltages, and inductors in these loops are replaced by gyrators 

terminated on capacitances. In particular, t he coupled inductance in Figure 5.1G is replaced by 

a coupled capacitance. In order to discretize this MDKC, we apply the trapezoid rule to all the 

inductances and capacitances with direction /-, (using a step si/e of T, = A ) , and to the Jaumann 

two-ports, we make use of the alternative spectral mappings defined by (4.109), with step sizes 

Tj = A / 2 . j = l 4. We have chosen these s tep sizes such that an interleaved algorithm results: 

the computational grid is shown in Figure 5.18. Grid quantities (capitalized) a re shown next to the 

points at which they are to be calculated. The grid on the right, which operates on grid functions I ' . 

Qz and Qy is Identical to the grid for the DWN for the (2+1 )D parallel-plate problem (see Figure 

4.18). which is to be expected, since the related subnetwork of the MDKC shown in Figure 5.17 is 

the same as that for the parallel-plate problem (see Figure 4.49). It is coupled via gyrators (these 

couplings are indicated by curved arrows) to a second grid, over which grid functions ilx, il,,. Mx, 

Mu and Mj-y are calculated. In particular, Ma and M;l are calculated together as a vector quantity 

at a vector parallel junction this vector is wri t ten as M in Figure 5.18. Waveguide connections (of 

delay T/2) are represented by solid lines, and self-loops and sign-inversions in the signal paths are 

not shown. Note that at the grey dots, we will have parallel scattering junctions, and at the white 

dots we will have series junctions: junction quanti t ies are calculated at a l ternat ing multiples of T/2. 

(i + i m 

| M ]s77 [M 

(• + £ lii (.+ ni 

Figure 5.18: Computational grid for tin multidimensional DWN shown in Figun 5.17. 

5.4.2 Boundary Termination of the Mindlin Plate 

There are four common types of conditions applied at a plate boundary [94]. At a southern boundary, 

parallel to the x axis, the four conditions can be wri t ten as 

•h, 

v 

v 

i 

= in,,, = 

= in,, = 

= » > ' . 

= w , 

Free edge 

Simply supported edge (1) 

Simply supported edge (2) 

Clamped edge 

(5.44a) 

|.V! Ihi 

(5,14.-) 

(5.44d) 
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Figure 5.19: Southern computational grid boundary aty = 0 for the DWN for Mindlin's system. 

These conditions a re again lossless, and of the form of (3.8). (We note that conditions on c. u>x and 

iOy in (5.44) are usually written in terms of their t ime integrals w, t v and t 'v . but the formulation 

above is equivalent.) The same conditions also reduce to a similar set of conditions which can be 

applied to the classical plate, as defined by [17]. 

As we mentioned in §5.2.4. the passive boundary termination of an MDVVD network, such as 

that shown in Figure 5.1C, is not at all straightforward. Indeed, it is somewhat complicated by the 

fact that we must approximate all the system variables at any given grid point on the boundary, and 

we were not able to implement a stable terminat ion for tliis network. The "wave-canceling" me thod 

[107] discussed in §3.11 becomes exceedingly complex when vector wave variables and reflection-free 

por ts are involved: passivity is not easy to ensure. 

Termination of the DWN derived from the M D K C of Figure 5.17. operating on the computat ional 

grid of Figure 5.18, however. is simpler, because we are able to work directly with the termination 

of the lumped mesh representation. Suppose we choose our southern boundary at y = 0 according 

to Figure 5.19. T h e only quantities to be calculated in this arrangement will be Qy and Slv, at 

coincident series scattering junctions, and MXy ; ' f parallel scattering junctions. This arrangement 

is to be preferred, because we do not need to worry about the termination of the vector scattering 

junct ions at which M = [MT..\Iy] is calculated. 

The southern boundary terminations corresponding to the four conditions (5.44) are shown in 

Figure 5.20. The conditions qv = 0 and uiy = 0 that appear in (5.44a) and (5.44d) can be dealt 

with ra ther simply, by terminating the boundary series junctions at which the junction currents Qyj 

and Ryj are calculated in an open circuit ' . For these conditions, the gyrator coupling between the 

two subnetworks (indicated by curved arrows in Figure 5.19) may be dropped entirely. Similarly. 

the condition m , „ = 0 can be implemented by short-circuiting the appropriate parallel boundary 

junct ions. 

T h e other conditions, involving variables not calculated directly on the boundary require a slightly 

more involved t r ea tmen t : the analysis is similar to that performed in §4.4.4, and the termination 

problem becomes (for the most part) that of sett ing the self-loop immittances at the boundary 

junct ions which can not be trivially te rminated in an open or short circuit. To this end. we provide 

' In beeping with the notation of Chapter 4, wo have appended a "./" Lo the subscript of any grid function, to 
indicate that it is to be calculated as a junction current or voltage. 
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the waveguide iimiiit tanccs at the .junctions in the problem interior at which MT!lj. !>,,./ and Qyj 

are calculated. From Figure 0.17. it is possible to read off these values directly. As for the DWN for 

the Thnoshenko system in §5.2.2. inmiittanees in the two overlapped networks are distinguished by 

a ti lde ( " ). For example, at a parallel junction in the live-variable grid at location s = (i + r;)A. 

y = jA. for / and j integer, where we calculate Mtyjj+l i (see Figure 5.18). there are waveguide 

connect ions to the north, south, east and west: iheir admit tances are defined as 

Vi/+,*+iJ = *»-.i+£J = ^ + , ' +5 . j ~ ^J--.- + i.j = ~Jf~r - ~ 

respectively, which are a m p l y the admittances of the multidimensional unit elements from Figure 

5.17. Similarly, the four connecting waveguide impedances at series junctions at locations J- = I 'A. 

j = iA (at which OpJ.ij are calculated) will have impedances 

Zy+,i,j = Zy- A,j = -^H = ''-' ZT+JJ = Zr-jj = 7?|5 = r:, 

111 tin* other waveguide mesh (on the right in Figure 5.18). the connecting northward and southward 

impedances at the series junctions at which QyJ,ij is calculated will be 

Zy+,i,j — Zy~ .i,j = f » = ' l 

T h e self-loop iinmittaiices at the three types of junctions will be 

v ] 4 ,'° 4
 ( t i 5 1 

Ze>iJ = / ? l = l ^ ! l i - - 2 r 2 - 2 r 3 (5.45b) 

We assume ;-|. rj and r j to be chosen according to (5.37). (5.40) and (5.41) respectively. 

F r e e E d g e 

Referring to Figure 5.20(a). the conditions iy„ = 0 and in,,, = 0 are rather simply dealt with by open-

ur short-circuiting the respective junctions. In this case, the gyrator connection between the two 

waveguide meshes can be severed at the boundary junctions, and in order to get a lossless numerical 

condition equivalent to m« = 0 we need only set. lor j = 0. 

A «'o(/;/'3).,o z.\>,o = 75 r2 

which is less restrictive than (5.45b). and does not degrade the bound from (5.38) and (5.42). 
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Figure 5.20: Kurioi/.s lossless boundary terminations for the DWN for Mindlin's system (a) free 
boundary: (b) simply supported edge (1): (c) simply supported edge (2): (d) clamped edge. 
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S i m p l y S u p p o r t e d E d g e (1 ) 

Conditions (5.44b) are somewhat more complicated to implement than the others, because none 

of the variables calculated on the boundary can be zeroed out by short- or open-circuiting. From 

Figure 5.20(b). we can see that in addition to the gyrator coupling between the two meshes thai 

must be maintained, we also must keep the waveguides which lie along the boundary. 

In the problem interior, parallel and series junct ions in the five-variable mesh are connected, 

through waveguides, to four neighboring junctions: on the southern boundary, however, each is 

connected to three two to the east and west) and one to the north. Due to this asymmetry, we 

might suspect that it will be necessary to adjust the boundary waveguide Impedances away from 

the values that they would take on the interior (which is r : t ) . In fact, it is possible to show that by 

introducing transformers, with turns ratios of n = 2 hi these waveguides, we indeed have a lossless 

termination which satisfies conditions (5.44b). We must set t he boundary imiuittaiices to 

2 • * - , « + A , 8 — ' j - + , i + A , o — ; T " 7 * * - . t , o — " * + , « \ o — 

Notice that each waveguide now includes scaling factors (of 2 and 1/2), and that the impedances 

at either end are no longer identical, due to the transformer impedance matching. T h e self-loop 

immittances should be set according to 

KM 
2.„ 2 

( £ > d - / ' ) ) 1 + i , „ fa 

Ze,ija - r^ ''-' _ , : ' 

7 ' » 
tr.i.O = — .,r,. '"i 

which are precisely half the values they would take at interior junctions, from (5.45) (and thus the 

positivity condition on these immit tances is no different from the condition over interior self-loop 

immittances). We also mention that the gyrator coefficient, which takes on a value of /?<; = A over 

the interior, should also be halved to fi(, = A / 2 at the boundary .junctions. 

S i m p l y S u p p o r t e d E d g e (2 ) 

The condition may = 0 from (5.44c) can be set by short-circuiting the parallel boundary junctions. 

The condition V = 0 can be dealt with as for the preceding case, and we will again require 

7 'o 
*c,i',o — . 2r,, ' i 

[K*Gh)ijB 

and the gyrator coefficient at the boundary junctions should be set to Ra = A / 2 . T h e self-loop 

impedances at the series junctions in the five-variable mesh should be set. in order to ensure my = 0. 
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as 

v '»(/</'' ' ') , . II 
ZcJA = ^2 '"2 

The positivity requirement on this impedance is again less restrictive than condition (5.45b) on the 

mesh interior. 

C l a m p e d E d g e 

For conditions (5.44d), we may immediately terminate the scries junctions in the five-variable mesh 

with an open-circuit, and the gyrator coupling can lie dropped entirely, as for the case of the free 

boundary condition. The remaining self-loop iininittances should be set as 

.-. 2i'„ _ j _ 

'••'+*-° ( D ( l - t , ) ) , . + M r;, 

y '" 

which, as before, are less restrictive settings than those over the mesh interior, from (5.45). 

5.4.3 Siinulatioii: Mindlm's System, for Plates of Uniform and Varying 

Thickness 

For the sake of illustration, we present two DWN simulations of the vibration of a Mindlin plate. 

In bo th cases, t he plate is assumed to be square, with side length l m and to be made of steel: the 

material parameters are thus /, = 5.38 x 10 ! kg/m 3 . E = 1.4 x l 0 1 2 N / m 2 , G = 5.39 x l O n N / t n 2 . K 

is taken to be 5/6, and Poisson's ratio v is set to 0.3. In bo th cases, the DWN is initialized with 

a transverse velocity distr ibution which takes the form of a single lobe of a 2D raised cosine, of 

radius 0.1m, ampl i tude 0.0()()5m/s. and centered at coordinates s = 0.3m, y = 0.3m, where x = Om. 

i/ = Om are the coordinates of the bot tom left-hand plate corner. The grid spacing is set to be 

A = lcm in the DWN in bo th cases. 

In the first simulation (see Figure 5.21). the plate thickness is l cm, over the entire plate surface. 

Boundary conditions are of the free type, given by (5.44a). and implemented as per the DWN 

terminat ion discussed in the previous section, and shown in Figure 5.20(a). In the second simulation, 

shown in Figure 5.22, the plate thickness is variable over most of the plate, it is a constant lcm. but 

over the circular region outlined in black (radius 0.2m. and (entered at x = 0.6m, y = O.Gin), it rises 

in a raised 2D cosine distr ibution to a peak of Gem. In both simulations, snapshots of the transverse 

velocity distr ibution are taken every 2.875x 10_ : is. The boundary termination is of the clamped type 

(5.44d) in this case, and has been implemented in the DWN according to Figure 5.20(d). 

Light- and dark-colored regions correspond to positive and negative velocities, respectively. The 
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plots have been normalized and interpolated for better visibility. Notice in particular the numerical 

directional dependence of the propagation velocities at short wavelengths. 

I = (UK / = 2.875 x 10 - / = 5.750 x 10_5s / = 8.G25 x 10_ 5s 

O) o 
t =z 1.150 x 10"4s / = 1.438 x 10-4s 1 = 1.725 x 10" 's t = 2.012 x 10_ 4s 

• • J 

Figure 5.21: DWN simulation of Mindlin's system, for a steel plate of uniform thickness, with free 
edges. 

f = 0.0s / = 2.875 x l()-5s t = 5.750 x 10~ss / = 8.G25 x l O ^ s 

IT 9 6> S 
< = 1.150 X 10~*B / = 1.438 x l()-4s f = 1.725 x K T ' s 1= 2.012 x l()"4s 

i ' • 

Figure 5.22: DWN simulation of Mindlin's system, for a steel plate of varying thickness. The 
variation is limited to the interior of the black circles. Boundary conditions an of tin clamped type. 
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5 .5 C y l i n d r i c a l S h e l l s 

A shell is simply a plate with some curvature; it also suppor ts wave motion, but t h e curvature 

complicates the motion considerably. As we will see. however, certain types of shell systems can also 

be represented by ( 2 + l ) D MDKCs. We will look first at the so-called cylindrical membrane shell 

formulation [77]. then at a more modern (and elaborate) cylindrical shell formulation due to Naghdi 

and Cooper [31, 128]. 

5.5.1 T h e Membrane Shell 

The simplest type of cylindrical shell theory is the membrane shell formulation of Rayleigh [77]. In 

this very basic theory, the shell is assumed to behave somewhat like ;i membrane, in tha t the restoring 

stiffness is assumed negligible. The shell is assumed to lie parallel to the x axis, and has radius <i. 

We define 0 = a0', where 9' is the angular coordinate. This theory models the displacement of the 

shell from its equilibrium position: in contrast to Mindlin's plate system, however, displacements in 

all three directions are modeled as a function of time, and we will write these three displacements as 

ir. ( t ransverse). Wx (axial) and Wg ( tangential) . In the membrane theory, the three displacements 

complemented by three in-sutface stresses nx (axial), tin ( tangential) and ur„ (shear) form a closed 

system: bending moments and transverse shear stresses are not modeled. This system can be written 

as 

, 0'wr <9n, 0ux„ 
nh „ , = (5.4<a) 
' Ot- 0.r 00 

02wH Out) 0nxl, 
pl>-bW = -off+1)7 {rjA'h) 

ffl.,, i Eft (0uz Owe u \ ,-.„-, 

<>»itr = -bt» <5-4G) "' = ttVW + '-d + Z*") (M7c) 

El' ( Vic, Own 1 \ , r . _ . . 
'»fl 

Eh (Own 0wx\ 
;i + i/) \o7* ~O0~) 

n*» = . ? n , ... ( IT- -^r (5.47e) 

T h e material constants E. v. f> and the shell thickness li are as discussed in §5.4, and are now 

assumed to be smooth functions of .r and 0. If we define the velocities r - . e,i and vx by 

Ow- Own Owj 

then we again have a symmetric hyperbolic system of the form of (3.1) in the dependent variable 

w = [i-. tj.. r,i, li,. ii,i. a,,)]', where the system matrices are 
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P = P« = 
B. 

^i = A/? , = 

B = B„ = 

• 

A ' l . 

- b ' . • 

A, = A B , = 
A M2. 

where 

p+=ph p« = 

p/ l 

II 

II 

0 

II 

Q 

ph 

ii 

ii 

II 

0 

I) 

i 
/ h 

V 

1 !-. 

II 

II 

II 

< 

1 
7 I: 

II 

0 
0 
0 

0 
2(l+l'l 

Eh 

.. = [() 0 I) I o] 

and A ^ , , and A^ ;., are as defined in (5.34) and (5.35). The lower 5 variable system described by 

P ^ . AJit and A^,.,. when uncoupled from the 1 variable system in FR is essentially equivalent to 

the lower subsystem in the Mindlin plate theory, except that our independent variables are now .r 

and 0 instead of X and ;/. (In fact, if we replace any occurrence of / r ' / l - in P \ , by Ii. we get exactly 

P ^ . ) We thus expect the MDKC to be very similar to that of the right-hand network in Figure 5.16. 

We again introduce current-like variables' 

('l •'!)•'id-' l l.'ii'.'i:)) = ( ' l ' •-.'>• '•< / . / - | "x . ' - 1""- 'Vt.no) 

and make use of coordinates defined by (3.22) in terms of the physical coordinates \x,9. t]1. r i , rt 

and ;>, are. as before, positive constants which we will later use for optimization. The MDKC for 

the membrane shell system is shown in Figure 5.23. (We have marked the points B and B' in the 

figure in anticipation of the shell model in the next section.) 

Optimal settings for ;\| and ;>,, which follow from positivity constraints on the inductances 

Li) Lj3, can be shown ( through an analysis identical to that performed on the Mindlin plate 

system) to be 

r\j = max 

'•5 = ( Eh \ 
max 
xfi \l + l'J 

2 iniiij . , t i(i>h) 

ttax»^(l^) + max , , j {^ ) 

2minT,o{ph) 

(5.48) 

(5.49) 

'The reason for the unusual numbering of these variables will l>c made clear in the next section. 

http://'Vt.no
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Figure 5.23: MDKC for the cylindrical membrane shell sysli in. 

in which case we must have, for passivity 

t:h 

''(I > 1»« = min,,9(ph) 
(5.50) 

The parameter ;-| is as yet unconstrained (notice that the inductance K\ is non-negative for any 

choice of i'n > 0). 

We have presented the MDKC for the membrane shell because it is an important building block 

in the more modern theory, which we now present. It should be obvious, from tliis MDKC. we can 

immediately arrive at an MDWD network, and after applying network transformations, we can get 

a multidimensional DVV'N as well. 

5.5.2 The Naghdi-Cooper System II Formulation 

As we mentioned, the membrane model of the cylindrical shell neglects certain important effects, 

in particular the crucial transverse shear effects. Many so-called higher-order shell theories have 

appeared in the literature; for a good survey of these theories, we refer to [77, 81). We have decided to 

focus on the Naghdi-Cooper system II shell model [31. 77. 128] because it can be simply interpreted 



5.5. CYLIXD1UCAL SHELLS 283 

as a passive circuit. We note in passing that not all shell theories have this property Mirsky-

Herrmann theory [77], for example, does not . and Naghdi ami Cooper 's system II. for example, is 

simplified from their proposed system I which also does not. The problem, more specifically, is that 

these systems can apparently not he written in the special symmetric hyperbolic form of (3.1). for 

which the matrices Ai and Aj will he independent of ./• and 0. This property is essential here in 

that such dependence considerably complicates the inter-loop coupling in an MDKC (notice thai 

the port-resistances of the . laumann two-ports which realize this coupling been constant for every 

system we have looked at so far). 

Another reason for choosing this particular shell model is that it can be simply writ ten as 

Mindlin's plate system (in coordinates x and W instead of x and y) coupled with the membrane shell. 

We can write this system in the form of (3.1). where the dependent variable w is defined by 

w = \vz,qx,q$, ux,u$, >ur.>)i;/. rn»v, i , . <•„. nx,nt, »To\ (5.51) 

Here, the first 8 variables are precisely those that appear in the Mindlin theory (see §5.4), but in 

cylindrical coordinates: we have changed subscripts ;/ to 0, and written the U, instead of V for the 

radial transverse velocity. The other five variables appear in subsystem (5.47) of the membrane shell 

theory (see §5.5.1). The system matrices are 

P = P N , = •M A | = A \ ( ] = 

B = B v< = 

Vui 

Bw 

B;< 

A 

X 

MI. 

B \ , . 

A-.. = A./VC2 = 
A/2 

A.l/2 

where P u . A m . A. , , , . A A/2. A v r , and B.u are as defined in §5.4, and P w appears in §5.5.1. The 

coupling matrix is 

B,vcx = 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

i I) 0 0 0 (J (I 0 
a 
0 0 0 0 0 0 0 0 

Note that this coupling disappears in the limit as I lie shell radius a becomes large (effectively leaving 

us with with the Mindlin system). B y e is indeed anti-symmetric, so we are guaranteed a lossless 

MDKC network: in fact, this network can be directly constructed from the two networks shown in 

Figures 5.1G and 5.23. by at taching terminals .4 and .4' in the former to D and D' in the la t ter . The 

scaling parameters r\. >••> and r$ can be chosen optimally according to (5.37). (5.40) ami (5.41), and 



284 CHAPTER o. APPLICATIONS IN VIBRATIONAL MECHANICS 

u + 41 
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Figure 5.24: Computational arid for tin DWN for Natjlidi and Cooper's system II. Grids (a) and 
jli) correspond to a DWN for a Mindlin-typi subsystem, and are coupled to a membrane sluU-tyjn 
DWN operating on giid (c). Grid functions (capitalized versions of the dependent variables (5.51)J 
an indicated next to the grid points at which they are calculated. Grey/white coloring of grid points 
indicates calculation at parallel/series junctions at alternating time steps. 

ci and rs can be set as in (5.48) and (5.49). giving a bound for passivity on the combined network. 

in > I 've = m a x ( e , u , r » ) 

where Vjn is the bounding space s tep / t ime step ratio for the Mindlin network, from (5.43) (in 

cylindrical coordinates) , and VR is the same quantity for the membrane shell system, from (5.50). 

Because this system can be constructed entirely by connecting subnetworks that we have already 

examined in detail, it seems unnecessary to show the discrete MDWD network or the- alternate 

M D K C and its discrete form suitable for DWN implementation. The MDVVD network will be 

exactly the combination of t h e "Mindlin" system, shown at bo t tom in Figure 5.1G. and the MDWD 

network corresponding to the MDKC for the membrane shell, shown in Figure 5.23: recall that the 

M D K C for the membrane shell system (with a free port with terminals D and D') is identical in 

form to that of the uncoupled five-variable Mindlin subsystem, and thus its MDWD counterpart will 

be of the same form as well. 

For the transformed network to be used to generate a DWN, a few comments are in order. For 

the Mindlin system, we first applied network theoretic rules in order to arrive at a modified form, 

shown at top in Figure 5.17. In this case, the transverse velocity v (renamed v. in this section) 

and the bending moments >nr, m v and mxll (renamed m», via and »n,f») have been interpreted a* 

voltages instead of currents. This transformed network can then be connected (via terminals .4 and 

.4' in Figure 5.17) to a transformed form of the membrane shell system, shown in Figure 5.23; for 

the shell subsystem. nx. 110 and 11 ,o will be treated as voltages, and vr and i» as currents. 
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After connecting these transformed subnetworks, ami applying the usual alternative discretiza­

tion rules, we end up with a DWN that will operate on an interleaved grid as shown in Figure 5.2-1. 

Grids (a) and (b) are precisely the Mindlin grid shown in Figure 5.18. and are coupled instanta­

neously to a th i rd grid (c), which adds the effect of curvature to the system. 

5.6 Elastic Solids 

The system defining the behavior of a ( 3 + l ) D linear, isotropic, elastic solid is somewhat easier to 

handle numerically than the (2+1 )D pla te and (1 + 1)D beam systems which are derived from it; the 

physics is less obscured by modeling assumptions. Numerical simulation of the full (3+1 )D system 

is. of course, much more computationally expensive. 

Such a med ium is characterized by its density. />. and two material parameters A and //. called 

the Laiiu' coefficients, which describe its resilience; there are two parameters because an solid will 

resist compressional and shear forces to different degrees. Other elastic parameters, which we have 

already m a d e use of earlier in this chapter, can be defined in terms of these two constants. Young's 

modulus E and Poissan's ratio u can be wri t ten as 

£ r _ / i ( 3 A + 2/i) _ A 

A + /( 2(A + /i) 

We remark that // is the same as G that was used hi the treatment of the Timoshenko beam (see 

'{5.2). (he Mindlin plate (see §5.4), and the Naghdi-C'ooper shell model of §5.5.2. For the sake of 

generality, we allow all these parameters to be functions of .r. ;/ and c. 

H i e equations of motion of the solid can be written in terms of stress and displacement fields 

[77], There are nine stresses; nxr. rr,nl and oz- are normal stresses in the direction indicated by the 

double subscript , and ar!l. ar-. a,r. ayT. aZI. and cr-,, are shew stresses. The displacements of a 

point in the medium from its equilibrium position are given by d = [ur. wy. w-\T. If the material is 

assumed to be hi rotational equilibrium, then we have 

"TII = " p , ax- = a-; (J,r = o,v 

so that there are a total of six independent stresses acting at a given point in the solid [190]. 

Newton's Laws for a solid (neglecting body forces) are written as 

4 F = ^f + ̂ f + %1 

& - TM^+T? 

-T? • TRIMS' 
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The stress-strain relation, or Hooke's Law [77] is expressed as a linear proportionality between the 

six stresses and spatial derivatives of the displacements (the strain): 

Ozz = 

2 , ^ + A V - d 
Ox 

2 , ^ + A V - d 
Oil 

(5.53a) 

(5.53b) 

(5.53c) I' 

(dV)M 0uy\ 
\0y Os ) 

{-or + -07) 
(dicg OwA 
\ 0= + Oy J 

(5.54a) 

(5.54b) 

(5.54c) 

The systems (5.52). (5.53) and (5.54) taken together are sometimes called the Navier system 

[77. 131]. By introducing velocities defined by 

A Otl<x 

''--oT 
A 0wu 

' w _ Ot 
a On'-. 

" - - Ot 

it is possible to manipulate these equations into the symmetric hyperbolic form of (3.1), with w = 

[i\r, r,,. r-.<jxl.,(Ty!l,cr--.(TJ.!l.fT,..(T!r]'. and 

P = P* 

P A 
A, = 

L . V l x 

A'v, 
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A N._.. 

A v j . 
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P h a s e a n d G r o u p Veloc i t i es 

The characteristic polynomial relation for the Navier system, in t e rms of frequencies w and wavenum-

bers | |^| |S = ^3j + J* + •*?. will be 

and has root s 

u = 0. ± /¥• VI 
Ignoring the non-propagating modes with frequency U = I), and t lie multiplicities of the other modes. 

we can see that wave propagation i* dispersionless. at least for the constant -coeHicient problem. 

There are two wave speeds. 

• • v . / ' - ' A . / ' - y p 2 A S - , * . > • - ^ 

which are also known as the P-wavc and S-wave (or compressions] and shear wave) speeds [35]. 

For the varying-coefhcient problem, the global maximum group velocity is then 

, / A + 2/i 

5.6.1 Scattering Networks for the Navier System 

Nitsche has represented this system as an MDKC in [131]. Choosing current-like variables 

(I'I, i2, i3, i i. is.s'a, t?,is,ig) = (i>„ ru. u„ r i< r„ , r i rrV!/, r, a-.-, rsir*,, r2<r»„r2<7-B,) 

he derived an MDKC for the Navier system, which we have reproduced (with some minor changes) 

at top in Figure 5.25, where coordinates defined by the transformation matr ix (3.24) have been used. 

Notice that again, because P is not diagonal, the time derivatives of the components aTX. ayy and 

a-- are coupled. In the circuit representation, this is represented by a three-port coupled inductance 

of the form of (2.48). with a matrix inductance L ( 5 0 defined by 

• M 5 6 = 

L*4 Lt X *-i X 

—L/x L$ —Li x 

-L , — L, Lg 
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when- the inductances L\. L-,. L(i and Lx appear in the figure. 

The positivity condition on the inductances L\, L-z, L3, L7, L» and L9. iis well as a positive 

definiteness condition on the matr ix Lir,(i give.1-, as optimal choices of the parameters pj and r-2, 

"l i l l j . ; / , ; ( / • ' ) 

niiK,,,,: ( r ^ ) +2max«j,,,(2/i) 

max,^^ ( r f e ) +2maxJ.,!/,,(2/() 

and a hound on c0 . 

I'D > I'v = 

When the material parameters are constant . t \ reduces to 

/3(A + 2,i) Fx 9 
= V — 7 > — = ")v,r,n-r 

A modified MDKC is shown at top in Figure 5.20. where velocities are treated as currents. 

and stresses as voltages: as such, the coupled inductance in Figure 5.25 has become a coupled 

capacitance. This network may be discreti /ed in a way very similar to the network for Maxwell's 

Equations, as described in !)4.10.6. Under the spectral mappings denned by (4.112) (with s tep sizes of 

Tj = A / 2 , j = 1 6) , the connecting LSI two-ports decompose into series/parallel connections of 

multidimensional unit elements. The one-port inductances and capacitances, as well as the coupled 

capacitance are discret i /ed using the trapezoid rule, with a s tep size of T- — A. T h e resulting 

multidimensional OWN is shown at bo t t om in Figure 5.2G, and the interleaved computat ional grid 

in Figure 5.27 (which is very similar to the grid for the D U N for Maxwell's Equations, as shown in 

Figure 4.55). 

5.6.2 Boundary Conditions 

The simples! boundary conditions for the Navier system are of the free type. i.e.. all stresses normal 

to the boundary are zero [77]. For a "bo t tom" boundary ; = 0, these conditions can be written as 

ax. = rrv- • y „ « 0 (5.55) 

n max 
•r.«. \ 1 i 

!•> = max(2/i) 

max.,y,j f f ^ J +2max ] . , , / , r (2//) 

m»^„v,Af>) 

This condition is lossless and of the form of (3.8). 
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Figure 5.25: MDKC and MDWD network for tin Navier system. 
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Considering the DWN shown at bottom in Figure 5.26, and the associated computational grid 

shown in Figure 5.27, it is easy to sec that in this case, it best to arrange the grid such thai parallel 

junctions (at which approximations to rrr. and a,,- are calculated) lie on this bo t tom boundary. The 

first two of conditions (5.55) can be ensured by short-circuiting the parallel junctions. As a result, 

the remaining series junctions on the boundary (at which approximations t<> v, are calculated) are 

decoupled from the parallel junctions, and it remains only to set a self-loop impedance at these 

junctions so as to approximate the condition o~:: = 0. We leave the determinat ion of these self-loop 

impedances as an exercise to the reader. 

( t + i i i 

\ 

•"' 

< 

- ' 

\ 
l k ~ A 14 

\ 
l » - i lA 
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( i+ i l« 

IJ—41« 

Figure 5.27: Computational grid for tin DWN for Navier's system: stresses and velocities are calcu­
lated at alt i •muting multiples ofT/2. and at alternating grid locations. In the DWN implant ntation, 
waveguide connections (of delay length T/2) between series junctions (white) and parallel junctions 
(grey) are shown as dark lines: waveguide sign inversions and self-loops are not shown hen. At 
the center grid point, a vector parallel junction calculates the vector o~„ = {nrr,a,lu.a- -) of normal 
stresses. 
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Chapter 6 

Conclusions and Future Directions 

An extended summary of the technical results in this thesis appeared in §1.3. We will mention these 

results only as they touch upon the general questions of §1.2. which we now address. 

6.1 Answers 

• To what types of systems can true/ digitul and digital waveguide network simulation approaches 

be applied? 

Let us first confine our a t tent ion to numerical methods which result from the passive discretiza­

tion of an MDKC: all the methods discussed in this thesis are of this form, except for the multigrid 

methods of §4.9. the type I and II DWNs for the transmission-line and parallel-plate problems (see 

§1.3.6 ami §4.4.2. respectively), the DWN for the Euler-Bernoulli beam system (see §5.1) and the 

Timoshenko beam systems of §5.2.3. We can then rephrase our question as: For which types nj 

systems do then exist passive MDKC representations^ 

In general. MDKC representat ions follow directly only for (»i+ 1 )D symmetric hyperbolic systems 

of the form of (3.1). and we repeat this definition here. 

p£ + £ A *» + Bw + f = 0 (G.l) 
at *-^ (A/i. 

Recall tha t the coupling matrices A/;, are constrained to be symmetric and constant, so all material 

parameter variation is confined to the symmetric positive-definite matrix coefficient P of the time 

derivatives, and the coefficient B of the constant-proportional terms. (Indeed. B can be time-

em (intg without affecting the network representation of any system in which it appears. We will 

look at the more useful case of t ime variation of P . which occurs in. e.g.. time-varying vocal tract 

models [145], in §6.2.7.) For passivity, we generally require that the symmetric part of B be positive 
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semi-definite. The symmetry of the A* implies a network representation involving only reciprocal 

reactive MD circuit e lements ' . In Fact, the s tructure of the A/, directly specifies the MD network 

topology: if any of the A*, contains a non-zero entry in the (y.r/)th position, then we will necessarily 

have some coupling between thc/>th and 7th loops in the network representation. T h e constancy 

of the A* has important implications for the energetic analysts of the system, as we saw in §3.2, 

and also ensures that all inter-loop couplings can be accomplished through the use of linear and 

shift-invariant (LSI) coupling elements (generally the .lamnann or lattice two-ports introduced hi 

§3.7.2 for MDWDFs. or the al ternative hybrid form of §4.10 for DWNs). This is crucial, because the 

spatial derivative information is concentrated in these coupling elements: discretization of a reactive 

element is usually only passive if its defining parameters (usually inductances) are independent of 

the integration directions. (The main exceptions here are the reactive elements discussed at the end 

of §3.5.1; such elements can be used in the time-varying case, as mentioned above, or in nonlinear 

problems, which we will discuss at length in Appendix B.) In fact, all the MD-passive systems we 

have examined have networks which can be decomposed into two networks as in Figure G.l. The 

subnetwork on the left is made up of a set of t ime inductors (or capacitors) with spatially-varying 

inductances (or capacitances), and perhaps resistances and can be discreti/ed through the trapezoid 

rule in time. In the expanded signal-How graphs, these always give rise to si If-loops. T h e right-hand 

subnetwork is linear and shift-invariant, and contains all the spatial derivative te rms, in the form of 

J a u m a n n or lattice connections, for MDWDFs. or the hybrid form for DWNs. discussed in §4.10. It 

can be discreti/ed by the MD trapezoid rule (or alternative spectral mappings, for DWNs) . and the 

full discrete network will be passive if the subnetworks are MD-passive separately. 

Passive, lineai 
spatially-varying 

subnetwork 

Passive, lineai 
shift-invariant 

subnetwork 

Time differential operators Time/space differential operators 

Figure 6.1: Network decomposition of passive symmetric hyperbolic systems. 

A few other features are worthy of comment. First, although the P matrix is diagonal for many 

of the systems we have looked at , it is not for any of the vibrating elastic systems in ( 2 + l ) D arid 

(3-M)D of Chapter o (nor will it be for, say. Maxwell's equations in anisotropic media, or mutually 

inductive coupled transmission lines, or systems in general curvilinear coordinate systems). The 

non-diagonal elements of P are modeled in an MDKC as mutual inductances or capacitances, and 

subsequently require vector scat ter ing junctions, as discussed in §2.3.7. This leads to more complex 

"block" scattering matrices, but passivity is not compromised. Second, consider the B matr ix , which 

'Recall that a reciprocal circuit element is one whose impedance matrix (more generally, its hybrid matrix) is 
rlermitian. 
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is not constrained to be of any particular form. If the symmetric part of B is positive semi-definite, 

then it always implies tots, and can be realized as a purely resistive coupling network. The anti­

symmetric part of B . which does not produce loss, gives rise to diapt rsion (as for the Timoshenko 

beam in tj5.2, t he Mindlin plate in §5.4 and the shell models of §5.5), and corresponds to lossless 

gyrator couplings among the circuit loops. In general, if the B matrix is not sparse, t h e resulting 

resistive and gyrator couplings in the MDKC may considerably complicate the result ing discrete 

network (i.e.. various reflection-free ports will be required). Third, the system (C.l) forms a subclass 

of what are called strongly hyperbolic systems, for which the initial value problem is well-posed [82]. 

A general strongly hyperbolic also can be written in the form of (C.l). but the matr ices A t are 

not constrained to be symmetric (any real linear combination of the An: must , however, possess a 

set of real distinct eigenvalues). If the Aj. can not be simultaneously symmetrized by some change 

of variables, t hen it is deal that tin- set of reactive reciprocal circuit elements does not suffice for 

a passive circuit representation, even though energy estimates of the type discussed in *j3.2 may 

be available. It would be quite interesting to know how a network could be designed for such 

strongly, but not symmetric hyperbolic systems. Furthermore, system (6.1) is not even the most 

general form of symmetric hyperbolic system. The matrices A t may be functions of space or time 

variables, though the simple energetic analysis of §3.2 becomes more involved: passivity does not 

immediately follow. Fourth, we included a discussion of a OWN for the Euler-Bernoulli system 

in §5.1. in order to indicate that such networks may be available even if the physical system is 

not hyperbolic (group velocities are unbounded for the classical beam model) . Such extensions of 

scattering me thods have also been discussed in the MDW'D context in [202]. Fifth, for nonlinear 

systems, the na tu ra l extension of symmetric hyperbolicity which leads to circuit representat ions is 

skew self-adjointness. We will examine such extensions in Appendix B. 

• What features do the two methods shun, and what distinguishes them'/ 

The most basic difference between the two methods is, as we emphasized early on in Chapter 

1. that a DVVN can always be viewed as a large network of scattering junctions, connected to one 

another port-wise by bidirectional delay lines: a MDW'D network is bet ter thought of as the discrete 

image of a multidimensional Kirchoff circuit representation (MDKC). Though a signal flow graph 

for a MDW'D network follows immediately, it can not be decomposed into a collection of discrete 

transmission lines, or bidirectional delay lines. Both methods, however, operate using exclusively 

scattering and shifting operations it may be useful to Hi]) to Figure 4.44, which shows t h e expanded 

signal flow graphs for the DW'N and MDW'D networks for the (1 + 1)D transmission line equations. 

Notice that the port- wise connectivity of the MDW'D network is always lost in this (and all) expanded 

forms: for certain adaptors, the two wave signal paths entering the "port" are not connected to the 

two terminals of another single port . We have seen, of course, in §4.10, that many DW'N forms 

operating on regular grids can also be derived from MD circuit representations: DW'Ns are more 
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general in the sense they may be const ructed completely locally, ami in Irregular a r rangements (recall 

the genera] discussion of DWNs in §1.1.2), without using an MDKC. 

We have also seen, in the first few sections of Chapter 4. that DWNs are in general equivalent 

to simple two-step centered finite difference schemes of the F D T D variety. In ^3.9. we showed that 

MDWD simulation methods also correspond to finite difference schemes, but they are in general 

multi-step methods. In both cases, the calculations have been rearranged (using wave variables) 

in a one-step form. If the underlying system is lossless, and power-normalized wave variables are 

employed, then at any time s tep the discrete network recursion involves an orthogonal transformation 

(scattering) applied to the entire set of wave variables stored in memory, followed by a permutation 

(shifting) operation. Losslessness, and thus stability is thus ensured in a very direct way. The two 

methods possess distinct spectral propert ies, which we examined briefly in the case of the (1 + 1 )L> 

transmission line in §4.3.8. 

There is another more subl le distinction. For almost all first-order P D F systems tha t follow from 

physical laws, the state variables can be separated into two types which are dual to one another. 

To be more precise, in all the systems of the form of (G.l) which we have examined in this thesis, 

the time derivative of a Variable of one type is always related to spatial derivatives of variables 

of the other type: for example, voltages and currents are dual variables in the transmission hue 

and parallel-plate problems, as are electric and magnetic field components described by Maxwell's 

equations (4.110), etc. This duality implies a certain s t ruc ture in the coupling matr ices A*.. In 

the MDKCs developed by Fettweis et al.. however, this s t ruc ture is Ignored, and all variables are 

t reated generally as currents. In the resulting numerical methods , this usually implies that all the 

dependent variables an- computed together at the same spatial locations, and at all t ime steps. 

(As we mentioned in §3.9. however, it is possible to design MDWD simulation me thods operate on 

"checkerboard" grids; the variables are all computed together, but at locations interleaved in time 

and space.) For the DWNs we discussed in Chapte rs 4 and 5. we have made use of this duality 

in order to design networks in which the two sets of variables are computed at a l ternat ing time 

instants and spatial locations. One set is interpreted as current-ltke, and the other as voltage-like. 

The resulting alternations are generally indicated by grey /whi te junction colorings in the signal flow 

graphs. (It is worth calling a t tent ion, at this point, to the analogous distinction between so-called 

"expanded" and "condensed" node TL.M formulations [29].) 

• What are their relative advantages;' 

The answers to the previous question have several practical implications. 

Because any DWN always can be writ ten in the form of a large network of port-wise connected 

scattering junctions, passive (and thus stable) boundary termination is straightforward. For the 

transmission line (see §4.3.9), the parallel-plate problem (see §4.4.4). beams (see §5.1.3 and §5.2.4) 

and plates (see §5.4.2), many useful lossless boundary conditions can In- effected through the use 

of simple short- or open-circuit, or self-loops connected to scattering junctions which lie on the 
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boundary, hi fact, the termination of any boundary junct ion with an all-pass (more generally 

bounded real) scattering one-port will always yield a numerical scheme which is guaranteed lossless 

(more generally passive), though the physical interpretation of sudi an arbi t rary termination may 

not be obvious, ll is worth emphasizing that the ease with which passivity (or exact losslessness, if 

so desired) can be ensured in the presence of boundary conditions is one great benefit of a scattering 

formulation. It can be quite difficult to ensure the stability of a boundary condition applied to a 

finite difference scheme. The same is not true of M D W D networks: because port-wise connectivity 

is lost in the expanded signal-flow graph, passive terminat ion is no longer simple or straightforward. 

We indicated in §3.11 and §5.2.4 the severe difficulties inherent in the "wave-canceling" termination 

approach described in the l i terature [107]. and will look at a possible theoretical foundation for 

passive distributed network termination shortly in §6.2.3. 

An MDKC is always mapped, via spectral t ransformations or integration rules, to a discrete 

t une and space MDWD image network. As we mentioned above, the resulting numerical method 

always operates on a regular grid in some coordinate system. It is thus impossible, through the 

approach of Fcttweis et al.. to arrive at structures which opera te on irregular grids. As we have seen 

in §4.9. because DWNs may be constructed locally, innltigrid methods become a possibility -DWNs 

of differing densities or in different coordinate systems may be simply connected to one another, in 

such a way that passivity is maintained across the interface. Such interfaces can be designed so as to 

be locally consistent with the underlying model problem: as a result, numerical reflection vanishes 

as the grid spacings become small. The applications to numerical integration over irregular problem 

domains should be self-evident. 

• Can they lx unified in a formal way? 

The single most satisfying result in this thesis was the successful "merging" of waveguide networks 

and MDWDFs in §4.10. A passive MDKC representation of a system of P D E s is no more than that 

a representation. It illustrates, however, how the system can be decomposed into simpler elements. 

each of which is passive in its own right, and immediately suggests a s table numerical scheme. 

Each element can be discxetized through the application of one or a set of spectral mappings, or 

multidimensional integration rules, in such a wav that this passivity is preserved (this is discussed 

in §3.5.3) in a discrete network, which can then be directly implemented as a computer simulation 

routine. The MD trapezoid rule, or bilinear transform, which gives rise to wave digital networks, is 

one such rule but is by no means the only way of proceeding: in multiple dimensions, the family of 

such mappings is large and diverse. Digital waveguide networks are the result of the application of 

another member of this family. As we have seen, especially in Chapter •">. digital waveguide networks 

are now applicable to any system that has been approached using MDWDFs (we have covered most 

of them in this thesis). We will make some more comments on this subject in the §6.2.5. but at this 

stage, the author feels justified in lumping these techniques together as simply "wave" or "scattering" 

methods . 
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Figure 6.2: The generalized family of passive numerical methods. 

As indicated in Figure G.2. the unification of these two methods also implies their membership 

within a larger class of passive numerical methods: indeed, any set of passive spectral mappings or 

integration rules may be applied to any circuit representation of a system of PDEs. and the result 

is necessarily a stable numerical method built of the same basic scattering and shifting operations 

as the DWN or an MDWD network. We refer to ^6.2.5 for a few further comments on this subject. 

• What extensions and improvements can be made to the existing forms of these methods? 

For all stable explicit numerical methods for hyperbolic systems, a CFL-type condition must 

necessarily be obeyed. That is. if the time step is 7\ and the grid spacing is A, then we will require 

•* S "̂/IIKIJ*-̂  (6.2) 
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where ~,nnj- is the maximum local group velocity of the system, as defined in §3.2. In other words. 

the physical region of dependence of the problem must be contained within the region of dependence 

of the recursion. T h e parameter n is some constant which depends on problem specifics, such as the 

number of spatial dimensions, the width of the computational stencil of the scheme, etc.. but not the 

material parameter values themselves. One serious shortcoming of the MDWD numerical methods 

proposed by FettWeis e( al. is tha t for a given grid spacing, the maximum time-step allowed may 

be a good deal smaller than the opt imal CFL bound, if there are spatial variations in the physical 

medium. As we have seen in §5.2.1, this constraint on the t ime step becomes especially severe for 

stiff vibrating systems. We showed in §3.12 and §5.2.6 how balancing approaches may be used to 

derive networks which give rise to numerical methods which are optimal in that a bound of the 

type (C.2) is satisfied. Certain DWNs (in particular, the type I and II forms for the transmission 

line, parallel-plate systems) also exhibit this optimality property, though such forms do not follow 

directly from MDKC representat ions that we have discussed. 

The DVVN has been applied, in the past, to problems in musical acoustics and physical model­

ing. In particular, DWNs have been used to solve the wave equation in one. (uniform strings and 

acoustic tubes) two (membranes) , or three (room acoustic) spatial dimensions. We have looked at 

numerous ways of extending the DWN to deal with more realistic problems. First, from the result in 

§4.10, the DWN is now applicable to a wide class of physical systems, and in particular, those which 

may exhibit material parameter variation. Among them are the transmission line and parallel-plate 

problems (which are analogous to strings and membranes, of varying density), and the many elastic 

solid systems discussed in C h a p t e r 5. In fact, DWNs are fully as general as the MDWD simula­

tion networks of Fettweis. and possess all the same good numerical properties: because boundary 

conditions are easier to deal with, one might go so far as to say that they are a superior form of 

scattering method. Second, we examined ways of dealing with boundary and initial conditions in 

a systematic way (as we ment ioned above, this has not been done for MDWD networks). Third, 

we introduced DWN formulations appropr ia te for problems with irregular boundary configurations: 

waveguide meshes in transformed coordinates and multigrid forms are two possibilities. Fourth, we 

examined the possibilities of liigher-order spatially accurate DWNs which follow directly from an 

MDKC representation. Fifth, we will spend some time in Appendix A cataloging the many forms 

of waveguide mesh which have been proposed, and looking into ways of improving their numerical 

dispersion behavior. 

6.2 Future Directions 

In this section, we provide a short list of some possible avenues of future research in the area of 

numerical integration using wave and scattering methods: several of these topics will be presented 

in technical detail. (Although this is perhaps not the place for such a treatment, we will do so 
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because this material of a speculative character, and a bit too general in scope to appear in the 

main chapters.) Some of the more promising directions are discussed in the appendices, namely 

applications to fluid dynamics systems (see Appendix B). and especially, the spectral analysis of 

digi tal waveguide networks for the wave equation (see Appendix A) . 

6.2.1 Passivity vs. Stability 

Perhaps the single most interesting question resulting from this thesis can be simply s tated: For a 

given Stable finite difference scheme, where "stable" is to be taken in the sense of Von Neumann 

(see Appendix A), is there always a concretely passive network realization? Because the difference 

scheme coefficients and network element values are usually parametrized by Up, the space s t ep / t ime 

s t ep ratio, the question is often one of the ranyt of values of ru for which a given scheme is stable 

or passive. As we have seen, a distinction between passivity and stability manifests itself in various 

ways in many very different settings. We saw. for example, in Section 4.3.G. that several different 

waveguide networks for the transmission line problem, though all equivalent in infinite-precision 

a r i thmet ic to the same simple centered difference approximation, are passive over quite different 

ranges of r». depending on material parameter variation. Even more striking examples will be seen 

in Appendix A. in the case of the triangular scheme for the ( 2 + l ) D wave equation, and in particular 

for so-called "interpolated" difference schemes for the wave equation in ( 2 + l ) D and ( 3 + l ) D ; these 

a r e rudimentary constant-coefficient difference schemes, and yet the difference between the stability 

condit ion and the passivity condition for the equivalent waveguide mesh is already quite complex; for 

t h e other mesh structures examined in Appendix A. Von Neumann stability and passivity imply one-

another . Other instances appear throughout this work. The question is one of network topology 

tha t is. there are many network topologies corresponding to a given difference scheme, and though 

t h e stability bound on UQ will be the same for all of them, the bounds for passivity will be. in general, 

distinct (see ^A.2.3 and §A.2.4 for some interesting examples). In sum, passivity is a sufficient, but 

not necessary condition for numerical stability: it may well be. however, that it is always possible 

to find a particular topology such that these conditions imply one-another. This author would like 

very much to make sense of the "grey area" between the two conditions. 

6.2.2 Higher-order Accuracy 

It is known that for lumped systems (i.e.. those described by sets of ODEs) . A-stabh methods 

[32, 65, 75] such as W D F network simulators can be at best second-order accurate; that is. the 

t runca t ion error between the solution to the difference scheme and the exact solution will behave 

as 0(T2). where T is the t ime s tep. In §3.13 and §4.10.5. however, we showed that it is possible 

to construct networks that behave as higher-order spatially accurate difference schemes, at least for 

the (1 + 1)D transmission line equations. The question remains open, however, as to whether it is 

possible to obtain higher-order time-accurate scattering methods. (One of the originators of the 
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MDYVD simulation method remarked [130] that he had spent all inordinate amount of t ime trying 

to design higher-order time accurate methods with no success.) It would he of great use to have ;i 

firm answer to this question, mainly because it would provide a clue to answering the question in the 

previous paragraph: rather, it would encourage us to rephrase it as: "Is there any stable difference 

scheme which can not be written in a scattering form?" 

6.2.3 MDKC Modeling of Boundaries 

One of the big hurdles yet to be overcome in the MDWD simulation method is the implementat ion 

of boundary conditions. As we mentioned briefly in Sj3.ll. this is a very tricky business, and the 

approaches in the literature for simple model problems do not generalize to more complex systems. 

Setting boundary conditions for systems such as beams and plates was ;i t ime-consuming, and 

ultimately fruitless venture. We were forced to turn to DVVNs, for which appropr ia te boundary 

conditions are much easier to find, because the DVVN can be interpreted as a lumped network. The 

problem is that there is not. as yet, a general theory of boundary conditions lor MDWD simulation 

methods [1 12]. in this section, we briefly mention a possible foundation for such a theory which is 

based on the ideas presented initially in [48, 8o, 131] and outlined in §3.4. 

Suppose that the problem of interest is (II + 1)D. and defined with respect to coordinates u = 

[at] x „ . r ] ' . or equivalent ly. to A- transformed coordinates t = [/] ' / ; • ] ' . with k > it + 1. We 

will assume tha i the problem has one spatial boundary, namely the hyperplane T\ = 0. and is defined 

over a t ime interval [0. tj\. As such, the problem domain G is then 

G = {u| 0 < t < tf..r, > 0} 

or i ts equivalent in ' he t coordinates, obtained under a transformation of the form (3.21). We res ta te 

the energy balance for an A-port defined over G. which is 

/ ( « ' , „ „ + "•,)</!t = / («',i + V r E | . l l t 
JO Jo 

where WJ„SI is the instantaneous applied power at the ports , to, is an internal source power. w,t is 

dissipated power, and E is a column fe-vector representing stored energy flux: il\\ is the differential 

volume element. As mentioned previously, the .Y-port is integrally MD-passive over G if 

/ mnitdVt > [ Vt E(/\t = / ric; • Mdffa (0.3) 
J a .Id Jod 

for some E, all of whose components in the t coordinates are positive everywhere in G. Here. OG is 

the boundary of 6', HG is the unit outward normal, and dni; is a differential surface element on t he 

boundary. 

http://Sj3.ll


302 CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 

Note that OG consists of the union of three sets of points, i.e., 

0G = 0G„ U 0Gf U 0Gh 

where, in terms of the physical u coordinates 

OGo = {u| t =()..r, > 0 } 

0Gf = \u\ t = tf.si >()} 

0Gb = {u\ 0 < t < tf.x] = 0 } 

We can thus rewrite (G.3) as 

/ WimtdVtt / n(;E<l(T(;+ n(; • Edo-a + / n(1-Ed(r(; 

For a closed network that is, an A'-port with no free terminals (corresponding to a complete 

system of PDEs) the instantaneous applied power is zero, so we are left with 

()> / n (, • Edna + / \\<; Ed<T(i + I n<; • Er/<7<; (G.4) 

hi other words, the stored power flux leaving the boundary must be negative (the AT-port is passive). 

Suppose, now. that there is an nD A'-port defined on the spatial boundary 0Gb of G. Renaming 

this region G''". we have another energy balance 

/ ( • & + »«61) rflfr, = fQm (J? + V«N • E,fc|) Afo 

over coordinates t ( h | derived from physical coordinates u = [x2 J"n-']T on G'"'1. The quantities 

"inst- " '•« i ",t a n d E'ftl al(" tn i> applied power, source power, (hssipated power, and stored energy 

Hux in the boundary network. Again, if the boundary network is passive, we have 

/ «•!*'„<«;<». > I VtwWPdVtmm I na<>, • Eib]daG<>, (G.5) 

where 0Gib] is the boundary of the region G'"''. and consists of the union of the two regions 

0G[bl = { t | 6 , | r = (J} 

dG(b) = { t " " | / = ' / 
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so that we have, finally. 

/ WftLtfKm > / n ( ; ! l l • E ' 6 ' ^ , , . , + / n(,,M •E('"r/rr(i,M (CO) 

The boundary network is intended to model a passive distributed termination to the problem defined 

over the region G. It should be dear that if both networks are passive, then if the transfer of energy 

between them is passive, then the terminated system as a whole will be passive. See Figure 6.3 for 

a representation of the relevant regions. 

t = tt 

0Gb = G - r.'i*) 

0G\ 

G 

OG, 

OG (*) 
0G0 

Figure 6.3: A region with one spatial boundary. 

We can ensure this by requiring that the power applied through the ports of the boundary network 

over the region Gib> is equal to the stored energy flux of the interior network leaving through its 

spatial boundary (recall that we have set G(fc| = 0Gb). In other words, we require 

o'n'L = no • E on 0Gh = G - rj«» 

Inequality (6.4) can then be rewritten as 

0 > / n<;Edaa+ n(!Ech<1+ «'!>,V<I<,, 



304 CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 

or. by (employing (C.C). as 

0 > / na-E<l(T(,+ H o - B d f f c + / nr,,M • E""t/ff(.-M + / n ( ; m • E<6I</<7,-.,M (6.7) 
./<xv0 ./,-*;, Vac;;;' ./*<;'/ 

From (3.30). the quantities in (0.7) have the following interpretation; 

£(Q) — — I n<; • Er/<r<:; = Energy of interior network at time t = 0 

£< 4 )(0) = - / n r ,M • E""r/o. ,M = Energy of boundary network at time / = 0 
•/**»' 

£(t f) = I x\(; • Ef/rr,; = Energy of interior network at time t = tf 
J do i 

£ib)(tj)= / n ( l in • E(fc'f/(T(Viki = Energy of boundary network at time * = tf 
.he//' 

The negative signs in the definitions of the initial energies result from the fact that the outward 

normal to dGo and 0G0 points in the negative time direction. As such, (6.7) can be res ta ted 

simply as 

n//)+ £""(//) <no) + f""(o) 

or, in o ther words: the total energy stored in the interior and boundary networks must not increase 

as t ime progresses. 

It is straightforward to extend this idea to more complex boundaries. For example, if the region 

G were to be defined by 

G= {U|J-I > (),J-2 > 0 . 0 < t <tf\ 

so that there is a corner at X] = Xj = 0, we could model passive boundary conditions using four 

networks: an (n + 1)D network for the interior of G'. two nD networks for the two "faces," and a 

(n — 1)D network for the corner itself; an energy inequality similar to (6.7) results. 

Here, we have said absolutely nothing about discretization (and indeed, we have not investigated 

this problem in any detail). We have, however, uidicated the possibility for arbitrary distributed 

passive boundary termination of a given MDKC: only lumped conditions have been examined so far 

in the l i terature . 

6.2.4 Multi-grid Methods Using MDKCs 

One of t h e advantages of the M D W D F approach is that discrete numerical integration routines 

are arrived at by applying coordinate transformations and spectral mappings (or integration rules 
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along the transformed coordinate directions) to the Ml) circuit form of the original model problem. 

Indeed, the principal result of Chapter 4, in §4.10 is that digital waveguide networks on regular grids 

can be constructed by essentially the same means. 

On the other hand, the expanded signal flow graph for a digital waveguide network is a network of 

lumped .V-ports in its own right: in fact, the original formulation of the DWN (and TLM structures) 

is lumped. In the flow graph for a MDWD network, however, the port s t ruc ture is lost. We showed 

in §4.9 how several DWNs, differing perhaps in grid density or the choice of coordinate could be 

joined through the use of passive interfaces. Here Fettweis' approach falters, because it is not cleat-

how to generate an s t ruc ture on an irregular grid from a MD representation (a similar problem, that 

of terminating a M D W D network in hexagonal coordinates (see §3.3.3) at a straight boundary lias 

been discussed in great detail in [210]. but in that case, it was necessary to resort to active elements 

even for a passive termination!) 

A possible direction here might make use of boundary network modeling, as outlined immediately 

previously: i.e.. treat an interface as a MD boundary network in its own right between two separate 

MDWD networks operat ing using different grid arrangements. 

6.2.5 Spectral Mappings and Network Transformations 

The transmission line matr ix method (TLM) has developed in many interesting directions that we 

have not been able to discuss in this thesis. Many different types of s t ructures have been proposed, 

in particular those for which the dependent variables are not interleaved. Given that we have shown 

that certain DWNs can lie derived from MDKCs. just as MDWD networks are, it would be interesting 

to know whether the various TLM structures can be arrived at in a similar way. A compact circuit 

representation would empower an algorithm designer enormously, and would almost certainly make 

a useful tool for designing new structures which are potentially more efficient and which may have 

better numerical propert ies. 

We note, however, tha t for a given circuit representation of a system of PDEs . it is not at 

all obvious which spectral mappings should be applied in order to give rise to a useful s t ruc ture : 

indeed, in the case of the DWN discussed in §4.10. the correct spectral mappings were arrived 

through a chance encounter with formulae buried in the dark basement of an old paper [01]. It 

should be possible to elucidate the link to a certain degree: does a part icular network topology 

imply a particular integration rule or mapping? This is important , because for a given system 

of PDEs, there is not a single MDKC representation; any rules or transformations from classical 

network theory can be used to manipulate the MDKC" into an infinite number of new topologies. 

each of which, upon discretization, gives rise to a distinct numerical method. 
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0.2.6 Finite Arithmetic Testing 

One of the greatest benefits of a scattering Formulation is its guaranteed stability even under the 

highly nonlinear quantization operations that must be applied to bo th signals and multipliers in a 

computer implementation (see tj2.3.6). To da te , however, there have been no published comparisons 

of quantization effects in scattering s t ructures vs. s tandard finite difference schemes. 

This is. of course, a huge research problem, and certainly worth a dissertation or two by itself. 

The time is. however, ripe for such work since (a) , there is large body of work devoted to quantization 

strategies in wave digital and other related filter designs, and (b) . it is a necessary first step towards 

building special-purpose simulation hardware, which is the u l t ima te goal of all this work (such 

hardware has in fact already been built [202]. but as mentioned above, there baa been no a t t e m p t 

at any comparison with the performance of s t andard difference me thods ) . The principal question is 

of how much there is to gain, in terms of memory savings, using a scat ter ing implementation which 

employs small word lengths. 

We would recommend a comparison of signal quantization effects in a simple (2+1 )D s t ruc ture 

such as the rectangular mesh for the (2+1 )D wave equation, and its finite difference counterpart ( to 

be discussed in Appendix A), subject to various boundary conditions. Because coefficient t runcat ion 

effects will probably be most noticeable in a problem with mater ia l variation, it would be worth­

while to examine such effects in the (1 + 1)D transmission line problem under very simple conditions 

(losslessness. and spatial variation of a very simple form in one of the line parameters / or c). By 

"comparison,'" we mean that the error between the exact solution to the problem and a numerical 

solution should be computed for various signal and coefficient word lengths. 

6.2.7 Time-varying Systems 

Time-varying distributed systems have not been examined hi any detail in the scattering simula­

tion literature, though time-varying W D F s [177] and DWNs [160] have bo th been proposed, with 

a focus on vocal tract modelling. Though it is t rue that t ime-variat ions in material parameters 

generally render a system non-passive, we will show here how passive network representations may 

be developed for an important class of systems. 

Consider a system of the form 

- (P (x . f )w) + £ A ^ + B(x , r )w + f (x , t) = D (6.8) 
j = i ' } 

which is a simple generalization of the (n + 1)D symmetric hyperbolic form (3.1) to the case where 

P and B depend on both the spatial coordinates x and time r; P is assumed to be positive definite 

for all values of these coordinates and smoothly-varying. The matr ices Aj are again assumed to be 

constant and symmetric, and B is not required to have any par t icular s t ructure . It is easy to show 
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that in this form, it is not possible to arrive immediately at an energy condition such as (3.5). In 

order to put system (0.8) into more useful form, note that we can factor P as P = P T P ; where 

P Is some left matrix square root of P . We can then rewrite (0.8) as 

„ / OP a W OP a „ i ^ . Ow _ 

7=1 J 

Now introduce a new dependent variable z defined by w = e*8, where K = K(I) and is assumed 

differentiable. Then, in t e rms of the new variable z. we have 

^^jr + {oip + -orp'+B)z + ^ovJ
+f-0 

with f = e~Kf. Assuming that this source term is zero, we can then take the inner product of this 

expression with z ' to get 

I G ' T , * H £ £ < • ' * ' • > — r * 

where 

^ i)*- I OP 1 . „ „ , . 
Q - ^ P + 2 a T + 2 ( B + B ^ 

If Q is positive semi-definite, then integrating over K" gives the energy condition 

Pzc/x < 0 i / Iz' 

which is identical to the condition derived in §3.2. under the replacement of w with z. As long as 

B and the time derivative of P are bounded, it is always possible to make a choice of H such that Q 

is positive semi-definite. For instance, we can choose K = Not, with 

^ 1 . A m i „ ( 2 £ + B + B ' ) 
Ko > mm r1—— 

- 2xSEM>0 A„„„(P) 

where A„ l ln(-) signifies "niiiiiinuin eigenvalue of." Here, we essentially have a passivity condition in 

an exponentially-weighted norm. 

Consider a generalization of the source-free (1+1)D transmission line system. 
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where /. r, p and </. are all smooth positive functions of x and /. Introducing the variables 

i, = ie-"oi i-> = ui-Ka7m 

where /•() is a positive constant as well as the scaled time variable l' = i>of, and transformed coordi­

nates as per (3.18), we can rewrite this system as 

V^j7(v^,)+ .„ i + ^J7 ( . ,+M+^!;( ; , - . !> = 0 

ut-h) = o 

w i t h 

and 

L , = »>„/ - >0 La = VQCT9 — r0 

, l 0 1 

' t = '•() '+ : T T + '• '-2 
lot 

., / lOr \ 

= r 0 ^ 0 c+- - + y j 
Under the choices 

where now we have 

''0 — \<min/rmin v0 > 1/V'iin'ii('miii 

'rmi> = niin / rmi„ = iniii c 
; t ? , l>0 J-€K,»>0 

then L\ and L̂> arc non-negative, and the terms involving them can be interpreted as voltages across 

passive inductors, if power-normalized waves a re employed (see §3.5.1 for more information on this 

definition of inductors) . If we also choose 

1 . / . , 101 .,. . A Oc . , \ ,„ w.v 

2 \z£?.t>U I Ot z€KI>0 cat ) 

then P| and v< are non-negative and can be interpreted as passive resistances. The resulting MDKC is 

shown in Figure 6.4: an MDYVD network can be immediately obtained through the Methods discussed 

in Chapte r 3, or network manipulations ami al ternative integration rules may be employed to get 

a DWN. A balanced form (see §3.12) is also possible, and gives a less strict bound on V$, but tho 

bound on K„ remains unchanged. 

A direct application of this MDKC to an important music synthesis problem Would be the 
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!/..../V) III, Of) U.T>>) 

ILo.D, 

L\ = ru( - r0 L> = i'o'»"5 — ro 

to = i'o/v^ 

rj = W + | f r+»-

ni = c 
- K Q ! 

Figure 6.4: MDKC for time-varying (1 + 1 ID transmission lint: system (6.9). The exponential weight­
ing of tin current variables can be viewed (formally) at n time-varying tramformei coupling. 

simulation of acoustic wave propagat ion in the vocal t ract , under time-varying conditions. Such a 

system of PDEs is mentioned in [145]. and has the exact form of (6.9). with r = y = 0. and under 

the replacements 

i-*4 t 
jj + p y 

where f> is the air density. ") is the speed of sound. .4(.r. t) is the surface area of the tube, u(x, /) is 

t he volume velocity a n d / j ( J ' - 0 i s the pressure variation. The condition (6.10) then reduces to 

«o > max 
x€S./>0 

din(y/A) 

Ot 

If the t ime variation in .4 is slow, then K0 will be close to zero, and the exponential weighting will 

not be overly severe. The problems, for real-time synthesis applications, are that we will need to 

have an a priori est imate of the maximal time variation of the vocal tract area, and that we will 

apply an exponential weighting to the signal output from the scattering simulation. This exponential 

weighting may be viewed as a passive operation involving time-varying transformers (as shown in 

Figure 6.4). 
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Afterword 

As we mentioned early on. the greater goal OI f his thesis was to provide a unified and comprehensive 

treatment of numerical integration methods based on wave and scat ter ing concepts; indeed, published 

results are dispersed across a wide variety of journals and fields, and assembling them has been 

somewhat of a challenge in itself. Although as we have seen, wave digital filtering methods and 

digital waveguide networks are two sides of the same coin (and a more apt metaphor might be thai 

they are but two facets among many on a large, unexplored crystal) , the research communities are 

more than a little isolated from one another . The author has fallen victim to this kind of parochialism 

as well—one huge regret we have is that we were not made aware of the TLM method earlier in 

this project, because of its similarity to DWNs. and the richness of the family of s t ruc tures that 

has been proposed. In the spirit of Fettweis et al.. we have tried to keep the scope as general as 

possible, treating physical systems that appear across a wide range of disciplines: MDYYDFs are just 

as applicable to musical acoustics and plate vibration problems as the DWN is to electromagnetic 

field simulation. The unamhiguoUsly rosy part of the story, however, ends here. 

An interesting remark appears in the preface to a recent book [33] on the transmission line matrix 

method (TLM). (It was mentioned in §4.1.1 tha t TLM st ructures , in that they are constructed from 

discrete transmission lines, are very similar to digital waveguide networks, though in the case of 

TLM. apparently no link with digital filtering structures has been made.) The author of this book 

makes a few comments in a eulogy to J. B. Johns, the originator of this method: 

...Before his death Johns wonted much about whether TLM would ever become 

accepted. Hi saw finite difference and fintU element methods as the aiants which 

would swallow up his baby... 

One immediately gets a sense of the partisan spirit that must have been predominant at the 

time of the m e t h o d s inception. In particular, TLM was seen (and still is. judging from this book, 

which dates from 1998) as a compet i tor to FDTD: the same could be said for wave digital filtering 

approaches. While going through most of the scattering simulation literature, one is bound to feel 

uneasy at times about the short shrift given to finite difference methods, especially in the W D F 
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arena, where they have been almost willed out of existence: with the notable exception of [131]. 

there has been almost no a t t empt to view MDWD networks as finite difference schemes (which 

they are). This is unfor tunate , because there is a wealth of well-developed and powerful theory 

surrounding difference methods which has been in place for many years1 . It may be that the lack of 

commentary is due to the self-evident nature of the link what could these scattering methods be 

hat finite difference schemes? T h e real reason, perhaps, is that difference methods are seen by some 

as old. crude, ami worse, not a physically motivated means of performing a simulation. This point 

of view, while prejudicial, is par t ly justified, but begs the quest ion: what is special about scattering 

methods'. ' A thesis wotdd seem to be the right place to least ask (if not fully answer) this question. 

While this was not the major "research" goal of this project, it was the most significant source of 

motivation behind its undertaking, and every effort has been made to make clear the strengths and 

weaknesses of scat ter ing methods . 

Wi th a clearer picture of the relationship between difference and scattering methods at hand, one 

may get the feeling that somewhere behind the scenes. Rube Goldberg has been busy at work. Indeed, 

some of the strong features of MDYYDFs. according to Fettweis [47], such as local interconnectediiess 

and parallelizeability are possessed by simple finite difference methods such as F D T D as well, and 

difference methods are undeniably easier on the programmer . Some DWN researchers are even 

moving away from wave Implementat ions in favor of difference realizations [157]. In balance, however, 

these circuit-based scattering me thods do offer a uniquely physical approach to numerical simulation, 

especially in the wave digital framework (though as we saw in §4.10, the relationship between MDWD 

networks ami DWNs is now firmly established). Having access to a passivity condition offers the 

algorithm designer the most simple means imaginable of ensuring numerical stability for complex 

problems even in the presence of boundary conditions. These stability properties carry over in finite 

ar i thmetic as well: this is as sure an indicator as any of the essential correctness of a numerical 

simulation approach (circuit-based or otherwise) that pays close attention to physics. 

Still, this au thor feels, more now than at the beginning of this project, that proponents of 

scattering methods have more to learn from straight-ahead finite difference practitioners than they 

realize (and perhaps more than vice-versa as well, though the balance is probably slight). 

'Spec triil. or Von Neumann analysis [176], which we will discuss in Appendix A, and the energy method [82] are 
two branches of this theory which have ureal hearing on the subject of this thesis. We have not, Unfortunately, had 
the time to fully explore the latter direction, which will surely be more than a little enlightening. 



Appendix A 

Finite Difference Schemes for the 

Wave Equation 

In this appendix, we reexamine the finite difference schemes corresponding to the waveguide meshes 

discussed in Chapter 4. in the special case for which the underlying model problem is lossless, source-

free and does not exhibit any material pa ramete r variation. In this case, these finite difference 

schemes will solve the wave equation, given by 

in either ( 2 + l ) D or ( 3 + l ) D . depending on the type of mesh. Here, 7 is the wave speed, and VL> 

is the Laplacian [174]. These schemes will be linear and shift-invariant, and as such, it is possible 

to analyze them in the frequency domain, through what is called Von Neumann analysis [170]. 

We will apply these methods to the rectilinear, interpolated rectilinear, t r iangular , hexagonal and 

fourth-order accurate schemes in (2+1 )D, then to the cubic rectilinear, interpolated cubic rectilinear, 

octahedral and tetrahedral schemes in (3+1 )D. 

A . l Von N e u m a n n Analysis of Difference Schemes 

In this section, we summarize the basics of Von Neumann analysis provided in [170]. Consider the 

(A'+1)D real-valued grid function C/m(n), defined for integer 11 and for m = [ m i , . . . , m / v ] € Z , 

the set of all integer A'-tuples. Such a grid function will be used, in a finite difference scheme, as 

an approximation to the continuous solution </(x, t) to some problem, at the location x = m A , and 

at time / = nT, where A is the grid spacing, and T is the time step. Here, and henceforth in this 

appendix, we have assumed tha t the grid spacing is uniform in all the spatial coordinates, and that 
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the spatial domain is unbounded. As in Chapters 3 and 4, we define the space s tep / t ime step ratio 

to b e 

*'i> — -j, 

T h e spatial Fourier transform of [ „ , ( / i ) is defined by 

1 
Tpi 

meZN 

and is a periodic function of /3= [/?] , fix] , a vector of spatial wavenumbers. The transform can 

be inverted by 

M " ) = T T ^ / e ' A m * # * < " M f c t o • • • d f i n 

( 2 T T ) ' V - 7 [ _ 7 r / A | f f / A ] j v 

where /3G [—TT/A, TT/A] ' V refers to the space enclosed by the intervals — ?r/A < 0j < 7r/A, for 

j = 1 , . . . , A*. If, for a given grid spacing A. we define the discrete spatial L-2 norm of t r
m ( " ) by 

and the correspoiuling spectral L2 norm of Ug(ti) by 

\\U(n)\\2=t [ Pfiin)^dfhdfh..,dfi»] 

then if Um(n) and t \ g ( n ) are in their respective L> spaces. Parseval's relation gives 

\\U(n)h=\\U(n)\\.2 

A.1.1 One-step Schemes 

Consider the following one-8tep explicit difference scheme, which relates values of the grid function 

t " m (n 4- 1) to values at t he previous t ime step: 

tn,(" + l)=X>kt rm-k(») 
k€K 

where K is some subset of Z ' \ and the parameters a^ are constants: it is initialized by setting £ m ( 0 ) 

equal to some function £r
m,o (assumed to be in L-2)- Taking the spatial Fourier transform of this 
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recursion gives 

0{n) 

Gfi ra{») (A.2) 

G'̂  so defined is called the spectral amplification factor for a one-step finite difference scheme. (A.2) 

implies thai we have, in particular, that 

t > ( „ + l) = G3+ , l> .o (A.3) 

where £"# ,i is the spatial Fourier transform of the initial condition I7m,0- (A.3) further implies that 

IIHt. + l)||-2 < (max |G>|) ||£/0||a 

and finally, through Parseval's relation, that 

\\U[n + l)h<LfK\Gfi\\ IKnll, 

If the Hh which define the difference scheme are independent of the grid spacing and the time step, 

then such a difference scheme is called ttablt if 

max|G>| < 1 
p 

The L-2 norm <>f the solution to the difference equation will thus not increase as the simulation 

progresses. 

A . 1.2 M u l t i - s t e p S c h e m e s 

Multi-step method* can he treated in a very similar way. An explicit Af-step method is defined by 

M 

trm(" + 1) = Y, Y a*U«*-*(n + ! ~ '> 
r=l k€Kr 

for constant coefficients n^ contained in subsets K,. of Z . Taking the Fourier transform of this 

recursion gives 

M 

U0(n +D = Y Y . <*ke-i&k*U0(n + l-r) (A.4) 
>=1 k6Kr 
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A simple way of examining (A.4) is to look for solutions of the form I ii{<i) — G'jjt ^(O). This u,ivcs 

the amplification polynomial equation 

M 

GP = }-, L. ° k ' G0 

the solutions of which, 6a,ui'' = l,...tM must be bounded by unity for stability (though in general, 

this is not sufficient, as we will show presently for a special case). 

A particular form of the amplification polynomial equation which will appear frequently in our 

subsequent treatment of finite difference schemes for the wave equation is that of a simple two-step 

centered difference approximation, namely 

G% + DffGff + 1 = 0 (A.5) 

for some real function Dp. This expression has solutions 

< ? * * = \ (-Bf, ± yjDl - A) (A.G) 

which will be bounded by (and in fact equal to) unity in magni tude if we have \Bp\ < 2 for all 

P- Furthermore, if \B$\ > 2 for some /9. then we will necessarily have an amplification factor with 

magn i tude greater than one at that frequency. For any (3 for which Gp± are not equal, we can write 

(- a(» + 1) = —~, ~ Lip + + —p y, G$ 

where t'p.o and Upty are the spatial frequency spectra of the two grid functions (at time steps n = 0 

and n = 1) used to initialize the two-step method. It is easy to show that the L2 norm of I'mln) 

can b e bounded in terms of the norms of the initial conditions if the spectral amplification factors 

are distinct and hounded by 1 in magnitude at all wavenuinbers. 

It is important to realize, however, that the condition that these roots Gp ± be hounded by 

uni ty is necessary, but not sufficient to ensure no growth in the Li norm of the solution: this point 

has not been addressed in the finite difference treatment of waveguide meshes. In fact, as shown in 

§4.3.4, the simple centered difference approximation to the wave equation admi ts linearly growing 

solutions. 

Th i s behavior can be examined in the spectral domain as we will now show, as per [170]. Notice 

tha t t h e solutions (A.G) of the amplification polynomial equation for the two-step scheme can coincide 

if. a n d only if at some frequency (3 = /3„. BpQ = ± 2 , in which case we have Gp0 + = GpQ _ = ^ 1 . 
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The evolution of the particular spatial frequency component at frequency /9n can be written as 

cl)o(n) = m)"Cf30,l> + »W)"-] {i'So.l±v&0.o) 

We can thus expect some linear growth at any such frequency /9„ if we do not properly initialize the 

algorithm, so as to cancel the linearly growing part of the solution. It also follows that in employing 

such a method, one may need to be particularly careful when applying an excitation which contains 

such frequency components, and thai nonlinear signal quantizat ion may pump energy into such 

modes, even if none is originally present there. 

Strikwerda does not classify Mich linear growth as unstable, because the wave equation itself 

admits, in addition to traveling wave solutions, a solution which grows linearly with t i m e ' . For 

the physical modeling of musical instruments and acoustic spaces, however (the problems to which 

finite difference schemes of the form to be discussed shortly are often applied), such solutions are 

noiiphysical and definitely not acceptable. These comments concerning this mild linear instability 

apply to schemes in unbounded domains: when boundary conditions are present, further analysis 

will be required. 

In order to simplify the analysis of these schemes, we mention that for difference schemes for the 

wave equation, it is often possible to write 

Da = -_>A'2Fa - 2 (A.7) 

where A2 = 7 2 / r o a n u fy ' s independent of A. In this case, t he stability condition can be rewrit ten 

as 

max \Bfi\ < 2 <=> max |A'JFa + 1| < 1 
,i d 

This new condition on Fp is easier to analyze: we first require 

m a x F / j < 0 (A.8) 

and if (A.8) holds, we get a further bound on A. namely 

A < J . F => T < - . - . (A.9) 
y 1111113 rp 1 y i»i"fl t& 

Thus tin- stability of these schemes can be simply analyzed in terms of the global maximum and 

minimum of F$. 

For certain schemes (in particular, the interpolated schemes to be discussed in §A.2.2 and §A.3.3). 

*u = (, for instance, Miisfiea (A.l |. 
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the function Fp depends on several parameters . Condition (A.8) tells us the the range of parameters 

over which our scheme is stable, and over the stability region, condition (A.9) gives us a maximum 

time s tep T. in terms of the grid spacing A. 

A. 1.3 Vector Schemes 

For two of the schemes that we will examine (hexagonal and tctrahcdral) . it will b e necessary 

to analyze a vectorized system of difference equations. In general, the analysis of vector forms 

is considerably more difficult: the typical approach will invoke the Kreias Matrix Theorem [l"6j. 

which is a set of equivalent conditions which can be used to check the boundedness of a particular 

amplification matr ix . In the general vector case we will be analyzing the evolution of a (/-element 

vector U/j(n) = [C\,p('i) , t r<j,0(")]T of spatially Fourier-transformed functions o f / 3 . The L> 

norm is defined by 

| |U(n) | | 2 = ( / <J-$(n)\Ja(n)dM02 • • •'' h 
\J [IT/&,*/&]* 

where " denotes t ranspose conjugation. 

T h e schemes for the wave equation that we will examine, however, have a relatively simple form. 

The column vector of grid spatial frequency spectra U^fn) satisfies an equation of the form 

Xjfi(n + l) + B(,U(,{n) + i]s(ti- 1) = 0 (A.10) 

for some Hermit ian matrix function of /3, B # . Because B# is Hermitian. we may write B# = 

J p A ^ J p . for some unitary matr ix J ^ . and a real diagonal matr ix Ap containing the eigenvalues of 

B ^ . As such, we may change variables via V^(;i) = J ^ U ^ ( » t ) . to get 

V0(n + 1) + AnV0(n) + V${u - I) = 0 ( A . l l ) 

The system thus decouples into a system of scalar two-step spectral update equations; because 

Ufl(»i) and V a ( n ) are related by a unitary transformation, we have ||U(;i)||-,> = ||V(/»)||2< and we 

may apply stability tests to the uncoupled system ( A . l l ) . We thus require that the eigenvalues of 

B ^ . namely A ^ j for j = 1 q. which are the elements on the diagonal of A#. all satisfy 

n i a x h W < 2 (A. 12) 

At frequencies /3„ for which any of the eigenvalues satisfies (A.12) with equality, then we may again 

have the same problem with mild linear growth in the solution. 

I 
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A. 1.4 Numerical Phase Velocity 

For a given amplification factor G$. the numerical phasi m la itii at frequency fi is defined by 

_ log(Gg/ |G' 3 | ) 
l'0,Phasr - / | | / 3 ^ r 

where ||/9||_> is the Euclidean norm of the vector /9. This expression gives the speed of propagation for 

a plane wave of waveniunber /3. according to the numerical scheme for which 6'^ is an amplification 

factor. For the wave equation model problem, the speed of any plane wave solution will simply be 

-.. but the numerical phase velocity will in general be different, and in particular, wave speeds will 

be directionallv-dependent to a certain degree, depending on the type of scheme used. For all these 

schemes, the numerical phase velocity for at least one of the amplification factors will approach the 

correct physical velocity near the spatial DC frequency, by < on.ii.itcvcu of the numerical scheme with 

the wave equa t ion ' . 

A.2 Finite Difference Schemes for the (2+1 )D Wave Equa­

tion 

Waveguide meshes of rectilinear [198]. interpolated rectilinear [157], triangular [157. 200] and hexag­

onal [200] forms have all been applied to solve the (2+1 )D wave equation. Though they have 

often been wri t ten as scattering forms, they can also be written as finite difference schemes. There 

are quite a few computational issues that arise which serve to distinguish between these difference 

schemes. Among them are the density of grid points, the possibility of decomposing a given scheme 

into more computat ionally efficient subschemes. the operation count, spectral characteristic-., the 

ease with which boundary conditions can be implemented, as well as the maximum allowable t ime 

step. The stability issue discussed in §A.1.2 may also be a concern, and thus favor a waveguide 

mesh implementat ion instead of a straightforward difference scheme. It is. of course, impossible ro 

say which is best , without knowing problem specifics. The following is intended partly as a catalog, 

as well as an indication of certain features which probably deserve more attention, in particular the 

distinction between passivity and stability which becomes apparent in the cases of the tr iangular 

and interpolated meshes. 

It is Worthwhile introducing two new quantities at this point. In addition to A. the "nearest-

neighbor" grid spacing, or inter-junction spacing, T the time step. in. which will always I qual 

to A/7", and A = 7/Va, we also define pg, the computational density of a particular scheme S to be 

number of grid points at which the the difference scheme is operative, per unit volume and per unit 

' Regrettably, a full discussion of consistency of difference schemes would take us too far afield, and we refer to [176] 
for a full exposition. The idea, grossly speaking, is that for a stable difference scheme, consistency is our guarantee 
that the numerical solution to the difference scheme converges to the solution of the colli in nous model problem as the 
grid spacing and time step are decreased. It is usually checked via ;i ln\ l"i expansion of the difference scheme. 
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lime. Thus if the /V-dimensiona] volume of the spatial domain P of a particular problem is | P | and 

the total t ime over which we wish to obtain a solution is T . then the total number of grid point 

calculations which will need to be made will be \P\Tps- Similarly, we can define the mid density as 

to be Asps if scheme S requires As adds in order to upda te at any given grid point . A multiply 

density could be defined similarly, though we will not. for reasons of space, do so here. 

A.2.1 The Rectilinear Scheme 

The finite difference scheme corresponding to a rectilinear mesh is obtained by applying centered 

differences to the wave equation, over a rectangular grid with indices i and j (which refer to points 

with spatial coordinates j - = iA and y = j A ) . The difference scheme, given originally as (4.53) is 

Ujjin + 1) + Uij(,, - \) = tf (U. + I^n) + Cl-lj{n) + UiJ+l(n) + Ui.j^(u)) 
K ' (A.13) 

+ (2 - 4 A 2 ) f r i : j ( n ) 

and the amplification polynomial equation is of the form (A.5). with 

B0 = - 2 ( l + A2 (cos(,*,A) + cos(ft,A) - 2) ) 

for /3 = [i#a,/?sP . From (A.7). we thus have 

F f l = c o s ( ^ A ) 4 - c o s ( ; * v A ) - 2 

and we have 

max Fa = 0 niin Fa = —4 

Condition (A.8) is thus satisfied, and condition (A.9) gives the bound 

A < -= for stability 
_ v / 2 

wliich implies that the amplification factor |G'a.±| = 1 for such values of A. Because A = ~)/v0. this 

bound is the same as the bound for passivity of the associated mesh scheme, given in (4.03). The 

amplification factors, however, are distinct at all spatial frequencies only for A < \/ \/2. If A = \/\/2. 

then the factors are degenerate for 3r = i3v = 0, and for J , = [3y = ± T T / A and we are then in the 

situation discussed in §A.l-2 where linear growth of the solution may occur. Tins is an important 

special case, because it corresponds to the s tandard finite difference scheme for the rectilinear wave­

guide mesh (i.e., the realization without self-loops). The waveguide mesh implementat ion does not 

file:///P/Tps
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allow such growth at these frequencies'. As far as assessing the computat ional requirements of the 

<- ' - - 0—o—o-

S, i) h o 

(b) (c) 

Figure A.l: Tin rectilinear scheme (A.13) (a) grid, of spacing A . where grey/white coloring 

indicates u subgrid decomposition possibli when A = l/v2. (h) t'/3,,,/,,i.„•/') / ' " ' ^ — l / v 2 - Contour 
Inns are drawn, representing successive deviations of :' pel rent from the ideal value of 1 which ts 
obtained at spatial DC. (c) vpphaae/l away from the stability bound, for A = 1/2. 

finite difference scheme, first consider the case A < 1/' \f2. Five adds are required at each grid point 

in order to update . Given that T = A/i 'o. We can write the computat ional and add densities for the 

scheme as 

Preci — 
< l , 

(Trecl — 
•J I'll 

For A = l / \ / 2 . however, scheme (A.13) simplifies to 

for in > v/2~, 

rI-,J(n + i) + f V ; ( ' ' - i ) = ^(t'1+ij(N) + r1_1. j(i l) + r,-,;+1(;l) + r , ,^1( ; i)) IA.I-D 

which may be operated on alternating grids, i.e., t", J ( / I ) need only be calculated for i'• + j + n even 

(or odd). The computat ional and add densities, for A = l / \ / 2 are then 

Precl 2 ^ 3 "r.,t = 
too 
A:1 for y/2-) 

where we note that the reduced scheme (A.1-1) requires only four adds for updat ing at a given grid 

point: in addition, the multiplies by 1/2 may he accomplished, in a fixed-point implementation, by 

'As an example of such growth at the spatial DC frequency, consider initialising tbe scheme (A.l 11 using Uirj(Q) = 1 
for i + j moii and V,.j(\) = —1 for i + j odd. Then we will have (",.,(II I = 2n — 1, for i + j + n even. It is simple 
i i show that a waveguide implementation does not allow us to choose bounded wave variable initial conditions which 
yield these values for (/j, j (0) and (',,{]). 
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simple bit-shifting operations. T h e Increased efficiency of this scheme must be weighed against the 

danger of instability, and the fact that because grid density is reduced, the scheme is now applicable 

over a smaller range of spatial frequencies. The numerical phase velocities of the schemes, at the 

stability limit, and away from it. at A = 1/2. are plotted in Figure A . l . It is interesting to note that 

away from the stability limit, t he numerical dispersion is somewhat less directionally-dependent: this 

important factor may be useful from the point of view of frequency-warping techniques [157] which 

may be used to reduce numerical dispersion effects for schemes which arc relatively directionally-

independent. This idea has been discussed in the waveguide mesh context (where self-loops will be 

present) in [17-5]. 

A.2.2 The Interpolated Rectil inear Scheme 

This scheme, like the s t andard rectilinear scheme, is defined over a grid with indices ;' and j . for 

points with .r = /A and ,</ = jX. Updat ing , in this case, at a given point , requires access to values of 

the grid function at the previous t ime s tep at nearest-neighbor grid points to the north, east, west 

and south, as well as those to the north-east , north-west, south-east and south-west, which are more 

distant by a factor of y/2. T h e scheme is referred to as "interpolated" in [157] because it is derived 

a>* an approximation to a hypothet ical (and non-realizable) multi-directional difference scheme with 

minimally directionally-dependent numerical dispersion. (It is pe rhaps more useful to think of the 

scheme as interpolating between two rectilineal schemes operating on grids with a relative angle of 

45 degrees.) The difference scheme will have the form 

Uij(n + l) + Vij(n- 1) = A2
(/(r,,i+1{») + tT.,j-i(") + [r,+ i.j('0 + t r.-i.;(")) 

+ A2fc(r,+1.j+1(n) + t;+,,J-,(ri) + L r
I_ IJ+1(n) + r,_1J_1(«)) ( A-1 5 ) 

+ \2cUi,j(n) 

for constants d, b and C which satisfy the constraints 

u + 2b=l 4a + 4fc+c*B — (A.16) 
A 

for consistency with the wave equation. If b = 0. we get the s t anda rd rectilinear scheme, and if 

(/ = 0, we get a rectilinear scheme opera t ing on a grid of spacing \/2X. which is rota ted by 45 

degrees with respect to that of the s t andard scheme. This general form was put forth in [157], and 

the free parameter a may be adjusted to give a less directionally-dependent numerical phase velocity: 

it may thus be used in conjunction with frequency-warping m e t h o d s for reducing dispersion error. 

In general, the interpolated scheme cannot be decomposed into mutual ly exclusive subschemes. 

It is possible to examine the stability of this method as in the previous case. We again have an 
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IJ + n i 

s, i ii 

i .1 • 

I I 11 + i m ' : \a 
< 

(a) (b) (c) 

Figure A. 2: The interpolated r> etiliniw sihemt (A.15) (a) numerical grid and connections for the 
uiti rpolatcd rectilinear scheme (A.15); (b) ea^has, /'; of the scheme for a = 0.62 at the 'passivity" 
bound. A = l / \ / l + «•' (<") V$,phase/l for a = 0.G2. at the stability bound, for A = 1 / \ / 2 H -

amplification polynomial equation of the form of (A.5), with 

Ba =-2A2rd(cos(^A) + cos(/3tfA)) + ( l -o)co8{^A)cos{^A)- , L - a ) - 2 

and thus 

Fa =a( cos( J , A) + cos( 0„A)) + (1 - o) cos ( ;^A) cos( ;iyA) - 1 - n 

Note that Fa is multilinear [3] in CCJS(.JXA) and COs(j89A), so that any extrema must occur at the 

corners of the region in the spatial frequency plane defined by |eos( . j , A) | < 1. and |cos(/?yA)| < 1. 

Thus, we need evaluate Fa only for 0r = [&,0„] = [0,0], [TT/A.O] . [0. TT/A] and [*/A. I F / A ) : 

-F/3r = [0,0] = ° •f^'=[)r/A,0] = •f'(3'=[0,)r/A] = _ - ^/Sr = [T/A,ir/A] = _ 4 a 

The global maximum of Fa is non-positive (and thus condition (A.8) is satisfied) only if" > 0. The 

global minimum of Fa. over this range of a will then be 
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and the stability bound on A will be 

1, 
A < 

\/2a' 

(for Yon Neumann stability) ( A . 1 ' 

It is interesting to look at the interpolated scheme from a waveguide mesh point of view (see 

Chapter 4 for details). At each grid point we will have a nine-port parallel scattering junction: four 

connections are made to neighboring points to the north, south, east and west, through a unit-delay 

bidirectional delay line of admit tance J"a. four more connections are made to the points to the nor th­

east, south-east, north-west and south-west using waveguides of admit tance Yb, and there will be a 

self-loop of admi t tance Yc. If the junction voltage is written as Ujj(n), then the difference scheme 

corresponding to this waveguide mesh will be exactly (A. 15). with 

A*d = 
•2Ya 

*l>=^ A-V = 
2K 

Y., Y, Y, 

where the junction admi t t ance Yj (assumed positive) will be given by 

Y, =4Yn+-iYh + Yc 

The passivity condition will then be a condition on the posit ivity of Ya. If, and Yc. From the previous 

discussion, we already require fi > 0. so this ensures that Ya > 0. Requiring l i > 0 is equivalent to 

requiring b > 0: from the first of constraints (A.1C). this is t rue only for a < 1. Requiring Yc > 0 is 

equivalent to requiring finally, from the second of constraints (A.1C), that 

A < 
1 

v/T+~ 
0 < a < 1 (for passivity) 

The difference between the constraints for stability from (A.17) and the passivity constraint above 

is striking; these bounds are graphed in Figure A.3. This is not the last t ime that we will find a 

discrepancy between Von Neumann stability of a scheme and passivity of the related mesh s t ructure : 

it will come up again in the following section during a discussion of the tr iangular scheme, and in 

§A.3.3 when we look a t the (3+1 )D interpolated scheme. It is interesting to note tha t for a given 

value of (j, with 0 < ti < 1, the numerical dispersion properties can always be improved if we 

are willing to forgo passivity (and a mesh implementation). We have plot ted the numerical phase 

velocities of this scheme for a = 0.62, at both the stability limit and the passivity limit in Figure 

A.2. 

Finally, we mention tha t the computational and add densities for this scheme will be, in general. 

Pinterp — ^ 3 &interp 
lOt'o 
A* 
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max A 

I 

u 
o (1.5 l 2 :i 

a 

Figure A.3: Stability bounds for the interpolated rectilineal scheme, as a function of the fin param­
eter a. The solid lint indicates the maximum value of X for a given value of a. and tin dashed hue 
the maximum vului of A allowed in a passive waveguide mesh implementation. Note that then is a 
passive realization onlij for I) < a < 1. 

over t h e range of e„ allowed by the stability constraint (A.17). For the scheme at the passivity 

bound (for A = l / i / l + "• with 0 < a < 1), We have 

„ -)\A +" P 9-)\/l +" 
I nttrrp v;j interp \ 3 

We recall that for fi = 0 or (/ = 1. at the stability limit, we again have the s tandard rectilinear 

.scheme, for which a grid decomposition is possible; this was discussed in the previous section. 

O p t i m a l l y d irect ion- independent numerical d i spers ion 

Although the choice of the free parameter « which gives a maximally direction-independent numerical 

dispersion profile has been made, in the past, through computerized optimization procedures [157], 

we note here that it is possible to make a theoretical choice as well, based on a Taylor series expansion 

of the spectrum. 

T h e spectral amplification factors for the interpolated scheme can be writ ten in terms of the 

function Da, or. equivalent lv. in terms of the function Fa. It should be clear, then, that if Fa 

is directionally-independent. then so are the amplification factors, and thus the numerical phase 

velocity (see fjA.1.1) as well. Ideally, we would like Fa to be a function of the spectral radius 

\\/3\\< = (0* + ^ ) ' ' " alone. Now examine the Taylor expansion of Fa about /3= 0: 

Fa = -A»|AJ + A' ( I (£ + $) + ̂ p # $ ) + 0(A«) 

The directionally-independent 0 ( A 2 ) term reflects the fact that the scheme is consistent with the 

wave equation; higher order terms in general show directional dependence. The choice of a = 2 / 3 . 

Passive Ne it Passive 
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however, gives 

/> = ~A'|j0||l + jfA«|0|fi + 0(A8) ^ " = 2/3 

and the directional dependence is confined to higher-order powers of A. Thus for this choice of a, 

the numerical scheme is maximally direction independent about spatial DC. Note that this value of 

a does fall within the required bounds for a passive waveguide mesh implementation. The value of 

0.G2 (for which the numerical dispersion profile is plotted in Figure A.2). which is very close to 2/3. 

was chosen by visual inspection of dispersion profiles for various values of d. 

A.2.3 The Triangular Scheme 

The simplest difference scheme which can be used to solve the wave equation on a triangular grid. 

and which corresponds to the waveguide mesh discussed in ij4.G.l in the const ant -coefficient case, is 

given by 

•> , 
L'i,j(„ + 1) + Uij(„ - 1) = ^A'(t-,,J+2(») + Pfj-tftt) + r,+1.J+1(») + r / m j _ i ( n ) 

+ r,-_ I J+I(;i) +r,--I.,--,(ii)) (A-18) 

+ -2(l-2\2)UiJ(n) 

for a grid defined by points at indices (/', j), for integer ; and j such that i + j is even. These 

coordinates refer to grid points at locations .r = \/3f A/2 and »/ = jA/2 , so that a given grid point is 

equidistant from its six neighbors. This arrangement is shown in Figure A.4(a) and can be considered 

to be a rectilinear grid under a coordinate transformation; we refer to [11)3] for a discussion of the 

range of allowable spatial frequencies for such a grid. 

In this case, we will again have an amplification polynomial of the form (A.5), with 

Da = - 2 h + ^ A M c o s ( ^ A ) + 2 c o s ( ^ ) c , , s ( ^ ^ ) - 3 j J 

Fa = \ I CPS(0„A) + 2 cos( ^ ) cos( - ? | ^ ) -

Because Ffl is not multilinear (see fjA.2.2) in the cosines, finding the extreina is not as simple as 

in the interpolated case one can proceed either through some tedious algebra, change to stretched 

rectilinear coordinates, in which Fp becomes multilinear again, or make use of a computer. In any 

case, these extreina can be shown to be 

uiaxFfl = 0 niiiiF/j = —3 
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and thus, from (A.9). 

A < «/ - for stability 

This is surprising, because the hound for passivity, from (4.80). of the triangular mesh is A < l / v 2 -

That is to say. for a given inter-junction spacing of A. a tr iangular waveguide mesh, of the type 

mentioned in §4.6.1, is concretely passive for time steps T with T < A / ( v 2 ~ )• The corresponding 

difference equation, namely (A.18), is stable (in the sense of Von Neumann), for T < v/2A/( v ^ l )• 

The waveguide mesh can of course operate in a non-passive mode for l / \ / 2 < A < \ / 2 / 3 (where 

we will require negative self-loop immittances. and will not have a simple positive definite energy 

measure for the network in te rms of the wave quantities). The numerical dispersion characteristics 

of the scheme at the two bounds are considerably different, and are plotted in Figure A.4(b) and 

(c); the phase velocities are near the correct physical velocity over a much wider range of spatial 

frequencies at the stability bound, though the dispersion is also more directional. 

The question which arises here is of the distinction between passive and stable numerical methods 

(this was also seen for the mesh for the transmission line equal ions in §4.3.6, as well as in t he previous 

section on the interpolated rectilinear scheme). Is it always possible to find a passive realization of a 

stable numerical method? T h e discussion on the hexagonal mesh will help to answer this question. 

To this end, we note that at the stability limit, we can rewrite Dp as 

B0 = W$\m) f« 

for a function t / j whose squared magni tude is given by 

-l/I 

|tV»| - l - M c o s ^ — — ) - r 4 c o s ( - ^ - ) c o s ( - ) 

The spectral amplification factors at the stability limit will then be. from (A.b). 

G0,± = -1 + | | top ± |ltol (JhfcP - l) ' (A.19) 

For A — \/2/3 (its limiting value), the triangular scheme has the same potential for instability 

as the rectilinear scheme. Linear growth may occur for this scheme at the seven spatial frequency 

pairs 

/ 9 ' =[().()]. [0 ,±47r/3A], [2^ /v / 3A.±27r /3A] , [ - 2 T T / V / 3 A . ± 2 T T / 3 A ] 

The computat ional and add densities for the triangular scheme in general, and at the stability 
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( . - H A ^a .A ^ 3 | , + i i a 

(a) (b) (c) 

Figure A.4: The triangular scheme (A.18) (a) numerical grid and connections; (b) vp,phasel"\ for 

the scheme at tin passivity bound. A = l /v2." (<") *'p,phase/l at the stability bound, for A = y 2 / 3 . 

(A = y/2/3) and passivity bounds (A = l /v/2) will be 

t'lri — 

Ptri = 

Ptri 

v/3A:t 

v/2l 

2v^2 
\/3A3 

a,,., = 
Urn 

v/3A3 

A3 

A 3 

Here we have taken into account the fact that at the passivity bound, we requite one less add per 

point (in the waveguide mesh implementation, the self-loop disappears). We also mention that 

the tr iangular difference scheme is doubly pathological, in the sense that not only do its passivity 

and stability regimes not coincide (and aside from the interpolated rectilinear schemes, it is the only 

scheme examined in this appendix that exhibits tliis behavior), but it also cannot be decomposed into 

even /odd mutually exclusive subschemes. as can all the other schemes to be discussed here (again, 

excepting the interpolated scheme). It seems reasonable to conjecture that these two "symptoms" 

are related (somehow). 

A.2.4 The Hexagonal Scheme 

T h e hexagonal scheme is different from those previously discussed in that updat ing is not the same 

at every point on the grid. Indeed, one-half the grid points have a "mirror-image'" orientation 

with respect to the other half, as shown in Figure A.5(a). For this reason, we will take special 

care in the analysis of thi^ system: first suppose that we have two grid functions L'i(n) and I/{n) 
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defined over the two subgrids (labeled 1 and 2. in Figure A.5). We index these two grid functions 

as i'\ij()i) and i j . + j j f n ) . for i and j integer such that i = 3m, for integer ra, and j + i/3 

is even. U\jj(n) will Berve as an approximation to some continuous function ii\ at the point 

(j- = Ai /2 ,{ / = </3jA/2.t = iiT), and l-2.i~2,j{") will approximate a function tig at a point with 

coordinates (.r = A / / 2 + A . y = \/3jA/'2.t — n'T). As before the distance between any grid point and 

its nearest neighbors ( three in this case) is A. The difference scheme for the hexagonal waveguide 

mesh can then be writ ten as the system 

Uwjin+U + Utjjin-l) = '^ {l'2.i+2j(") + U-2,i-i,j+i(») + i'-u^j-A")) 

+2 ( 1 - 2 A 2 ) £',,,-J(II) (A.2()a) 

C2,, + 2,j(" + l) + C2,i+2j('>- 1) = - A 2 ( r l , , J ( n ) + [r
1,,+;t,j+1(rl) + r l , , + : 1 j - 1 (»»)) 

+2(l-n*)V3,n.ij(n) (A.2()b) 

Consistency of (A.20) with the wave equation is not immediately apparent. We can check it as 

follows. First expand (A.20) in a Taylor series in t e rms of the continuous functions iit and Uj to get 

( r - , | ^ + 4 A - ' ) , 1 = A M 4 + A - ; r - , ) ( ( , 

to 0 ( A ' \ r ' ) . This system can then be reduced to 

where u is either of ii\ or //•_«. Discarding higher order te rms in T and A gives the wave equation. 

In te rms of the spatial Fourier spectra of the grid functions U\ and 1-2- we may write the 

differencing system (A.20) in the vector form of (A.10) with 

where 

tfp = e * - A + 2 r - r f ^ / 2 c o s ( v / 3 ^ A / 2 ) 

Because B 3 is Hermit ian, we can then change variables so that the system is the form of (A.11), 

B0 = 
-2(1 

•4 A2 

2A2) 

-2( 1 - 2A2 
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with 

A = | " - 2 ( l - 2 A a ) + J A ' > ' 3 | 0 

The necessary stability condition, from (A.12) will then be 

max | - 2 ( 1 - 2\i)±U2W$\\ < 2 (A.21) 

It is easy to check that \ii'p\ takes on a maximum of 3 when Sx = Qv = 0. and is minimized for 

0, = (). \;i,t\ = 4 T T / ( 3 V / 3 A ) and for | & | = 2TT/3, \0V\ = 2«f/(3v^A), where it takes on the value 0. 

It Is then easy to show that we require A < l / v 2 in order to satisfy (A.21). This coincides with the 

passivity hound, from (4.79). 

An analysis of numerical dispersion is more complex in the vector case. Beginning from the 

uncoupled system defined by A#. whose upper and lower diagonal entries we will call A3 j and A3 2 

respectively, we can see that we will thus have two pairs of spectral amplification factors, one for 

each uncoupled scalar equation. These will be given by 

Gs.. .± = \ ( - v . ± / \ p J - i ) Of,** = \ ( -A3.2 ± y/\l:i - 4) 

It is useful to check the values of the amplification factors at the spatial DC frequency, and at the 

stability bound, where we have A31 = 2. A3 2 = —2. At this frequency, the spectral amplification 

factors take on the values 

Gp=o,i,± = - 1 G$=o;i,± - 1 (A.22) 

Clearly, the pair of spectral amplification factors Gp=o,2,± correctly represents wave propagation 

a t spatial DC. but the factors G^=o,i,± will be responsible for parasitic oscillations [17G] in the 

hexagonal scheme; they will not, in general, be overly problematic, since the energy allowed into 

such modes must vanish as the grid spacing A is decreased: this is a result of the consistency of the 

numerical scheme (A.20) with the wave equation, as was shown earlier in this subsection. In order 

to clarify this point, it is useful to examine the diagonalizing transformation defined by J 3 . which 

takes the Fourier-transformed hexagonal scheme in the form of (A.10), in the variable U 3 . to that 

of (A. 11). in V 3 . At P = 0, and for A = l /Vf , we have 

- 1 l ' 

1 1 

and thus T, 3 = l ) = (—U\^=0 + lT>,p=o)/\/2 and %£=* = (L'\,$=n + f/aj»=o)/v*- Because scheme 

83=0 = 
0 - 2 

-2 0 
A 3 = 0 = 

2 0 

0 - 2 
J o = 0 - *j* 



A.J. FLXITE DIFFERENCE SCHEMES FOR THE (2+1)D \YA\ E EQUATION 331 

(A.20) is consistent with the wave equation, then for any reasonable choice of initial conditions, we 

must have that f'i,0=o ~ ci>,/?=o. as A becomes small. Thus ^1^=0, the component of the numerical 

solution whose spectral amplification is governed by the parasitic factor G^=o,i,± must vanish in 

this limit as well. 

(, + n *S* 

J5± 
J i 

—5 r— 
| . + 3)A (i + MA 

— 2 - — r ~ 

d„ 0 

( i - - i i A 
1 

i ^ ( j+pi-a <I+SIA 

i 

(a) (»>) 

Figure A.5: TVir hexagonal scheme (A.20)— (a) numerical grid and connections, where grey/white 
coloration of points indicates a division into mutually exclusivt sub schemes at tin stability bound; 
(b) Vfi,phasell for the scheme <it the passivity bound. A = l / v 2 . for the dominant modi. 

The computational and add densities, for the general scheme (A.20), and at the stability limit 

for A as 1/'v/2 will be given by 

Phe i = 

I'll, s — 

4f0 

3v/3A : t 

2\f2~ 

3v/3A : l 

o~hc 

„s 

16f,) 

3\Z3A : | 

2 ^ 

73A:1 

As iii the rectilinear scheme, we have used the fact that the hexagonal scheme decouples into two 

independent subschemes at the stability limit. 

One other point is worthy of comment. Consider again the vector equation which describes 

the t ime evolution of the spatial spectra for the hexagonal scheme, which, in diagonalized form, is 

exactly (A. 11). At the stability limit, then, for A = l / \ / 2 - We. will have 

A0 = 
o -fhyv, I 
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Let us examine the second uncoupled subsystem. From (A.22). the spectral amplification factors 

will then be 

G(},2,± = gl tM* f gk/»l' - 0 

It is of interest to see the effect of the amplification factors after two t ime steps; these will simply 

be the squares of G^,2,±, which are 

<"'l-,,± = -1 + fl^l* ± f l<M ( | l ^ l ? - l) ' (A.23) 

The important point here is that the two-step spectral amplification factors for scheme (A.20) arc 

identical to the one-step factor for the tr iangular scheme with grid spacing VoA at its own stability 

limit: these lac-tors were given in (A.19). This is perhaps not surprising, given tha t , from Figure 

A.5(a), it is clear that that either of the two sub grids for the hexagonal scheme forms a triangular grid 

of spacing \ /3A. What is surprising is that a tr iangular waveguide mesh at the stability limit is not 

a concretely passive stmctuiv (see previous section). That is to say, it will still opera te stably (in the 

Von Neumann sense), but will require negative self-loop iinmittances. Thus a hexagonal waveguide 

mesh, at its passivity/stability bound can be seen as a passive realization of the stable difference 

scheme on a triangular grid. The question as to whether there is always a passive realization for any 

stable difference scheme remains open*. 

A.2.5 A Fourth-order Scheme 

The schemes examined so far have all been spatially accurate to second-order. That is. at any time 

stej). the L) norm of the difference between the numerical solution and the solution to the model 

problem will be proportional to A 2 , h i this section, we examine a family of explicit two-step schemes 

which are fourth-order spatially accurate . This family is more computationally intensive, due to the 

fact that Updating the grid function requires access to past values which are two grid points away: in 

addition, we will see that a passive waveguide mesh implementation will not be possible in this case. 

These disadvantages are mit igated by the fact that the numerical dispersion is greatly reduced, so 

that the use of a coarse grid may be possible. 

This scheme is, like the s tandard rectilinear scheme, defined over a grid with indices i and j 

which refer to a location with coordinates x — /A and y = j A . Updat ing, in this case, at a given 

point, requires access to values of the grid function at the previous time step at the set of 25 grid 

points which are located at most 2A away in either the J- or y directions, as shown in Figure A.7(a). 

*We consider this to he the single most important issue raised in this thesis. 
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The difference scheme will have the general form 

Uijin + 1 ) 4 - Vij(n - 1) = A'-«([r;, j+1(n) + t / , J _ l ( n ) + Ui+U(n) + r,-i..,(»)) 

+ A 2 t ( t ' , + , j + , (»o + [ r ,+i,j-i(") + c V i j + i ( " ) + r ( _ 1 ,,•_,(»))) 

+ \2c(C,+-2,j(n) + £ / i_ ? J (n)+ Uij+2(n) + tf|j-a(»)) 

+ A'Jrf(t/,-+2J+,(fi) + ^«+2^-i(n) + Ui-2j+i(n) + U^tj-iin) 

+ Ui+u+i(n) + Ui+ij-2(n) + Ui-ij+^iti) + Uj-i:j--2(ii)) 

+ X2,-(Ui+2J+2(n) + Ut+2j-2(n) + Ui-2,j+2(n) + Ui-2J-2(n)) 

(A.24) 

In order for (A.24) to approximate the wave equation, we first require that the constants a, b, c, d, 

e and / satisfy the constraints 

2 
d + 26 + 4 c + 1 0 < f + 8 e « l 4a + 4h + 4c + 8r/+ 4c + / = T | (A.25) 

Then, to ensure that the scheme is fourth-order spatially accurate, we additionally require 

b + 8 d + i 6 e = 0 a + 2b + lGr + 34rf + 32c = () (A.26) 

We can then write all the parameters in terms of </, e and A. as 

a = 14(/-f32r + 4/3 (A.27a) 

b = - 8 r / - l C t (A.27b) 

c = -2d- 2v - 1 / 1 2 (A.27c) 

/ = 2/A2 - 24d - 60e - 5 (A.27d) 

These constraints are all arrived at through a tedious but straightforward Taylor series expansion of 

the scheme. As for the interpolated scheme discussed in jjA.2.2, passivity is guaranteed by a simple 

positivity condition on the scheme parameters, in this case a,..., / . From (A.27c), it should be clear 

that if d > 0 and e > 0. then we must necessarily have C < —1/12, and a passive waveguide mesh 

implementation for this scheme is ruled out. This is not to say that fourth-order spatially accurate 

DWNs do not exist; we showed, in §4.10.5 that such a network does exist, at least in the case of the 

(14-1)D transmission line system (the wave equation is a special case of this system). The conclusion 

is that the topology of the form discussed in this section does not permit a mesh realization, but 

there are other forms that do. 
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T h e amplification polynomial for this scheme is of the form of (A.5). with Dp = — 2\1Fp —2 and 

F& = (14</ + 32< + 4/3}(co8(&tA} 4 cos( . ivA)) + {-Mid - 32e) cos(,;f,A) cos(,J„A) 

+ (-2d-2r- l /12)(cos(LM,A) + cos(2,.^A)) 

+ 2d( cos(,ix A) cos(2 :iv A) + co.s(2.,-f, A) cos(0„A)) 

+ 2r<os(2 ^A)<os(2,J 1 / A) - 1 2 ( / - 30e - 5/2 

In order to determine stability bounds , we are faced with finding the extrema of Fp in te rms of the 

pa r ame te r s <l and e. Because Fp is not multilinear in the cosines, finding these extrenia explicitly is 

a challenging problem. 

Let us first simplify the class of difference schemes by looking for those which exhibit maximally 

direction-independent numerical dispersion. As in fjA.2.2, we expand Fp in a Taylor series about 

(3 = 0. to get 

F, = - ^ \ \ m + ^(^(^+^)-{ll/2 + 2r)(^il + ^))+0(^) 

T h e absence of a term in A4 reflects the fourth-order accuracy of the scheme. If we choose d/2 + 2c = 

— 1/60, however, we get 

F0 = -^'\\P\\i+^r)\\m + (H^) tor (Z/2 + 2c = -l/60 

and the scheme is direction-independent to sixth order in A. 

Making use of this setting for e in terms of </, Fp now depends only on the free pa ramete r d: 

t l uough a computer analysis, it is possible to show that condition (A.8) is satisfied for d > —0.134. 

T h e upper bound on A, from condition (A.9) is plotted as a function of d in Figure A.6. 

max A 
i 

. * 

V. •• 

a 4 

i. •-• 

a 

-!) 20 -(113-4 0 a 25 0 5 t 

Figure A.6: Stability bound fur the fourth-order scheme (A.24). as a function of the free parameter 
d. m the optimally direction-independent case. The solid line indicates the maximum value of A for 
a given value of d. The sehemt is stable only for d > —0.134. 

We have plotted a numerical dispersion profile in Figure A.7(b). It is interesting to note tha t the 

Stclbl 

Stable 
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maximum value of !'#,,,/,„«. / l f(»' this family of schemes would always appear to be slightly greater 

than 1. although the numerical phase velocity does indeed approach the physical velocity at spatial 

DC (as it will for any consistent scheme). 

" + •>* o o o o o 

d b .1 b d 

o + na o o o o o 

c _a f _ a c 

>* © o o o o 
d b a b d 

i j - i . * o o o o o 

U-3.A o O O O O 

11 — I ) j i ( > - i IA 1 4 l i + l l - l l i + J I A 

II 

II 

(a) (b) 

Figure A.7: The fourth-order spatially accurate sehetm (A.24)— (a) numerical grid, where the 
letters a through f refer to the related coefficients from (A.24): (b) i'j}.phasr/") / " ' "'<• scheme at for 
il = —0.044 and A = 0.6174, which is away from the bound shown in Figure A.6. i'p,phase/~) takes 
on a maximum of 1.0144 (ni,t shown). 

The computat ional and add densities for this scheme are. in general. 

_ «8 
P fourth — . j 

•'.-, 
17 fourth 

O'O 

A:1 

There are several ways of cutting down on computational costs; for example, because d and c are 

free parameters , we may simply set them to zero, and the add density is significantly reduced. There 

is. however, no decomposition of this scheme into mutually exclusive subschenies. 

A.3 Finite Difference Schemes for the ( 3 + l ) D Wave Equa­

tion 

We now look at several difference schemes which solve the wave equation in (3+1 )D. hi part icular 

schemes which opera te on a rectilinear grid: all the schemes which have appeared in the DWN 

literature are of this type. We will pay special attention to the interpolated scheme, for which the 

requirements for stability and passivity become even more distinct than they were in t h e ( 2 + l ) D 

case (see §A.2.2). 



33G APPENDIX A. FIMTE DIFFERENCE SCHEMES FOR THE WAVE EQUATION 

A.3.1 The Cubic Rectil inear Scheme 

This is the simples! scheme for the (3+l)D wave equation. The grid points, indexed by i. j and k 

.ire located at coordinates (.r.y. ;) = (»'A. jA . A-A). The finite difference scheme i* written as 

£",,;>(" + l) + UtjA* -1) * \'2(c,+i,jA») + Vf-ijj,{n) + Uij+i,k{n) + Vij-iA") 

+ Vijj,+i(n) + Ui,i,i-i(n)) <A-2 8) 

+ (2-GXi)UiJM") 

If the grid points are located at the corners of a cubic lattice, then updating the scheme requires 

access to the grid function at the six neighboring comers; see Figure A.8(a). The stability analysis 

is very similar to that of the (2+1 )D rectilinear scheme, except that we now have a 3-tuple of spatial 

frequencies, /3 = [^x,/?j/,iis]
T • The amplification polynomial equation is again of the form of (A.5), 

with 

D0 = - 2 (1 + A2 (cos(J,A) + cos(4wA) +cos( ^ A ) - 3)) 

and thus 

F0 = cos(..*,A) + cos( f„A) + cos(.J,A) - 3 

lieeause Fp is multilinear in the cosines, it is simple to show that 

maxF^ = 0 min Fg = —G 
0 0 

and so. from (A.9). 

A < -j= (for Von Neumann stability) 
\/3 

When A = l / v 3 - the amplification factors become degenerate and linear growth of the solution 

may occur for 3Z = j u = .1- = 0. and for \j3x\ = \.iu\ = \j3z\ = TT/A. The computational and add 

densities are 

_ v0 _ Tco 
Pcxtb — . . &cub — . i 

for I'D > v3"). and 

7 , _ ^ 1 
Pcub cf \4 "cub " , 4 
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at the stability limit (>o = Vo7- At this limit, the scheme may. like the ( 2 + l ) D scheme, be divided 

into two mutually exclusive subschemes. See Figure A.8(b) and (c) for plots of the numerical 

dispersion properties of the cubic rectilinear scheme. 

(a) (b) 

8. = o B, = T T / ( 4 A ) 

<3y a 

8, = ir/(2A) 8, = 3 T T / ( 4 A ) 

(<• 

Figure A.8: The cubic rectilinear scheme (A.28)— (a) numerical grid arid connections, where 
grey/white coloring of points indicates a division into mutually exclusive subschemes at the sta-
bilitii bound: (b) vp^hase/l for the scheme at the stability bound A = l / v 3 - for a spherical surface 
with ||/3||2 = ir/(2A)—the shading is normalized over the surface so that white corresponds to no 
dispersion error, and black to the maximum error over the surface (which is 7 per cent in this case). 
(c) Contour plots of t'fi,phase/')for various cross-sections of the space of spatial frequencies f3; con­
tours indicate successive deviations of 2 per cent from- the ideal value of 1 which is obtained at spatial 
DC. 
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A.3.2 The Octahedral Scheme 

The grid for an octahedral scheme is constructed from two superimposed rectilinear grids: if the 

points of the hist grid are located at cube corners, then the points of the second will occur at the 

centers of the cubes defined by the first. The relevant difference scheme on an octahedral grid can 

be written as 

Uij,k(n + !) +U(jAn - D = TA2(t.r,--ij+u-+i(>i) + i7,-+i,j+i,Jt+i(») + [/,--i,j_u.+ l(n) 

+ f-ri+)j~\,h+i[») + f-Ti-\j-\,k-\0>) + f-'i~\j+i,k~\(») / * 291 

+ ^ + l , j + l , J t - l ( ' ' ) + t r i + l , j - U - - l ( " ) J 

+ (2-8A--')r,-,M.(„) 

for i, j and A' which are either all even or all odd integers. Now. we have taken the spacing between 

nearest neighbors to be A, so the indices i, j and k refer to a point with coordinates I = i 'A/v3, 

ij = jA/v /3 and ; = /.-A/i/3. The amplification polynomial equation is again of the form (A.5). 

with 

B0 = - 2 ( l + & (eos,^f )cos(^)cos(^, - l)) 

and 

/ 3XA JVA & A \ 
F 3 = 3 ^ c o s ( - ^ , c o s ( 7 r ) c o S ( - ^ ) - l j 

and it is again easy to determine that 

max F» — 0 niin Fa = —6 

which are the same as the bounds in the cubic rectilinear case. We again have that 

A < -j= (for Von Neumann stability) 

v3 

Thus the stability bound coincides with the passivity bound for the mesh implementation. For 

A = l / i / 3 . instabilities may appear at any spatial frequency triplets /3 — [^T.liy,j3,}' where each 

component is either 0 or ±\ /3^/A. 

The computational and add densities are given by 

3v/3l'U 27l/3n, rr 
Pod = ~T\T~ a°ci ~ 4 A.4 t o r ' '» > v«n 
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At the stability limit, the scheme can be divided into two mutually exclusive subschemes; plots 

of numerical dispersion are shown in Figure A.9(b) and (c). It is interesting to note that there is 

no dispersion error along the six axial directions: this should be compared with the cubic rectilinear 

scheme, for which wave propagation is dispersionless along the diagonal directions (there are eight 

such directions). 

NM3IA 

_ (j+2)A 

(a) (b) 

J-_ = 0 (3, = TT/(4A) P; = */(2A) fit = 3;r/(4A) 

(c) 

Figure A.9: The octahe.dml scheme (A.29) (a) numerical grid and connections, where grey/white 
coloring of points indicates a division into mutually exclusive subschemes at the stability bound; 
(b) Vff^phase/l' for the scheme at the stability bound A = l/v3. for a spherical surface with ||/3||2 = 
7r/('2A)—the shading is normalized over the surface so that white corresponds to no dispersion error, 
and black to the maximum error oner the surface (which is 5 per cent in this case), (c) Contour plots 
of the VffiPhase/l for various cross-sections of the space of spatial frequencies /3 ; contours indicate 
successive deviations of 2 per cent from the ideal value of 1 which is obtained at spatial DC. 
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A.3.3 The (3+1 )D Interpolated Rectilinear Scheme 

In the interest of achieving a more uniform numerical dispersion profile in (3+1 )D, it is of course 

possible to define an interpolated scheme [155, 158], in the same way as was done in (2+1 )D in 

§A.2.2. We will again have a two-step scheme, and updat ing at a given grid point is performed 

with reference to, at the previous time step, the grid point at the same location, as well as the 20 

nearest neighbors: the six [joints a distance A away, twelve points at a distance of v 2 A . and eight 

points that are \ /3A away—see Figure A.11(a). We present here a complete analysis of the relevant 

stability conditions, as well as the conditions under which a waveguide mesh implementation exists. 

We also look at a means of minimizing directional dependence of the numerical dispersion. 

Like the cubic rectilinear and octahedral schemes, this scheme will be defined over a rectilinear 

grid indexed by i, j and k and will have the general form 

Uijtk{n + 1) + Ui,jA» - 1) = floUji+ijjln) + IU-1,;,*•(») + Vi,}+\,k(n) + Vi,j-\A») 

+ lri.j.k-+i(ii) + Ci,j,h-\{»)) 

+ A^ .^ r ; + l , j + i , / . ( ; i ) + t r
)+i, ;_i,A.(n) + C r,_iJ+i,A.(»i) + [ r , - i J _ , , j t (n ) 

+ t r ; + i j , t + 1 ( » ) + tVij .A-f-i(n) + Ujj+ltk+\(») + £r;,j-i,Jb+i(n) 

+ Ui+i j , f c _ i ( » ) + Ui-i j , t _ i ( n ) + Ui_j+Uk-\(n) + Uij-i,*- i (H) j 

+ X2cWi+ij+i,k+l(n) + Ui+ij+uk-1(»») + f r
( - i , j - i , t + i ( n ) 

+ £ ' r ; - i , j - i , / t - i (») + £ r ,-+i,j-i ,*+ i(i i) + £ ' r t+ i j - i ,* - i (») 

+ t7i-),j+i,i-t-i(») + t ri-i,i+i,*--i(")J 

+ \2dUij(n) 
(A.30) 

In order for scheme (A.30) to satisfy the wave equation, we require the constants <i, b. c and (/ to 

satisfy the constraints 

e > • " ' ; " <l= 4 - - 4 d - 4 1 . - 2 (A.31) 
4 \ 2 

and a family of difference schemes parametrized by a, b and A results. 

The stability analysis of this scheme proceeds along the same lines as tha t of the (2+1 )D scheme, 

though as we shall see, the stability condition on the parameters a and b is considerably more 

complex. As before, we have an amplification polynomial of the form of (A.5), now with 

F9 m a ( c o s ( & A ) + cos(,.;f„A) + ec»(&A)) 

+ 26(cos( ,3 rA)cos(# yA) + e o s ( # r A ) c o s ( . d r A ) + cos( /5 v A)cos(^ r A)) 

+ (1 - a - 4b) cos( /^A) cos(/3vA) cos(/3-A) - 2a - 26 - 1 
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where as before, Bp = — 2\2Fp — 2. Because F$ is again multilinear in the three cosines, its extrema 

can only occur at the «'if»lit corners of the cubic region defined by |cos(/72A}| < 1. |cos( | , ,A) | < 1 

and |cos(/?2A)| < 1. These extrema are 

^ 0 T = [o.o.u] = " 

^9 7=[,r /A,0,0] = •f^r = [0,!T/A,0] — •f,/3r = [0,0,TT/A] = ~~ 

^ 9 r = lT/A.^/A,0] = •f/9r = |,r/A,(),-/A] = Fpr = [it/A,i;/\,a\ ~ -4(1-81) 

•F/J^Tr/A.Tr/A.Tr/A] " —4(/ + 86 — 2 

The nun-posit ivity requirement on Ffl then amounts to requiring that these ext reme values be non-

positive. The resulting stability region in the (a,6) plane is shown in grey in Figure A.10(a). 

i + 4 • 
V V 

11 
I: 

»=* 
P „ a 

• • 5 / / / •: Q 

i 

Figure A.10: (a) Stability region, in grey, for the interpolated rectilinear scheme, plotted in the [(ij>) 
plane. This region can be divided into three sub-regions, labeled I. II. and III separated by dashed 
lines, over which different stability conditions on A apply. In region I. we must have A < 1, in region 
II A < l/y/2n + 4b. and in region III A < 1 / \ / 2< I — -ib + 1. The dotted line indicates choices of a 
and b for which numerical dispersion is optimally direction-independent, (b) The subset of stable 
schemes for which a passive waveguide mesh implementation exists is shown in dark grey. Over 
this region, we requiri A < 1 / \/2a + 2b + 1. This bound is more strict than the stability conditions 
mentioned above in the same region. We also remark that this interpolated scheme reduces to other 
simpler schemes under particular choices of a and b. At point P. we have the cubic rectilinear 
scheme (see §A.'i.l). at point Q we have the octahedral scheme (sec §A.8.2), and at point R we have 
what might be called a "dodecahedml" scheme. Notice in particular that noin of tin si sch< mi s /•> 
optimally direction-independent (i.e.. P. Q and R do not lie on the dotted line). 

Assuming that a and b fall in this region, we must now find the values of A which satisfy (A.9). 

The minimum value of F$ depends on <i and b in a non-trivial way: referring to Figure A.10(a). 

the stability domain can be divided into three regions, and in each there is a different closed form 

expression for the upper bound on A. These bounds are given explicitly in the caption to Figure 
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A. 10(a). 

In order to examine the directional dependence of the dispersion error, we may expand Fp in a 

Taylor series about /3= 0. as was done in the (2+1 )D case. We have 

F, = - ^ ] \ ^ + ^(^(n+K+^ + 1~''~2l'Ui4+iii- + il^) + (>^^ 

which implies that 

F ^ - A 2 | | 0 | | » + A * i | | 0 | | 3 + 0 ( A « ) for b = - „ / 2 + l / 3 

and the dispersion error is direct ionally-independent to fourth order. This Special choice of the 

parameters a and b is plotted as a dotted line in Figure A. 10(a). It is well worth comparing this 

optimization method with the computer-based techniques applied to the same problem in [158]. 

The computational and add densities for the scheme will be 

in _ 27in 
(>M)inlerp — ~T7 a3Dinttrp — . , 

Considerable computational savings are possible if any of a. b. C or d is zero. 

Finally, we remark that the (3+1 )D interpolated scheme can be realized as a waveguide mesh, 

where, at any given junction, we will have four types of waveguide connections: those of admittances 

l'u, H and Ye are connected to the neighboring junctions located at gridpoints at distances A. v/2A 

and \ /3 -^ away respectively, and a self-loop of admittance }',/ is also connected to every junction. 

We end up with exactly difference scheme (A.30). with 

A2,i = V£ XH = H* A2c = | £ \2d = ^ Vj = GI;., + i n , + si; + Yd 
1.1 1.1 1.1 1.) 

The passivity condition is then a positivity condition on these admittances, and thus on the pa­

rameters «, b, c and (/. Recalling the expression for c in terms of a and b from (A.31). we must 

have 

(i > 0 b > 0 b < — ^ 

This region is shown, in dark grey, in Figure A.10(b). The positivity condition on (/ (expressed in 

terms of <i. 6 and A as per (A.31)) gives the bound on A, which is 

V 2d + 2 6 + 1 
A< «/- ——- (forpassivity) 
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.= = (k + l IA 

(a) 

0„ o 

8 , = 7 T / ( 4 A ) ft, = 3 T T / | 4 A ) 

(c) 

Figure A.11: The (3+l)D interpolated rectilinear scheme (A.30)— (a) numerical grid and connn-
tions. from a central grid point (labeled P) to its neighbors in am actual. (I)) ffflpha*e/')' for the 
scheme with a = 0.42 and b = 0.1233 at the stability bound A = 0.8G17. for a spherical surface with 
\\/3\\-2 = T T / ( 2 A ) — t h e shading is normalized over the surface so that white and black refer to mini­
mal and maximal dispersion error, respectively. Hire, unlike for the cubic rectilinear and octahedral 
schemes, then are no dtsperstonless directions. The variation m the numerical phase velocity is, 
however, quite small, ranging from 96.81 to 97.32 per cent of the correct wave speed, (c) Contour 
plots of V0 phase/"; for various cross-sections of the space of spatied frequencies ft; contours indicate 
successive deviations of 2 per cent from the ideal value of 1 which is obtained at spatial DC. 
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A.3.4 The Tetrahedral Scheme 

The te t rahedral sdieme in (3+1 )D [200] is somewhat similar to the hexagonal scheme in (2+1 )D. in 

that the grid is divided evenly into two sets of points, at which upda t ing is performed using "mirror-

image"" stencils. Ii i-. different, however, because grid points can easily be indexed with reference 

to a regular cubic lattice: the hexagonal scheme operates on a rectangular grid in stretched or 

transformed coordinates. In fact, a tetrahedral scheme can be obtained directly from an octahedral 

scheme simply by removing half of the grid points it employs: as such, any given grid point in 

the te t rahedral scheme has four nearest neighbors. As usual, we assume the nearest-neighbor grid 

spacing to be A. See Figure A.12(a) for a representation of the numerical grid. 

As per the hexagonal scheme, we will view this as a vectorized scheme operat ing on two distinct 

sub grids, labeled 1 and 2 in Figure A.12(a). The two grid functions ti.;,j,A-(") and Uy.i+i J + l J t + l ( n ) 

are defined for integers i. j and k all even such that (;' + j + k)/2 is also even, t'l.ij.A- will be used 

to approximate a continuous function ii\ at the point with coordinates j - = / A / \ / 3 . y = j A / v M and 

z = A*A/v3. and U2,i+ij+i,k+i approximates u% at coordinates .r = (/ '+ l ) A / v / 3 . y = (j' + I t A / v ' S 

and z — (k + l ) A / v 3 . The numerical scheme can then be wri t ten as 

F\,,,j,k(ll + l ) + #U,j,fc(n - 1) = - A2 (Cr2,,-f-l,j+l,A + l ( " ) + t"2,i+1,;_,,<.._,(/() 

+ t r 2 , , - i , ; - i , i . + i (» i ) + t r 2, ; - i , j+ i . / . - i (»)J 

+2(l-3X2)Ul,,,JM») (A.32a) 

lL2,i+\,j+i,k+\(>i + 1) + tr2,,'+i,j+i,A-+i(ii - 1) = -A'2ft ri . ,- ,j , t(n) + Ui,ij+-2,k+-2{n) 

+ Cri,> + 2 , j+2 , t ( ' l ) + t ri,.+2,j,fr + 2 ( " ) j 

+ 2 ( 1 -3A2)£.T
2.«+ij+i.*+i(») (A.32b) 

As for the hexagonal scheme, we may check consistency of this system with the wave equation by 

treating the grid functions as samples of continuous functions uj and u; and expanding (A.32) in 

terms of partial derivatives: both grid functions updated according to this scheme will approximate 

the solution to the wave equation on their respective grids. 

Determining the stability condition proceeds as in the hexagonal scheme: taking spatial Fourier 

transforms of (A.32) gives a vector spectral update equation of the form (A.10). with B^ given by 

[ -2 (1 -3A 2 ) -§A"-Vfl 

- j A 2 ^ - 2 ( 1 - 3 A 2 ) 

with 

ty * 2(<^^/> / 5cos(A(^ + ftJ/v/S) + e-****'^coa(&(ff* ~ 0 * ) / ^ ) ) 
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B# is again Hermitian. and lias eigenvalues 

A, , , = _ 2 ( l - 3 A * ) + ^ | f 3 | 

\fla = - 2 ( l - 3 A - ) - ^ A - ' | l d | 

The stability condition can thus be written as 

< 2 (A.33) - 2 ( 1 - 3 A « ) ± | A ' | ^ | 

l/ffi can be shown to take on a maximum of 4. and a minimum of 0. and it then follows that (A.33) 

will be satisfied if and only if A < 1/vo- the same bound as obtained for the cubic rectilinear and 

octahedral schemes. The bound is the same as the bound for passivity of a te t rahedral mesh. as 

discussed in §4.7. We note that as for these other schemes, the grid permits a subdivision into 

mutually exclusive subscheiiies at this stability limit—see Figure A.12(a). By a simple comparison 

with the hexagonal scheme, we can obtain the four spectral amplification factors by 

G*,..± = \ ( - A „ . , ± x / A ^ - 4 ) G$:2,± = i ( - A „ „ ± y / \ l , - 4) 

it is easy to see that parasit ic modes (characterized by the amplification factors Gp,ii±) will be 

present in the tetrahedral scheme, due to the non-uniformity of updating on the numerical grid. 

The numerical dispersion characteristics of the dominant modes with amplification factors G3->.± 

are shown in planar and spherical cross-sections in Figure A.12(b) and (c). 

The computational and add densities of this scheme, in general, are 

3v/3i'n 15\/3 
/ ' ' ' ' ' - o \4 °uir — 

' I . 

for t'o > >/37, and 

8A1 , e " 8A^ 

n' - 0~ -' - 9 " 
Pltlr — IDA-' ""' 4A1 

at the stability limit ru = v^T-



34G APPENDIX A. FINITE DIFFERENCE SCHEMES FOR THE WAVE EQUATION 
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(9, a O J : = TT/(8A) .£*.. = T T / ( - 4 A ) d= = 3;r/(8A) 
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Figure A. 12: The tctrahtdral scheme (A.32) (a) numerical grid and connections, where grey/white 
Coloring of points indicates a division into mutually exclustvc subschein.es at tlt< stability bound. The 
scheme can be indexed similarly to the octahedral scheme (see Figure A.9). The two sub grids with 
mutually inverse orientations arc labeled 1 and 2. (b) v$,rhasell for the scheme at tin stability 
bound A = l / \ / 3 . for a spherical surface with \\P\\-2 = 7r/(2A) the shading is normalized over the 
surface so that white corresponds to no dispersion error, and black to the maximum error over the 
surface (which is 6 per cent in this case), (c) Contour plots of t'^ ,,/„,,„, /-) for various cwss-sections 
of the space of spatial frequencies /3: contours indicate successive deviations of 2 per cent from the 
ideal value of 1 which is obtained at spatial DC. Here we have only plotted spattal frequencies to \j3z\, 
\fiy\, and \ff,\ all less than T T / ( 2 A ) . 
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Appendix B 

Applications in Fluid Dynamics 

One of the most interesting developments in the wave digital numerical integration field has been 

applications to highly nonlinear problems in fluid mechanics [1G. 49. 70]. These systems, also de­

scribed by hyperbolic systems of P D E s . have MD circuit representations, and as such, it is possible 

to develop numerical methods in the same way as outlined in Chapter 3: the procedure is. however, 

complicated by the necessarily nonlinear na ture of the requisite circuit elements. T h e purpose of 

this brief appendix is to expand upon the very concise descriptions of the technique in the literature, 

and to add a few comments regarding alternative network formulations and fluid dynamical DWNs 

and a possible reformulation <>f the problem in terms of entropy variables [181, 183]. 

B.l Nonlinear Circuit Elements 

It should be clear that in order to build circuit models for nonlinear systems of PDEs , we will need 

nonlinear distributed circuit elements. Nonlinear resistances are simple to model: a voltage-current 

relation of the form 

r = iR 

will correspond to a passive resistor as long as H is positive, regardless of its dependence on c. i. or 

the independent variables of the problem. The definitions of transformers and gyrators also remain 

unchanged in the nonlinear case: the turns ratio or gyration coefficient may have any dependence 

without affecting losslessness. 

Nonlinear reactances require only a slightly more involved treatment. Recall the generalized 

317 
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definition of the Inductor as given in (3.42): 

»-^(^H(££+f;) 
Here again, tj is some coordinate defined by a transformation such as (3.15) or (3.21). The instan­

taneous absorbed power density will he 

rT.d\[L\ IdLi2 

' ' • ' - = "' = ^ ' ^ - = 2 ^ 7 

and the element can be considered to he lossless as pet the definition of (3.28) provided the stored 

energy flux E is defined to be 

E = 1-Li2e) 

where ej is a unit vector in the direction tj. This is the same as the definition in the linear case, 

from (3.35). Here. L is constrained to positive, but may be be a function (smooth) of any of the 

dependent or independent variables in the problem. This losslessness is reflected in the MDWD 

one-port : if the port resis tance is chosen to be /? = 2L/Tj, for some step-size 7) in direction tj, then 

in te rms of power-normalized waves a and 6 (see §2.3.2), the one-port is defined, at a grid point with 

coordinates t , by 

k(t) = -u(t-Tj) (13.2) 

for a vector shift Tj = TjCj. just as in the linear case. It is important to mention that for a nonlinear 

problem, it is essential to use power-normalized waves, because passivity is not guaranteed otherwise 

[16]. (The reason for this should be clear from the discussion in §3.5.1; we cannot obtain a wave 

relation such as (B.2) in t e rms of voltage wave variables because the differential operator does not 

necessarily commute with the inductance.) 

A nonlinear capaci tor can be similarly defined, by 

' - ^ ( * * ) • Ww, * f ) 

for some capacitance C. which again may have arbi trary smooth functional dependence: if C is 

always positive, then t h e capaci tance is lossless. 

Notice that for all practical purposes, the nonlinear character of any one of these elements is 

essentially transferred to the port resistances of the adaptor to which it is connected; the wave 

digital elements themselves are identical to their linear counterparts . As long as the circuit element 

values remain positive, then so do the port resistances, and an adaptor scattering matr ix will be 
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forced to be orthogonal (see §2.3.5), and can be interpreted in terms of rotations and reflections. The 

problem, then, is in determining the scattering matrix, which, though orthogonal, may be dependent 

on the input waves; a system of nonlinear algebraic equations results. This problem is usually solved 

in pract ice using iterative methods, but existence and uniqueness of such a solution are mat te rs 

which have not been broached in any detail (and should be). These systems of equations are usually 

small, however, and can be solved separately at a any given grid point. 

B.2 Burger's Equation 

A simple nonlinear PDE which is often used as a model problem for fluid dynamical systems is given 

by the invinctd Duiyi-r's rquution [82]: 

^ • + W F = 0 (B.4) 
at Ox 

It is similar in form to the adve.ction equation mentioned in <j3.G. and as we will see. its circuit 

representat ion is identical. The problem is assumed to be defined for J- € R, f > 0. U can be 

considered to be a current, as before, through a single loop, and Kirchoff \s Voltage Law around tin-

loop will give (B.4). The question however, is of the type of circuit elements to be included in this 

loop: clearly they must be nonlinear, and certainly reactive as well. We note that the viscous form 

of Burger 's equation was approached in this way in [202]. 

Using coordinate transformation (3.18). (B.4) can be rewritten as 

/ ' o + n\ On ('o - u\ On _ 

\ v/2 ) dti
 + { v/2 ) M, ~ 

Assuming that the solution is differenttable', this can be rewritten as 

1 / , Ou 0Liu\ 1 / Ou 3Ltu\ _ , „ f c , 

where 

I, = 7l(,!" + 5") h~V${*~v) (13.6) 

*This is an assumption made by Fettweis et al. in all of their fluid dynamics work, ami is not entirely justified, 
especially if discontinuities (shocks) are to l><' modeled. Even in the simple model of Burger's equation, these shocks 
can develop [8'J]. Over regions of continuity in the problem, these numerical methods will give the correct solution, 
hut shock velocities, should I hey develop, may not be correct for this reason. 
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Thus Burger 's equation, in the form of (B.5). can be interpreted as a series combination of two non­

linear inductances, as shown in Figure B . l (a ) . The resultant MDWD network, with port resistances 

«-f /?2 = 
2La 

(B.7) 

appears in Figure D.l(h). We emphasize that this network is passive only if power-normalized wave 

variables are employed. The positivity condition on these inductances now depends on the solution 

( L I . D I (L,.D,) 
1 

T j W, 

-1 

i » 
1 

-ol 
-1 

(a) (b) 

Figure 13.1: The (l-f-l)D tnmscid Burger's equation (a) MDKCand (b) MDWD network. 

itself, II. and we must have 

r0 > - max \II\ 
~ 3 *eR,»>o 

An a priori estimate of max,gR,>>o | " | must be available: this is a consistent feature of all the circuit-

based methods (and. it would seem, any explicit method) for the fluids systems that we will examine 

presently. 

Let us now examine the scattering operation. First choose T\ = T± = \ / 2 A . so that the current 

grid function for the current at location x = iX and t = nT can be wri t ten as «,(»»). The two 

power-normalized input wave variables entering the adaptor at the same location and t ime step are 

'Ai,,(") U2,i("K and we have 

in(n) = (jli\A»)<M.iin) + //fe ij(n)a3, j(n)j 

which, from (B.G) and (B.7). and using T\ = T? = v2X and t'o = X/T can be rewri t ten as 

Ui(n) = — ( J i u + -«,(n)a,t,{n) + Jv0 - -ui(n)u.,i(n) J (B.8) 

This is precisely the nonlinear algebraic equation which is to be solved (in U{(n)); once uj(n) is 

determined, then so are the port resistances, and the output wave variables 6j ( ( n j and b2 j(n) can 

be obtained through scattering as per (2.33). As mentioned before, it is not at all clear from the form 

of (B.8) whether a solution exists and is unique. We note, however, that we (and others [10. 70]) 
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have successfully programmed simulations for the gas dynamics equations (see next section), using 

simple iterative methods to solve the nonlinear algebraic systems: the results would appear to be in 

accord with published simulation results using differencing methods [171]. 

B.3 The Gas Dynamics Equations 

The behavior of a lossless one-dimensional fluid is described by the following set of conservation 

(•([nations, also known as Eider's Equations: 

——I — = 0 Conservation of mass (B.9a) 
at ax 

djpv) d(pv2 +p) maw 
-I = () Conservation ol momentum (15.lib) at d X 

d(pr) 0(pvf+1,r) 
— 1 = 0 Conservation ot energv (li-Uc) 

at ax 

where p(x,t) is density. v(x,t) is volume velocity, / ' ( • ' . 0 Is absolute pressure, and i{.i\t) is total 

energy, internal plus kinetic. The three equations are not complete without a constitutive relation 

among the four dependent variables. The VVDF people, in their t reatment of hydrodynamics [1G] 

often leave out the energy equation and make an assumption of the type p = G(p), which essentially 

reduces system (B.9) to a two-variable system (in p and i>). For gas dynamics, we assume polytropic 

gas behavior [181]: 

p= — + ' (B.10) 
2 + ,*b-l) 

where ") > 1 is a constant which follows directly from thermodynamics (it is equal to the ratio of 

specific heats [203]). 

Before proceeding any further, we mention the scaling of the dependent variables [1G. -49]; this 

is done, as in the linear problems discussed in Chapters 3 and 5. in order to optimize the stability 

condition on the resulting network. The variables are scaled as 

<• = — P=— P= ( B . l l ) 
«'0 1>U I'D 

The parameters r0 and fg have dimensions of velocity and pressure, respectively, and nondimension-

alize the system. l'o will again become the space-step/tiine-stt-p rat io in the numerical simulation 

routine, andpo plays a role similar to t ha t of /Q in the (l-f-l)D transmission line problem as discussed 

in [j3.7 and follows directly from physical considerations. 

Using the energy density definition (B.10), system (B.9) can be written in ii on -conservative [203] 

form (after some tedious algebraic manipulations) as 
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l D o 

0 p 0 

o 0 l 

n 
or 

p 

V 

p 
+ 

V [) 

0 pi 

0 yp 

0 

1 

i 

0 
dx 

p 

= 0 

The problem here is that this system is not. in its present form, suitable for a circuit representa­

tion involving reciprocal elements*. Although it is not explicitly stated anywhere in the literature, 

the solution of Fettwcis et al. has been to scale system (B.9) by left multiplication by the matrix 

diag(l//S, 1,1/(-){>)) (though as previously mentioned, they work with the two-variable hydrodynam­

ics system, or its analogues in higher dimensions). The scaled system takes the form: 

0 

ti (> 

0 0 

II 

I) 
J_ 
" i' J 

0_ 

Of + 

1 0 

0 1 

1 ^\ 

n 
dx 

f> 
r 

J'\ 

-=- v = 0 (B.12) 

While this scaling does not change smooth solutions to system (B.9), problems may occur if shocks 

arc anticipated [181]. Such so-called weak solutions [181] to system (B.9) (solutions involving dis­

continuities which must be described using the integral formulation of (B.9)) are not necessarily 

preserved under such a scaling. Entropy variables, to be briefly mentioned in SB.3.3, allow a poten­

tial means of avoiding these difficulties. 

Finally, by employing the conservation of mass equation to simplify the other equations, the 

scaled system (B.12) can be written in skew-selfadjoint fonn [181] as: 

„<9w 3Pw . <9w 9Aw 
(B.13) 

where the symmetric matrices P and A are defined by 

P = 

1 
p 

(1 

0 

0 

p 

0 

0 

0 A = 

V 

p 

II 

1) 

II 

pv 

1 

0 

1 
r 

and w is the state, [/), f',/5]7 , and a = - ^ > 0, P . in addition, will be positive definite if the density 

and pressure are positive everywhere. The significance of this skew-selfadjoint form can be seen by 

•We note, however, that Fries [70] lias obtained an MDKC directly from these conservation laws, though certain 
extra parameters must be introduced in order to control stability. 
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taking the inner product of (I3.13| with w. in which case we get 

I cAv 'Pw l<9w'Aw 
Of + o Os = 0 (B.14) 

For the Cauchy problem (i.e., the problem is defined over the entire x axis, so boundary conditions 

are effectively ignored), we may integrate over the domain to get 

d /•+« 1 ., 
Pw./.r = 0 (B.15) 

and thus / iw 'Pw( / . r is the global conserved quantity. It can be Been, by comparison between 

(13.11) and (B.15) with (3.3) and (3.5) (in the lossless case), that this skew-selfadjointness property 

is the natural extension of symmetric hyperbolicify to the nonlinear case. It is interesting that 

the generalized definitions of the inductor and capacitor, as per (B.l) and (B.3). are completely 

commensurate: we will see t his in the next section. The theory of skew-self adjoint forms has recently 

seen quite a bit of activity, in particular with regard to so-called entropy variables [G8. 84. 95. 180. 

181. 182. 183], which we will look at briefly in §B.3.3. 

B.3.1 M D K C and MDWDF for the Gas Dynamics Equations 

It is particularly easy to sec the form of the MDKC for the gas dynamics equations in the scaled 

form of (B.13). Applying the usual coordinate transformation (3.18). (B.13) becomes 

with 

L = 

and 

- ( L D , w + £>iLw) + - ( M £ ) 2 w + £)..Mw) + Nw = 0 

l + v 
r 
II 

II 

0 

/<(l + <) 
0 

- 1 

0 

0 M = 

' 1 - r 
P 

(1 

(1 

1) 

/ " ' ( l - c ) - l 

1) 

0 
0 

i=f-i 

N = 

0 0 (I 

0 D, +D-, D\-D, 

0 D\ - D. D, + D, 

(B.1G) 

The MDKC is shown in Figure 0.2(a), where the inductances can be read directly from the entries 

of L, M and N. L and M represent the inductances in the three loops in directions /| and tj 

respectively, and N gives the coupling between the second and third loops (notice that it can be 
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realized as a simple linear and shift-invariant .laumaun two-port, just as in the linear systems of 

Chapter 3). The first loop, with current p is decoupled from the other two, al though the inductances 

in i his loop are dependent on f». 

The MDWD network follows immediately, and is shown in Figure 0.2(h) . It should be kept in 

mind that the pot t resistances at the adaptors are now functions of the dependent variables ( the 

currents in the MDKC), and thus of the wave variables themselves. In a given updat ing cycle, the 

current values of the port resistances must be determined from the incoming waves. Due to the 

fact that power normalized variables are used, this leads to a system of coupled nonlinear algebraic 

equations (three, one for each adaptor) to he solved at every grid point, and at every t ime step. 

Passivity is contingent upon the positivity of all the inductances in the network: this is essentially a 

—-W-

- W -
( A ' l l . 0 2 J 

('•22 Dl'S I' O j l 

( M j j . O j l g (I I) | I 
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»«32 = , > n _ f ) - l 

" 3 3 = — - I 
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n . = H - i i / T j 
B3 = Zl.-nlTl 

»5 = * l « s / T l 

» , = 1 M U / I j 
«1 = '»»3l/Tj 
R« = 2M 3 3 /Tj 

(b) 

Figure 0.2: Thv (l-hl)D gas dynamics system— (a) MDKC and (h) MDWD-mtwork. 

condition on the positivity of the diagonal matrices L and M . Proceeding down the diagonals, this 

requirement on the first elements leads to the natural condition 

1 ± v > 0 ''0 > |i 

where | t ' | m a r is the maximum value that \v\ will take over the problem domain, and during the 

simulation period. We have also assumed that (> remains positive, ami used the definition of the 
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scaled quantity 0 from ( B . l l ) . The conditions on the other elements of L and M arc more strict. 

We get 

/>( 1 ± l") - 1 > 0 => 1 ± V > - => r„ > 

- 1 > () => l±v>ap => r„ > 

where pmfi, and /;„,„,. are. respectively, the minimal value of/) and the maximum value of p that 

will he encountered in the problem space. These quantities, as well as |t)|mo« must be estimated « 

prion. It is also worth mentioning that for the above reasoning to be valid, it has been assumed 

that /i and p will remain positive, and that /i is bounded from below. Although this has not been 

mentioned in the li terature, there does not appear to be any assurance that these assumptions will 

remain valid during the course of a simulation. 

We si ill have one degree of freedom left, namely the value of the pa ramete r po. An optimal 

setting is easily shown to be 

PO = I'll i/(\]>,mir(>mh\ 

in which case the two bounds on r„ from (B.17) coalesce, giving 

I'O > \V\maT + i / 

V /'mm 

B.3.2 An Alternate MDKC and Scattering Network 

The use of network manipulations and alternate spectral mappings in order to derive digital wave­

guide networks from an MDKC has been discussed in detail in §4.10, and we have seen the idea 

applied again in Chapter 5 to beam and plate systems. This same idea can be employed in the 

present case as well. Consider the network of Figure B.3(a), wliich is equivalent to that of Figure 

0.2(a); the right-hand pair of inductors in series in the "pressure" loop has been replaced by a gy-

rator closed on a parallel combination of capacitors: notice that a l though we are now transforming 

nonlinear operators, the network transformation techniques are no different from the linear case. 

We thus have a powerful means of developing stable numerical methods at our disposal. 

The element values L\\, l>22i Mil and Mn are ' 1 " ' same as before, except scaled by a factor A. 

and the capacitance value will be 

f;t, = L;,;,A/2 F,, = M , 3 A / 2 

where L:t:i and M33 are as defined in Figure B.2. (Notice that we have scaled the entire system by 

A. as in §4.10.) 

file:///V/maT
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The resulting MD digital network is shown in Figure 13.3(b). As before, the two-port AADD' 

transforms to a pair of bidirectional delay lines under the application of the spectral mappings 

defined by (4.107). The other circuit elements, namely the nonlinear inductors and capacitors, 

must be discretized using the trapezoid rule, and so we are left with a network which is neither an 

MDWDF nor a DWN. but which contains elements of both. The port resistance are determined 

in the usual way: for an inductance L and direction tj. by /? = 2L/Tj and lor a capacitance C of 

direction tj by R = Tj/(2C). The port resistances of the paired multidimensional unit elements will 

be R0 = l /v/2. 

—-W-— 

-/m-
( « „ D2I 

c-22. ° i i a i^ "ji 

t*i22^ n i ' a , a " i ' 

(a) 

iSl 

W-

-<Hli-
/< ^ - ^ - ^ 

-—llih-
—rrJ- • 

(b) 

Figure B.3: Alternative networks for the (1 + 1 jD gas dynamics system 
terintj network. 

(a) MDKC and (b) scat-

It would be possible to choose the directional shift lengths in the one-port inductances and 

capacitances differently from those in the unit elements such that the network could conceivably 

operate in an interleaved (offset) configuration: parallel junctions which calculate j> al ternate with 

series junctions calculating p. A potential problem here is that the port resistances at the parallel 

junctions (say) depend on »\ but V are not calculated at these grid locations: some approximation 

is thus necessary, but we do not pursue the m a t t e r furl her here. 
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B.3.3 Entropy Variables 

In fjB.3. we showed how Fettweis et al. have effectively employed a skew-selfadjoint form of the gas 

dynamics system in order to generate a circuit model. Such forms have been the subject of a great 

deal of research, especially in the last few years [181]. One particular form, which makes use of 

SO-Called i ntropy variables would appear to be of fundamental importance, because it arises from a 

change of variables (and not a simple scaling of the system, as was the case for the system arrived 

at in ?jB.3). We recap the results from [181] here. 

Consider a system of conservation laws. 

^ + ^ 1 = 0 (B.18, 
Ot Or 

where the f (u) are smooth , possibly nonlinear mappings. The gas dynamics system (B.9). with 

u = \p,pv,pe\ and f (u) = \pv,pv +pipve+pv]1. again complemented by the constitutive relation 

(B.10) is of this form. It is noted in [G8. 11G, 182] that (B.18) implies a further conservation law, 

£ + £ - 0 (B.19, 
Ot Or 

for some smooth convex scalar function iV(u). and a scalar flux .F(u). over any time interval over 

which solutions to (B.18) remain smooth. If discontinuities (shocks) develop, then (B.19) becomes 

an inequality ( < ) . U and IF are related by 

\du) </u " \du) 

It was shown in [183] that system (B.18) is symmetrized through left-multiplication by the Hessian 

Pu oiU. 

du1 

so that we have 

P ^ + A , ^ = 0 (B,>(.) 
Ot Or 

where A;/ and P/ / are symmetr ic , arid in addition P / / is positive definite (a result of the convexity 

requirement on U). This nonlinear system is of the same form as the (linear) symmetric hyperbolic 

system (3.1) discussed in *j3.2, and possesses many similar properties; this form, however, can not 

be easily approached through MD circuit methods. Furthermore, weak solutions (i.e. solutions 

involving discontinuities) will not be preserved under such a scaling [181]. This is the same defect 

as that of Fettweis's MDKC for the Euler system, as discussed in ?jB.3. 
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ll was later shown that (B.18) can also symmetrized with respect to a new variable z. defined by 

Z = ^ r 

In this case, synnnetrization is carried out through a variable change and not a scaling, so weak 

solutions are indeed preserved. If. furthermore, the flux f is homogeneous [181], it can be shown 

that there is also a skew-selfadjoint form of (B.18). The gas dynamics system (B.9) can be wri t ten 

in skew-selfadjoint form as 

_ dz OPuz dz OAuz „ , „ . . , p ^ + -̂ r + A"^ + ̂ - = 0 (R21) 

if Ŷ is chosen as 

which is closely related to the physical entropy of the system [181]. The new variables z are referred 

to as entropy variables. 

A n o p e n p r o b l e m 

System (B.21) is of t h e same form as (B.13) ( though note that we have neglected to perforin t h e 

variable scalings). but it is written in terms of entropy variables z as opposed to non-conservative 

variables w. Applying coordinate transformation (3.18), we can get the system into the form 

\ (LuDiz + D{LU*) + i (M„£>-.z + £>>M„z) = 0 (B.22) 

where 

l*U = I'uPf/ + A;/ Mu = I'oPu - A;/ 

Both Lu and Mu will be positive definite if v0 is chosen sufficiently large. Though system (B.22) 

would appear to be in the correct form for an MDKC representation, there are certain difficulties. 

First, the matrices Lu and Mu. unlike L and M from (B.1G). are not diagonal. Fettweis was 

able to take advantage of the fact that in terms of the variables w, all inter-loop couplings are linear 

and shift-invariant ( the coupling matrix N is a constant) , so nonlinearities can be well-isolated. 

This is no longer the case here. It is of course possible to write down an MDKC corresponding to 

(B.22)—the entries of L « and Mu become inductances directly. But positive definiteness of Lu and 

Mu does not imply that the off-diagonal entries will be positive, so our M D K C will not necessarily 

be a concretely passive representation. 

We might a t tempt to avoid this by treat ing (B.22) as a simple series combination of two vector 
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inductors, of inductances L// and M// . In analogy with definitions of the coupled inductances in 

?j2.3.7. it is certainly possible to define lossless nonlinear coupled inductances by 

v, = - (L^/Diz + D i L i / z ) 

v2 = -(MuD-2z + DJMHZ) 

and I lie resulting MDKC is essentially identical to that of Figure 3.G. for the simple linear adveetion 

equation, except that the current is now z. It is difficult to introduce wave variables, however, 

because power-normalization is not straight forward in the nonlinear vector case: for an inductor of 

vector inductance L > 0. the relationship analogous to (3.-12) does not hold, i.e., 

v = i (LDji + Dj(Li)) * VlDs (L'/'i) (B.23) 

The second form of the inductor (which is distinct, and also lossless) on the right of (B.23). involving 

some left square root L r " of L. is that which would be essential for power-normalization, because 

then we would be able to write 

L - T / 1 ' v = D j ( L | / 2 i ) 

and then define power-normalized vector wave variables by 

a = i (R- r / 2 v + R»/'i) 

b = J ( V 7 -v - R'/2i) 

where R ' / " ' is the left square root of some positive definite matr ix port resistance R . Making the 

usual choice of R = 2L/TJ (or rather R ' "' = y / 2 / 7 j L r / ' i ) , we would then arrive at the familiar 

wave relationship of (3.38) in terms of the vector waves b and a. The two inductor definitions of 

(0.23) do. however, coincide if the nonlinearity is confined to the diagonal elements of L. This is 

precisely what fettweis has taken advantage of in his formulation. 

It would be of fundamental interest to know whether a passive MDKC for general nonlinear 

systems of the form of (D.22) (and its analogues in higher dimensions), amenable to wave digital 

discretization in fact exists. In such an MDKC or MDYYD network, the global conserved quantity 

would have the interpretation of an entropy, which can be thought of as a generalized form of energy 

[08]. We also note that the numerical methods examined here can also be applied to fluid dynamic 

systems in (2+1 )D [10] and (3+1 )D [-19]. The nonlinear algebraic systems to be solved become 

larger, but are still localized. Also, we mention that these numerical methods do not seem to reduce 

to conventional finite difference schemes along the lines of Godunov's method and its offspring [171]. 
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