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Abstract

Digital filtering structures have recently been applied toward the numerical simulation of distributed
physical systems. In particular., they have been used to numerically integrate systems of partial
differential equations (PDEs), which are time-dependent. and of hyperbolic type (implying wave-
like solutions, with a finite propagation velocity). Two such methods, the multidimensional wave
digital filtering and digital waveguide network approaches both rely heavily on the classical theory of
electrical networks, and make use of wave variables, which are reflected and transmitted throughout
a grid of scattering junctions as a means of simulating the behavior of a given model system. These
methods possess many good numerical properties which are carried over from digital filter design: in
particular, they are numerically robust in the sense that stability may be maintained even in finite
arithmetic. As such, these methods are potentially useful candidates for implementation in special
purpose hardware.

In this thesis, the subtext is that such scattering-based methods can and should be treated as
finite difference schemes, for purposes of analysis and comparison with standard differencing forms.
In many cases, these methods can be shown to be equivalent to well-known differencing approaches
we pay close attention to the relationship between digital waveguide networks and finite difference
time domain (FDTD) methods. For this reason, it is probably most useful to think of scattering
forms as alternative realizations of these schemes with good numerical properties, in direct analogy
with ladder, lattice and orthogonal digital filter realizations of direct form filters. We make use of this
correspondence in order to import (from the finite difference setting) two techniques for approaching
problems with irregular boundaries, namely coordinate changes, and a means of designing interfaces
between grids of different densities and/or geometries. We also make use of the finite difference
formulation in order to examine initial and boundary conditions, parasitic modes, and take an
extended look at the numerical properties of all the commonly encountered forms of the waveguide

network in two and three spatial dimensions.

Another question is of the relationship between wave digital and waveguide network schemes.
Although they are quite similar from the standpoint of the programmer, in that the main operation,
scattering, is the same in either case, conceptually they are very different. A multidimensional

wave digital network is derived from a compact circuit representation of model system of PDEs.
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The numerical routine is itself a discrete time and space image of the original network. Waveguide
meshes, however, are usually formulated as collection of lumped scattering junctions which span the
problem domain, connected by bidirectional delay lines. Lacking a multidimensional representation,
then, it is not straightforward to design a mesh which numerically solves a given problem. A useful
result is that waveguide meshes can be obtained directly from a system by almost exactly the same
means as a wave digital network. This unification of the two methods opens the door to a larger
class of methods which are of neither type, and yet which consist of the same numerically robust
basic building blocks.

On the applied side, special attention is paid to problems in beam, plate and shell dynamics;
though these systems are in general much more complex than the transmission line and parallel-plate
problems which have been discussed extensively in the literature, they can be dealt with using both
wave digital filters and waveguide networks, though several new techniques must be introduced.

Several simulations are presented.
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Preface

This thesis is, if anything, long: there have been a few reasons for this. At the beginning stages
of research, the focus was on the digital synthesis of musical sound through the use of physical
modeling techniques. Since all physical models of vibration in acoustic instruments can be framed
in terms of coupled sets of partial differential equations, the problem, then, is one of the numerical
integration of these equations, subject to initial and boundary conditions and external excitations.
There are, of course, many ways of designing such simulation algorithms. We began by looking at
digital wavegnide networks, which have been used successfully for this purpose for some time, but
soon turned to multidimensional wave digital filtering methods, which are based on some similar
ideas, yet within a powerful framework for attacking a much more general (and not necessarily
musical) class of problems. Wave digital filters, even for filtering applications, are hardly as well-
known here in the U.S. as they are in Europe, so it would not have been particularly helpful to
anyone (or wise) to present a few results with only passing nods to the literature. Some rather
extensive background information was thus compiled, in the form of a summary of most of the work
that has gone on in this field to date (to this author’s knowledge)’. Because of their fundamental
similarities to these wave digital filtering simulation methods, waveguide networks were always slated
for a (presumed cursory) second look: upon this reexamination, however, they seemed deserving of
an in-depth parallel development all their own, requiring yet more background material.
Traditional approaches to numerical integration usually involve the direct discretization of a given
set of equations by a variety of techniques, such as finite difference, finite element and spectral or
collocation methods. The methods we will discuss, however, have their roots elsewhere, in electrical
network theory. digital filtering and scattering theory. The most general goal of this author has been
to provide a unified treatment of wave digital filtering and digital waveguide network simulation
techniques, and also to answer, or at least pose some questions about how they fit into the larger
picture of numerical integration methods as a whole. As might be expected, this thesis suffers

in certain respects (notation among them) from the mismatch between the points of view of the

1t is worth stating, for the record, that the single best reference on this subject is Guunar Nitsche's doctoral
dissertation [131]; I have referred to and borrowed from it quite a bit, and in fact, several topics in this thesis have
appeared there, in a somewhat more compact form. Unfortunately, it is only available in German, and this was
another reason for attempting a comprehensive review in English.
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electrical engineer and the specialist in numerical methods. Needless to say, there is much insight
to be gained in the attempt to resolve some of the many outstanding distinctions.

Looking back, one of the few regrets of this author has been the erosion of the emphasis on
musical sound synthesis applications. Although we will spend a good deal of time later on looking
at ways of extending these techniques to simulate the vibration of stiff systems such as beams, plates,
and shells, which are the sound-producing mechanisms (resonators) in many musical instruments,
we have not done the hard work of optimizing the algorithms for the audio frequency range—the
computer program one writes in order to listen to a struck xylophone bar will assuredly be very
different from one designed to check the modal frequencies of an I beam under stress. We have tried
to lay down the basic principles, however, and nothing would be more rewarding than listening to a

real-time waveguide or wave digital chime based on a cylindrical shell model.
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Chapter 1

Introduction

The subject of this thesis is the numerical simulation of physical systems. In particular, we look at
systems which are dynamic and distributed. By dynamic, we mean that the system's state evolves
as time progresses, and by distributed, that the system is defined over some region in space, called
the problemm domain. The systems of interest here, always described mathematically by sets of
partial differential equations (PDEs) complemented by initial and boundary conditions and possibly
external excitations, span a large range of physical scenarios, including electromagnetics, acoustics,
transiission lines, the vibration of elastic systems such as strings, membranes, beams, plates and
shells, and even nonlinear fluid dynamics.

The simulation techniques that we will discuss are based on analogies between the systems
mentioned above and electrical networks, and make use of scattering principles. The time-evolution
of the state of a system is modeled as the movement of energy as it is reflected, transmitted and
propagated throughout an electrical network: the energy is carried by waves. The chief benefit of
a network formulation is that there is direct access to a measure of the system energy, which can
be used to bound the size of the solution of the system as it evolves over time. Because many
physical systems, in the absence of external excitations, are inherently passive (i.e., they do not
produce energy on their own). a network model for a system of PDEs is useful in that this passivity
is reflected in an obvious way: a simple positivity condition on all the circuit element values is all
that is required. When such a network model is transferred to a discrete setting in an appropriate
way (where it will eventually be implemented as a computer program. operating as a recursion over
a numerical grid), this passivity condition becomes a sufficient and trivially verifiable condition for
the numerical stability of the resulting simulation. It is interesting that these numerical methods
have their roots in digital filter design techniques, which were, in turn, based on discrete physical
models of mechanical or electrical circuit elements and the connections between them. In a sense,
then, simulation is a more “natural” use for these structures than filtering. Many important ideas

regarding the good behavior of these methods in finite machine arithmetic, however, were first
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introduced in the filtering context—these also result from passivity in the network model.

We will be primarily concerned with two such methods. The first is based on wave digital filtering,
a filter design technique which was initially intended as a means of translating a lumped analog
electrical filtering network into discrete time, while preserving its topology and energetic properties
(passivity in particular). Because the voltages and currents in a closed analog electrical network will
evolve according to a set of ordinary differential equations (ODEs), these digital filter networks can
also be viewed as numerical integration methods. The extension of wave digital filters to multiple
dimensions, in which case they are referred to as multidimensional wave digital filters (MDWDEFs),
is direct and makes use of a distributed network formulation of a given system as a means of arriving
at a simulation routine. Here there is a compact (though quite abstract) multidimensional circuit
representation of the model system of PDEs, just as a lumped network is a representation of a system
of ODEs. Despite the sometimes abstruse formalism underlying the construction of NNDWDF's for
simulation (invoking various coordinate changes, spectral mappings, and the use of non-physical
“circuit elements” which are distributed, and may have a directional character). these numerical
methods always involve the scattering of digital signals over a numerical grid of nodes which fills the

problem domain, and are straightforward to program.

The second method, though very similar to the first from the standpoint of the programmer,
in that the basic signal processing operation is the scattering of wave variables, is of a seemingly
different origin. Here, the network is composed of a large number of connected elements, which are
essentially transmission lines, or waveguides, so as to fill the problem domain. Wave propagation
along a given waveguide is modeled, in discrete time, by a pair of digital delay lines which transport
wave signals in opposite directions. A digital waveguide network (DWN), then. is usually thought of
as a large network of lumped elements; there is traditionally not a multidimensional representation,
as there is for MDWDFs. We will spend some time looking at the relationship between DWNs and

the MDWD networks mentioned above.

These network approaches are relative newcomers in the field of numerical simulation. There
are, of course, many other, older ways of designing a simulation method: the most well-established
and straightforward tack makes use of finite difference approzimations to the model system of PDEs.
Partial derivatives are replaced by differences between quantities on a numerical grid, and a recursion
(or difference scheme) results. These methods are simpler to program, but the wave/scattering
interpretation is lost, and the verification of numerical stability can be very involved, especially in
the presence of boundary conditions. Because the electrical network models mentioned above also
operate, ultimately, as recursions on grids, it is reasonable to ask how scattering methods fit into
the finite difference picture. The eventual identification of scattering methods with standard finite
difference methods may come as something of a disappointment to anyone who feels that these
methods are completely novel. It is best, however, to think of these methods as a different way

of organizing calculation, which leads to more robust numerical behavior. As might be expected.
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an analogous situation exists in filter design between direct form and ladder/lattice/orthogonal
structures.

The most general goal of this thesis is to provide a unified picture of how these scattering methods
are related to each other and to finite differences. It is possible to rephrase this goal as an attempt
to answer a basic set of questions; we will pose these questions in §1.2. Before we get to that stage,

however, it is useful to outline the basics of these methods in a little more detail.

1.1 An Overview of Scattering Methods

In all of the next chapter and in large parts of the following two, we will be forced to make a long
detour in order to fully lay out the details of how scattering-based numerical simulation methods
are designed. In this section, we take a brief and informal look at many of the relevant ideas, while
putting aside the full development until later. The reader who has some familiarity with wave digital

filters and digital waveguide networks may safely skip this section.

1.1.1 Case Study: The Kelly-Lochbaum Digital Speech Synthesis Model

As we mentioned above, all the numerical methods to be discussed in this thesis have their origin
in digital filter design, even though they are intended, ultimately, for use in simulation. and not
filtering. Though these two goals may seem to be at cross purposes, there is a very early instance
of an engineering problem which straddles both worlds.

Kelly and Lochbaum [104] developed a digital speech synthesis model by treating the vocal
tract as a slowly time-varying circular one-dimensional acoustic tube of variable cross-sectional
area, excited at one end (periodically by the glottis, or by turbulent noise), and radiating a speech
waveform at the other—see Figure 1.1(a). At any given time f. the shape of the tube as a function
of the spatial coordinate r determines the system resonances, or formants [145], which serve as
important perceptual cues for the listener in distinguishing among various voiced and unvoiced vocal
sounds. The problem, then, is to develop a numerical method, suitable for computer implementation,
which somehow simulates the time-evolution of the acoustic “state” of the vocal tract, i.e., the
pressure and velocity distributions in the interior. We follow the standard exposition of the Kelly

Lochbaum model here, as per [30, 145].

Concatenated Acoustic Tube Model of the Vocal Tract

The first step towards a digital model is in representing the tube as a series of N concatenated
tubes of constant cross-sectional areas, as in Figure 1.1(b) (where N=8). The tubes are assumed
to be of equal length A: if L is the total length of the vocal tract, we have NA = L. In the limit

as A becomes small. the shape of the approximation of the series of tubes will converge to that of

continuous vocal tract shown in Figure 1.1(a).
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Figure 1.1: (a) The vocal tract. modeled as a single one-dimensional acoustic tube of varying cross-
sectional area and (b) an eight tube model suitable for discretization.

Wave Propagation in a Tube of Constant Cross-Sectional Area

The concatenated tube model is useful because the acoustic behavior of a single tube of constant
cross-sectional area A is quite simple to describe, in terms of a volume velocity u(z.t), and a pressure
deviation p(r,t) from the mean tube pressure. Provided wavelengths are long in comparison with
the tube radius, and that pressures do not become too large (both these requirements are easily
satisfied in the speech context), the time-evolution of the acoustic state of any single tube, such as

that shown in Figure 1.2(a), will be described completely by

pOu dp

——4+—=— = 10 A

A0t ¥ oa P
A dp Ou
—t e = i) At
py: ot = Oz h<bl)

subject, of course, to initial conditions, and the effect of the boundary terminations on adjacent
tubes. Given that the cross-sectional tube area A, the air density p and the sound-speed v are

constant, the general solution to (1.1) can be written as

plx.t) = pl(f-l'-.l'/‘;)-{-pr(f—.r/‘}) (1.2a)
u(z,t) = Ypl(t+z/y) =Yp'(t—z/7) (1.2b)

Here the physical pressure p has been decomposed into a sum of a leftward-traveling wave p' and
a rightward-traveling wave p: both are arbitrary functions of one variable. The volume velocity u,
which is dual to p in the system (1.1), can be similarly expressed as a sum of leftward- and rightward-

traveling velocity waves u! and u”. But these velocity waves are simply the pressure waves, scaled
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by the tube admittance, defined by

i
(8

>

y
In addition, the rightward-traveling wave component of the velocity is sign-inverted with respect to
the corresponding pressure wave.

System (1.1) can be simplified to a single second-order PDE in pressure alone,

(1.3)

from which the traveling pressure wave solution is more easily extracted. The volume velocity
satisfies an identical equation.

Consider one of the tube segments of length A from Figure 1.1(b). It should be clear that we
can represent the pressure traveling-wave solution to (1.1) by using two delay lines, each of duration
A/7; see Figure 1.2. We can obtain the physical pressure at either ends of the tube by summing
the leftward- and rightward-traveling components, as per (1.2a). (The physical volume velocity can
be obtained, from (1.2b). by taking the difference of p' and p”, and scaling the result by Y.) The

discrete-time implementation of this single isolated acoustic tube is immediate. Taking

T: (1.4)

\)|['/

as the unit delay, or sampling period for our discrete-time system, we can see that there is no loss
in generality in treating the paired shifts as digital delay lines, accepting and shifting discrete-time
pressure wave signals, at intervals of 7" seconds. The discrete-time model of the acoustic tube will
still calculate an exact solution to system (1.1), at times which are integer multiples of 7. (This
solution can be considered to be exact at all time instants as long as all signals in the network are
assumed to be bandlimited to half of the sampling rate, F; = 1/T.)

Also note that because the traveling pressure and volume velocity waves are simply related to
one another by a scaling, then in a computer implementation, it is only necessary to propagate one
of the two types of wave in a given discrete tube section—we will assume, then, that pressure waves

are our signal variables.

Junctions Between Two Uniform Acoustic Tubes

Consider now a junction between two of the uniform acoustic tubes in the concatenated tube model
shown in Figure 1.1(b). The wave speeds in all the tubes are assumed to be constant, and equal to
v, so that the discrete-time representation of any single tube will have the form of the pair of digital

delay lines shown in Figure 1.2(b). At the junction between the ith and (7 4+ 1)th tubes (of cross-

sectional areas 4; = A(iA) and A;4, = A((i 4+ 1)A) respectively), fori =1,...,] N — 1, we will then




6 CHAPTER 1. INTRODUCTION
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Figure 1.2: (a) An acoustic tube and (b) a representation of the traveling wave solution: traveling
8 { g9

pressure waves can be added together at either end of the tube to give the physical pressure, as per
(1.2a).

have a pressure and a velocity on either side; we will write these pressure/velocity pairs as (p;. u;),
and (pj4 ), ujs ) respectively—see Figure 1.3(a). Continuity arguments (or conservation laws) dictate
that these quantities should remain unchanged as we pass through the boundary between the two

tubes, and thus

Pi = Pi+1 Ui = Ujg (1.5)

Note that we have dropped the arguments t and z, since the relationships of (1.5) hold instanta-

neously, and only at the tube boundaries.

i 1 — R; !
P~ \EF* Pis1
[}

)i = Dit1 ‘
Area A; Pi = Pit . Area A4 DRy ~—Ry
U; = uUj4 )

' r
o e (TS

14+ R;

(a) (b)

Figure 1.3: (a) The junction between the ith and (i 4+ 1)th acoustic tubes in the Kelly-Lochbaum vocal
tract model. and (b) the resulting scattering junction for pressure waves.
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As per (1.2a) and (1.2b), the pressures and velocities can be split into leftward- and rightward-

traveling waves as

pi= pf + pf u; = Y; (pf -ph) (1.6a)

Pis1 = Piy1 +Pips i1 = Yier (Phr —Piy1) (1.6b)
where Y;, the admittance of the 7th tube, is defined by
Y; &2 (1.7)
It is then possible. using (1.6) to rewrite (1.5) purely in terms of the wave variables, as

pi = Ripi+(1—Riply, (1.8a)
Pra = (1+Ri)pf —Ripky, (1.8b)

where R; is defined by

s Yi—Yiny

Ri - =
Yi 4+ Y

Here we have written a formula for calculating the pressure waves p! and Piyq leaving the junction in
terms of the waves p! and pr entering the junction—see Figure 1.3(b) for the resulting signal-flow
diagram. In particular, (1.8) can be viewed as a scattering operation: incident waves on either side
of an interface are reflected and transmitted according to the mismatch in the admittances between
the two tubes. The mismatch is characterized by the reflection parameter R; which is bounded in
magnitude by 1, as long as the admittances of the two tubes are positive. (If Y; = Y; . for instance,
then R; = 0, and there is no reflection at the interface.) As we mentioned before, the calculations
(1.8) should be viewed as occurring pointwise at the junction interface itself, which does not occupy

physical space.

Suppose that we define a set of power-normalized wave variables by
1 = i . 2 s
p; = VYip; Pl = VY (1.9)

Then the scattering operation (1.8) can be written, in matrix form, as

! r

0 ).
b | = & (1.10)

Py Pisy

Because the R; are bounded in magnitude by 1, it is easy to see that scattering, in this case,

corresponds to an orthogonal matrix transformation applied to the input wave variables.
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Power Conservation at Scattering Junctions

At the junction between the ith and (7 + 1)th tubes, the continuity relations (1.5), when multiplied
1

together. imply that
Pili = Pit1Uis+1

This is simply a statement of conservation of power at the interface. Using the definitions of traveling

wave variables from (1.6), we then have that
(#i +07) Y (0 = 2§) = (i +PEer) Yirr (0iy = P4
or, rearranging terms,
Vi (p)” + Yier (0F)” = Yi 01 + Yo (phr)”

In other words, the sum of the squares of the incident waves, weighted by their respective tube
admittances, is equal to the same weighted square sum of the reflected waves. Assuming that the
Y; are positive, then, a weighted L, measure of the signal variables (pressure waves) is preserved
through the scattering operation. This reflects the inherent losslessness of the tube interface.

In terms of the power-normalized variables defined by (1.9), and scattered according to (1.10),

we will have (due to the orthogonality of the scattering matrix),

2 2 2 2
() +(e.) = @) + ()

Thus the L, norms of the incident and reflected vectors of power-normalized wave variables are the

same.

Discrete-time Vocal Tract Model

Now that we have discussed both the digital delay line representation of wave propagation within a
single acoustic tube, as well as the scattering that occurs at any junction between adjacent tubes,
we are now ready to present the full discrete-time model of the vocal tract. For an N tube model
of the vocal tract, then, we will have the digital signal flow graph shown in Figure 1.4. Here, the
scattering junctions are indicated by rectangles, marked by S; (representing a matrix transformation
of the form of (1.8) or (1.10), which is parametrized by R;, which itself depends on the adjoining
tube admittances Y; and Y;4,).

The structure is driven at the left end, by an input waveform (typically an impulse train, for
voiced speech or by white noise for unvoiced speech, or a combination of the two), and an output

speech waveform is emitted at the right end. The grey boxes, representing boundary conditions at
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Figure 1.4: Signal flow graph for an N tube vocal tract model.

the glottis and lips, we leave unspecified—such terminations can be modeled in a variety of ways
[145].

Leaving aside a discussion of these boundaries, we can see that a single cycle in the recursive
structure shown in Figure 1.4 (one pass through the main loop of the computer program that it

implies) will involve two distinct steps:

e Wave variables incident on the junctions are scattered.

e The output waves are shifted to the inputs of the junctions immediately to

the left and right.

We have already seen that the scattering operation preserves a weighted L, norm of the signal
variables: it should be obvious that the shifting operation also does so, trivially (indeed, in the
computer program, shifting amounts to no more than a permutation of the set of pressure signals
stored in memory). Thus we have a simple positive definite measure of the state of the tube in
terms of signal values stored in the delay registers which remains constant as time progresses (again,
excepting the effect of the boundary conditions). What is more, this numerical stability property
of this structure is very easy to verify; we need only check that all the reflection coefficients R; are
bounded by 1 in magnitude, or equivalently, that all the admittances are positive. The excitation
at the left boundary will, of course, introduce energy into the system, but we can at least be sure
that signal energy is not being produced in the problem interior. The energy drain at the radiating
(right) boundary is similarly localized.

Several other features are worthy of comment. First, we have treated the vocal tract here as a
static or time-invariant linear (LTI) system. As we mentioned before, however, the configuration of
the vocal tract must necessarily change during any utterance—these variations are assumed to be
slow with respect to the frequency content of the excitation. The slow variation in the acoustic tube

profile will cause shifts in the system resonances (formants), and these shifts will be perceived, by
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the listener, as phoneme transitions. In our discussion of scattering and energy conservation in the
Kelly-Lochbaum model, we have not taken the time variation of the tube cross-sectional areas (and
thus the reflection coefficients) into account. It should be clear, though, that if we are using the
power-normalized signal variables defined by (1.9), then scattering defined by (1.10) at any junction
remains an orthogonal (and thus norm preserving) operation, even if the R; are functions of timef
[166]. Second, it is also simple to extend the model to include the nasal pathways (necessary for the
production of certain vocal sounds, and also modeled as acoustic tubes [30]), without compromising
overall losslessness. Third, we note that the stability of this model can be maintained even if the
reflection coefficients R; are quantized [166]—this will necessarily occur in any finite word-length
machine implementation. As long as the quantized coefficients remain bounded by 1. then we still
have a perfectly lossless system. Signal quantization can also be performed so as to maintain overall
stability, though the system will become more generally passive and not strictly lossless. Fourth,
although the acoustic tube of varying cross-sectional area is often considered to be analogous to
a lossless electrical transmission line of spatially-varying inductance and capacitance, it is better
thought of as a special case of the latter. For the acoustic tube, the local admittance varies directly
with the cross-sectional area. but the wave speed 4 remains constant; this is important, because
for a given tube length of A, the time delay is dependent on the wave speed, from (1.4). For a
transmission line, both the admittance and the wave speed may vary from point to point along its
length. We cannot then approximate the full transmission line by concatenated uniform transmission
line segments in the same way as for the acoustic tube without losing synchronization of the resulting
discrete-time structure (i.e.. delay durations in the segments are not all the same). We will show

how to solve this problem in Chapter 4.

Relationship to Digital Filters

Discrete-time structures such as that shown in Figure 1.4 are also used in digital filtering applications
[134. 139], in which case, the notion of a spatial location associated with a particular junction or
delay element is often lost. For example, consider the digital filter structure shown in Figure 1.5(a).
With r(n) as a real discrete-time input sequence indexed by integer n, and y(n) as the output
sequence, this structure is called an all-pole lattice filter [134], when any of the types of section
shown in Figurel.5(b). (¢) or (d) is used. T is the sample period, or unit delay, and the structure
is parameterized by the constants k;, i = 1,....N. It is possible to show that z(n) and y(n) are

related by the familiar all-pole difference equation

N
y(n) = x(n) +Zu,-y(n —i) (1.11)

t1t should be said, however, that a time-varying acoustic tube is not, strictly speaking, a lossless system—energy
is pumped into the system by the variations themselves. While the lossless time-varying concatenated acoustic tube
model may be a useful signal processing construct, it can not be said to correspond to the numerical solution of a
commonly-known system of PDEs. We will revisit the full time-varying system more rigorously in §6.2.7.
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Figure 1.5: (a) An all-pole lattice filter. and (b) a standard lattice junction. (¢) a Kelly-Lochbaum
gunction and (d) a normalized lattice junction.

where the direct-form filter coefficients a;. 1 = 1.....! V can be derived from the k; through simple
recursive procedures [134]. While the direct-form filter implementation implied by (1.11) requires
fewer arithmetic operations than the lattice forms in Figure 1.5, the lattice implementation may be
preferable because (a) stability is guaranteed by the simple condition |k;| < 1. for all i, (determining
stability by direct examination of the a; is difficult, though it can of course be performed by finding
the equivalent set of k; parameters) and (b), pole locations are much less sensitive to coefficient
quantization when applied to the k; rather than the a;. We also mention that the same structure
also doubles as a useful all-pass filter design [134], when z(n) is taken as the input and w(n) as
the output. It is also possible to extend this filter design in order to implement any general stable
pole-zero filter by summing readout taps from the leftward signal path into the output [139].

The structure of Figure 1.5(a) is quite similar to the Kelly-Lochbaum discrete-time acoustic tube
model, but there are two minor differences. First, the Kelly-Lochbaum structure contains delay
elements in both the leftward and rightward signal paths, reflecting the traveling-wave nature of
the solution to the physical acoustic tube problem. In the lattice filter structure, however, the
delays all occur in the upper (leftward) signal path. It is possible to transform the Kelly-Lochbaum
structure into the lattice form by signal flow-graph manipulations involving pushing delays through
the junctions, combining them, and then downsampling by a factor of two —this can be done provided
the acoustic tube model is terminated by a zero or infinite impedance at the right end [166]. (We
remark that this downsampling operation can also be applied to digital waveguide meshes in higher

dimensions, in which case we will refer to it as grid decimation: we will examine grid decimation for

a variety of mesh forms in Appendix A.) Second, the Kelly-Lochbaum and normalized junctions in
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our treatment of the acoustic tube model differ slightly from the signal flow graphs shown in Figure
1.5(c) and (d). This difference is due to our choice of pressure waves instead of velocity waves as our
signal set. While these quantities are dual in the one-dimensional acoustic tube, this symmetry is
lost when we move to acoustics problems in higher dimensions, and it is more natural to work with
pressure variables’.

The same lattice structure is also arrived at in the analysis context when linear predictive coding
(LPC) techniques are applied to a speech waveform [124]. The assumption underlying LPC is
that speech can be treated as a source signal (such as a glottal waveform), filtered by the vocal
tract, and the goal is to design an all-pole filter of the form of (1.11) which models the system
resonances (or formant structure). Though this filter is obtained through purely autoregressive
(i.e., non-physical) analysis of a given measured speech signal, the reflection coefficients &; (also
known as partial correlation or PARCOR coefficients) are calculated as a byproduct of the main
calculation of the direct form filter coefficients a;. The k; are identical to the R; in the acoustic
tube model, except for a sign inversion. This is not to say that the filter arrived at through LPC
immediately implies a particular vocal-tract shape: it is best thought of as the solution to a filter-
design or system identification problem, devoid of any physical interpretation [145]. We note, though,
that transmission-line models such as the concatenated acoustic tube model have long been used
for such system identification purposes in the inverse scattering context, in which case they are
sometimes referred to as “layer-peeling” or “layer-adjoining™ methods [22, 23, 213]. Provided certain
assumptions are made about the glottal waveform and the effects of radiation on the measured speech

waveform, it is possible to make some inferences about the vocal tract shape [30].

1.1.2 Digital Waveguide Networks

The principal components of the Kelly-Lochbaum speech synthesis model. paired delay lines which
transport wave signals in opposite directions, and the scattering junctions to which they are con-
nected, are the basic building blocks of digital waveguide networks (DWNs) [166]. Keeping within
the acoustic tube framework, it should be clear that any interconnected network of uniform acoustic
tubes can be immediately transferred to discrete time by modeling each tube as a pair of digital
delay lines (or digital waveguide) with an admittance depending on its cross-sectional area'f. At a
junction where several tubes meet, these waves are scattered. See Figure 1.6 for a representation of
a portion of a network of acoustic tubes, and its DWN equivalent.

The scattering operation performed on wave variables must be generalized to the case of the

t Another reason for our choice of pressure waves is that when we transfer digital waveguide networks to the
electrical framework in Chapter 4, then pressure waves become vollage waves, which are also the signal variables in
the wave digital filtering literature.

tIn order for the network to be synchronic, or realizable as a recursive computer program, all the delay durations
must be integer multiples of a common unit delay (the sampling period). Because the physical length of a digital wave-
guide is directly proportional to the delay (by a factor of 5, the wave speed), a synchronic DWN always corresponds
to a network of acoustic tubes whose lengths are appropriately quantized.
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Figure 1.6: (a) A portion of a general network of one-dimensional acoustic tubes and (b) its discrete-
time realization using paired bidirectional delay lines and scattering junctions.

junction of Al tubes, as shown in Figure 1.7. Though we will cover this operation in more detail in
Chapter 4. and in the wave digital context in Chapter 2, we note that as for the case of the junction
between two tubes, the scattering equations result from continuity requirements on the pressures
and volume velocities at the junction. That is, if the pressures in the M tubes at the junction are
pj. and the velocities are uj, j = 1...., M (we now fix the sign of u; to be positive if velocities are

in the direction of the junction), then the relations are

PL=p2=...=pPM é1’.1 (1.12a)

4+ us+... +uy =0 (1.12b)

In other words, the pressures in all the tubes are assumed to be identical and equal to some junction
pressure py at the junction, and the flows must sum to zero, by conservation of mass. These are
the acoustic analogues of Kirchoff’s Laws for a parallel connection of M electrical circuit elements,
where pressures are interpreted as voltages, and velocities as currents’.

The pressures and velocities can be split into incident and reflected waves p} and p; as per (1.2a)

and (1.2b), by
Pj :I’j"'l’j_ u; =Y; (11;—1:;)

where Y is the admittance of the jth tube. The scattering relation, which can then be derived from

In the electrical setting, there is of course a dual set of laws describing a series connection, but there is no simple
acoustic analogue for such a connection.
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(1.12), is

3 M
Pe =P+ =——_Yir} k=1,...,] \ (1.13)

Z:j:l ):’ =1

and can be represented graphically as per Figure 1.7(b).
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Figure 1.7: (a) A junction of M acoustic tubes, indicating the pressures p; and volume velocities uj
in the jth tube. j = 1,.... M at the junction and (b) a scattering junction relating outgoing pressure
waves p; to incoming waves p;’. =11 D— M.

It is worth examining this key operation in a little more detail. First note that the scattering

operation can be broken into two steps, as follows. First, calculate the junction pressure py, by

M 5

2Y".

Vi = a;pT where a; 2 4] d
I J = )I j 3 =

vt fiF A5k M (1.14)
M ,
j:] Z_’:I}}

Then, calculate the outgoing waves from the incoming waves by
L =—p; k=1 \l
Pi =P TPJ = 1.0,

Although (1.13) produces M output waves from M input waves, and can thus be written as an
M x M matrix multiply, the number of operations is O(M) (M multiplies and 2M —1 adds). Also
note that the physical junction pressure is calculated, from (1.14). as a natural by-product of the
scattering operation: because in a mumerical integration setting, this physical variable is always
what we are ultimately after, we may immediately suspect some link with standard differencing

methods, which operate exclusively using such physical “grid variables”. In Chapter 4, we examine
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the relationship between finite difference methods and DWNs in some detail.

It is simple to show that the scattering operation also ensures that

M M
Y Y =) Yiw;)? (1.15)
i=1 =

which is, again, merely a restatement of the conservation of power at a scattering junction. Notice
that if all the admattances are positive, then a weighted Lo norm of the wave variables is preserved
through the scattering operation. (If power-normalized variables are employed, then scattering is
again equivalent to an M x M orthogonal matrix transformation.) The network as a whole will
behave losslessly through the scattering and shifting operations which constitute a single step in the

global recursion that such a network implies.

Waveguide Meshes and the Wave Equation

The DWN shown in Figure 1.6(b) is unstructured: though the individual acoustic tubes are assumed
to have lengths proportional to the delays in the resulting digital waveguides, they do not fall in any
regular arrangement. In fact, although we have drawn what appears to be a network spanning two-
dimensional space. we have not associated any physical coordinates with the various tube endpoints;
it should be clear that losslessness of the digital structure is unaffected by the network topology.
At each step in the computer implementation of the DWN, signals are scattered, then shifted—the
notion of “where the signals are” is unimportant in this abstract setting.

Consider now a regular arrangement, or mesh [198] of acoustic tubes, as in Figure 1.8(a). The
tubes are all of length A and admittance Y, and intersections of four tubes occur at grid points in a
Cartesian coordinate system. The resulting DWN is shown in Figure 1.8(b): any scattering junction
is linked to its four neighbors to the north, south, east and west by bidirectional delay lines of delay
T = A/~. We have indicated the scattering operation by the letter 8. Because the admittances of
all the tubes are identical, this scattering operation at any junction, from (1.13), has a particularly

simple form:

PN 1 1 1 1 1)1'.
ps| _111-1 1 1 P (1.16)
pel 211 1 =1 1] |pt )
E E
Pw 1 1 1 =1 |pi
s
where p}' and p; are the incident and reflected pressure waves from direction j, j = N, E, S, W.

Because the tube admittances are all identical, the scattering matrix S is orthogonal here, even if

we are not using power-normalized waves.
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Figure 1.8: (a) A regular mesh of acoustic tubes of equal admittances and (b) the associated digital
waveguide network.

Referring to Figure 1.8(b), suppose we initialize this structure with a single incident pressure wave
px =1 at location P, the north port of some junction. After scattering, the energy of the incident
wave has been distributed among four reflected waves: from (1.16), we will have pg = pp = py,. = 1/2
and py, = —1/2. After a delay of T' seconds, these reflected waves are then shifted to the inputs of
the four neighboring junctions, at points labeled (). This process is then repeated, and over many
time steps, signals will have propagated far from the original excitation at point P. At any time
step, however, it should be clear that the sum of the squares of the signals in all the delay registers
will be 1.

It is possible to view this propagation of signal energy (in a very rough sense) as a discrete
time and space version of Huygens' Principle [35). an early description of diffraction phenomena:
the advance of a wave-front can be analyzed by considering each point on the wave-front to be the
generator of a secondary source of waves. A mesh of acoustic tubes, however, is far from a physical
medium supporting multidimensional wave propagation, and a basic question which then arises is:
is this network of one-dimensional acoustic tubes approximating the behavior of a two-dimensional

acoustic medium?

DWNs and Numerical Integration

To answer this question, let us consider the two-dimensional waveguide mesh at a junction with
coordinates x = iA and y = jA, for integer ¢ and j. The discrete-time junction pressure py; j(n)
at time t = nT', for integer n (recall that our digital waveguide network operates with a sampling

period of T'), can be written in terms of the four incident wave variables at the same location, from
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(1.14). as

1
paijn) =3 (1‘7\",;,,'(”) + 0k (n)+pE; (n) + I'ﬁ',i‘j(“))

By tracing the propagation of the wave variables through the network backwards in time through

two time steps. it is in fact possible to write a recursion in terms of the junction pressures alone,

1
paijn)+psijn—2)= ;(I’J,iﬂl,j(” =D 4+privrijin=1)+psij-1(n=1)4psijri1({n— 1))
(1.17)

Assume, for the moment, that these discrete time and space junction pressure signals are in fact

samples of a continuous function p(r,y,t) of x, y and t. Expanding the terms in the recursion above

in Taylor series about the location with coordinates r = iA and y = jA, at time t = (n — 1)T gives
2 2 2 2

T.zt?p A (01) (?p)

5 +0(T) =5 (35 + 75

O(A?
o:2 T 5y +0(4%)

zat=T ryt=T

Recalling that A = T, where 7 is the speed of wave propagation in the one-dimensional tubes, and

discarding higher-order terms in T and A (they are assumed to be small), we get

Fp L (Fp  Pp
o = (0_+E') L

This is simply the two-dimensional wave equation, with the wave speed % defined by
y=9/V2 (1.19)

This equation describes wave propagation in a lossless two-dimensional acoustic medium, and
the DWN of Figure 1.8(b) can thus be considered to be a numerical integrator of this equation,
assuming the wave speeds in the tubes are set according to (1.19); the discrete Huygens' principle
interpretation of the behavior of the mesh is justified, at least in the limit as 7 and A become small™.
The recursion (1.17) in the junction pressures, however, can be seen as a simple finite difference
scheme which could have been derived directly from (1.18) by replacing the partial derivatives
by differences between values of a grid function p; j(n) on a numerical grid. Because the DWN
operates using wave variables, we can see that the DWN is simply a different organization of the
same calculation: in particular, it has been put into a form for which all operations (scattering, and
shifting) rigidly enforce conservation of energy, in a discrete sense.

We can also reconsider the Kelly-Lochbaum model in this light; forgetting, for the moment, about

the approximation of the tube by a series of concatenated uniform tubes, it is possible to write the

fWhat we have done, in the jargon of numerical integration methods, is to show the consistency [176] of the
waveguide mesh with the two-dimensional wave equation.
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equations of motion for the gas in the tube directly [145] as

p Ou Op

S o e 0 20:
A(x) 0t ' Or {1,208)
A(x 9
(ol . 0 (1.20b)

py: Ot Or

subject to initial conditions and boundary conditions at the glottis and lips. This system is identical
in form to (1.1) for a uniform tube, except for the variation in r of the cross-sectional area. It can

be condensed to a single second-order equation in the pressure alone,

821’ 72 0 dp
o = oz \ W, 2
ot ~ A(x) 0a (‘“' a.r) (1.21)

which is sometimes called Webster’s horn equation [15. 30, 66]. Due to the variation in the cross-
sectional area, it is not equivalent to the one-dimensional wave equation (1.3), and does not possess
a simple solution in terms of traveling waves (which is why we needed a concatenated uniform tube
model in the first place). Returning now to the DWN of Figure 1.4, it can be shown that the
junction pressures p;;(n) (at spatial locations r = A and at time t = nT for 7 and n integer) satisfy
a recursion of the form

2

= ')Tyl()}l’i—l("—1)+)}+ll'i+l("—1)) (1.22)
1 1+

pai(n)+pailn—2)
where Y; is the admittance of the 2th acoustic tube, running from ¢ = (i — 1)A to x = :A. With
the Y; set according to (1.7), it is again possible to show that (1.22) is a finite difference scheme for
(1.21), with A = +T.

1.1.3 A General Approach: Multidimensional Circuit Representations
and Wave Digital Filters

For the Kelly-Lochbaum vocal tract model, it is straightforward to arrive at a numerical scattering
formulation of the problem: the approximation of a smoothly-varying tube by a series of concate-
nated tubes is intuitively satisfying, and leads immediately to a wave variable numerical solution
to Webster's equation. The identification of the mesh of one-dimensional tubes of Figure 1.8(a)
as a numerical solver for the two-dimensional wave equation is more difficult, because it is by no
means clear that such a mesh behaves like a two-dimensional acoustic medium (say). Although as
we have seen, it is possible to prove (through a finite difference treatment) that the tube network is
indeed solving the right equation, we have not shown a way of deducing such a structure from the
original defining PDE system. If one wants to develop a DWN for a more complex system (such as

a stiff vibrating plate of variable density and thickness, for example), then guesswork and attempts
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at invoking Huygens’ principle will be of limited use.

The scattering operation we introduced in §1.1.1 and §1.1.2 is at the heart of all the numerical
methods we will discuss in this thesis, whether they are based on digital waveguide networks or wave
digital filters, which we will shortly introduce. A given system of PDEs is numerically solved by
filling the problem domain with scattering nodes, or junctions. such as that shown in Figure 1.7(b),
which calculate reflected waves from incident waves according to (1.13) (or its series dual form).
The topology of the network of interconnected junctions will be dependent on the particulars of the
system we wish to solve. As we have seen, these scattering junctions act as power-conserving signal
processing blocks, and in a DWN. they are linked by discrete-time acoustic tubes, or transmission
lines, which are also power-conserving, and serve to transport energy from one part of the network
to another. The key concept here is the losslessness of the network components, which is dependent
on the positivity of the various circuit element values (admittances): as we have seen, this positivity
condition ensures that some squared norm of the signals in the discrete-time network will remain
constant as time progresses. In other words, the simulation routine that such a network implies is
guaranteed stable by enforcing this condition.

Wave digital filters (WDF's) are also based on the idea of preserving losslessness (and more gen-
erally passivity) in a discrete-time simulation of a physical system, though the approach is somewhat
different from what we have just seen. As they were originally intended to transfer analog electrical
filter (RLC) networks to discrete time, it is best to begin by looking briefly at lumped circuit ele-
ments. A one-port element, such as that shown at left in Figure 1.9 is characterized by a voltage v,
and a current i, both of which are functions of time f. In the time domain, the one-port generally
relates v(t) and i(t) through some combination of differential or integral operators. If the one-port
(or more generally, N-port) is linear and time-invariant, then there is a simple description of its
behavior in the frequency domain, but we will wait until Chapter 2 before entering into the details.
An analog filter is simply an interconnected network of such elements: it is operated by applying
a voltage at one pair of free terminals, and then reading the filtered output at another pair. In
particular, if the network is made up of passive elements such as resistors, capacitors, inductors etc.,
then it must behave as a stable filter.

Fettweis [46] developed a procedure for mimicking the energetic behavior of an analog filtering
network in discrete time. The input and filtered output become digital signals, and the filtering
network becomes a recursion, to be realized as a computer program. Most importantly, the digital
network has the same topology as the analog network, and can be thought of as its discrete-time

“image.” One-ports (or more generally N-ports) are first characterized in terms of wave variables,

a = v+iR
b = v—iR

where I? is some arbitrary positive constant, assigned to the particular one-port, called a port
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Figure 1.9: Wave digital discretization of a one-port circuit element.

resistance. The continuous-time element, described by differential operators. is then replaced by a
discrete-time element operating on digital signals, and composed of algebraic operations and delay
operators or shifts. The signal a(n) is called the input wave, and b(n) is the output wave: both
are discrete-time sequences indexed by integer n. If the discretization procedure is carried out in
an appropriate way (to be more precise, differentiation is approximated by the trapezoid rule of
numerical integration), then the resulting wave digital one-port has energetic properties very similar
to the continuous element from which it is derived. In particular, if the analog element is passive
(lossless), then the wave digital element can be considered to passive (lossless) in a similar sense.
In fact, if a wave digital circuit element is composed of delay operators (hence requiring memory),
then a weighted sum of the squares of the signal values stored in the element’s delay registers is
the direct counterpart to the physical energy stored in the electric and magnetic fields surrounding
the corresponding analog element. The passivity property is contingent on the positivity of the port
resistance: given this constraint, it can often be chosen such that there is no delay-free path from the
input a(n) to the output b(n). We will see the importance of making the correct choice of R shortly

in an example.

Consider a parallel connection of two one-port circuit elements, as shown in Figure 1.10(a). The

- ' . ’ ’
i . ! ia a;=b] by=a,
—~— O 75 O - - - -
'
.| 1+ Parallel ' | ~ WD Parallel WD
o 'll : connection : l'z Dne-peit one-port R adaptor s one-port
i i i
: \ by=a) ay=by
(a) (b)

Figure 1.10: (a) Parallel connection of two continuous-time one-ports and (b) its wave digital coun-
terpart.
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one-ports are defined by some relationship between their respective voltages and currents. which we

will write as vy, i; and vy, 7y. For such a parallel connection, Kirchoff 's Laws dictate that
U =02 i] +i2=(l (ll})

(We could equally well treat this as a series connection, by reversing the directions of the arrows
which define v» and /5 in Figure 1.10(a).) We can now define two sets of wave variables at the two

one-ports by

vy + 4, Ry ay = vo + 1219

(451

’)l vi = 7.]1?1 by = Uy = l_)l?z

In the scattering formulation, the Kirchoff connection is treated as a separate two-port element, with
inputs a} and a and outputs b} and b,. These are simply the outputs and inputs, respectively, of
the one-ports, as shown in Figure 1.10(b).

Kirchoff's Laws for the parallel connection can then be rewritten in terms of the wave variables

as

b', = 'Ra'l + (1-— 'R)(z'l (1.24a)
(14 R)a}) — Ras (1.24b)

)
4

~

where the reflection coefficient R is defined by

R2 R]
R4
R,

+ R,

Equations (1.24) define a wave digital two-port parallel adaptor. They are identical in form to the
equations defining a parallel junction of two acoustic tubes, from (1.8)—this is to be expected,
since Kirchoff's Laws (1.23) are equivalent to the pointwise continuity equations (1.5) at an acoustic
junction. Thus all comments we made about scattering junctions in §1.1.1 hold for the wave digital
adaptor as well: in particular, if we define power-normalized waves, then the scattering operation
again is equivalent to an orthogonal (i.e.. Ly norm-preserving) transformation, as long as the port

resistances I, and R, are chosen positive (implying, again, that |R| < 1).

WDFs and the Numerical Integration of ODEs

In the closed network of Figure 1.10, we have left the two one-ports unspecified. Suppose we
connect an inductor, of constant inductance L > () at the left-hand port, and a capacitor of constant

capacitance ' > 0 at the right-hand port, as shown in Figure 1.11(a). Then the voltage-current
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relations are defined by

(li| . ,(II'-_g
vyy=L— ig = C—
dt dt
When these relations are closed by Kirchoff’s parallel connection rules (1.23), it is possible to write
a single second-order ODE describing the time-evolution of the circuit state,
d*w 1
—— == et
dt? LC
where w(t) stands for any of the voltages or currents in the network. This network thus behaves as a
harmonic oscillator, of frequency 1/vLC'; the voltages and currents, assumed real, evolve according

to
w(t) = Acos(t/VLC)+ Bsin(t/VLC)

for some arbitrary constants A and B determined by the initial voltages and currents in the network.

The network is also lossless: if we define the total stored energy of this network E(#) by

Aty A 1 ., 1.2 3
L‘.(f) = ;LI, = ;( ty (125)
A -
Energy stored in magnetic field Energy stored 1n electric field
surrounding inductor urrounding capacitor
then

dE . odiy . duy . .

— =Lii— 4+ Cvry——=1jv; +i20o=0 = E(t) = constant

dt dt dt

In other words, energy is traded back and forth between the two circuit elements, but is not dissi-
pated.

Though we have not explicitly derived the forms of the wave digital inductor and capacitor, this
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L ' B ay asy
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Figure 1.11: The LC harmonic oscillator—(a) a parallel connection of an inductor, of inductance L
and a capacitor of capacitance C', and (b) the corresponding wave digital network.




1.1. AN OVERVIEW OF SCATTERING METHODS 23

is a good opportunity to see what these elements look like—the wave digital network corresponding
to the LC harmonic oscillator circuit is shown in Figure 1.11(b). (The reader may glance ahead
to §2.3.4 for a glimpse of how these forms are arrived at.) We have a parallel adaptor, which is
a digital signal processing block defined by equations (1.24). terminated on delay elements (one of
which incorporates a sign inversion). Special choices of the port resistances I?; and Ry (marked in
the figure) were chosen in order to obtain these simple signal-flow graphs. This diagram implies
a recursion, which, like the digital waveguide network methods consists of a scattering step, and
a delay step (possibly with sign inversion). Because it makes use of only two delay operators, it
should be obvious that this simple network must behave as a two-pole resonator—the discrete-time
counterpart to the continuous-time harmonic oscillator. The wave digital network thus behaves as
a numerical integrator.

We can define the total discrete-time stored energy of this network by
(n) l('())2+1(())2
Ewp(n)=—(a:1(s —(ay
WD R, nn R, 2\n

which is simply a weighted sum of the squares of the signal values stored in the delay registers at
time step n. Clearly, this quantity remains unchanged after undergoing delays and the scattering

operation, i.e., we have
Ew p(n) = constant

It is simple to identify this quantity with the energy (1.25) of the continuous-time LC network.
Although this example is very simple, the same ideas can be applied to large networks, and the

result is always an explicitly recursible structure for which passivity can be simply guaranteed.

Multidimensional WDFs as PDE Simulators

Wave digital filter networks are derived from lumped analog circuits, and we have seen that they
can be interpreted as numerical ODE integrators. Most importantly, we saw that a given analog
circuit immediately implies a corresponding WDF structure; if the original circuit is lossless, then
the WDF network, which is its discrete-time image, will be lossless as well. It is easy to extend
the maintenance of losslessness to the more general case of passivity (i.e., we allow our networks to
dissipate energy, as well as recirculate it).

Fettweis and Nitsche [62] found a way of directly extending this simulation technique to dis-
tributed systems. First, it is necessary to generalize the definition of a circuit element to multiple
dimensions, in which case it is called an MD circuit element; an MD one-port is shown at left in Fig-
ure 1.12. The one-port is still defined in terms of a voltage v and current 7 across its terminals, but
these quantities are now more generally functions of an n-dimensional spatial coordinate x as well as

time ¢. In particular, v and 7 will be in general related by partial differential operators. Though the
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representation is the same as in the lumped case, this circuit element is itself a distributed object,

occupying physical space. Such a distributed circuit element is merely a generalization of a lumped

v(x.t) b(n) a(n)
T i(x.t) I
‘ R
Distributed . Multidimensional
one-port circuit Transformation to wave digital
element wave vm’_lahlcs and one-port
application of MD
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Defined by partial Defined by
differential operators multidimensional

shift operators

Figure 1.12: Multidimensional wave digital discretization of a distributed one-port circuit element.

one-port circuit element; it should not be conceived of as a physical entity. The rules of classical
network theory, however (and in particular Kirchoff's connection rules), can still be applied in order
to form combinations of such objects.

It is also possible to extend the notions of passivity and losslessness to multiple dimensions, and
to introduce wave variables, which, like the voltages and currents, will also be distributed quantities.
Finally, it is also possible to discretize these elements in such a way that this passivity is retained in
the discrete time and space domain (through the use of the trapezoid rule in multiple dimensions).
the result is the multidimensional wave digital (MDWD) element shown at right in Figure 1.12. Just
as for the lumped case, where differential operators are mapped to delays, here partial differential
operators are mapped to shifts in the discrete multidimensional problem space. We again have an
input wave a and an output wave b, which take on values at a discrete set of locations; these are to
be interpreted as grid functions over a set of points, indexed by an integer-valued vector n.

Passive explicit
numerical integrator
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Figure 1.13: Steps in the construction of a multidimensional wave digital filtering simulation routine.

Though we will discuss the MDWD discretization procedure in much more detail in Chapter 3, we

outline the basic steps in Figure 1.13. Beginning from a given passive physical system, we first model
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1.2. QUESTIONS

it with a suitable system of PDEs. It may be possible, then, to interpret the individual equations
as loop equations in a closed multidimensional Kirchoff circuit (MDKC) made up of elements of
the form shown at left in Figure 1.12. Typically, the currents flowing through the “wires™ in such
a network will be the dependent, or state variables describing the physical system: all the partial
differential operators are then consolidated in the various elements. For a first-order system of
PDEs, it will usually be true that the number of equations is equal to the number of loops in the
circuit. It is important, at this stage, to ensure that such a network representation is composed of
multidimensional circuit elements which are individually passive—this can generally be determined
by a cursory examination of the circuit element values (such as inductances, capacitances, etc.,
which may be functions of several variables). Once the work of manipulating the system into a
suitable circuit form is complete, the discretization step is immediate, and a multidimensional wave
digital network results; if the MDKC is made up of passive elements, then the discrete network
will be as well. It can then be interpreted as a stable explicit numerical integration scheme for the
original defining system of PDEs. The basic operations will be, just as for DWNs, the scattering and
shifting of wave variables through a numerical grid of nodes. The resulting structures, however, differ
markedly from DWNs in many ways. though they can still be viewed as finite difference schemes.
We note that each of the various steps (i.e., the arrows in Figure 1.13) involves a good deal
of choice (and experience) on the part of the algorithm designer. For a given system, there is
almost always a variety of PDE systems which could serve as adequate models; not all are suitable
for circuit-based discretization. It is also true that for a given system of PDEs, there is not a
unique network representation (though they should all be related by equivalence transformations
from classical network theory). Finally, though Fettweis et al. make use of the MD trapezoid rule as
a means of arriving at a passive discrete network, this is by no means the only way of proceeding—
many integration rules possess the desired passivity-preserving properties. We will explore the

consequences of these choices extensively throughout the rest of this thesis.

1.2 Questions

Before launching into a full technical summary and listing results in the next section, it is worthwhile
to take a step back and view the underlying motivations for writing this thesis. The general goal of
this project can be expressed as an attempt to answer, or at least address several general questions

about wave digital filter and digital waveguide network numerical simulation algorithms:

e To what types of systems can wave digital and digital waveguide network simulation approaches

be applied?
e What features do these two methods share, and what distinguishes them?

e What are their relative advantages?




26 CHAPTER 1. INTRODUCTION

e Can they be unified in a formal way?
o What extensions and improvements can be made to the existing forms of these methods?

These were the guiding questions that the author had in mind throughout this project: all the
results have some bearing on their answers. The impatient reader can flip to §6.1 for these answers

some clear-cut, some much less so.

1.3 Summary and Results

The typical thesis paradigin consists of a single isolated problem statement, followed by a develop-

ment culminating in a main result. Because this thesis is intended not only as an exposition of results
but as a review of and introduction to scattering methods, it would have been somewhat unnatural
and probably detrimental to arrange the material in this way. We have thus attempted to interleave
review, problems and results in a more natural order. Because of this, it might be a little difficult
for the reader to tell what the principal new results were. We here provide a chapter-by-chapter

summary. with results appearing in the sections indicated by bold-faced numbers.

Chapter 2: Wave Digital Filters

Chapter 2 is intended as a review of lumped wave digital filters, minus any discussion of filtering

applications, since we will only be looking at simulation applications in the remainder of the thes
Because these concepts are used extensively throughout the sequel, the reader is advised to begin
here, even though discussion of numerical methods for PDE solving does not begin in earnest until
the next chapter. We follow the standard development (as in, say, Fettweis’s comprehensive review
paper [46] which is the chief reference for this chapter) and begin with a brief introduction to
the theory of electrical N-port devices [12], and, in particular, the key concept of passivity, which
later plays a pivotal role as the stability criterion for multidimensional simulation networks. We
then review the basics of the lumped wave digital discretization procedure, involving the use of a
passivity-preserving continuous-to-discrete spectral bilinear transformation (the trapezoid rule in
the time domain) and the transformation to wave variables. The wave digital counterparts of the
standard circuit elements (capacitors, inductors, resistors, transformers, etc.) are then introduced,
as are adaptors, which are simply the wave variable counterparts to Kirchoff's series and parallel
connection rules. The chapter is concluded with a brief description of finite word-length arithmetic
properties of WDF's, and a look at some specialized vector elements that will later come in handy
(and are in fact necessary) for the simulation of some elastic dynamic systems. It is important to
keep in mind that though we only discuss lumped elements and networks in Chapter 2, the basic
set of construction rules (essentially classical electrical network theory) remains unchanged when we

move to a multidimensional setting in the next chapter.
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Chapter 3: Multidimensional Wave Digital Filters

Chapter 3 begins with a review of some of the basics of symietric hyperbolic systems of partial differ-
ential equations, and then proceeds to the generalization of electrical network passivity into multiple
dimensions, where it has been called MD-passivity [48, 85]: this can be done in a straightforward
way through the application of coordinate transformations [62, 122]. Next, we introduce multidi-
mensional circuit elements [45), which are similar to their lumped counterparts, except that they are
distributed objects and may have particular directions associated with them. The transformation to
wave variables and discretization proceeds as in the lnmped case, but now the trapezoid rule must
be interpreted in a directional sense, as must be the associated NID spectral bilinear transformations.
We then proceed through some treatments of typical model problems, namely the advection equa-
tion [176]. the transmission line system [107], and its extension to two spatial dimensions, in which
case it is called the parallel-plate system [60, 61]. We write down multidimensional Kirchoff circuit
representations (MDKCs) and show the discrete time and space counterparts (MDWDFs) for all
these systems. We then spend some time in §3.9.1 examining MDWD structures as finite difference
schemes and make some comments about modal behavior. paying particular attention in §3.9.2 to
parasitic modes. In §3.10 we present a new treatment of the initialization of MDWD methods, and
then give a brief overview of methods for setting boundary conditions. Balanced forms are intro-
duced in §3.12 as a means of increasing the computational efficiency of MDWD methods: to date
they have been notoriously sub-optimal in that the maximum allowable time step can be a great deal
smaller than that of conventional finite difference methods (such as, for example, the finite-difference
time domain (FDTD) method [184, 214] and, by extension, DWNs). Finally, in §3.13 we turn to a
means of incorporating higher-order spatially accurate [176] methods into a circuit framework: this
is surprising, because it had long been assumed that MDWD methods. traditionally based on the
use of the trapezoid rule could be no better than second-order accurate [130]. We circumvent this
problem by applying an alternative integration rule, which is also passivity-preserving (and which

will also serve as a “back-door™ into the realm of digital waveguide networks).

Chapter 4: Digital Waveguide Networks

Chapter 4. which is concerned with digital waveguide networks, is rather large, and can be conve-
niently divided into three principal parts.

The first part of the chapter, from §4.1 to §4.5, deals with the relationship between digital
waveguide networks and finite difference methods of the FDTD variety; we showed a very simple
example of such a correspondence in §1.1.2. We reintroduce digital waveguide networks, now in the
electrical context, so as to make easier the eventual comparison with the wave digital networks of
Chapters 2 and 3-—the acoustic tubes in the Kelly-Lochbaum model of §1.1.1 and the waveguide

mesh of §1.1.2 are thus replaced by transmission line sections, and pressures and velocities become

voltages and currents. After a brief review of the fundamentals, we reexamine the transmission line
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and parallel-plate test problems in §4.3 and §4.4. Here. DWN structures that numerically integrate
these systems are built “the hard way™ (i.e., by association with finite difference methods and FDTD,
without the benefit of a multidimensional representation), and we uncover several distinct families
of such networks, in §4.3.6 and §4.4.2, with different passivity properties. We also examine the
initialization of these networks in §4.5, and the implementation of boundary conditions in §4.3.9
and §4.4.4.

The next part of Chapter 4, from §4.6 to §4.9 is of a more applied nature—here we discuss several
variations on the DWN form, specifically for the transmission line and parallel-plate problems. First,
we take a cursory look at some other recently proposed two- and three-dimensional DWN structures
in §4.6 and §4.7, extending them to the variable-coefficient case where necessary. (The spectral
analysis of these DWNs is postponed until Appendix A.) We then introduce some generalized DWNs
which may be useful in “real-world” problems, in particular those involving irregular boundary
configurations and sharp variations in material parameters. We look at DWNs in the important
special case of polar coordinates in §4.6.2, and then extend the same technique to general curvilinear
coordinate systems in §4.8. Another means of tackling such irregularities, with an eye towards
computational efficiency considerations, involves the use of multigrid DWNs: a “fine” DWN can be
used over any part of the problem domain where greater detail is required, and may be interfaced to
a “coarse” DWN operating over the remainder of the domain. The interface between such DWNs can
be designed so as to maintain perfect losslessness, while introducing minimal numerical reflection.
We look at several types of such layers, in two and three spatial dimensions, as well as a way
of interfacing grids in different coordinate systems, in §4.9. Several simulations are presented. in
§4.6.2, §4.9.1. and §4.9.4.

Up until this point in Chapter 4, we treat digital waveguide networks as large collections of scat-
tering junctions connected by paired delay lines, just like the Kelly-Lochbaum model of §1.1.1 and
the mesh of §1.1.2. While this is a useful vantage point, especially when it comes to constructing
irregular networks such as those discussed in §4.9, and for finding proper passive boundary termi-
nations, it is somewhat lacking in that it does not allow the algorithm designer any guidance in the
construction of these methods for more complex systems. Indeed, when faced with a many-variable
system (such as, for example, the thirteen-variable system of PDEs which models vibration in a stiff
cylindrical shell, to be discussed in §5.5.2), it becomes difficult to proceed as was done for the com-
paratively simple transmission line test problems in §4.3 and §4.4. A MDWD-based method does
not fall prey to these design difficulties because it follows directly from a multidimensional circuit
representation of a given defining system of PDEs; in other words, a passive numerical method can
be automatically generated from the model system, regardless of its complexity. It is true, however,
that this circuit representation is highly non-unique—we have all of classical network theory at our
disposal in order to manipulate it. What is more, while WDF discretization is based on the use of

the trapezoid rule (or bilinear transform), in multiple dimensions, the family of passive integration
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rules is much more general. The most important result in this thesis is presented in §4.10; we use
the Hexibilities mentioned above in order to show that a DWN also can be viewed as the discrete
image of an MDKC. As such, it can be directly incorporated into the same family as the WDF-based
methods: the relationship is shown in Figure 1.14. The range of physical systems to which the DWN
can be applied as a simulation method is thus considerably enlarged to include any system that has
been dealt with using MDWDFs. MDWDFs and DWNs are now on an equal footing, (and we will
emphasize the fraternal relationship between the two methods repeatedly in Chapter 5). We develop
alternative network representations suitable for DWN discretization for the transmission line and
parallel-plate systems in §4.10.3 and §4.10.4. then continue our previously postponed treatment of
higher-order spatially accurate DWNs in §4.10.5, and finally conclude with a DWN for Maxwell's
Equations in §4.10.6. The DWN for this last system, in that it is equivalent to Yee's original FDTD

formulation completes the circle of ideas begun in the first part of the chapter.
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Figure 1.14: Steps in the construction of multidimensional wave digital filtering and digital waveguide
network simulation routines, viewed as part of a generalized family of passive numerical methods.

Chapter 5: Applications in Vibrational Mechanics

In Chapters 3 and 4. scattering structures are developed to numerically integrate certain simple
systems of PDEs, in particular the transmission line equations and the parallel-plate system. In
this chapter, we show how the same ideas can be applied to another set of systems, namely those

describing the mechanical vibrations of elastic solid media under various conditions. These systems
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can become quite complex, compared with the simple transmission-line test problems, but as we
will see, circuit representations can be developed as before, though several new techniques must
be introduced. We look at such systems in order of increasing dimensionality, loosely following
the organisation of the text by Graff [77]. Liberal use is made of the unifying result of §4.10 in
order to develop wave digital and digital waveguide simulation networks in a parallel fashion for these
systems. We first examine the simplest stiff distributed system, the classical, or ideal Euler-Bernoulli
beam in §5.1, mainly in order to indicate the difficulties inherent in designing scattering methods for
systems which are not symmetric hyperbolic (though we show that it is indeed possible). We then
turn to the modern (and much more suitable, in the scattering context) Timoshenko beam theory,
which was first treated by Nitsche in [131], and present a variety of distinct scattering methods in
§5.2, while indicating the relevant differences, especially with respect to stability. We also apply
the system balancing approach (introduced in §3.12) to the Timoshenko beam in §5.2.6 in order to
show that it is possible to drastically reduce the computational requirements in certain cases, and
take an extended look at boundary conditions in §5.2.4. Then follows a look at stiff plate theory,
and in particular the two-dimensional analogue of the Timoshenko beam, called the Mindlin plate,
in §5.4. Here, due to the couplings between the variables, we are forced to make use of vector
scattering elements, which were introduced in §2.3.7 for this very purpose. Boundary conditions
for waveguide networks for the Mindlin plate are dealt with in detail in §5.4.2. We next spend
some time examining network representations for two cylindrical shell models, first the membrane
shell in §5.5.1, and then the more modern model of Naghdi and Cooper in §5.5.2. Finally, for
completeness sake, we revisit in §5.6 Nitsche’s MDKC for the full three-dimensional elastic solid
dynamic system [131]; as for all the systems in this chapter, we show the alternative network form
suitable for DWN discretization in §5.6.1. In keeping with the more applied flavor of this chapter,
we also present simulation results for Timoshenko’s beam system and the Mindlin plate in §5.2.5

and §5.4.3, respectively, under both uniform and spatially-varying material parameter conditions.

Chapter 6: Conclusions and Future Directions

In Chapter 6 we address the general questions of the last section, and then make some suggestions
for future research; in particular, we mention some partial results that could not be easily fit into
the main chapter development, namely the application of circuit methods to time-varying systems
in §6.2.7 (and an application to time-varying vocal tract modeling is indicated), and a possible

foundation for a theory of the boundary termination of passive distributed networks in §6.2.3.

Appendix A: Finite Difference Schemes for the Wave Equation

Appendix A serves a dual purpose. First, it is intended as a review of the basics of the spectral
or Von Neumann analysis of finite difference schemes; this analysis is quite powerful and revealing

if the underlying physical model problem is linear and shift-invariant. We pay close attention to
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the numerical stability conditions that can be arrived at through a straightforward application of
these spectral methods. For this review portion of the appendix, we depend primarily on the
excellent text by Strikwerda [176]. (For the reader with no prior exposure to the analysis of finite
difference methods, §A.1 could well serve as point of departure, before jumping directly into network
and scattering theory in Chapter 2.) We then systematically revisit all of the large variety of
forms of DWN for the two- and three-dimensional wave equation, applying this spectral analysis
to the equivalent difference schemes. The comparison of the Von Neumann numerical stability
conditions with the passivity conditions on the associated mesh structures yields somewhat surprising
results, for the so-called triangular (§A.2.3) and interpolated meshes (§A.2.2, §A.3.3) structures:
indeed, the conditions do not coincide in these cases, leaving us with some fundamental and puzzling
questions about the nature of this discrepancy. In addition, we also introduce some techniques
for rigorously analyzing certain vector-type schemes (the hexagonal scheme, in §A.2.4 and the
tetrahedral scheme, in §A.3.4), and look at a theoretical means of obtaining optimally direction-
independent numerical dispersion properties for certain schemes for which we have free parameters
at our disposal (the interpolated schemes in §A.2.2 and §A.3.3). Throughout the appendix we pay
particular attention to evaluating the relative memory requirements and computational efficiency of

the various schemes, and provide numerical dispersion error plots for all the schemes.

Appendix B: Applications in Fluid Dynamics

In Appendix B, we summarize some of the interesting new developments in applying wave digital
filtering methods to strongly nonlinear problems in fluid dynamics. Though there are no significant
new results in this appendix, we take the opportunity to elucidate some connections to current
trends in the analysis of such systems involving so-called skew self-adjoint forms; in doing so, we
highlight certain unforeseen shortcomings of Fettweis's MDKC and MDWD network representations
of these systems, and indicate a possible way of avoiding these difficulties in §B.3.3 by making use
of entropy variables. In keeping with the overall goal of unifying wave digital and digital waveguide

network approaches to numerical integration, we also show in §B.3.2 how the methods of §4.10 can

be applied to the one-dimensional gas dynamics system in order to yield a DWN-like structure.




Chapter 2

Wave Digital Filters

2.1 Introductory Remarks

The entry point, for any study of numerical methods based on wave and scattering ideas, must
necessarily be a review of wave digital filters (WDFs) [41, 46]. This filter design technique, proposed
by Alfred Fettweis in the early 1970s, was an attempt at translating analog filters into the digital
realm with a pointed emphasis on preserving as much of the underlying physics as possible. In
particular, a digital filter structure arrived at through Fettweis’s procedure has the same precise
network topology and energetic properties as the lumped analog electrical circuit (called the reference
circuit) from which it is derived.

The theory is straightforward; analog circuit components (N-port devices or elements), usually
defined by a voltage-current relation, are first given an equivalent characterization in terms of wave
variables, While this is merely a change of variables, it has the advantage of allowing an alternate
description of the dynamic behavior of the network: energy incident on a circuit element (incident
from the rest of the network to which it is connected through a port) may be reflected back from the
element through the same port, or transmitted through to another part of the network through a dif-
ferent port. The incident, reflected and transmitted energies are carried by waves'. The reflectances
and transmittances themselves are determined by arbitrary positive constants called port resistances
which are assigned to individual wave ports. An important result of using wave variables is that
the entire network may then be parametrized by these reflection and transmission coefficients which
are, at least for passive networks, bounded independently of the numerical circuit element values
themselves (inductances, capacitances and resistances etc.), which may vary over a wide range.

The true advantage of using wave variables becomes much more tangible when we seek to obtain,

"Though it is perhaps difficult to conceive of wave motion in a lumped system (i.e., one with negligible spatial
extent) such as an analog electrical network, it should be mentioned that so-called wave variables may be interpreted
as traveling waves in a network whose components are connected by transmission lines of vanishing length [161].

33
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from a given analog filter design, a digital filter structure. This is usually done in the WDF context at
steady state via a particular type of bilinear transformation or spectral mapping [41] from continuous
to discrete frequency variables. Unless wave variables are employed, the resulting filter structure
will usually not be recursively computable, and hence not directly implementable as a computer
program. In addition, because the reflectances and transmittances of the network (which become
the filter multiplier values) are bounded in a simple way, a host of desirable filter properties result
which are especially valuable in a fixed-point computer implementation: complete elimination of
certain types of limit cycles or parasitic oscillations and very low sensitivity of the filter response
to coefficient truncation are the most frequently mentioned [46]. A further advantage stems from
the fact that because the network topology of the reference circuit has been inherited by the digital
filter structure, we have convenient access to a simple energy measure for the discrete dynamical
system; this energy, which is a direct analogue of the energy stored in the electrical and magnetic
fields surrounding the reference circuit, may be used as a discrete-time Lyapunov function [37, 42]
in order to provide further rules for dealing with the inevitable truncation of the filter state in a

fixed-point implementation.

Many of the underlying ideas, however, had existed for some time before they coalesced into
Fettweis’s digital filter design technique. In fact. it is perhaps best to describe wave digital filtering
not as an unprecedented invention, but as the successful synthesis of two principal preexistent ideas.
The crucial wave variable and scattering concepts were borrowed from microwave filter design [11, 12].
and digital structures based on the reflection and transmission of waves had appeared previously,
especially in “layer-peeling” and “layer-adjoining” methods for solving inverse problems that arise
in geophysics [22, 23, 213], and in models of the human vocal tract used in the analysis and synthesis
of speech [104, 145], as we saw in §1.1.1. Many other digital filter structures make use of similar
ideas, and have similar useful properties—among these are digital ladder and lattice forms [79],
normalized filters [80] and orthogonal filters. This last type of structure has been formally unified
with WDFs in [192]. The other cornerstone of wave digital filtering, the concept of a continuous-
to-discrete spectral mapping which is, in some-sense, energy preserving, was not new to circuit
discretization approaches. It appeared in the 1960s in the numerical analysis community which was
concerned with the stability of the discretization of sets of ordinary differential equations (ODEs);
indeed, wave digital filtering can be thought of as an A-stable [32, 65, 75] numerical method which

discretizes the defining differential equations of an analog electrical network.

Wave digital filtering has, since its inception, developed in many directions, and has become a
large subfield of the vast expanse of digital filter design. Because this thesis is devoted to the use of
wave digital filters for simulation purposes, and not for filtering, this introductory chapter is intended
merely to motivate material in the sequel, and to provide enough basic information for the reader
to understand the WDF symbology (which is, unfortunately, somewhat idiosyncratic and takes a

bit of getting used to). Indeed, many filtering issues do not arise at all in a simulation setting, at
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least from the point of view of traditional munerical analysis’. The single best WDF review paper
is certainly [46]. which is filled with practical filter design information and references. We briefly
mention that some of the recent lines of development have been in the areas of multi-rate systems
and filter banks [54, 117, 186]. cochlear modelling [76], vocal tract modelling [177], the modelling
of nonlinear circuit components [39] such as transistors [36], switching elements [151] as well as
applications to nonlinear transmission lines [40, 126]. The concept of a generalized adaptor (see
§2.3.5) with memory, as another means of approaching nonlinear circuit elements has been explored
in [154]. Another important direction has been the generalization of WDFs to the multidimensional

case [62], and we will discuss this in detail in the next chapter.

2.2 Classical Network Theory

2.2.1 N-ports

Classical network theory [12] is partly concerned with the properties of connections of N-port devices.
In the abstract, an N-port is a mathematical entity whose internal behavior is only accessible through
its NV ports. With the jth port is associated a current i, a voltage v;, and two terminals (see Figure
2.1). The two terminals of any port must always be connected to the terminals of another port. A

network is simply a collection of N-ports connected such that no port is left freell.

U U un

Figure 2.1: N-port.

For lumped networks, the voltages, currents and possibly element values in the networks are
allowed to be real-valued functions of a sole real parameter f which is usually interpreted as physical
time. Multidimensional networks [208] are more general in the sense that the voltages, currents and
port resistances may be functions of one or many other parameters, which may represent spatial

dimensions. In this introductory chapter, we will be concerned only with lumped networks, but

tA good example of such a concern presents itself when we look into spectral analysis of difference schemes in
Appendix A. Simulation people are usually interested in the convergence of approximate numerical schemes, in the
limit as a grid spacing or time step becomes small; digital filtering people would think of this as matching a digital
frequency response to that of the analog response (of the physical system) near the spatial or temporal DC frequency;
for musical sound synthesis, however, these grid spacings or time steps are generally fixed (by the sampling rate), so
it might be worthwhile to look at a measure of the spectral fit over the entire spectrum.

HMore generally, network theory treats so-called t-terminal or multi-pole networks [206], for which terminals are

not necessarily associated in pairs.
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it should be kept in mind that Chapter 3 and parts of Chapters 4 and 5 are devoted chiefly to
a particular class of multidimensional network which can represent the behavior of a distributed
physical system.

If an N-port is linear and time-invariant (LTI), then the port guantities may exhibit a purely
exponential time-dependence at a single complex frequency s. For such an ezponential state [12], it
is also useful to define, for any port with voltage v(#) and current i(#), the complex amplitudes ©

and 7. We can then write
o(t) = de®! i(t) = 1e®

Under certain conditions [12], a LTI network will possess an N x N impedance matriz' Z, so that

the steady-state voltages and currents are related by

(2.1)

—e)

V=42

where ¥ and 1 are the column N-vectors containing the amplitudes ¢y,...,0y5 and i,..., iN respec-
tively. In general, if the N-port contains elements which behave as differential or integral operators,

then we will have Z = Z(s). The admittance of such an N-port is defined as
Y=2"1

at frequencies s for which Z is invertible, and as infinity otherwise.

In most cases of interest, the entries of Z(s) will be rational functions of s. An N-port so defined
is called real if the coefficients of these rational functions are real numbers. In this case, there is no
loss in generality [12] in considering the port voltages and currents to be real-valued functions of ¢,

in which case we may write, for an exponential state,
v(t) = Re (0e®') i(t) = Re (;f-")

Now v(t) and i(#) are referred to as the real instantaneous port voltage and current respectively.

2.2.2 Power and Passivity
The total instantaneous power absorbed by a real N-port is defined by

N

“‘inst(”zzl'j“)i_j(” (22)

i=1

TA linear and time-invariant N-port need not have an impedance; the ideal transformer, for example, does not. In
such cases, a more general “hybrid” matrix [12], from which all relevant properties may be deduced, can be defined.
We will make special use of hybrid forms in §4.10.
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where vj(t) and ;(¢) are the real instantaneous voltage and current at port j. In general, for an
N-port which contains stored energy E(#), which dissipates energy at rate wy(t). and which contains

sources which provide energy at rate wy(t). then the energy balance
ty
/ (“'inst +ws — “‘d)(” = E(’J) - L‘(fl) (-23)
Jt,
must hold over any interval [t.#2]. Such an N-port is called passive if we have
oty
/ “'ins'dsz“;')_E(']) (2.4)
Jt,

over any time interval; the increase in stored energy must be less than the energy delivered through

the ports. The N-port is called lossless if (2.4) holds with equality over any interval.

For a linear time-invariant N-port, in an exponential state of complex frequency s, we can define

the total complex power absorbed to be the inner product

v

—v)

w=
and the average or active power as
i = Re(i"V)

where * denotes transpose conjugation. For an N-port defined by an impedance relationship, we

may immediately write, in terms of the voltage and current amplitudes,

w = Re (iV) = % (

For such a real LTI N-port. passivity may be defined in the following way. If the total active

) =1 (izi+iz) = l) (i (2 +2i)

power absorbed by an N-port is always greater than or equal to zero for frequencies s such that

Re(s) > 0, then it is called passive. This implies that

Z+Z°>0 for Re(s) > 0 (4

o
on

A matrix Z with such a property is called a positive matrix. In the present case of a real N-port,
Z is called positive real (though in general, positivity is all that is required for passivity). If the

average power absorbed is identically zero for Re(s) = 0, or, in terms of impedances, if
Z+7Z =0 for Re(s)= 10

then the N-port is called lossless.
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2.2.3 Kirchoff’s Laws

Connections between individual ports can be made through an appeal to Kirchoff s Laws, which
specify two important connection rules. Kirchoff s Voltage Law (KVL) states that for a series
connection, as pictured in Figure 2.2(a), the currents will be equal in all ports to be connected, and
that the sum of the voltages at all ports is zero, or. in other words, if we have a series connection of

M ports,

=2 =...= Mg

(S

ni4ve + ...+ =0

Kirchoff 's Current Law (KCL) specifies the dual relationship among the voltages and currents in

the case of a parallel connection of M ports, as per Figure 2.2(b), as

Y = =..=U0y

i+ ...+ =0

U2
j=—2
19 Y | . T
U2
Y %
1o\
! i
"l; o "11 7\ o
— — ——— —
1 i| /"/
//l
4
4 M v | o
- / IAr
Unr
(a) (b)

Figure 2.2: Kirchoff connections of M ports, in (a) series and (b) parallel.

Both sets of constraints hold instantaneously and can be thought of as M-ports in their own
right. In addition, both types of M-port are passive, and in fact lossless. For example, in the case
of a series connection of M ports where the currents at every port are the same and equal to i, we

have, from (2.2), that

M M
Winst = E i_,'l‘j =i E l‘j =(
i=1

=1
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Losslessness of the parallel connection can be similarly demonstrated. It is possible to show, through
the use of Tellegen’s Theorem [136] that a network made up of Kirchoff connections of passive N-ports

will behave passively as a whole.

2.2.4 Circuit Elements

The most commonly encountered linear one-ports are the inductor of inductance L, the resistor of
resistance Ry and capacitor of capacitance C': their schematic representations are shown in Figure

2.3.

(a) (b) (c)

Figure 2.3: One-port elements— (a) an inductor of inductance L, (b) a resistor of resistance Ry
and (c) a capacitor of capacitance C'.

The equations relating voltage and current in the three one-ports. as well as their associated

impedances are as follows:

i
Inductor : U= Lll—: Zz =5 (2.6)
(
Resistor : v= Ryi Z =Ry (2.7)
dv 1
PR - o = — 2.
Capacitor : i=C T Z Cs (2.8)

Each of these circuit elements is passive as long as its element value (L, C' or Ry) is positivel;
the inductor and capacitor are easily shown to be lossless as well. The inductor and capacitor are
examples of reactive circuits elements—all power instantaneously absorbed by either one will be
stored and eventually be returned to the network to which it is connected. The resistor is passive,

but not lossless.

In addition to the one-ports mentioned above, we can also define the short-circuit, open-circuit,

*More generally, we allow these values to be zero as well. In these cases, the inductor and resistor are interpreted

as short-circuits, and the capacitor as an open-circuit.
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Figure 2.4: Other one-ports— (a) short-circuit, (b) open-circuit, (c) voltage source and (d) current
source. Dots adjacent to the sources indicate polarity.

current source and voltage source (see Figure 2.4) by

Short-circuit : v=0
Open-circuit : 1=0
Voltage source : v =e(t)
Current source : i = f(t)

The impedances of the short- and open-circuit one-ports are zero and infinity, respectively. Both
are lossless.

The two-ports which will occur most frequently in this thesis are the transformer and gyrator,
both shown in Figure 2.5. Each of these two-ports has two voltage/current pairs, one for each port.
The transformer has associated with it one free parameter n, called the turns ratio, and the gyrator
is defined with respect to a parameter R > 0, as well as a direction, represented graphically by an

arrow. The relation among the port variables in each case is given by

Transformer : vy = nuy i} = —niy (2.9)

Gyrator : v = —Rgis vy = Rty (2.10)

It is easily checked that both the transformer and gyrator are lossless two-ports. The gyrator is
the first example we have seen so far of a non-reciprocal element—that is, its impedance matrix is
not Hermitian; while we will not make nearly as much use of it here as the other elements. it will
find a place in certain parts of this work, especially in dealing with physical systems which have a
certain type of asymmetric coupling (see Chapter 5), in optimizing certain wave digital structures
for simulation (see §3.12), and will play a pivotal role in linking digital waveguide networks to wave
digital networks (see §4.10).

There are other N-ports of interest in network theory, many of which have been applied success-
fully in wave digital filter designs, such as circulators as well as time-varying [178] and non-linear

elements [36. 39, 64, 151], which have been used to study the propagation of nonlinear waves in
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Figure 2.5: Two-ports— (a) a transformer. of turns ratio n and (b) a gyrator, of gyration coefficient

R(;.

lumped circuits [126]. For numerical integration purposes, however, the above set of elements proves
to be an amply sufficient set of basic tools. An exception will be the non-linear distributed elements
which appear in the circuit-based approach to fluid-dynamical problems: we mention these elements

briefly in Appendix B.

2.3 Wave Digital Elements and Connections

2.3.1 The Bilinear Transform

Wave digital filters result from the mapping of a lumped analog electrical network (usually made
up of the elements mentioned in the previous section connected using Kirchoff's Laws, and which
is intended for use as a filter) into the discrete-time domain. In the linear time-invariant case, this
translation is carried out using a particular type of spectral mapping between the analog frequency
variable s and a new discrete frequency variable v* which will be a rational function of 7! = ¢~*7
which is interpreted as a unit delay, of duration T; the mapping affects only reactive N-ports, i.e.,
those whose behavior is frequency-dependent, such as the inductor and capacitor. Memoryless el-
ements, such as the transformer, gyrator and resistor (as well as the parallel or series connection,
interpreted as an N-port) are frequency-independent, and will be unaffected by such a transforma-

tion.

The frequency mapping proposed by Fettweis' in [41] is a particular type of bilinear transform.

given by
21—e*T 21-=z"1
s U= — = — (2.11)
Tl4esT T14:z71
tFettweis in fact proposes the mapping s — (1 — z=71)/(1 4 =~1), which is similar to (2.11) except for the factor
of 2/T. Although this factor is of litile importance in filtering applications, it is necessary here for the interpretation
of such mapping as an integration rule. This should become clear in Chapter 3.
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We can then write

) l.—'ll{o(sl'l 91— |~|~;-

)
Re(v)) = — =
W)= reTp ~Tlisp
so clearly
Re(s) >0 = Re(¢) >0 = |2] > 1
Re(s) <0 = Re(v') <0 = |z] <1
Re(s) =0 = Re(y)) =0 = 2] =1

This implies that stable, causal transfer functions in s will be mapped to stable causal transfer

A Im(s) [z] =1 Im(z)

f, i )
Re(s) Kj Re(z)

Figure 2.6: Spectral mapping corresponding to the trapezoid rule.

~!. and moreover that positive real functions will be mapped to

functions in the discrete variable 2
functions which are positive real in the outer disk [162]. Such functions are often called pseudopassive
[42], and have an energetic interpretation similar to that of their counterparts in the analog domain.
(Indeed, Fettweis views pseudopassivity as simply passivity using a warped frequency variable v

(46].)

In particular, for a harmonic state—that is, for real frequencies w such that s = jw and z = /7,
J

) 2 wT
Lu—')Ttdll _'_;—

so that the entire analog frequency spectrum is mapped to the discrete frequency spectrum exactly

we have that

(2.12)

once. In particular, we have that the analog DC frequency s = 0 is mapped to discrete DC =z = 1,
and that analog infinite frequency is mapped to the Nyquist frequency. It should be clear that there

will be significant warping of the spectrum away from either extreme.

It is also worthwhile examining the mapping (2.11) on the unit circle in the low-frequency limit,
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in which case we can expand the right side of the mapping about w = 0, to get

2 wl') T"'.:‘
Thlll ? —u.'—ﬁw “+ ...

The mapping (2.12) can be rewritten as
w = w+ O(W’T?)

The frequency mapping thus becomes more accurate near w = 0 in the limit as T — (. The order
of this approximation (namely to 7%) will play an important role in numerical integration methods,
because it defines the accuracy of a numerical scheme [65, 131, 176].

It is important to mention that the time-domain interpretation of the bilinear mapping (2.11)
is called the trapezoid rule for numerical integration. That is, treating =~! as the unit delay, the
right-hand side of (2.11) serves as an approximation to the derivative in a discrete-time setting.
For example, in the case of the inductor, application of the mapping yields the following difference

equation relating the voltage and current:

2

o(n) + v(n —1) = %(f(n)—i(n— 1)) (2.13)

It should be understood here that v(n) and i(n) in (2.13) now represent discrete approximations to
the voltage and current of (2.7) at time ¢ = nT, for integer n. Generalizations of the WDF approach
to cases in which the N-port of interest is time-varying or non-linear are based on this time-domain
formulation, because in these cases, we no longer have a well-defined notion of frequency.

For the rest of this section, so as to avoid unnecessary extra notation, we will assume that we
have discrete time voltages and currents. Thus v and i now refer to sequences v(n) and i(n), for n
integer, and the steady state quantities ¢ and 7 are complex amplitudes of a sequence at the discrete

frequency z.

2.3.2 Wave Variables

At this point, one may assume that we have finished; indeed, we can derive a discrete-time equivalent
to any LTI N-port (graphically represented by a signal flow diagram involving shifts and arithmetic
operations). and such elements can be connected using Kirchoff's Laws, which remain unchanged by
the mapping (2.11). In particular. a network consisting of a collection of connected passive N-ports

will possess a discrete equivalent of the passivity property, which has been called pseudopassivity

tSince the two systems are assumed to be the same, moditlo a spectral warping, we will not use a special notation
to distinguish a discrete variable from a continuous one: the type of variable should be clear from context, and in cases
where confusion may arise, we will always explicitly note the argument. In Chapter 4, however, we will use capital
letters to distinguish discrete from continuous variables; this notational switch is unfortunate, but is a compromise
necessary in order to remain coherent with the different literatures.
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[42]. The problem, however, is that a simple application of the bilinear transform to a given N-port
usually leaves us with port variables which are not related to each other in a strictly causal way.
For example, the difference equation (2.13) that results in the case of the inductor relates v(n) to
i(n) at every time step n so that if we try to connect such a discrete-time one-port to another which
has the same property (using Kirchoff's Laws, which are memoryless), we necessarily end up with
non-realizable delay-free loops [46] in our resulting signal flow diagram. In other words, we will not
be able to explicitly update all the port variables in our algorithm using only past values stored in
the delay registers.

The problem of these delay-free loops was solved by Fettweis [41] with the introduction of wave
variables, a concept with a long history borrowed from microwave electronics [11, 12]. For a port

with voltage v and current i. voltage waves are defined by

a=v+iR Input voltage wave (2.14a)

b=v—iR Output voltage wave (2.14b)

a and b are referred to as wave variables, and in particular, a is called an input wave and b an output
wave; the significance of these names will become clear in the examples of §2.3.4. This definition
holds instantaneously, and will also be true for confinuous v and i, though we will almost never have

occasion to refer to analog wave variables in this thesis. The parameter It > () is a free parameter

known as the port resistance—its choice is governed by the character of the element itself. We also

can define the port conductance G by

at a port with port resistance R.
It is also possible to define power-normalized waves [46] a and b at any port with port resistance

R by

v+iR

a=—= Input power wave (2.16a
2R p ’
v—1iR

b= Output power wave (2.16b)

= 2VR

The two types of waves are simply related to each other by

a = 2\/ﬁg (2.17a)
b = 2VRb (2.17b)

but power-normalized quantities have certain advantages in cases for which a port resistance is time-

varying or signal dependent (indeed, in these cases, power-normalized waves must be employed if
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passivity in the digital simulation is to be maintained). In general. however. in view of (2.17), it
should be assumed that we are using voltage waves unless otherwise indicated.
The steady state quantities @ and b are defined in a manner identical to (2.14), where we replace

v and 7 by ¢ and 7.

2.3.3 Pseudopower and Pseudopassivity

Fettweis [42] defines the instantaneous pseudopower absorbed by a port with port resistance R (real)

at time step n in terms of the discrete input and output wave quantities as
Winst(n) = % (a®(n) = b*(n)) = 4 (g""(n) —b*(n)) (2.18)
which., when the transformation (2.14) is inverted, gives
winst(n) = dv(n)i(n)

This discrete power definition coincides with the standard definition of power in classical network
theory from (2.2). aside from the factor of 4, which is of no consequence if definition (2.18) is applied
consistently throughout a wave digital network.

For a real LTI N-port, in an exponential state of complex frequency z. the steady-state average
pseudopower may be written in terms of the N x 1 vectors a and Q which contain the power-

normalized complex amplitudes a; and b;. for j=1,.... N as

The steady-state reflectance S(z7') is defined by

b=8

IR

and gives

w=4(a(Iy—8'S)a)
where Iy is the N x N identity matrix. For pseudopassivity [42], we require, then (recalling that
the bilinear transform (2.11) maps the right half s-plane to the exterior of the unit circle in the =z
plane) that

S*(z"H8(z7Y) < Iy for EE! (2.19)

S(=7") is sometimes called a bounded real matrix. If (2.19) holds with equality for |z| = 1, then
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it is called lossless bounded real (LBR) [193]. In general, to bounded real matrix reflectances there
correspond positive real matrix impedances, and vice versa. In terms of voltage wave quantities, we

have for a wave digital N-port, that
a=2R%a b=2R’b

1, . . - . , .
where Rz is the diagonal square root of the matrix containing the N port resistances I...., Ry

on its diagonal. We then have

"
W

S=RISR"

for the voltage wave scattering matrix S and thus we require
S'(z"HRI1S(z:" ) <R™! for || > 1 (2.20)

for passivity. For one-ports, the requirements (2.20) and (2.19) are the same.

Also note that we have, by applying the power wave variable definitions (2.16), and the discrete
impedance relation v = Zi (which is identical to the analog relation from (2.1), except that we now

have Z = Z(z"")), that

S=(ZR'+D)Y(ZR'-1) (2.21)

If the N-port is not LTI, then it is possible to apply a similar idea to the expression for the
instantaneous pseudopower, from (2.18) in order to derive a passivity condition [46]; In this case,

pseudopassivity has also been called incremental pseudopassivity [125].

2.3.4 Wave Digital Elements

We will now present the wave digital equivalents of all the circuit elements mentioned in §2.2.4.

Under the bilinear transform (2.11), the steady-state equation for an inductor becomes

. 2L f1=2""YY5
‘—T(l-ﬁ—:“‘)l

or, in the discrete-time domain,

&

vin)+v(n—-1)= TL(i(Il) —i(n— l))
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Applying the definition of wave variables (2.14), we get, in the time domain.

)
an)+bn)+an—=1)4+b(n—1) = ;?—lji(u(n) —b(n)—a(n—1)+b(n— 1)) (2.22)
If we make the choice
2L
R = T
then (2.22) simplifies to
b(n) =—a(n—-1) (2.23)

Thus the input wave a must undergo a delay and sign-inversion before it is output as b. In terms of

steady-state quantities, we have
b=—z"1a = S(z"1) = —z"1 (2.24)

The reflectance S(z7') is, as expected, LBR (see previous section). The resulting wave digital
one-port is shown in Figure 2.7(a).

The derivations of the wave digital one-ports corresponding to the resistor and capacitor are
similar; their signal-flow graphs also appear in Figure 2.7. We note that the same choice of the port
resistance I? should be made in the case of power-normalized wave variables. We also note in passing

that we have used here the symbol T to represent a unit delay in a wave digital filter'.

a
R=R,
b=0
(a) (b) (c)

Figure 2.7: Wave digital one-ports corresponding to the classical one-ports of Figure 2.3— (a) the
wave digital inductor, (b) resistor. and (c¢) capacitor.

The short-circuit and open-circuit one-ports are, for any choice of the port resistance I?, perfectly
reflecting (with or without sign inversion, respectively). The appearance of the factor It in the

definition of the wave digital current source results from our choice of using voltage waves (as

¥In this chapter, because all elements are LTI, we could equally well use the symbol == for the unit delay (as is
commonplace in the digital filtering literature). In the next chapter, however, when we will be making use of shifts in
multiple dimensions for systems which are not, in general, shift-invariant, then frequency domain signal-flow diagrams
may only be used in special cases.
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opposed to current waves). In all the wave digital one-ports of Figure 2.8, there is an instantaneous
dependence of the output wave b on the input wave a, and we may expect delay-free loops to appear
when these elements are connected with others. On the other hand, the form of these one-ports does
not depend on a particular choice of the port resistance I? (except in a very minor way for a current

source), and remains a free parameter, which can be used, in many cases, to remove delay-free loops.

. il g —
Y ) % @] 281
b —— b -
(a) (b) (c) (d)

Figure 2.8: Wave digital one-ports corresponding to the classical one-ports of Figure 2.4— (a) short-
circuit, (b) open-circuit, (c) voltage source and (d) current source.

It is also possible to combine resistances and sources [46]: a resistive voltage source, shown in
Figure 2.9(a), consists of a voltage source e in series with a resistor of resistance Ry. If the port
resistance of the combined one-port is chosen to be Ry, then the wave digital one-port [46] is as

shown in Figure 2.9(b). A wave digital resistive current source can be similarly defined.

; a )
Ry
v R=R,
. ‘ b _<_G e
(a) (b)

Figure 2.9: (a) A resistive voltage source, and (b) the associated wave digital one-port.

The classical transformer and gyrator two-ports can be treated in the same way. For example,
the gyrator accepts two input waves a; and ay, and yields two output waves b, and by. There are two
port resistances, I} and I?,. The instantaneous equations (2.10) relating the voltages and currents

in a gyrator become, upon substitution of wave variables,

b] . 1 Rf' - R|R2 —2R(;R1 ay
bo| BG+BiR:| 2RGR,  R%L — RiRy| |ay
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which simplifies, under the choice of Ry = R¢; and Ry = Rg to
by = —ay by = a, (2.26)

If we are using power-normalized wave variables, then the scattering equation for the gyrator becomes

QI 1 R;".- - Ry —2R(';\/ﬁ1—1?—2 a, (2.27)
= T~ P &.al
b._, R;,+IIIR2 ‘2[?(,-\/1?11?3 R;'—[hl?_i @y
In this case, any choice of the port resistances such that Ry Ry = R?, gives
b, = —a, by =14 (2.28)

The ideal transformer also can take on various forms, depending on the choices of the port
resistances and on the type of wave variable employed. Under a choice of port resistances iy and
Ry such that Ry = n?R,. the equations (2.9) for the ideal transformer of turns ratio n become

by = na, by = —ay (2.29)

n

For the transformer and gyrator WD two-ports, we adopt general symbols that do not reflect a
particular choice of the port resistances. If simplifying choices can be made in either case, than we
can write the signal flow graph explicitly (see Figure 2.10). There may be occasions when it is not be
possible to make these simplifying choices of the port resistances which yield (2.26) and (2.29). For
example, when we approach the numerical integration of beam and plate systems in Chapter 5, as
well as certain balanced forms (see §3.12) the WD networks contain gyrators whose port resistances
are constrained, forcing us to use (2.25). We also mention that these two-ports are both lossless,
and in fact non-energic [42] (i.e., we have wins(n) = 0. for all n).

Numerous other wave digital elements have been proposed, namely circulators, quasi-reciprocal

n
) —— by ) ——O——Dby 1) ——i ——by a4 ——— by
I?| l/ll R_v R] I?{,‘ R-_)
—
[ — ——-— 1y D) —a—O—=a—ay by - -y b —a—O—- a,
4 -1
(a) (b)

Figure 2.10: Wave digital two-ports— (a) a transformer with turns ratio n and its stmpler form for
Ry = n?Ry and (b) a gyrator of gyration coefficient R¢; and its simpler form for Ry = Ry = R;.
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lines (QUARLS). as well as unit elements [46]. All have been applied fruitfully to filter design

problems, but the unit element deserves a special treatment.

The Unit Element

One wave digital two-port, called the unit element. is usually defined in the discrete-time domain,
without reference to an analog counterpart: this wave digital two-port is shown in Figure 2.11(a). It
was considered by Fettweis to be the “most important two-port element” [46], and was used exten-
sively for realizability reasons in early wave digital filter designs, especially before the appearance
of reflection-free ports [57]. It behaves exactly like a transmission line, and is in fact identical to the
waveguide or bidirectional delay line which is the key component of the digital waveguide network
[166], as we saw in §1.1.2. The unit element is time-invariant, and obviously lossless, though it is

reactive (able to store energy). It should be clear, however, that we may simply apply the bilin-
1 N iy

a; b F |

R R Uy ')C Uy L85 t

(a) (b) (c)

N

Figure 2.11: The unit element and its continuous-time counterparts— (a) a unit element, with port
resistances R and de luqe T. (b) its analog lattice form and (¢) Jaumann form reference two-ports,
with L = ’LI- and C' = 4

ear transform backwards in order to obtain a representation in the continuous time domain. The

scattering relation for the unit element is

by 0 271 {ay

i)w < g 0 (}2

Z

(“1 R 14277 2:_l ;l
1=27%] 251 L4+277) |22
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where I? is the port resistance at either port. The bilinear transform (2.11) may be inverted by

N 2 —-sT
24 sT

and we obtain, finally, a relationship between the continuous-time steady-state voltages and currents,

with an impedance matrix (dependent on the time step 7', assumed constant) given by

1‘+Ll' AL _ sT
Zs,T)=R|*T " 4 °*T ¢
Lo AL Log sl
sT 1 sT 1

This defining equation for a two-port may be written as a lattice [55] (or Jaumann [132] equivalent )
connection of an inductor and capacitor, each of whose values is now dependent on the choice of the
timme step, T. See Figures 2.11(b) and (¢).

We mention this representation because in the distributed case, it will be possible to define mul-
tidimensional unit elements which will be very helpful in integrating digital waveguide networks (see
Chapter 4) into the multidimensional wave digital filter framework (see Chapter 3). The necessary

manipulations. which are quite similar to the ones performed above, are carried out in §4.10.

2.3.5 Adaptors
Consider now a series connection of M ports, where we have a port resistance It; > 0. j =1.....] M.
associated with each port. In terms of instantaneous quantities, we have

M

Zl'j =0

i=1
or, in terms of wave variables. using the inverse of the transformation (2.14),
M
Z((lj +l)j) =0
i=1
Since the currents at all ports are all equal to 2, this implies, using b; = a; — 2R;i, that
M
> (=2Rji +2a;) =0
j=1

and thus

1
= =g Zu,- (2.30)
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By applying similar manipulations in the case of a parallel connection of M ports, we can then write
down the equations relating the input and output wave variables at the kth port for both types of

connection as

M

2R, p ,
by = Gy = = Z“j' Rl sl I Series connection (2.31)
Z:j:l BJ j:l
b = —ap + ——— Z Gjaj, sl . M Parallel connection (2.32)
)——l J j=1

where we recall from (2.15) that G is defined as the reciprocal of the port resistance [f;. For

yower-normalized wave variables, we thus have, applying (2.17),
I :

b, =ap. — Z vV Rja;. =Y . \ Series connection (2.33)
Z =1 ] )*1
by = =gy + ——— Z Z VGia;, k=1.....M Parallel connection (2.34)

=1 JJ—]

The operator which performs this calculation on the wave variables is called a series adaptor or a
parallel adaptor [46], depending on the type of connection. The graphical representations of three-

port adaptors, for either voltage or power-normalized waves, are shown in Figure 2.12.

a ’)] a; bl ay bl a, ’)|

’)3 az b3 as Ilg aj "; a3
(a) (b)

Figure 2.12: Three-port adaptors— (a) a general three-port series adaptor and one for which port 3 is
reflection-free and (b) a general three-port parallel adaptor and one for which port 3 is reflection-free.

A useful simplification occurs when we can choose. for a particular port g (called a reflection-free
1

port [57]) of an M-port adaptor,

Ry = Z R; Series reflection-free port resistance (2.35a)
i=1.j#q
M
Gy = Z G; Parallel reflection-free port conductance (2.35b)

i=1i#q
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in which case the scattering equations (2.31) yield, for the output wave at port g.

A
by =— Z a; Series reflection-free port (2.36a)
i=Li#q
. M
by = — Z Gy Parallel reflection-free port (2.36b)

M '
ijl Gj j=1.j#q

Thus, at a reflection-free port q. the output wave b, is independent of the input wave a,: such a
port can be connected to any other without risk of a resulting delay-free loop. The same choices of

port resistances (2.35) will also give a reflection-free port if power wave variables are employed.

Scattering Matrices for Adaptors

The adaptor equations for a connection of M ports, in either the series (2.31) or parallel (2.32) case,

may be written as

b = Sa (2.37)

where b = [b;...., bar]" and a = [a,,....ay]". and where we have
S= Iy- a1’ Series adaptor (voltage waves) (2.38)
S=—-I\y+ la}'j Parallel adaptor (voltage waves) (2.39)

Here 1 is an M x 1 vector containing all ones, Iy is the M x M identity matrix, and a; and a,

are defined by

The sum of the elements of either a; or «, is 2. For power wave variables, we have a similar

relationship,
b=Sa (2.40)
where
S= Iy- JCTJQ_:’ Series adaptor (power-normalized waves)
S=-1Iy+ \/a—r\/a_,.' Parallel adaptor (power-normalized waves)
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Here the square root sign indicates an entry-by-entry square root of a vector (all entries of as and
«, are non-negative).

Defining the Euclidean norm of a column vector x as ||| = Vx'x, it is easy to show that a
power normalized scattering matrix 8 is norm-preserving in either the series or parallel case, i.e., we

have
lIbll> = || (2.41)
For voltage waves, we have the preservation of a weighted Lo norm, i.e.,
[bllp 2 = |lalle 2 (2.42)

where ||« ||lp2 = V/(-)TP(-): in this case, P is an M x M positive definite diagonal matrix simply
given by diag(G\,...,Gyr). It should be clear that (2.41) and (2.42) are merely re-statements of
power conservation at a memoryless, lossless M-port.

Note that multiplying S or S by a vector requires, in either the series of parallel case, O(M)

adds and multiplies; in particular, it is cheaper than a full M x M matrix multiply.

2.3.6 Signal and Coefficient Quantization

In a machine implementation of a wave digital filter, the signals and coefficients must necessarily be
represented with a finite number of bits. As such, it is not immediately obvious that the passivity
properties for a given WDF, which are framed in terms of real-valued signals (waves) and filter
multipliers (related to the port resistances) will hold in a finite word-length computer implementa-
tion. All digital filter implementations are vulnerable to a host of undesirable effects which result
from signal and coefficient quantization: among them are parasitic oscillations and high sensitivity
of filter pole and zero locations (and thus the frequency response). WDFs, however, offer a number
of means of combating these problems. The exploration of these means has produced a large body
of literature [43, 46, 58, 125, 179, 204]. We give only a brief outline here, for completeness sake.
From the discussion of wave digital elements, it is easy to see that in most cases, the only
arithmetic operations in a WDF will occur as signals are scattered from adaptors’; the wave digital
inductor, capacitor and unit element involve only shifts and possibly sign inversion. and the wave
digital resistor, which behaves as a sink, can essentially be ignored by the programmer once its
port resistance has been absorbed into the adaptor to which it is connected. Simple quantization
procedures [56, 201] were first proposed, and later the concept of incremental psendopassivity [125]
was developed for ensuring that a finite word-length implementation of a wave digital adaptor

behaves passively under signal truncation. The most straightforward scheme appears in Figure 2.13,

tReferring to Figure 2.10, it is easy to see that the transformer with n = +1 and R; = Ra, and the gyrator with
Ry = Ry = Rg(their most common forms) also are arithmetic-free. Otherwise, a more detailed treatment is required.
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for the case of a three-port adaptor (either series or parallel).
Q
byt e —
1 by ag
Exact
Arithmetic
. by -
iy e—— >;i<>b;;
1hy Q
al
' :
by ay
Figure 2.13: Signal truncation at a three-port adaptor.
@; are the input waves (assumed voltage waves) to the junction, for j = 1,... .. \[ (we have M =3

in Figure 2.13). and are assumed to be of some finite word-length. Extended precision is used within
the adaptor in order exactly calculate the output waves b;, from (2.37). We have assumed that
the multiplier coefficients within the junction are of finite word-length as well —we will discuss this
presently. The output waves b; thus satisfy (2.42), where a is replaced by a, with a = [a;,....a al’.
Scattering is lossless. In general, however, the number of bits required to represent b; will now
be greater than the number required for a;: in order to reduce the size of the output word-length,
we may apply magnitude truncation (represented graphically in Figure 2.13 by boxes labelled *Q",
which are not wave digital one-ports. Magnitude truncation may be incorporated formally into the
scattering picture through the use of circulators [125]). A reduced word-length wave l]‘,- is obtained
from b; by truncating it in any way as long as magnitude is decreased. In other words, for any port

Js

This implies, then, that
[bllp.2 < |[blle.2 = |la]|e 2

so that passivity is maintained even considering the finite word-length wave variables. In this way
(by ensuring a decrease in the overall energy measure of the WD network), both large- and small-
scale parasitic oscillations can be completely eliminated, at least the zero-input case [46]. Various

types of overflow characteristics have been examined in [56, 125]. Such a quantization rule has also

appeared in other contexts [193], and applies equally well to digital waveguide networks [166], which
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are the subject of Chapter 4.

The quantization of coefficients in WDFs [42, 43, 46, 111] as well as other similar filter structures
[193] has been shown to have a minimal effect on the filter response. That is, in many lossless
configurations [46], variations in the values of the multiplier coefficients (which are usunally the
reflection and transmission parameters ag or ap at an adaptor) can be shown to have a second-
order effect on the filter response. In contrast, when such variations occur in direct-form filter
structures, large changes in pole locations can result, and a stable filter may even become unstable
[133]. This robustness property of scattering-based filter structures is sometimes called structural
passivity [147, 169, 193]. As a simple example, consider the scattering equations (2.38) for a series
adaptor: as mentioned above, the parameters in the vector a; are the filter multiplier coefficients,
and recall also that the sum of the elements in a; is exactly 2, in infinite-precision arithmetic.
Suppose that the elements of a; are truncated to some finite word-length values, which can be
written as the vector ;. If they are truncated such that all elements of @ are positive, and their
sum is still exactly 2, then it is easy to show that there must correspond a set of non-negative
port resistances, and thus the quantized adaptor can still be considered as exactly lossless. More
generally, it is possible to ensure passivity if the sum of the elements of & is less than or equal to
2; this has been discussed in the waveguide filter context in [169)].

While most of the approaches to quantization have been concerned with fixed-point implemen-
tations, many of the same ideas can be applied in floating-point as well. Floating-point signal
truncation rules were proposed in [34], and an early study of coefficient sensitivity and roundoff
noise appeared in [111]. More recent developments include a generalized WDF which is simply re-
alized using multiply /accumulate operations [53], and a description of passive coefficient-truncation

rules [121] based on scattering matrix factorization.

2.3.7 Vector Wave Variables

It is straightforward to extend wave digital filtering principles to the vector case (this has been
outlined in [131]; the same idea has apeared in the context of digital waveguide networks in [166,

169]). For a g-component vector one-port element with voltage v = [11,...,v,]" and current i =

Men 4 iq]T. it is posible to define wave variables a and b by
= v+Ri (2.43a)
b = v-—Ri (2.43b)

for a g x g symmetric positive definite matrix R; power-normalized quantities may be defined by

1 e
g = §(R“’/ZV+R‘/2:) (2.44a)
b = %(R""/'lv—n'/'-’i) (2.44b)
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where R!/2 is some right square root of R, and R7/? is its transpose. The power absorbed by the

vector one-port will be

winst = (a"R™'a= b R™'b) =4 (a"a—b'b) = 4v"i (2.45)

Kirchoff's Laws, for a series or parallel connection of M g-component vector elements with

voltages v; and ij, j = 1,...,] M can be written as
=== Vi+veo+...4+vy=0 Series connection (2.46a)
Vi =V = ¥M hh+ihb+...+1y =0 Parallel connection (2.46b)

and the resulting scattering equations will be

M M
b = a; — 2R, Z R; Z aj, T \l Series connection (2.47a)
Jj=1 J=1
M "
b = —ajp +2 Z Rj"l Z R;’aj. kalosis il \I Parallel connection (2.47b)
=1 i=1

in terms of the wave variables aj, by defined as per (2.43) and the port resistance matrices Ry,

the same as those of Figure 2.12, except that they are drawn in bold—see Figure 2.14. As before,

we use the same representation for power-normalized waves.

(a) (b)

Figure 2.14:  Threc-port vector adaptors— (a) a vector series adaptor and (b) a vector parallel
adaptor.
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Coupled Inductances and Capacitances
Coupled inductances and capacitances defined, in vector form, by

¢ =52 e 00N

—— 92
dt dt (248)

for symmetric positive definite matrices L and C were first introduced in the WDF context by
Nitsche [131]; they turn out to be essential to the construction of WDF-based numerical simulation
algorithms for stiff distributed systems such as plates (see §5.4) and shells (see §5.5), as well for
full three-dimensional elastic solid dynamics (see §5.6). Though these are best thought of as vector
elements, they appear within larger scalar circuits, and it is convenient to have a representation for
which the vectors of port quantities are separated out into scalar port-wise components.

We show an inductive coupling of g loops in Figure 2.15(a); self-inductances are indicated by
directed arrows, accompanied by an inductance L;j;, j = 1,...,q (these are the diagonal elements
of L), and a mutual inductance between loops j and k, j # k is represented by an arrow and the
associated inductance L (which is the (£, j)th or (j.k)th element of L. and is not constrained to
be positive). A coupled capacitance is shown in Figure 2.15(b).

A coupled inductance can be discretized through the use of the trapezoid rule applied directly

to the vector equations of (2.48); in terms of wave variables defined by (2.43), we get
b(n) = —-a(n—1) R =2L/T
which is a direct vector generalization of (2.23). Similarly, for a capacitor, we get
b(n) =a(n-1) R=1T(2C)""*
In practice, if a coupled inductance (or capacitance) appears in a circuit which is to be discretized

using WDFs, we may treat it as a g-vector two-port made up of a series (or parallel) junction

terminated on a vector wave digital inductor (or capacitor) of port resistance 2L/T (or T(2C)™!).

’lq Ciq
Ly, (
Ly, 2 Cia =
LU0 o ; { t
‘—’I-H‘l L2 II Lg, Cyn ) Cz2 Coq
i is i i is liq
v, Uy v, vy v Vg
(a) (b)

Figure 2.15: (a) g coupled inductances and (b) q coupled capacitances.
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See Figure 2.16 for the signal flow diagrams for these objects and the simplified representations that
we will use. The port resistance at the opposing port will in general be diagonal, so that the vector
wave variables entering and leaving the junction may be decomposed into scalar wave variables; this
diagonal port resistance will be determined by the rest of the network to which the g-vector two-port
is connected. See §4.2.6 for more information on this decomposition in the DWN context; we will
return to vector/scalar connections in Chapter 5. We note that in the representations in Figure
2.16, we have not explicitly indicated the order in which the ¢ scalar incoming and outgoing vectors
should be *packed™ and *unpacked™ from the vector wave variables at the lower ports of the vector
junctions. In the applications in Chapter 5, for a given coupled inductance (say), self-inductances
will all be identical, as will all mutual inductances; thus any ordering will do, as long as the jth

elements of both a and b correspond to wave variables at the jth scalar port.

‘ 7]
-10 ll’
R R
. R . R
T —t-
Iau Ry bul 15 B AR tau Ry b(i ST 11 °T1
- abh b ag by , ah ;b L
Ly oy (3] § 3 oy ] ;
ab o by % b @by a by
(a) (b)

Figure 2.16: (a) Signal flow graph for a wave digital coupled inductance and a simplified representa-
tion. Here the qx q port resistance R = 2L /T. and Ry is a g xq diagonal matriz: the diagonal entries
specify the port resistances at the g scalar ports to which the element is connected. (b) The signal
flow graph for a wave digital coupled capacitance (vector port resistance R = T(2C)~'). and its
simplified representation. In either case, the wave variables at the lower port of the vector junction
are simply defined by ag = [ay,.... ag]" and by = [by,... .bq]T.
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Chapter 3

Multidimensional Wave Digital
Filters

3.1 Introductory Remarks

The last chapter was concerned with techniques for deriving a digital filter design from an analog
network. It should be clear that such a digital filter structure can also be considered to be an explicit
numerical solver for the system of of ordinary differential equations (ODEs) defined by the analog
network which performs the filtering on continuous-time signals. This is perhaps an obvious point,
but was apparently first noted in the literature in [65]. It is interesting that this link was not made
immediately in the multidimensional case, which is the subject of this chapter.

A multidimensional generalization of wave digital filters (MDWDZF's) first appeared rather early
on [44], and most of the initial work involved applications to 2D filter design [118, 119]. It is itself an
outgrowth of earlier work in the area of multidimensional circuits and systems [20, 105, 135] where
the emphasis was on the synthesis of so-called variable networks (i.e., lumped passive networks with
variable elements). The procedure for deriving a wave digital filter is largely the same in multiple
dimensions as for the lumped case: to a given reference circuit, made up of elements connected either
in series or parallel, various transformations are applied, specifically a change to wave variables, and
spectral mappings. The end product is a wave digital network which has nearly all of the same
desirable properties as lumped WD networks, especially recursive computability, and insensitivity
to signal and coefficient truncation. The difference in MD. however, is that the reference circuit,
usually called a multidimensional Kirchoff circuit or MDKC is now far more of a mathematical
abstraction than a lumped circuit: the circuit state is a function of several variables, which may or
may not include time, and the circuit elements (as well as the connections between them) must be

interpreted in a distributed sense. In particular, it is not a circuit which can be “built”™ (except in
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the case of the variable networks mentioned previously). As such. the major problem confronting the
designer of a MDWDF is the construction of this reference circuit [45, 44]. Various techniques were
put forth, some involving MD circuits obtained by rotation of a known lumped reference network [46].
A good deal of work went into the related synthesis problem for general multidimensional reactance
two-ports [8, 9, 52], which is much more difficult than in the lumped case (and not possible in
general).

The first paper to consider MDWDFs froin a simulation perspective appeared in 1990 [59]. though
it was foreshadowed much earlier in [178]. That is to say, in analogy with the lumped case, a closed
MDWD network could be considered to be a simulator of a distributed system which is defined
by a system of partial differential equations (PDEs) and represented by an MDKC. Here, unlike for
filtering, there is a clear interpretation of the reference circuit. which is simply a symbolic restatement
of the defining equations of a particular model system. The wave digital numerical integration
approach is applicable to a wide variety of physical systems, including electromagnetics [50], coupled
transmission lines [63, 106] and elastic solid and beam dynamics [131]. Most surprisingly, the method
can be applied to highly nonlinear systems [127] such as those of fluid dynamics [16, 49, 70], as well as
even more complex hybrids, such as the magnetohydrodynamic system [191]. The method requires
that the propagation speeds in the problem to be modeled be bounded: this is equivalent to saying
that the system should be of hyperbolic type'[176]. This requirement is important because numerical
methods derived in this way from this approach can be interpreted as explicit finite difference schemes
[82]; as such, they must obey a requirement (the Courant-Friedrichs-Lewy criterion [176]) relating
the physical region of dependence for the model problem to a similar region on a numerical grid.
We would also like to note that a related approach to numerical integration, based on a transfer
function formulation has been taken in [108, 141, 143, 144].

Although this chapter is intended in part as an extended review and compendium of the work
to date in the field of numerical integration through the use of wave digital filters, the subtext
is certainly that these methods can and should be treated as a particular class of finite difference
methods endowed with a special property, namely passivity. This point has not been explored in any
depth in the literature, except in the lumped case [131]. Such a treatment will also make it easier to
compare wave digital methods to digital waveguide networks (DWNs)[166, 198, 200, which can also
be used for numerical integration purposes in a very similar way. Chapter 4, which is devoted to
DWNs, will return to the subject of MDWDFs for such a comparison, and eventually, a unification

of the two methods. In Chapter 5, we will apply the concepts discussed here to a variety of more

1t is possible to extend the MDWD approach to cover parabolic systems [176] as well; parabolic systems may not
have a bounded propagation velocity, but they can be approximated by hyperbolic systems. This is essentially the
path taken by Fettweis in the modeling of the full Navier-Stokes Equations [112] which describe the behavior of a
general viscous fluid [49); we remark that a similar idea, termed “second-sound theory,” [26, 205] has been used to
hyperbolicize parabolic problems (indeed, all time-dependent systems obeying the laws of classical physics must be
hyperbolic, even if certain models do not reflect this). Elliptic problems, which typically occur in describing steady
state potential distributions in both electrostatics and fluid dynamics can be dealt with using MDWDFs using a
relaxation-type approach [47].
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complex systems, in particular those describing the vibration of beams. plates, shells and elastic
solids.

We refer to §1.3 for a full technical summary of this chapter.

3.2 Symmetric Hyperbolic Systems

In the previous chapter. we examined the discretization of lumped analog circuits: by lumped, we
mean that the voltages and currents in these circuits are functions of only one independent variable:
time. Although the described procedure was originally intended as a means of developing robust
digital filtering structures, an equivalent point of view is that such structures in fact numerically
integrate the set of ordinary differential equations describing the time evolution of these currents
and voltages.

In a distributed problem, the dependent variables are functions not only of time ¢, but also
of location within an n-dimensional spatial domain D. with coordinates x = [r..... r,,]T. Such
a problem is referred to as an (n + 1)D problem in the WDF literature [131]. Problems without
spatial dependence will be called lumped problems. If the equations which define the problem include
differential operators, we are faced with solving a set of partial differential equations (PDEs).

A particularly important family of PDE systems are the symmetric hyperbolic [74, 82] systems
of the form

n

ow
A tBw+f=0 :
+‘Z b5y +BW+ (3.1)

ow
P

Here, w, the state, is a g-element column vector defined over coordinatesx € D C R™ and t > (.
P oatd Aj; kK = Lisisg n, are real symmetric ¢ X ¢ matrices®: in particular, P is assumed to be
positive definite. B is a real g X ¢ matrix (not necessarily symmetric) whose symmetric part models
energy loss or growth, and the g-element real column vector f is a forcing function or excitation.
For all the systems to be discussed in this thesis (except the fluid dynamic systems of Appendix B),
the matrices A are assumed to be constant, though P and B are allowed to depend on x. These
systems are thus linear and time-invariant. but not generally shift-invariant, so that we cannot apply
spatial Fourier transforms directly to analyze them. System (3.1) must be complemented by initial
and boundary conditions [82], in order for the solution to exist and be unique.

Though it is possible to extend this definition to include cases where the matrices A may depend
on X, t or even w (in which case system (3.1) is nonlinear), this simpler form describes a wide variety
of physical systems, from electromagnetics to string, membrane, beam, plate, shell, and elastic solid

dynamics, to transmission line systems, to linear acoustics, ete. Symmetric hyperbolic systems are

tWe will always choose z; = z, 72 = y. T3 = z, so the matrices Ay, Az and A3 will refer to the matrix coefficients
of the partial derivatives in these three directions in (3.1).
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important because they form a subclass of strongly hyperbolic systems, for which the initial-value
problem is well-posed [176]. Roughly speaking. to say that a system is well-posed is to say that the
growth of its solution is bounded in a well-defined way: growth in an L, norm cannot be faster than
exponential. This concept is elaborated in detail in [82, 176]. We can examine this growth in the

present case as follows.

First, assume that the problem is defined over an unbounded spatial domain D = R", so that we
can drop any consideration of boundary conditions, and also that the forcing function f = 0. We

now take the inner product of w’ (the transpose of w) with (3.1) to get

ow ow
wiP— wi Ao~ wB B )jw=0 3.2
e AZ. t5a T3V (B+BY) (3.2)
where we have replaced B by its symmetric part % (B4 B”). Due to the symmetry of P and the

A, we can then write

og (w'Pw) +3 Z Brx L (w" Axw) + %w"' (B+B")w=0 (3.3)

lvl’—‘

Now, integrate (3.3) over R", to get

It (w Pw)dV + = / Zo—(w Apw)dV + / w! (B+ BT )wdV =0 (3.4)
C Jpn

(wlArw)

is easily seen to be the divergence of a vector field, and by the Divergence Theorem [174], the integral

where dV = drdz, ... dz, is the nD differential volume element. The expression Y} _; 5 3“

of this quantity can be replaced by a surface integral over the problem boundary—because we have

assumed no boundary, this integral vanishes, and we are left with

d l T - 1 T T &
— = = iV = 5
i /. 2 (w'Pw)dV + 3 A w (B+B" )we 0 (3.5)
The quantity
E(t) é/ — (w'Pw)aV (3.6)

can be interpreted as the total energy of system (3.1) at time ¢. Note that due to the positivity
requirement on P, it is a positive definite function of the state, w. If B4+ B” is positive semi-definite,

then we must have, from (3.5), that

—E<0
" { A
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which implies that
L‘(’J)SE(’I) for f-_rzfl (37)

In other words, the energy of the system must decrease as time progresses.

In the MD circuit models that we will discuss, what we will be doing. in essence, is dividing this
energy up among various reactive MD circuit elements. We will elaborate on this in the sections on
the (141)D transmission line and (2+41)D parallel-plate system. The passivity condition is essentially
equivalent to (3.7). Also. the symmetric nature of the systems will be reflected, in the circuit models,
by the use of mainly reciprocal [12] circuit elements, though non-reciprocal elements (gyrators) will
come into play if B is not symmetric (it is not required to be, and note that system (3.1) is well-posed
regardless of the form of B [82]). We have not explored the application of passive circuit methods
to systems which are more generally strongly hyperbolic, for which energy estimates such as (3.7)

can also be derived [82]. This would appear to be a worthy direction of future research.

Note on Boundary Conditions

In the analysis above, the spatial domain is assumed unbounded (i.e., we took D = R™). It is useful

to examine the energetic behavior of (3.1) if this is not the case. Integrating (3.3) over D, we get

{ 1 1 ;
Z [ S (w'Pw)dV + / V-bdV + = [ w!' (B4 B )wdl" =0
dt Jp 2 Jp 2J)p
where V £ [0%'[ v %]' and where we have defined
al T 7 T
b= 3[w Aiw...., w'A,w|

If the boundary of D is sufficently smooth, then upon applying the Divergence Theorem. we get

{ 1, .
. — (w'Pw)dV + /

i 1 . .
- = b npdo + = / w/(B+B")ywdV =0
dt Jp 2 Jap 2 /p

where 0D is the boundary of D, np is defined as the unit outward normal (assumed unique every-

where on D except over a set of measure zero), and do is a surface element of D. If we define the

total energy by

E(t) £ / é(w" Pw) dV’

then we have

dp _/ b npde —l / w! (B + B")wdV
dt aD 2/p
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If B + B is positive semi-definite, then a simple condition for passivity is
b np >0 (3.8)

and the system is lossless if B is antisymmetric and (3.8) holds with equality.

This analysis is grossly incomplete, however, because we have not said anything about which
boundary conditions ensure the existence and uniqueness of a solution: this analysis is rather in-
volved, and we refer the reader to [82] for an introduction. The basic issue is the over- or under-
specification of b on the boundary. We will consider only lossless, memoryless boundary conditions

in this thesis.

Phase and Group Velocity

Because the stability of an explicit numerical method (such as those that we will examine in the rest
of this thesis) which solves a system of hyperbolic equations is dependent on propagation velocities,
it is worthwhile to spend a few moments here to define phase and group velocities [35, 101] for a
system such as (3.1).

Let us return to the unbounded domain problem with D = R". Suppose that the matrices P, B
and Ag, k= 1.....n which define system (3.1) are real constants: in particular, we assume that the
driving term f is zero, and that B is anti-symmetric, so that system (3.1) is lossless. This is then a
linear and shift-invariant system, and the solution can be written as a superposition of plane wave

solutions of the form

w(x,t) = woelWithx

where wy is a constant vector, w is a real frequency variable, and 8 = [3;,..../ J’n]7 is the n-

component vector wavenumber defining the direction of propagation of the plane wave. Substituting

this plane wave solution into the constant-coefficient system (3.1) gives
n
jwP+Y iBAr+B|w=0 (3.9)
k=1
Non-trivial solutions to (3.9) can only occur when
n
\(w,B) £ det | juP+ ) jBAr+B) =0 (3.10)

k=1

The n solutions to this equation,

wi(B), | (P n (3.11)
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(which are not necessarily distinct ) define dispersion relations. from which we can derive much useful
information.

All the linear systems to be examined in this thesis are isotropic: propagation characteristics are
independent of direction (though not necessarily of location, or frequency). For LSI systems, this
implies that the dispersion relations (3.11) can be written as functions of ||8||; alone, where ||3]|2
is simply the Euclidean norm of the vector B. In this case, we may define the phase and group

velocities for the kth relation by

dwi

1812 o d|iBll

>

~,

pa YWk ~9
Yi =

(3.12)

(For non-isotropic systems, we will need to resort to vector generalizations of these quantities [101,
190].) Phase velocities define the speeds of single sinusoidal plane wave solutions, and the group
velocities can be interpreted as the speeds of propagation of a wave packet; from the point of view of
the stability of numerical methods, it is the group velocities which are of most importance, because
they define the speeds of information or energy transfer [35]. It is interesting to note that if B
is non-zero, phase velocities may become unbounded in the limit as 8 becomes small—this occurs
in several of the systems that will be discussed in Chapter 5, though for all these systems, the
group velocities will be bounded. This is related to the fact that the system characteristics [74] are
independent of B.

In the interest of extending these ideas to spatially inhomogeneous systems (of the form of (3.1)
where P and B may exhibit a smooth functional dependence on x € D), we note that about any
location x = x¢ € D, solutions to system (3.1) behave locally as solutions to the frozen-coefficient
system [82] defined by P(xgy) and B(xy). We may then define local group velocities 77 (||B||2. %o ).
k=10, n in the same way as in (3.12). A quantity which will appear frequently in our subsequent
treatment of the stability of numerical methods for these systems will be the maximum global group

velocity, defined as

Vas B max 72 (11Bll25%0) (3.13)
E = | I n
Xg € D
[1Bll2 > o0

which, more simply stated. is the maximum propagation velocity over all system modes, wavenum-

bers, and throughout the entire spatial problem domain.

3.3 Coordinate Changes and Grid Generation

Before looking directly at circuits and signal flow diagrams in multiple dimensions, it is useful to

introduce coordinate changes, which were first applied in the context of multidimensional wave
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digital filters in [122]. One might add that it is useful, but not strictly necessary, since it is possible
to develop numerical integration algorithms along the same lines without any explicit reference to
new coordinates [61]. It is, however, a very convenient way of understanding causality and grid
generation issues, as well as generalizing the passivity concept to MD [48, 85, 131].

Some of the lumped circuit elements we have discussed so far we have seen to be passive—that
is, they dissipate energy as time progresses, as do Kirchoff networks composed of connections of such
elements (by Tellegen’s Theorem [136]). In the multidimensional setting, many systems possess a
similar property; some measure of energy decreases as a function of time. For example, the amplitude
of the vibrations in a struck string or membrane will gradually decrease (or at least not increase)
as a function of time. We have also seen that, for lumped circuits, application of the trapezoid rule
translates this passivity property to a discrete equivalent. When attempting a discretization of a set
of PDEs, however, we have to cope not only with the time direction but spatial ones as well, and
passivity (usually a result of the conservative nature of the laws from which a system of equations
is derived) does not in general hold with respect to space [51].

The idea of Fettweis and Nitsche [62] was to perform a coordinate transformation such that
the new coordinates, generally a mixture of time and space, all contain a part of the physical time
variable. Traveling in the positive direction along any of the new coordinates implies that one is

also moving forward in time (as well as in some spatial direction). More specifically, if
(h-----’n-{—l) = f(-rl---~--rynf)

are the new coordinates, the authors provide the following conditions:

Any positive change Af in the variable ¢ must be reflected by a similar positive (3.14a)
3 ; .14a
change At; in all the new coordinates t;, j=1,....,n+ L.

Conversely, any positive change At; in any of the new coordinates must produce a
Ll 4 ' (3.14b)

positive change in the old variable ¢.

As a result, all the new coordinates have a time-like character; the practical implications of this will

become apparent in the next section, when we introduce multidimensional circuit elements.

3.3.1 Structure of Coordinate Changes

These same authors provide some more detailed guidelines as to what types of coordinate changes

are of interest [62]. In particular, they describe transformations of the form:

u = V7 Ht (3.15a)
= H 'Vu (3.15b)
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wheret = [ty,..., f,,+|]7A are the new coordinatesand u = [ry,... .1y, t]T are the old. V is prescribed
to be diag(1,1,..., 1,v9) and can be thought of as a simple scaling of the original coordinates u to a
non-dimensional (or rather, “all-spatial™) form. vy thus plays an important role, as we shall see later
in a discrete setting, as the space step/time step ratio on a numerical grid. Its magnitude will be
governed by a stability bound [176], sometimes called the Courant-Friedrichs-Lewy (CFL) criterion.
as in conventional explicit finite difference methods (although the manifestation of the condition in
the networks we will derive is of a quite different character). The invertible matrix H is usually

chosen to be orthogonal [62].

Here, we can see that the requirement (3.14a) will be satisfied if the elements in the rightmost
column of H™' are positive; if H is orthogonal, we have H™' = H”. The bottom row of H
then consists of positive elements (often chosen equal, so as to give equal contributions from all

components t; to t), in order to satisfy requirement (3.14b).

;) . g2 . gl X aT , an TalRs & BIT oo " 53
The differential operators Ve = [5-,.... 3] and Vi =[50, ﬁ " are related by:
— Ty -1 . - T
Vi=H"V V. Vu=VH ' V; (3.16)
Also, we introduce the scaled time variable
t' = vyt (3.17)

which will necessitate a special treatment in the circuit models to follow. See §3.5.1 for more details.

3.3.2 Coordinate Changes in (14+1)D

Solving a set of PDEs numerically nearly always involves sampling the problem domain, and at-
tempting to approximate the solution to the problem at the finite collection of points. Coordinate
sampling in the MDWDF context was first examined in [122], and was subsequently addressed in
[62] and [7]. In (141)D, there is essentially only one useful type of regular grid: it is shown. in
the (141)D case, in Figure 3.1(a), where the grid spacings or step sizes are assumed equal to A
in the scaled time (i.e., ' = vyt) and space directions. Note that the use of the scaled coordinates
allows this uniform sampling, without implying any restriction on the relative grid spacings in the

unstretched coordinates, since we have introduced the (as yet) free parameter vg.

Suppose we now change coordinates by:

1 1
tl = ‘/‘E—-).(l‘of-}-.r) ty = \/Tj(l'of - .I‘) (318)
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(a) (b)

Figure 3.1: Sampling grids, (a) in rectangular coordinates (r,vgt) and (b) in the new coordinates

(ty,t2) defined by (3.18).

which corresponds to a transformation of type (3.15) with

Bad |t (3.19)
V2|1 1

If we now sample the plane in the (#,,t2) coordinates, with equal spacings along the two axes, using,
a step size of T} = T5, we obtain the grid in Figure 3.1(b). Notice that if we choose T\ =15 = V2A,
then our grid aligns perfectly with exactly half of the grid points sampled uniformly along the (z, vgt)
axes, as in Figure 3.1(a). In fact, the grid of Figure 3.1(a) can be decomposed into two grids of the
form in Figure 3.1(b), where one of the grids is shifted by (A, A) with respect to the other, in the
(z,vot) plane. It will be possible in some instances to exploit this decomposition so as to achieve a
gain in computational efficiency; the key idea here is that if we begin with a grid such as shown in
Figure 3.1(a), and then are able to develop an algorithm such that only one of the two subdomains is
used, then we will have halved the amount of computation, at the expense of a decrease in accuracy
by a factor of 2 (the step size in the (#;,ty) plane is T} = T5, = V2A versus A in the (x,vot)
plane). We will mention this offset sampling [61, 211] when we look at the (141)D transmission
line problem in §3.7, and will examine subgrid decompositions extensively in §4.4.3 and Appendix
A. It is important to point out that regardless of the coordinate change, updating in any of the
WDF-based algorithms that will subsequently be developed will be done with respect to the time
variable alone (the direction of data flow is still in the time direction), as per standard explicit finite

difference methods for hyperbolic problems.

3.3.3 Coordinate Changes in Higher Dimensions

There are more choices for the type of coordinate transformation (and hence the type of grid) that

are available when we move to higher dimensional problems. As an example, let us look at the
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transformation defined by:

1 _ 1
x = 0 10 0

H=|L L —\ﬁ v=1|0 1 0 (3.20)
V6 V6 4
e e b 0 0 v
Vi V3 v3

which is discussed in [62] and [211]. Uniform sampling in the (#;,1,.13) coordinates yields the grid
arrangement shown in Figure 3.2(a). flattened onto the (x.y) plane. This is. effectively, a cubic

lattice of points viewed along its main diagonal. At any given time step, one of three different grids

y
3, @) O O
(€] [ )
i3 ® =] ®
O e
ki o
[ ] © @ © }
=) a A
O O O o'
- \(_7;_) -
(a) (b)

Figure 3.2: (2+1)D sampling grids, (a) in hexagonal and (b) rectangular coordinates.

(in Figure 3.2(a) the different grids are marked by grey. white or black points) which are simple
translations of each other, is used. In a discrete setting. it is sometimes possible (depending on
the system at hand) to design an algorithm such that they are used cyclically—grid variables at
white grid points can be updated with reference to variables at the grey points, which in turn were
updated using stored variables at the black points, ete. If the separation of the points is as indicated

in Figure 3.2(a), then we have used sample steps of T} =T, =T = —f_\

Embeddings

In order to obtain a standard rectilinear grid in higher dimensions, it is possible to proceed in the
same fashion, but it is in fact more convenient to extend the class of coordinate transformations so
as to embed the problem domain in a higher dimensional space. In [62], the following generalization

of (3.15) has been put forth:

VvV Ht (3.21a)
t = H fvu (3.21b)

=
Il




=3
o

CHAPTER 3. MULTIDIMENSIONAL WAVE DIGITAL FILTERS

Here, u is still the n + 1-dimensional vector [z1.,..., ., |7, but t is k-dimensional, with k > n + 1.
H must be chosen such that the elements in its bottom row are positive. H™# is a k x (n+ 1) right
pseudo-inverse [92] of H—in order to satisfy a generalization of the first of conditions (3.14), it must
be chosen so that the elements in its rightmost column are all positive. For example, for a (241)D
problem with u = [.r.y.l]T. in order to generate a rectilinear grid, the following choice is usually

made:

1 0=1 0 O
H=1|0 1 0 -1 0 (3.22)

H projects five-dimensional coordinates t = [t,, t2, t3, ¢4, '5]1 back to the three-dimensional space of

u. One choice [62] for this right psendo-inverse is
Lo ,
H~" = ~H"diag(1,1,3) (3.23)

Uniform sampling in the t coordinates, with step sizes of Tj = A, j = 1,..., 5 yields the standard
rectangular grid shown in Figure 3.2(b), which is a pattern equivalent to what one would get by
sampling uniformly (see comment below) in the (r,y, vpt) coordinates, with a spacing of A in all
three untransformed variables. It should be clear that to every grid point in the u coordinates
corresponds a two-parameter family of points in the t coordinates: this fact will not influence the
resulting difference schemes. This embedding of the problem domain in a higher dimensional space
is simply a means to an end; in particular, we will not be solving a system numerically over a higher-
dimensional grid (which would be computationally infeasible). The new coordinate directions are
chosen so that they define a grid, and they will also serve as directions of energy flow for the MD
circuit elements which we will define presently. In effect, the total energy flow in a physical system
is broken up among these new coordinate directions; it will sometimes be true (as in the case of a
rectilinear grid in (241)D) that energy can approach a particular grid location from a number of
neighbors which is greater than the dimensionality of the problem (for the (241)D parallel-plate
problem on a rectilinear grid, at least four: north, south, east and west). We will take a closer a

look at this particular transformation, its suitability for calculation on a rectilinear grid in §3.8.

In (3+1)D, in order to obtain a standard rectilinear sampling pattern, Nitsche has proposed

seven-dimensional coordinates [62] defined by

1 00-=1 0 00
010 0 -1 020

H= (3.24)
001 0 0 =120
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It is easy to verify that shifts of distance A along the coordinates t;. j = 1..... 6 correspond to
shifts of A\ along the positive and negative x, y, =, —r, —y and —z directions accompanied by a shift
of T = A/uy in the time direction. We will make of this coordinate transformation when developing
scattering methods for Maxwell’s Equations (see §4.10.6) and for the system describing elastic solid
dynamics (see §5.6).

The embedding technique has some tricky aspects. We will make some comments here, in
order to complement the information provided in [62]. The two relationships given in (3.21) are
not equivalent for general rectangular matrices H. (3.21a) serves to define t, but the definition of

directional derivatives in the t coordinates will be given by
Vi= HTV—qu (3.25)

and depends only on H. The question of how sampling in the new coordinates is to be carried
out is not well-addressed in the literature. Suppose, for example, that we wish to use embedding
(3.22). Grid definition proceeds by letting t = A[nl.n-z.rz;;.n.,.u._,-,]"'. whefe fij; § = Lioesy 5 are
integers. Clearly, then, using (3.21a), grid points in the original coordinates are given by u = [A(n; —
ng). A(na—ny), %(nl +na+ng+ny+n; )]" . and thus any point of the formu = [_\m] Amo, zA_‘,”’I!]""
for integer mj, my and my is in the range of V™'H for some choice of the nj. This defines the
rectilinear grid in the untransformed coordinates. Note, however, that not all of these points can be
mapped back to some t with t = A[n;,ny, ny.ny. 115]7' under (3.21b). This is worthy of note, but
will not influence the numerical methods which will depend on discretizing directional derivatives in
the t coordinates, which, as mentioned above, are defined in terms of H and not H=*. We remark

that the inverse relationship for (3.25) will be given by

Ve=VH Iy, (3.26)

where H /T is the transpose of H™F.

We don’t wish to go too much into the formalism of these coordinate transformations here; it
seems excessive since the associated circuit manipulations which we will review are quite straight-
forward. As mentioned earlier, the coordinate changes in this section are introduced in order to
aid in understanding the method and MD-passivity. and are not necessary for deriving WDF-based
algorithms for numerical integration, though it would appear that some types of reference circuits

can only be derived via the transformation approach [130].

3.4 MD-passivity

In dealing with networks and circuit elements in multiple dimensions, we must have a means of

generalizing their energetic properties accordingly. In particular, the notion of passivity, which in
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the lumped case played an important role in developing stable digital filters directly from an analog
network, must be expanded to include the distributed character of the system to be modeled. The
definition of MD-passivity was given in [48], and more basic results are provided in [85] and [131].
The idea is nearly the same as in the lumped case—a passive N-port cannot produce energy on its
own, and hence a well-defined [12] network made up of Kirchoff connections of such passive N-ports
recirculates and possibly dissipates energy. The difference is that in MD, we would like to be able
to take into account that for most physical systems, conservation of energy is a property holding
with respect to time alone. We will need to make use of the coordinates defined in §3.3, so as to
ensure that passivity holds with respect to all coordinates in the problem. In this section, we recap

the main points of the definitions and derivations in [48].

8g =" t

T

g

Figure 3.3: k-dimensional domain G.

We begin by defining a domain G in the vector space defined by the new coordinates t =
[ti,...,t]T under a transformation of the type (3.21) (which may be an embedding). Consider an
N-port defined over the domain G, with port voltages vj(t) and currents ;(t), for j = 1,...,] N.

The instantaneous absorbed power density, at any point in the interior of G is defined by

N
Winst(t) = Z "jij
i=1
and the stored energy flow as a vector field
E=[E,....EB]

In addition, we can define the source and dissipated power densities within G to be wg(t) and wg(t).
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The energy balance of the N-port can then be generalized directly from (2.3):
/ (Winst + ws —wy)dV = / ngEdo (3.27)
Ja JoaG

where ng; is the k-element row vector outward unit normal to the surface of G. do is a surface element
of G, and dV is a volume element internal to G. See Figure 3.37 for a graphical representation of
some of the relevant quantities. The N-port is called MD-passive if there is a stored energy vector
field E. which is a positive semi-definite function of the state of the N-port (i.e., all components of

E are non-negative, everywhere in G) such that

/U',‘,,,-,(I\’Z/ ngEde (3.28)
G Jaa

and MD-lossless if (3.28) holds with equality. The total stored energy lost through the boundary
of G must be less than the energy supplied through the ports in G this is equivalent, from (3.27)
to saying that the energy dissipated in G must be greater than the energy coming from the source.
The previous definition of MD-passivity has been more precisely called integral MD-passivity (with

respect to a domain () [85]. A corresponding differential (pointwise) definition is
Winst Z \—. -E in G (329)

An N-port which is differentially MD-passive everywhere throughout a domain G will also be inte-
grally MD-passive with respect to G. The converse is not necessarily true.

It is also useful to define, for an N-port, a scalar total energy [85] by

E(t)= / e/ Bdrdr,...dr, (3.30)

Ja,
Here G; a spatial region defined as the cross-section of G at time ¢, and e; is a column unit vector
in the time direction; note that this definition is framed in terms of the untransformed coordinates
u, and E has been projected onto these coordinates under (3.21a). It can also be used as a measure

of the total energy at time # in a given circuit, as we will see in §3.7.4.

sions, for the case of a real linear and shift-invariant N-port. This idea generalizes easily to higher
dimensions. as per some very early work in MD system theory [135]. Consider a real linear and
shift-invariant (LSI) A-dimensional N-port, where the port quantities are in an exponential state of

frequency s¢. where

se = [1,0.. y5e]7

f Adapted from Figure 2 of [85] and Figure 1 of [48].
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are the frequency variables conjugate to t. Thus we have the real instantaneous voltages and currents
vj(t) = Re (et ij(t)=Re (ije%" j=1,....N
] = vj j = Jj J=1,....4

where 0; and 7; are complex amplitudes. If there is an impedance relation between the voltages and

currents, (h(‘ll we can \\'l‘i'(‘
v = Z(se)i

where v = [iy,..., in]T and i = [ll o r\]’ . The total complex MD power density at frequency

8; can be defined as
w(sy) = i'v
and the average or active power density as
@(s¢) = Re (i'v)

The positive realness condition on Z for MD-passivity follows immediately, and is similar to (2.5).

except that we now must have
Z(sy)+Z%(s¢) >0 for Re(s;) >0 j=1,..., k (3.31)

Thus the impedance must be positive real in all the new coordinates. The N-port is MD-lossless
if (3.31) holds with equality for Re(s;) =0, 7 = 1..... k. It is important to note that because of

(3.26) and (3.25), we have
sy = VH g, se =H"V's, (3.32)

where 8, = [8g;45953 88, s,]" is the vector of frequencies in the untransformed coordinates u. Thus,
due to the positivity condition on the elements of the last row of H™#" and the last column of H”

we will have that
Re(s;) >0 for j=1,..., k = Re(s;) >0
so that for an MD-passive N-port,
Z+7Z >0 for Re(s;) >0 (3.33)

It is thus seen that MD-passivity can be interpreted as passivity, but spread over a new system of
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coordinates (regardless of whether the new coordinates number more than the old).

3.5 MD Circuit Elements

Beginning from the perspective of the one-port circuit elements described in the last chapter. it is
not difficult to see how such elements can be generalized to a multidimensional setting. Consider

again the inductance and its WD one-port equivalent, shown in Figure 3.4. The voltage across the

Figure 3.4: Inductor and its wave digital one-port.

inductor is integrated and scaled by a factor 1/L to yield a current. The fact that the signal flow
graph for the WD one-port equivalent is causal indicates that the inductor one-port is associated
with the forward time direction. In the multidimensional case, the concepts of a direction associated

with a circuit element and causality become crucial.

3.5.1 The MD Inductor

Consider the following (partial) differential equation:

i
v=L— 3.34
o (3:44)
where L is a positive constant, and ¢;, for any j. j = 1,... .k is a coordinate defined by transformation

(3.21). We now have v = v(t) and i = i(t). Considered as an MD one-port, the instantaneous applied

power will be
; 0 (1. .,
Winst = U1 = 0—’1 (§Ll‘) =Vi-E

if we also define the stored energy flux E to be

| -

E = -Li%e; (3.35)

~

where e; is a column unit vector in the #; direction. If L > 0, this is indeed a positive semi-definite

vector function of the current across the one port. (3.34) defines a passive (in fact lossless) element

in the sense of (3.29), henceforth called an MD-inductor, of inductance L and direction t;.
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This equation resembles that which defines the voltage/current relation in an inductor with
inductance L, the exception being that the integration variable is no longer time, but #;, a mixed
space-time variable. In fact, the discretization procedure is identical to that of the lumped case, as
we shall see. but for illustrative purposes, we will derive the multidimensional wave digital one-port.
The important thing to note here is that even though (3.34) is defined over a k-dimensional domain
with coordinates t, it is solved (given v, say) as a series of one-dimensional integrations (since (3.34)
must hold for all values of t).

We can immediately approximate (3.34) by the MD trapezoid rule [62] as

v(t—T;)+v(t) L. ; :
s Tj(:(t)—l(t—Tj))+O(Tf) (3.36)
where T; = Tje;. Tj is interpreted as the step-size. Assuming that we have uniformly sampled

the t plane as in §3.3, with grid spacings Ty,...,Tk, we now define the grid functions v(n) and
i(n) where n = [nl,....m.]7 is an integer-valued vector. We intend to use them to approximate

v(t = [Ty, ... .0 TE)7) and i(t = [mTh....niT%)7), so we can immediately write the recursion

(n)+v(in—e;) L. i =
i’_‘_‘?_e) = Tj(r(n) —z(n—ej)) (3.37)

which approximates (3.34) to ()(TJ?).

We can now introduce the wave variables,

a(n) = v(n)+ Ri(n)
b(n) = wv(n)— Ri(n)

which are also grid functions defined over n. As in the lumped case, I? is an arbitrary positive
number (here assumed constant). Inserting these wave variables into (3.37) vields, with the choice

R=2L/T,
b(n) = —a(n —e;) (3.38)

In terms of the untransformed coordinates (where we will perform the updating in a simulation),

(3.36) becomes

e TL (i(u) —i(u= V7'HT;)) (2.49)
J

again to second order in the transformed spacing. The quantity V~'HT; is the vector corresponding
to the same shift, in the untransformed coordinates.

Take, for example the case of an inductor of direction ¢; under the coordinate change defined
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by (3.19). A shift of Ty = Tye; of 7} in direction #; corresponds to a shift in the old coordinates
of (T /\/5)[1. l/l‘()]"- Referring to Figure 3.1(b), where we have chosen T} = V2A, the instance of
the wave variable a entering the MD-inductor at point P exits, sign-inverted, as b at point (). From
this standpoint, ND-losslessness is obvious, since the MD-inductor merely shifts and sign-inverts an

array of numbers.

One point requires some clarification: the MD inductor as defined by (3.34) is MD-passive for
constant L > 0, and for a transformed coordinate #;. j = 1.... k. In problems for which material
parameters have some spatial variation, some of the MD circuit elements that we will require will. as
a rule, have some spatial dependence. If L in (3.34) is a function of t. then in general the equation
does not describe an MD-passive one-port. More precisely, if L does not commute with (—,‘:7 then
the application of the trapezoid rule to (3.34) does not yield the simple wave relationship (3.38).
This begs the question, then, of how the trapezoid rule can be applied to circuit elements which
are not LSI (which we will require in order to numerically integrate systems with spatial material

parameter variation).

For almost all the systems of interest in this thesis, it will be possible to consolidate any material
parameter variation in circuit elements defined with respect to the pure time direction (recall that
in our general symmetric hyperbolic system (3.1), such variation is confined to the coefficients of the

time derivative term). For example, consider an inductor described by

o1

=L (3.40)

“
in the (141)D coordinates defined by (3.18). Here, L is strictly positive, but may be a function of

r, and note that #' is not among the new coordinates defined by (3.18). Because L does commute

o

7+ it is still possible to apply the trapezoid rule, in the time direction, in order to get a wave

with
relationship of the form of (3.38). The directional shift will then be along the time direction, and we
need to be sure that the shift does in fact refer to another grid point—from Figure 3.1(b), we can see
that this is in fact true (it is true for any of the coordinate systems discussed in §3.3). It is of course
possible to include a pure time derivative among the new coordinates: this is done, for example, in
the case of the embedding defined by coordinates (3.22), for which #; is simply ¢ multiplied by a
scaling factor. Nitsche [62] has called this the generalized trapezoid rule. Note, however, that if we

write (3.40) as

b # lil] i
‘7-5(%*0—:2) e

it is not permissible to treat this as a series connection of two MD inductors—neither one is MD-

passive, because L does not commtute with either of the two directional derivatives.

A more general definition of an inductor, suitable for use in time-varying or nonlinear problems
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is

0= \/Zi(\/zl) - (L = & oﬁ) (3.42)
ij 2 ()fj (?’j
for any transformed coordinate ;. In this case, L can depend on t or even on v or i; as long as
we have L > 0 and use power-normalized waves, the MD inductor defined by (3.42) is MD passive
[48, 85]. For constant L, (3.42) reduces to (3.34). Circuit elements of this type appear in circuit
networks for fluid dynamical systems [16, 49, 70, 191], as well as in a vector-matrix context when
dealing with the linearized Euler Equations [86]. We also note that passivity under time-varying
conditions can be enforced as it has been done in digital waveguide networks [166]: it would appear
that waveguide networks (to be discussed in depth in Chapter 4) could be generalized to include the

nonlinear case in the same manner (see Appendix B for an interesting application of these ideas).

3.5.2 Other MD Elements

The inductor and capacitor are the only circuit elements which need a more involved treatment in
the MD case’. The capacitor is treated as the dual to the inductor, replacing v by i and L by ', and
needs no further comment, other than that, as with the lumped capacitor, there is no sign inversion
in the resulting MD wave one-port. The graphical representations of these MD one-ports and their
MDWD equivalents are shown in Figure 3.5. Note that for the sake of compactness, in the circuit
diagrams that will follow, we will use the derivative notation of the MDWDF literature [131] where

we have
d
D; & —
ij

for some transformed coordinate #;. In some instances, derivatives with respect to the original

untransformed variables appear, and we will write

a 2 9 a0
Dy & D,—OI . D, =

SR

We will also use the notation

to refer to the dimensionless time derivative, which appears frequently. Also, in a signal flow graph,
we represent the operation of shifting by 7} in direction ¢; by the symbol T;. In cases where the
system or N-port is linear and shift-invariant, we will be able to replace T; by z; !, the transmittance

of a shift in direction #; (see the next section).

TWe will return to the multidimensional generalization of the unit element in §4.10.
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v —(C.D,)

=

(a) (b)

Figure 3.5: MDWD one-ports— (a) an MD inductor. with inductance L. divection tj and its MDWD
counterpart. for step-size Tj and R = 2L/T; and (b) an MD capacitor. of capacitance C', direction
t; and its MDWD one-port. with step-size T; and port resistance R =T;/2C.

All the other elements for which we will have a use, namely the resistor, transformer and gyrator.
as well as scattering junctions are memoryless and hence their pointwise behavior in MD is identical
to that of their lumped counterparts. Their graphical representations are also identical (see §2.2.4).
We must keep in mind however, that these are still distributed elements, For example, a resistor of
resistance I?(t) in an MDKC represents some resistivity at every point in the domain of the problem.

A network made up of Kirchoff connections of N-ports which are individually MD-passive can
be shown (through the use of Tellegen’s Theorem [136], which is unchanged in multiple dimensions)

to be be MD-passive as a whole [44].

3.5.3 Discretization in the Spectral Domain

If our network or N-port is linear and shift-invariant, it is also possible to view the discretization

procedure as a spectral mapping, just as in the last chapter. Consider now the case where the

problem domain is some n-dimensional space, with coordinates u = [u ...... r,..t]lr. and where we
have changed coordinates to t = [t;..... tx]”, with k > n + 1 via a transformation of type (3.21).
The defining equation of an MD inductor of direction ¢; for any j=1,... .k is
i
U= L,—
L)fj

and for an exponential state at frequencies s¢, we have
0 = Ls;ji

5 I . 2 1 . " .o .
where v = i and i =ie% t. The “impedance” is here Z = Ls; and clearly satisfies MD positive

realness criterion given in (3.31) (and furthermore is MD-lossless) if L > (0 . As in the lumped case.
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the trapezoid rule, now applied in the #; direction, can be interpreted as a spectral mapping

1 2.
8j = U & " (3.43)

to represent the frequency domain equivalent of a unit shift in the #; direction. In complete analogy

with the lumped case, (3.43) implies that

AllV

Re(s;) 0 = |21

AllV

0 = Re(v;)

This shift can of course also be written in terms of delays and shifts in the u coordinates. For
example, consider the coordinate transformation defined in (3.18). In this case we have, in the

frequency domain,

1 1
8i = ————m+ =8,
; Vv2uy i V2
1 1
- '- —_'*’ — ——SJ'
\/§l‘n \/5

where s; and s, are the frequency variables conjugate to t and r respectively. (We assume that
our spatial domain is of infinite extent, so that s, corresponds to an imaginary Fourier transform
variable.) Suppose we have also chosen the step-sizes in the two coordinates such that the grids
overlap, that is, T = V2A = /20T, where T is the shift in the pure time direction. Then, for a

shift of 7} in the ¢, direction, we can write

,— 81

- s RPN T e & "
e~ Tl o o AW geeh _ —aT-3,8

or
:l_l = 2" 1y™1 (3.44)

where z~! represents a delay of duration T in the time direction, and w™' corresponds to a shift

over distance A in the positive space direction. Similarly, we can write

V=2l (3.45)

Ny
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For a more complex example, consider again the transformation defined by

1 0-1 0 0
H=|(0 1 0 -1 0
1 1 1 1 1

which maps coordinates [.r.y. I]T to a five-dimensional coordinates [tl.t-z.f;;.t,l.f;-,]"v. A shift of

T, = A in direction #; corresponds to a transmittance of the form

-

1 _ o=a1Ty o o~ (8aty

4 s)A _ e~ (8:A+5T) — .—1,,-1
5 = =€ =2

w,
where w, represents a unit shift (of length A) in the r-direction, and as before, 21 corresponds to

a unit delay of 7" = A/vy. The other shifts can be written as

where w,, represents a unit shift (of length A) in the y direction. At a given grid point in the old
coordinates, the unit delays :l—l ..... :4—]. interpreted as directional shifts, refer to points on the
grid at the previous time step. and located one grid point away in the —r, —y. r and y directions.
respectively. The unit delay .:;-fl is simply a unit time delay.

It is important to note the manner in which the special character of the coordinate transformation
manifests itself here. Due to the positivity requirement on the elements of the last column of H,
a unit delay in any of the directions t; will always include some delay in the pure time direction.
By means of this requirement, and the introduction of wave variables, MDWD networks can, in the
same way as their lumped counterparts, be designed in which delay-free loops do not appear. Such

networks, when used for simulation, will give rise, in general, to ezplicit numerical schemes [176].

3.5.4 Other Spectral Mappings

One could well ask whether the spectral mappings of the form (3.43), which correspond to an
application of the trapezoid rule, are the only means of deriving an MD-passive discrete system from
a continuous one. The criterion for a passivity-preserving mapping is that it map multidimensional
positive real functions (i.e., functions whose real parts are positive when the real parts of all of their
arguments are positive) to functions which have the same property in a generalized multidimensional
outer disk.

In a brief section of one of the original papers on the subject of WD integration [61], a differ-
ent type of mapping is proposed, in a discussion of boundary conditions for the transmission line

equations. Suppose that, in the (141)D case, our transformed coordinates are given by (3.18). The
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alternative mapping can be written as
S — @ S92 — O2

where the frequency variables 0, and ¢, are defined in terms of the variables ¢*; and ¢y from (3.43)

by
5 Uy 1 (1= +2") ,
TI = < 3.46:
ol 1+T|T;_»b"1l.f"2/~l T; 1+:l_1:2_l ( !
a U 1 (1= )(1+2") .
hy = = — 3.461
1 1+T]Tgl;’|b'~g/4 T, 1+:;l:3~l ( ?
We then have that
() Llve 2 Re 19y > s Wl I2Rel v
o) = B ETDOPRAG)s ) Rel) TP
(14 T Tou e /4)? |14 Ty v g /4)2
from which we can conclude that
Re(vy) % 0 and Re(vs) % 0 =% Re(o,) % 0 and Re(o,) % 0
Another simple way of seeing positive realness is by rewriting (3.46) as
o = ! (3.47a)
= AT7a
: /vy + T T /4
1
0y 2 (3.47b)

1/vg + T Tovy /4

in which case ¢; and ¢, can be viewed as impedances of parallel combinations of passive (indeed,
lossless) elements. For example, ¢, is equivalent to the impedance of a parallel combination of an
inductor of impedance v} and a capacitor of impedance 4/(T1T5v»). Second-order accuracy is also
obtained under these mappings: this should be clear from (3.47) as well. This spectral mapping
differs from the trapezoid rule in that the discrete spectral images of the two continuous frequency
variables s, and s, are now mixtures of the two discrete frequency variables .:l_] and :2_]. In addition,
the transformation does not have a unique inverse, but this is of little consequence because we will
never have any occasion to invert such a mapping. We mention this particular mapping, because it
will serve as the bridge between multidimensional wave digital filters and digital waveguide networks
(to be discussed in Chapter 4). We will spend some time in §4.10 elaborating this link. It will also

allow us to introduce higher-order accurate methods, which we will discuss in §3.13,
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3.6 The (141)D Advection Equation

Perhaps the simplest hyperbolic partial differential equation imaginable is the so-called scalar ad-

vection or one-way wave equation in (141)D, defined by

i i ?

where a is a real constant [176]. It is complemented by the initial condition
1(x.0) = 1iy(x), —0 < r <o (3.49)

Here, the solution i(x,t) is assumed continuously differentiable (though it need not bef), and is

defined over the entire r-axis, and for ¢ > (. The solution is simply
i(r.t) =ig(x — at) (3.50)

That is, the initial data travels to the left or right (depending on the sign of a) with speed |a|.

Despite its simplicity, it is often used as a model for numerical schemes [95].

3.6.1 A Multidimensional Kirchoff Circuit

We first change coordinates via transformation (3.18), which gives
vy +a Oi " vg—a i

\/E 0’] \/§ (‘)fg -

-~ -~

vy vy

The basis of the WD integration approach is to view this equation as a loop equation for a multi-
dimensional circuit, i.e., a circuit in which voltages and currents may depend not only on time but
on space as well. The equation above is to be interpreted as describing a series connection of two
inductors, where the dependent variable 7 is considered to be the current passing through them. The

MD-inductors have inductances

L 2 (vo + ) L, 2 (vg — @)

vz S,
As explained in §3.3, these two inductors are associated with the directions ¢; and t;. The circuit
representation of the connection is shown in Figure 3.6(a).
It is important to note that the circuit pictured here is merely a graphical representation of

(3.48)—in particular, it represents the point-wise or differential behavior of (3.48) anywhere in the

tGiven the solution (3.50) to (3.48), it is easy to see that it remains unchanged even if iy is not differentiable
everywhere. In this case, 1 must be considered to be a solution to the integral form of (3.48).
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(L|1)|) Tl R,

(a) (b)

Figure 3.6: The (1+1)D advection equation— (a) MDKC and (b) MDWD network.

(ty.t2) plane. It does, however, permit an immediate discretization via wave digital filters, in exactly
the same manner as described in the previous chapter on lumped networks. That is. we can replace
the circuit by two MDWD inductor one-ports connected through a series adaptor. This complete

wave digital network is shown in Figure 3.6(b). where we have defined the port resistances to be:

2L, vy + 2L, Uy — v
Ri=—= Ry = — = —— 3:51
=T A S A )
where we have used T} = T = V2A. Figure 3.6(b) is an abbreviated notation for a numerical

integration routine. We can expand out the spatial dependence into a full signal flow graph in order
to better perceive the flow of data. This is shown in Figure 3.7, where we have indicated unit time

delays by T': series scattering junctions are separated by a distance A.

- A——

Figure 3.7: Signal flow graph for Figure 3.6(b).

This signal flow graph can be interpreted as follows: At every grid point in the domain, and at

every time step there are three computational stages:

1. Retrieve the incoming wave variables from the registers. Referring to Figure 3.6(b). this means
that for the port of port resistance I?,, which accepts a wave variable shifted by Ty, we must
use the sign-inverted wave quantity output from the corresponding port, one time step earlier,

and one grid point to the left. This shifting operation is to applied at every grid point, as
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per Figure 3.7. Similarly, the input to the port of port resistance Iy takes the sign-inverted

output of its corresponding port one time step earlier. and one grid point to the right.
2. Perform scattering operation.
3. Insert output wave variables into registers.

If vy = |af, then either Ry or Ry is zero, depending on the sign of a. In this case, the associated
inductor can be dropped from the network entirely (i.e., we can treat it as a short-circuit). For
example, if @ < 0, then vy = |a| implies that R, = 0, and we get the simplified network of Figure
3.8. Here, we in fact have an exact solution to (3.48); the signals in the delay registers are shifted
repeatedly to the left, and directly implement the traveling wave solution given by (3.50). Note that

the sign inversion of the inductor is canceled by that of the reflection from the port.

Figure 3.8: Simplified signal flow graph for Figure 3.6(b), for vy = |a|. a < 0.

3.6.2 Stability

It is easy to see that the MDKC of Figure 3.6(a) will be MD-passive if the inductances Ly and Ly,

and consequently the port resistances Iy and Ry of the MDWDF in Figure 3.6(b) are non-negative.

From (3.51), this gives a constraint on vy, the space step/time step ratio, namely that we must have
vo = > |al (for passivity)

Any such value of vy yields a passive, and thus stable algorithm.

It is important to mention, however, that the instances of the NNDWDF, sampled at every grid
point as in Figure 3.7 are not connected port-wise, as must be true for a traditional lumped WD-
network. The output wave at the bottom port at spatial location r = i\ is sign-inverted and then
sent as input to the same port, at location x = (7 — 1)A at the next time step. Thus the realization

of Figure 3.7 can not be analyzed directly as a chain of lumped elements: passivity follows from the

multidimensional representations shown in Figure 3.6.
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3.6.3 An Upwind Form

One of the interesting (and only briefly mentioned [86]) features of the MDKC representation is that
it can easily be manipulated to yield what are known as upwind difference methods; such methods
are usually applied to problems for which there is a directional bias in the propagation speed, and
are heavily used in fluid dynamical calculations [89)].

We can rewrite the advection equation (3.48), where we assume, without loss of generality, that

a >0 as

o i
\/Enm + (vg — @) W =10
N et

L]
which can be written as the MDKC shown in Figure 3.9(a). We now have
Lis V2a Ly =v9g—a

In this case, we have left a directional derivative in the pure time (or scaled time) direction in

(a) (b)

Figure 3.9: An upwind-differencing form for the advection equation— (a) MDKC and (b) MDWD-

network.

the MDKC: for this inductor, we apply the generalized trapezoid rule discussed in §3.5.1, with a
step-size of T” = A. The resulting MDWD network is shown in Figure 3.9(b), with port resistances

given by

2(!

2
Rl == R2 = ‘S (l'u —(l) (332)

(Note that a directional shift of length A in the scaled time direction t' = vyt corresponds to a pure
time shift of duration A /vy = T, and so we have indicated this shift in Figure 3.9(b) by a T). The
signal flow graph, with spatial dependence expanded out, is shown in Figure 3.10.

This structure is in a sense, a better model for the advection system; recall that for a > 0, the
solution at any future time instant ¢ > (0 will simply be the initial distribution shifted to the right
by an amount at. By using upwind differencing, we have dispensed with the unphysical leftward

traveling wave which appears in the signal flow diagram in Figure 3.7. As before, the network will
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Figure 3.10: Signal flow graph for Figure 3.9(b). for a > (.

be MD-passive for vy > a. It also degenerates to a simple delay line when vy = a (in which case we
will have 7y = (), and the right-hand inductor in Figure 3.9(b) can be dropped from the network).
Because all the systems that we will subsequently examine do not have any directional disparities
in the wave speed, we will not pursue the subject of upwind differencing further here. We do mention,
though. that digital waveguide networks [166, 198]. which are intimately related to MDWD networks,
are incapable of performing upwind differencing for the simple reason that they are constructed
from bidirectional delay lines (or unit elements), which carry information symmetrically in opposite
directions. In this respect, the two approaches stand in stark contrast: the advantage of having an

MD representation is very clear in this case.

3.7 The (141)D Transmission Line

As a slightly more involved example, which highlights some of the issues which typically arise in the
construction of these algorithms, consider the (141)D transmission line or telegrapher’s equations

[63]:

i Ou
—d et e = | 533
10t+6.r+“+( ) (3.53a)
r'—(z;; + g—; +gu+h = 0 (3.53b)

Here, i(x.t) and u(r,t) are the current and voltage in the transmission line, I, ¢, r and g are
inductance, capacitance, resistance and shunt conductance per unit length respectively, and are all
non-negative functions of = (I and ¢ are strictly positive’). e(r,t) and h(r.t) represent distributed

voltage and current source terms. System (3.53) is symmetric hyperbolic; it has the form of (3.1),

fIn fact, I and ¢ should be bounded away from zero, so that the local wave speed (given by 1/V1Ie) remains finite
everywhere,
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with w = [i. u]". and

( .0 :
. & Bl ¢=|" (3.54)
1 0 0 g h

Phase and Group Velocity

In the constant-coefficient case, where r = g = (), the dispersion relation, defined in (3.10), will be
\ri(w,8) =—wPle+ 32 =0

in terms of real frequencies w and wavenumbers 3, and has solutions

B
w=+—

Vie

The phase and group velocities, from (3.12) are then
=4+— (3.55)

and if | and ¢ are functions of r, the maximal group velocity will be

1
9 _ (3.56)

ITL mar
Vv (le)min

where (I¢)min = minzep(le).

3.7.1 MDKC for the (141)D Transmission Line Equations

In order to put this system into the form of an MDKC, let us first change dependent variables by
i 4 4 u g iy
i 2 in & — (3.57)

where g > 0 is a free constant parameter which has dimensions of resistance. The primary reason for
introducing this parameter is so that the numerical algorithm may later be tuned to be optimally
efficient (in terms of the largest allowable time step for a given grid spacing). After changing

variables, and multiplying the second equation by rq. we obtain:

i By . h
/(.Tf'+"na—;+m+«' = 0 (3.58a)

o Ol i i,
(‘1'5 E{ + 7'()# - {]1'612 + 1‘()" = 0 (358]))
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At this point, it is already possible to write the above system in the form of an MDKC. which is

shown in Figure 3.11(a).

(1';‘;:'. D) gyf‘I (1',,13"',«‘ -1y, Dy) ..,,-:']'

(—=rg,Dz) (rg, Dy — D)

(ra. D,s — D;)

{val = ro, Dy1) =

(a) (b)

Figure 3.11: MDKCs for the (1+1)D transmission hine system (3.58)— (a) a direct representation,
and (b) after splitting and shifting inductances.

Kirchoff’s node equation tells us the current in the common branch, which is i; + i3, then the
loop conditions yield system (3.58). This representation, however, can not give an explicit algorithm,
because of the purely spatial MD inductors which form a T-junction between the two loops: that is,
if one tries to treat these as one-ports, their WD counterparts will be found to contain delay-free
paths from input to output; in other words, the algorithm will be implicit. Nor can it be considered
to be MD-passive, since there are negative inductances. By performing a few network theoretic
transformations to this MDKC, we can obtain a representation which is MD-passive, and which will
give rise to an explicit numerical method. The idea here, grossly speaking, is to make sure that each
inductance is positive, and that every inductor “points” in the direction of a transformed coordinate,
as per conditions (3.14).

First note that we can split and shift the differential operators around at will, as long as the loop
equations remain unchanged. In particular, we can redraw the circuit as in Figure 3.11(b). where
we have introduced the scaled time coordinate t' = vyt and its associated derivative D;. Now,
examine the three inductors which form a T-junction connecting the two loops. If we are planning
to use coordinates defined by (3.19), then the two inductors on the vertical rail can be identified as
MD-passive—we have Dy, — D, = v/2D,. The inductance in the common branch, however is not yet
in proper form. It is now possible to apply transformations from classical network theory so as to
ensure that the resulting equivalent two-port is composed of only MD-passive elements. Although

the system as a whole does not change under these manipulations, we would like it to be concretely
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passivel, so that it may be decomposed into a connection of simpler passive blocks. Since the two-
port containing the T-junction will always be, by itself, linear and shift-invariant (i.e.. shift-invariant
with respect to any coordinate, because the inductances are constant ), we are justified in describing
it by means of impedances and applying spectral transformations. When it is connected to the other
components which are not shift-invariant, the spectrally transformed two-port may be interpreted

in terms of differencing formulae.

(a) (b) (c)

Figure 3.12: Equivalent two-ports— (a) T-junction, with impedances Z 4 and Zp and (b) and (c),
lattice and Jaumann equivalent two-ports, both with Zy = Z 4 and Zy = Z 4 + 2Zp.

The symmetric T-junction, and its lattice [55, 131] and Jaumann [132] equivalents are shown in
Figure 3.12. for arbitrary impedances Z 4 and Zg. Replacement of the T-junction in Figure 3.11(b)
by either of the two-ports in Figure 3.12(b) and (c) gives an MDKC which is indeed concretely
MD-passive; this circuit is shown in Figure 3.14(a). Note that in this representation, we have left
inductors (with symbols Dy/) in the circuit, instead of rewriting them as Dy = (D, + Dg)/\/’i. In
this case, we must proceed as such because their inductances are possibly spatially-varying (note
that they depend on I and ¢); for this reason these elements cannot be split into inductances acting
along directions t; and #, without giving up passivity. For these inductances, we will apply the

generalized trapezoid rule, which was discussed in §3.5.1.

3.7.2 Digression: Derivation of an Inductive Lattice Two-port

We have derived the WD equivalents for all the standard circuit elements, but the two-ports pictured
in Figure 3.12 need a special treatment. Fettweis and Nitsche find the lattice form to be the
most straightforward derivation, but we would especially like to call attention to the fact that the
resultant WD two-port is the same regardless of which of the equivalent structures we choose; use of

a concretely MD-passive two-port, however, makes the passivity of the resulting circuit obvious. We

tBy concretely passive, we simply mean that all elements in the network should be individually passive. A network
{or N-port [12]) may be abstractly passive, but not concretely passive; the MDKCs shown in Figure 3.11 are of this
type.
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will continue to use the Jaumann equivalent in all future diagrams (though we could equally well
use the lattice form). Basu [10], as well as Fettweis [46] make the point that an electrical network
equivalent is a convenient formalism for developing MD-passive discrete networks, but it is by no
means necessary.
Beginning from any of the equivalent two-port structures in Figure 3.12, we can immediately
write down the impedance matrix, which we will denote by Z:
1122+ 2, Zy— 2 1 1112, 01 1

Z=a - ’ = N“!AN
2 Zo—2Zy Zy+ Z, 2|11 -1 0 Z, 1 -1

‘here we have se =[11]; _[Z2 0
where we have set N = []_}] and A=[% z 1
We now introduce a port resistance matrix R = [ ¥ ‘,’r] > 0, where we can choose equal port

resistances because the two-port is symmetric. The scattering matrix is then, from (2.21),
= = -1 ) =
S=(N'ANR'+I,) (N 'ANR'-1,)
where I, is the 2 x 2 identity matrix. This is easily rearranged to become

S=N"'(AR'+L) '(AR'-L)N

Returning to the problem of the (141)D transmission line, for the two-port in question in Figure
3.14(a). we have Z;, = \/‘Er..s? and Z, = V2res1. Notice in particular that for these choices of
impedance, any of the two-ports of Figure 3.12 are described by MD positive real matrices. We now

discretize using the trapezoid rule, i.e.
1=12

where we also will set 7} = Tb = /2A. If we make the choice R = 2r3/A, we obtain the discrete-

time, causal scattering matrix

S(z.22)=N"1| ™ N (3.59)

The resulting MD two-port is shown in Figure 3.13.

It should be clear that the same procedure can be used for arbitrary impedances Z, and Z»: it
should be remarked, however, that we can not always get a simple form without a through path like
that pictured in Figure 3.13. Since this two-port is strictly causal, it may easily be connected to

other ports without the risk of the appearance of a delay-free loop.
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z.o_@'/ @

Figure 3.13: Signal flow diagram for the MDWD lattice or Jaumann two-port.

3.7.3 A MDWD Network for the (14+1)D Transmission Line

Returning to Figure 3.14(a), and making use of the discrete two-port derived in the last section, we

can now write the complete wave digital network. It is shown in Figure 3.14(b).

(Ly,Dy) 973 hro
L
12
1 E——
1
(Lo, D3) (Lo, D)
n l
®
066 L 'E} R, Rz
(Ly,D,) - . -10
(a) (b)

Figure 3.14: (a) MD-passive network for the (1+1)D transmission line equations and (b) its associ-
ated MDWD network.

The inductances in the MDKC of Figure 3.14(a) are

Ly =vl—=ro Ly = vgrge —rg Ly =
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and the port resistances of the MDWD network of Figure 3.14(b) are

2 2L
Ry = % R, = __\_l R,

4L,

A Rop=gri  Rer=r (3.61)

The MDWD network is MD-passive if all the port resistances are non-negative over the entire
spatial domain: from (3.60) and (3.61). the only port resistances which are possibly negative are I,

and I?». Requiring their positivity gives the constraints

’ 1
o vo Z

I T0Cmin

vy 2

where l,,,;, = min, ! and ¢,,;, = min; ¢. A judicious choice of ry = f—“— [131] allows the largest
possible time step for a given grid spacing; the condition is then
1
. 4
vy 2 > 1Tl

lsiintmin

S,mazx (363)
where ¥4 mar 15 defined by (3.56).

If | and ¢ are constant, and (3.62) holds with equality, so that we have

/1
= l_( - W:‘I]‘l,,nm.r (303)

then the MDWD numerical scheme is said to be operating at the Courant-Friedrichs-Lewy (CFL)
bound [176]. For varying coefficients, however, vy is bounded away from v§, . so the time step

will have to be chosen smaller than might be expected; we will look at how to improve upon this

bound in §3.12.

3.7.4 Energetic Interpretation

Let us now reexamine the passive MDKC in Figure 3.14(a). The total stored energy flux in the

network is contained in the four inductors and will be, from (3.35),

b a8 | 1 . o I 1 X .\
Eiotal = ;Lllier' + ;ng.::e,: - = ;Lu(ll +12)%e; + ;Lu(ll —iz)%ey
where the ey is a unit vector in direction t/, and e; and e, are unit vectors in directions #; and #»
respectively. Applying the definitions of the inductances, from (3.60), the current definitions from
(3.57), and the fact that e; = (ey + e,)/\/§ and es = (ey — e,)/\/§. then this total energy flux

can be rewritten as

X .2 B _a N P .
Ey..pd{ = ;l‘ull ey + 5('[)('”‘9'1 4+ ute, = ;11-9, + ;('u'e, + ure,
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Here e; = w1gey is a unit vector in the time direction. The total scalar energy at time f of this

network will, from (3.30), be

i s 1 2 2 g 1 -
Sty = / e,’ Eiotaidr = / 5 (1% + cu®) dr = / SWI Pwdr

J = o0 o

and thus coincides with the energy definition of the symmetric hyperbolic system, from (3.6). This
is certainly not surprising, but the important point here is that in an MDKC such as that of
Figure 3.14(a). the scalar energy has been broken down into contributions from several interacting
components (the inductors), each of which is passive individually; this useful energy subdivision has

been exploited here as a means of developing passive numerical methods.

3.7.5 Simplified Networks

In the particular case for which [ and ¢ are constants, and where we do not have sources, the
MDWD network shown in Figure 3.14(b) can be simplified considerably. If we pick vy = l/\/l—(_
and ryp = \/17 then R; and Ry become zero, and their associated inductors may be dropped from
the network (that is, they can be treated as short-circuits). The two series adaptors then reduce to

simple multiplies of the signals output by the lattice two-port as in Figure 3.15(a) where we have

written
3 — rA —2ry 3 — groA — 2
P I'A -+ 21'" = _l]l‘u_l -+ 2
B2 -3
I e
&, D
ik
1) T, [+ ) T, =
+ ‘Tl + Tl -
=
¥ By -8
e ra
O =
(a) (b)

Figure 3.15: Simplified MDWD network for the (1+1)D transmission line equations— (a) for con-
stant | and ¢ and (b) further simplified in the distortionless case.
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If, in addition. the transmission line is distortionless [28]. so that we have lg = er for all values of
r (though as mentioned above, we require [ and ¢ to be constant ), then the network can be simplified
further giving Figure 3.15(b), where 3, = 3, = 3. Now the MDWD network has decoupled into two
independent loops, each comprised of an MD shift and a scaling. Examine the expanded signal flow
graph of Figure 3.16, where the value of the multiplier coefficient —3 at location r = iA is written
as J;. Values input into the upper array will be shifted repeatedly to the left and attenuated by
the factor —3, and similarly, those in the lower array are shifted to the right and attenuated by
the same factor. We thus have a traveling wave formulation of the solution to the transmission line

equations, to be compared with the digital waveguide implementation to be discussed in Chapter 4.

—Bi—2 —Bi-1 —B; —Bis1

- (O— T te—0O— 7T j«—O— T |+—0O—

T T / i O—»

—Bi-2 —Bi-1 —Bi —Bi+1

r=(i—-2)Aa r=(i-1)Aa = 35 z=(i+1)a

Figure 3.16: Signal flow graph for the MDWD network of Figure 3.15(b).

Two special cases are of note here. If the transmission line is lossless, so that r = g = 0, then
4 = —1. The initial values in the storage registers are shifted without attenuation. We would like
to note, however, that if A > qf—“ then 4 > 0. and the traveling waves will be oscillatory, and the
solution is thus non-physical. More disturbing is the case A = 3;’7 in which case we have 3 = (), and
all energy leaves the network immediately! Though these examples would seem to indicate that the
MDWD network is not behaving correctly, it should be kept in mind that, by construction, it is stable
and consistent with the continuous time/space transmission line equations, and is convergent in the
limit as A — 0, by the Laz-Richtmeyer Equivalence Theorem [176]. A can always be chosen small
enough so that 3 is negative, and that thus the solution will be well-behaved (i.e., non-oscillatory).
This important extra restriction on the grid spacing, which is independent of the time step. is purely
a result of the use of the trapezoid rule as our integration method. The lesson here is that passivity,

while providing a guarantee of stable numerical methods, does not ensure that we necessarily get a

physically acceptable solution in all cases.
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3.8 The (241)D Parallel-plate System

Generalizing the above procedure to several dimensions is straightforward. We examine here, as a

practical example, the (24-1)D parallel-plate system, which is written as:

Oiy, Ou ) "
10—t+5+111 + € = 0 (361‘{)
i, Ou ; B 4
’W+0—y+y‘y+j = 0 (.}64‘))
Oou  0i, Oy B :

This system was treated using MDWDFs in [62, 211]. Now the dependent variables are a voltage u,
and current density components i, and i,: these, and the sources e, f and h are functions of time
t and two spatial variables, r and y. [, ¢, r and g are arbitrary smooth positive functions of r and
y (I and ¢ are strictly positive). It is worth mentioning that the same equations can be used in the
contexts of (241)D linear acoustics, the vibration of a membrane, and. with a trivial modification,
(241)D electromagnetic field problems (involving TE or TM modes).

System (3.64) is symmetric hyperbolic, and thus has the form of (3.1). where w = [i,i,, ul”,

and with

! 0 0 0 0 1 0 0 0 r 0 0 ¢
P=|01 0 Ay=10 0 0 A=(0 0 1 B=|0 r 0 f=|f
0 0 ¢ 1 0 0 0 1 0 0 0 g h

It will follow, as in the case of the (141)D transmission line system (see §3.7.4), that the total energy
of the MDIKC that we will derive in the next section will be equal to the energy of system (3.64), as
per (3.6).

Phase and Group Velocity

For the constant-coefficient, lossless and source-free case (i.e., r = g = e = f = h = (), the numerical

dispersion relation, in terms of the frequency w and wavenumber magnitude ||8||, = ‘/.}":' + 82 will

be. from (3.10),
; 1 2
o (- l81E) =0
C

/1
C

which has roots




3.8. THE (2+1)D PARALLEL-PLATE SYSTEM 99

Discounting the stationary mode with w = 0, the phase and group velocities are then. from (3.12),

1
)
‘,-',,,. = ‘;",]),, =te—

Vie

and if [ and ¢ are functions of r and y, the maximal group velocity will be

1
g _ (3.65)

7 PPmar —
\Y% (1")7111'11

where (I¢)in = ming, ,ep(lc). This bound is the same as for the (141)D transmission line equa-

tions.

;_q H".'-J; (L, Ds)
.

13
(Lo, Dy) (Lq, D3) (Lo, D3)

(Lo, Dy)
=
, Lg= 5

10
Li=Ly=uvl-—1

Li= vorgc = 2rg

p r (L, Ds) e v (La,Ds)

Figure 3.17: MDKC for the (2+1)D parallel-plate system in rectangular coordinates.

3.8.1 MDKC and MDWD Network

The circuit can be derived along the same lines as for the (141)D case; we deal here with the
discretization on a rectilinear grid, and will thus apply coordinate transformation defined by the H of
(3.22). Rewriting system (3.64) in terms of the new coordinates [ty,. .., f5]'l using V, = VH =8,

with the pseudo inverse (3.23) gives

(vol —ro) D5ty + %Dl (11 +1i3) + ’:—)['D:l(il —i3)+riy+e=0 (3.66a)
(vol — ro) Dsia + ’:—;'D-_, (s be-ta Y %"D4 (iy —i3) +rig+ =0 (3.66b)

2 F T 5 3 T 2 5
(vorge — 2rg) Dsis + ,.—;)Dl (13 +11) + T,QD:; (i3 —11)

+ Dy iy +iz) + o Da (is = iz) +griis +hra =0 (3.66c)
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where we have used the new current-like variables

A . : A& s a u
=1z 12 =1y i3 = —
o

i

and ry is, as in the (141)D case, an arbitrary positive constant (which has also been used to
scale (3.66¢)). D; = Dy will be treated as a simple time derivative, according to the generalized
trapezoid rule discussed in §3.5.1. Figure 3.17 shows the MDKC that results from the transformed
set of equations (3.66). The MDWD network corresponding to the MDKC is shown in Figure 3.18.

where we have used step-sizes T; = A, j=1....,5.

hry
O -1
”ﬂ;, R3

Ro Ro =32
~1 n TG Rep = Ryp =7
By = Ry = %(rol —ro)
B - T @)= Ry = Hrorge=2ro)
L Ryp=g§ ©:
L 2 * - ]

. mo Y R;. R, :
7 r
€ f

Figure 3.18: MDWD network for the (2+1)D parallel-plate system, in rectangular coordinates.

Passivity follows from a positivity condition on the network inductances, in particular Ly, L,
and Ly (the values of which are given in Figure 3.17). These conditions are
L) 2

tp >

= lmin = T0Cmin

(3.67)

The choice of ry = f—'mm where i = min; , [ and ¢,pi, = min, 4, ¢ gives a stability bound of

2
vp 2 ‘/ ey - V29% p.mas (3.68)
"7!7"("7'"

which is the best possible bound for this network [61]. Note that vy is again bounded away from
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the maximum group velocity, even taking into account the scaling factor (v/2 in this case), which is
a consistent feature of explicit numerical methods in multiple spatial dimensions.
If I and ¢ are constant. and in addition r, g, e, f and h are zero. and (3.68) holds with equality,

i.e., we have
5. == 9.9
Vo = \/E 'PPmar (369)

then the network of Figure 3.18 simplifies to the structure shown in Figure 3.19. This particular
structure bears a very strong resemblance to the (241)D waveguide mesh [157, 198] which we saw

briefly in §1.1.2, and will examine in detail in Chapter 4.

Figure 3.19: Simplified MDWD network for the (2+1)D transmission line equations, in the lossless,

source-free and constant parameter case.

3.9 Finite Difference Interpretation

It should be clear that a MDWD network corresponding to a particular MDKC (and thus to a given
set of PDEs) is no more than a particular type of finite difference method, and can be analyzed
as such. We will do so here for the case of the (141)D transmission line, in order to compare the
schemes that arise from the WD approach to the simple centered difference schemes which will be
introduced in the next chapter in the waveguide context, and which can also be put into a scattering

form.

3.9.1 MDWD Networks as Multi-step Schemes

Recall that the discretization step discussed in §3.5.3 consisted of the application of a spectral

transformation of the form
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where s; is the frequency domain transform variable corresponding to any MD-causal coordinate t;,
and :j_l is the frequency domain unit shift in the same direction.
For spatially inhomogeneous problems, this spectral mapping is equivalent to the application of

the trapezoid rule in direction ;. We can thus write, using operator notation,

)
& | 5 P
— = — (1+4; 1—94; 3.70
o, Tj( +0;) | i) (3.70)
where d; is a shift operator defined by
(5j]l(f|.....fj ..... tr)=plty..., fj—]} ..... 1)
when applied to any continuous function p(t). Consider again the lossless (141)D transmission line
equations
i Ou
— 4+ —=0 T1e
ot * dr (S:71a)
()u il
— =10 71
“or . Ox (d-71b)
which can be written as
011 p 0 0 . o
y l —19) = ( . .—'23
(vol =ro) =5 + \/—?,l (11 + 22 )+\/—)f i —iz2)=0 (3.72a)
" iy 10 d . 5 e
(vocrg —ro) = ot \/—0, (ta +11) +ﬁ£(l.’-l|)=0 (3.72b)
under the application of coordinate transformation (3.19) and using scaled variables i; = 7 and

iy = u/rg, as well as the scaled time variable ' = vot. Under the substitution of (3.70), for j = 1,2,
J

and using the generalized trapezoid rule in time, defined by

o 2 . -
a5 <+ w14 de) '1=6y)

where &4 is a shift in the scaled time direction t' of duration 7', we get
g

(“ul—'u) (1+“r' 1(1—5:')i| + @(14'“) (1—=4y) (i1 +12)

+ @(l+ﬁ ) (1—62)(:'1—1'-3):[)

\/_'n

. 2 o ia o s : y ;
("’0""5—1'0)7(14'5:) '(1-6p)is + (144,) "(1=8y) (i2 +11)

+ @(HM—I(1_52)(,-2_;1)=(,
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to second order in A. This can be rewritten as
N N Rl . » ¢ c2\ c C c . g e
(1461) (14 62) &= (1= dp) iy +(14680) (1 =687) iy +(1+68p) (02 —d1)ia=0 (3.73a)
0
5 G I{.’ s 3 & ~9 . o o - & o -
(1+f51)(1+(52)F(1 =80y )is+ (14+0p) (1 —67) ix + (1 4+6p) (42 — 1) iy =0 (3.73b)
0

where we have used T = v,T = A, T} = T» = V2A. the fact that 6,8, = A," and also the definitions
of the port resistances of the MMDWD network of Figure 3.14(b). given in (3.61)7. Upon replacing
the quantities 7; and i by their respective grid functions I, ;(n) and Iy ;(n), which take on values
for n and 7 integer, (3.73a) and (3.73b) define recursions on a regular grid, of spacing A. (3.73a)

can be written as

ailii(n) + Bigliiviln—=1)+Bi—i1hi-i(n—=1)+ il i(n—1)
- Diy(n=1)+1Ii(n—1)
= Bisilyivi(n=2)=Bi1L1i-1(n=2) =vil1 i{n=2)

= bLiai(n=2)4+Iit1(n—2)

- (I,'1|.,‘(H —3) =0 (37”
with
2 R\ (iA) A Ri(1Q) " ’y(1A) s
i1y 2L [P T el il =t 3.7!
0 + T T I (3.75)

The recursion corresponding to (3.73b) is very similar, under the interchange of I} and I>. Note
that if [ and ¢ are constants, and if the difference scheme is operating at the CFL bound (so that
Ry = Ry = 0. then (3.74) can be simplified to

Liin)=Lin=2)+Lian—=1)—Li(n=1)=0 (3.76)

which is a simple centered difference approximation to (3.71a) and which we will see again in the
waveguide mesh context in §4.3.2. Unlike the case of the mesh however, away from the passivity
bound we have a multi-step scheme [176] which involves three steps of “look-back™ in order to update
a grid variable at a particular location. The introduction of wave variables, then, can be considered
to be a means of expanding the state of the system so that using the new state, the recursion (now
in the form of the MDWDF of Figure 3.14) requires access only to wave quantities at the time step
immediately preceding the current one.

In order to generate a scheme which operates on alternating interleaved grids (called offset

tWe have also used the fact that because this system is linear and time-invariant (though not shift-invariant),

time-shifting operators such as d,, commute with purely spatially-varying quantities such as Rj.
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sampling in [61]), it is possible to use a doubled time step of 7’ = 2A in order to implement the
generalized trapezoid rule applied to the time derivatives in (3.72a) and (3.72b). i.e..
0
at’

2 = -1 o2 1 241 c2
—)F(l_‘)f') (l+d,,)=3(l—(5,,) (1+‘51')
in which case we get, as an approximation to (3.71a),

ailii(n) + Bixhispin=1)48imliisiln=1)+bLin(n—1)— L (n—1)
— .‘3,‘.,,11]‘,-“(1) -3) - ,‘};4_1[1‘5_](” —-3)+ 12‘,41(11 —-3)—-Li1(n=3)
— ail1iin—4)=0 (3.77)

where a and 3 are defined as per (3.75), but where R, is now equal to _Lx (vl — rg). This form also
reduces to simple centered differences when I and ¢ are constant, and when we are operating at the
CFL bound.

The computational stencils corresponding to the two different schemes are shown in Figure
3.20; the top black dot in either picture represents the location of the grid variable currently being
updated (either Iy or Iy), and the other dots cover the discrete region of influence of the difference
scheme. Notice in particular that each scheme has a width of only three grid points, corresponding
to nearest-neighbor-only updating. Also, because these are multi-step methods, one might expect
that we will have to take special care when initializing the scheme; we discuss this issue in §3.10. For
the offset scheme of Figure 3.20(b). the stencil can be shifted one step to the left or right without any
overlapping; thus such a scheme can subdivided into two mutually exclusive subschemes (operating
only for n + ¢ always even or always odd), one of which may be dropped from the calculating
scheme entirely. This behavior appears in many of the difference schemes which we will come across
subsequently; we will pay particular attention to such schemes during a spectral analysis of finite
difference schemes in Appendix A. One of the interesting features of the MDIKC representation of
a set of PDEs is that the same circuit can give rise to an entire family of MDWD networks, or, in
other words, of difference methods, all of which are consistent with the original set of PDEs. In the
case of the MDKC for the transmission line equations derived previously, although we have defined
the directions of the various inductors (along which we will be integrating), at the circuit stage we
have not as yet specified any spectral mapping which will determine the type of differencing to be
applied. Any passivity-preserving mapping which is correct in the low frequency limit will give rise
to a passive, consistent MDWD algorithm. We will examine the important implications of a more
exotic type of mapping in §4.10, but it is also interesting to note that we can apply the trapezoid
rule using different step sizes for all the reactive elements. The constraint on our choices of these
step sizes is that all shifting operations refer, ultimately, to another grid point (for computability ).

Finally, we note that in general, the determination of stability for a multi-step scheme can be

quite difficult; even in the constant coefficient case, it will in general be necessary to perform Von
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Figure 3.20: Computational stencils of the equivalent multi-step schemes of MDWDEFs for the (1+1)D
transmission line equations— (a) scheme (3.74) and (b) “offset™ scheme (3.77).

Neumann analysis [176] (see Appendix A for such an analysis applied to difference schemes for
the wave equation in (2+41)D and (341)D), which can be quite formidable. Here, however, we are

ensured stability through the passivity condition on the network.

3.9.2 Numerical Phase Velocity and Parasitic Modes

Because, in general, the image NDWDF of a given MDKC for a system of PDEs is a multi-step
numerical integration scheme, it is reasonable to expect that parasitic modes [176] will be present in
the solution. Energy in such modes often travels at speeds other than the desired wave speed in the
medium, and may be highly oscillatory. If the scheme is consistent with the original system of PDEs,
and stable, as is an MDWD network derived from the equivalent MDKC under the application of the
trapezoid rule, then these parasitic modes must disappear in the limit as the time step is decreased
(by the Laz-Richtmeyer Equivalence Theorem [176]). They have not as yet been addressed in the
wave digital theory, and the subject is related to how initial conditions should be set in a MDWDEF.
The subject of initialization has been touched on only very briefly in [106].

Analysis of parasitic modes is easiest in the constant-coefficient case. We will examine the
simplest possible non-trivial MDWDF, namely that of the constant-coefficient lossless source-free
(14-1)D transmission line. Because at the stability limit, this scheme becomes equivalent to simple
centered differences (see previous section), for which we do not have parasitic modes at all, we will

look at the MDWDF of Figure 3.14(b) away from this limit!. We have chosen ry = V1/c. The

f Analysis of a numerical method away from its stability limit is useful because it can give some indication of how
the scheme will behave in the presence of material variations; if the system does exhibit such variations, then, locally
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MDWDF is redrawn in Figure 3.21, where we have

21'0

=Ry = (vol —19) Ry = A

L

for some vy > 1/Vlc. Note that because the system is now linear and shift-invariant. we have replaced

)
T
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Figure 3.21: Steady-state MDWD network for the lossless, source-free constant-coefficient (1+41)D

transmission-line equations.

the shifts T} and T» in the two directions ¢; and t2 by their frequency domain counterparts z°

and z, !. Recall also that we have, from (3.44) and (3.45), that

| -1, —1 =l = y=doy

=2z w 29 =

where z7! represents a unit delay in the time direction, and w a unit shift in the r direction. We

have written the outputs of the delay registers, in an exponential state, as
rj(kA,nT) =.i"j:"u‘k. for F=1,.,.,4

where the 7; are complex amplitudes. The updating of the values in the delay registers can be

written, in terms of these amplitudes, as

Iy — l.:," %ﬂ 0 I
2| (H'Tn)u‘ ow 0 “t"'u iy
#3| 0 [t 0 aw?! —UFyt| [
i 0 ize el —a iy

speaking, we will necessarily be operating away from this limit in at least part of the problem domain.
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which is parametrized by a reflectance

_Ry-R i
&= 2 4 e

If we introduce the variables

Y1 =) + 1y Yy =) — Iy

the updating decouples into two subsystems, namely

I _ aw (14 o)w _—— o (3.79a)
| == =z 21 | . ‘

Ui (1-a) o

I3 o o ™! (14 a)w™ —— I3 (3.79b)
| == ==z 34 | . A9
Ui (1-a) U4

A, and A, are known as spectral amplification matrices (see Appendix A).

The symbols [176] of the two subsystems, Qu4 and Qg are defined by
Q=L —z""Ay Qu=L-:""Ay
where I, is the 2 x 2 identity matrix. Nontrivial solutions to the update equations (3.79) occur when

the determinants of the symbols vanish. In the absence of boundary conditions, we may assuine

w = /72 where 3 is a real wavenumber, in which case we have four solutions in terms of = given

A / g . 2,84
e'T jasin(—=) % /1 —a?sin"(—~ )) (3.80a)

82 i j
Z34.4 e T (—ju sin(%) - \/ — a?sin (T_\)) (3.80b)

by

4
L
H

which are simply the eigenvalues of the spectral amplification matrices. The corresponding eigen-

vectors of these same matrices are

u('us(%‘l):l:
(1— (l)l‘%

0« 24 B!
n(ns( 1 — a?sin?(28
Uz + = W34 4+ = -

All four eigenvalues are of unit magnitude, and thus, using = = 7“7, we can rewrite solutions (3.80)
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as
edenzT — 4 3 (Bv) eiwaxT — 4o~ (B2v) (3.81)

for some real v defined by sin(rA/2) = asin(3A/2). (v always exists because we have |a| < 1, from

(3.78).) For small wavenumbers, we have
vaaf
and we thus have in this limit, for the roots subscripted with 4 in (3.81),

. e All4a) LW
pdunaT o 2201205 w14+

2

y
_3l-

jwsasT _dA(l+al g W3q+
e e 2

P24
|

o
-

where we have used the fact that (1+a)/2 = 1/(vgVIe), which follows from (3.78) and the definitions
of the port resistances in (3.61) as well as vy = A/T. The quantities w4 /3 and wysy /3 are called
numerical phase velocities [176]: they approach the propagation speed in the medium, from (3.55),
and these two solutions are to be interpreted as approximations to the traveling wave solution to the
transmission line equations. The other modes, however, are parasitic, in that they do not propagate
near the physical velocity. They are not problematic, provided initial conditions are set properly;
indeed, in the limit as A becomes small, any reasonable initial conditions tend to align the system

with the dominant traveling modes of the system.

Clearly, if we are at the passivity limit, where vy = 1/\/17 then R, = 0, and thus a = 1, which
implies, finally that v = 3, so that we have, from (3.81), that way4 /3 = 1/Vlc and wyyy /3 = —1/Vle;
wave propagation is thus dispersionless. As mentioned in the previous section, at this limit, the
MDWD network reduces to an exact digital traveling wave solution (this was also noted in §3.7.5).
It is also interesting to note that when Iy = Ry = Ry, so that a and v are zero, then (3.81) implies
that wave propagation is also dispersionless in this case as well. It is easy to see here, from Figure
3.21, that because R, = Ry = Ry, there will be no scattering through the adaptors; the pure time
delays may thus be shifted directly into the lattice two port, and we can perform a manipulation
similar to that of §3.7.5 to give a simplified digital “traveling wave” network, with doubled time
delays. Here, we are in effect implementing a traveling wave solution on a different grid, but the
implication is that for the corresponding problem with material variation, the MDWD network gives
a good approximation to the numerical phase velocity even for certain values of vy which are far
from the local physical wave speed. This is not true for digital waveguide networks, where the
numerical phase velocities degrade considerably away from the passivity limit. We will return to

these expressions (which provide complete information regarding the numerical dispersion properties




3.10. INITIAL CONDITIONS 109

of the scheme) in §4.3.8 in a comparison with the digital waveguide network for the same system. In
anticipation of the discussion in §3.10, we mention that for constant vy, we have for the eigenvectors

corresponding to the dominant modes, that

" < a+1
lim ugy4 = lim ugy 4 =
A=+ A—0 i — &
Because we also have, from Figure 3.21, that a; = —iy = —(§; + 94)/2, and ay = —(&y + 13)/2. we
can also write, for the dominant mode,
a, 1 o+ 1 2 I,
limn =—= lim (uy+ +uygy +) =— =
A0 | ay 240 1—na R, + Ry Ry

Thus in this limit, the wave variables incident on the left adaptor occur in the same ratio as the
port resistances, and are in fact aligned with an eigenvector of the scattering matrix corresponding
to the adaptor. A similar statement holds for the quantities incident on the right adaptor. We will

return to this observation in the next section.

3.10 Initial Conditions

Numerical simulations for time-dependent systems of PDEs must necessarily be initialized; while
this is a relatively straightforward matter for WDF-based integration schemes, it has only been
addressed in passing [106] in the literature.

We will examine here the initialization of the MDWD network for the source-free transmission
line system (3.53) with e = h = (. This system requires initial distributions for both the current
and voltage, which we will call 7p(x) and ug(x), respectively. For the initialization of the MDWD
network for this system (shown in Figure 3.22), we will also need their spatial derivatives (assuming
they exist), which we will write as i{(x) and u{(r). We note that in the approach considered in [106],
spatial derivative information has not been taken into account. For the MDWD network of Figure
3.22, we must initialize all the wave variables incident upon the scattering junctions, written as a;,
j = 1,....4; because we have assumed no sources, no wave enters through the loss/source port. This
circuit is a MD representation, and each of these wave variables refers to an array. Assuming that
the spatial grid spacing is A, and the time step is T, we can index the elements of these arrays as
@jm(n). for m and n integer; this represents an instance of the MD wave variable a; at grid location

r = mA, and at time ¢ = nT. For initialization. we must thus set a;,,(0), over all grid locations

r = mA included in the domain of the problem, in terms of the quantities ig(mA), ug(mA) and

their spatial derivatives.

We will consider only the settings for the wave variables in the left-hand adaptor: one proceeds
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Figure 3.22: MDWD network for the source-free (1+1)D transmission line equations.

in the same way for the right adaptor. We recall that the port resistances are defined by

]

il\i

9 ’
Ry = — (vol —rp) Ry =

i Har =T

L

Since the port resistances I?; and R,, are functions of position, we will write R,, £ Ry(mA) and
Repm 2 R..(mA). Ry is independent of x. It is easy to see, from (2.30). that the initial values
aym(0) and a2, (0) must be arranged such that we produce the initial current ig(mA). Thus we

need

1
R(] + le + I?' rm

io(mA) = (a,,,,(()) & ¢.2,n(())) (3.82)

Another condition is required to fully specify the wave variable initial values. Referring to the

generating MDKC for this MDWD network in Figure 3.14(a), we can see that the voltage across the
i

517+ We intend to relate this voltage to the associated digital

inductor of inductance L; will be L,

voltage across the inductor of port resistance I?; in Figure 3.22. We have

ot 1 L, o
Li— = —_—
ot vy Ot
(3.60) vl —rg Oi
N t'o L)f

(3.53) ro du ,
- (m—l) (E+r1) (3.83)

At time t = 0, and at location r = mA, we may write this voltage as

i (3.61) Ry

/ . .
L 7] PR ey o - g (un(mA) +lmlu(l"—\))
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The wave digital voltage across the same port, at location r = mA is defined by

1
R(l . -nlm + Rcrm

1
U = ; (”lm * blm) = ((RI) + I, rm)Qim — lellzm) (384)

Thus, for initialization, equating the voltages in (3.84) and (3.83). we must have

_le(le =+ R(j + Rm‘m

R]m + Ro ) (“:)(”'A) 4 R('rmil)(’”—\)) = (R(l + Ru')“lm(()) - Rl“?m(())

This requirement, along with (3.82) fully specifies the initial values of the wave variables at the

left adaptor. We thus have

Rrrmn m . R m ]

(l]m(ﬂ) = (R],,, = F],"_-f-IT()) IU(IHA) = m«t"(nr_\) (385d)
RfrmR m 4 m

“2m(0) =(R0 . I?u'm + m) lu("lA) + '[T{'?'mll:]("lA) (383'))

We note that ug(mA) may be obtained from the initial voltage distribution uy(xr) by any reasonable

(i.e., consistent) approximation to the spatial derivative.

It is important to recognize that for constant vy, we have
lim ay,,(0) = Rymip(mA) lim a2,,(0) = Ryig(mA)
A—0 A—0

These values occur in the same ratio as those of an eigenvector of the scattering matrix for the
left series adaptor. In particular, they follow the distribution of the principal eigenvector (i.e., the
unique eigenvector whose elements are all of the same sign) of the scattering matrix. Thus the proper
setting for the initial conditions (except at the loss port) should be aligned with the dominant mode
of the numerical scheme in this limit (and the fraction of the initial energy injected into the parasitic
modes will vanish)—see §3.9.2 for a discussion of parasitic modes in this particular systemf. We

also suggest the following very simple “rule of thumb” for setting initial conditions:

TWe would like to note here that the eigenvectors of the scattering matrix will give extremal values for the quantity
a’ Pb for an N-port with N-vector input waves a and output waves b and a diagonal weighting matrix P containing
port conductances. This quantity, at least for some simple lumped systems, can be identified with what is called as the
Lagrangian [190]. Many physics problems (indeed, all the systems treated in this thesis) can be recast as variational
problems involving finding an extreme value of the Lagrangian integrated over all possible system states. Though we
have not worked out all the details in the distributed case, it would appear that the alignment of the discrete system
with an eigenvector of the scattering matrix is the scheme’s “attempt™ to conform to Lagrangian mechanics (which is
to be expected). This is interesting for two reasons; first, the wave digital Lagrangian could form the basis for a new
set of quantization rules, which, in addition to (or perhaps instead of) ensuring passivity, nudge the system toward
a preferred state. Second, the variational or Lagrangian formulation of a physics problem is a necessary first step in
developing what are known as finite element methods (FEM) [95]; these methods are not restricted to operating on
regular grids, as MDWD methods are. Could MDWD networks operating on unstructured grids be arrived at through
such a formulation? This is, admittedly, a very vague notion.
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For a given series M-port MD-adaptor in a MMDWD network. with associated current
i, port resistances I?; and input wave variables a;, j = 1,..., M, then if the initial
value of 7 at the adaptor is to be 75, we should set the initial values of the wave

variables to be

a;j(0)=10 at a loss/source port

a;j(0) = Rjiy otherwise

This rule is to be interpreted in a distributed sense, i.e.. it holds for every instance of an adaptor
on the numerical grid. A similar rule holds for a parallel adaptor. These settings ignore spatial
derivative information, but give a simple way of proceeding in general, especially during the first
stages of programming and debugging, and are correct (to first order) in the imit as A approaches
0. If losses are large, though, one may prefer to use exact conditions like (3.85). This rule applies
regardless of the number of dimensions of the problem (but may need to be amended if sources or

reflection-free ports are present).

3.11 Boundary Conditions

Boundary terminations have been discussed in [61, 107, 131, 211]. We have not done significant
work on this problem, but would like to mention the several disparate approaches which have been
proposed. The problem of general passive termination of a MD network is very involved, and would
probably merit a long treatment in a separate work; termination of a (141)D MD circuit, which is
all we will be able to discuss here, is a simple matter, and the ideas can be extended to cover certain
important cases in higher dimensions. The most straightforward method was put forth in [107]. We
will refer here to Figure 3.22, the MDWD network for the source-free transmission line equations.
This network represents the signal behavior at any grid point in the domain. In particular, the
signals x» and x3 are obtained at each time step from signals input into the shift registers at grid
locations immediately to the left and right, respectively. Suppose now that we have a left boundary
termination at r = 0, and that the domain has been sampled such that a grid point coincides with
this point. Then at this location, r, cannot be directly obtained because there is no grid point to
the left to which the shift register refers.

Let us now examine some simple lossless boundary conditions of the form of (3.8). Suppose that

we would like the boundary condition for the transmission line to be that of an open-circuit at the
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left termination, so that we have
1(0,¢) =0 Open-circuit termination

The wave digital approximation to the physical current at any grid point is calculated from the wave

variables incident on the left series adaptor, so that we have

(ll] +(I~J) ——]—-' ('—.I'| - i‘(.l'-_l +.I'3))

. I{() + 1”“- + [?l - RI) 5 nrr ¥ Rl

If we set, at the left-most grid point,
Iy = —a&3 — 2.!‘]

then the calculated current will be identically zero, and x4 is easily obtained from r3 and x,, both

of which are available. A short-circuited termination, i.e.,
u(0,t) =0 Short-circuit termination

can be accomplished by treating the right-hand adaptor in a similar manner. It is possible to mix

these conditions. and to introduce loss and a lumped terminating source as well [107].

This idea is also easily extended to multiple dimensions for rectilinearly sampled grids, if the
boundary is parallel to one of the grid axes. We would like to add, however, that such a termination
has never been shown to be passive, and that there is no general theory applicable to boundary
termination of MDWD networks [142](though we will provide a possible foundation for such an
approach in §6.2.3). While it is easy to prove that the simple cases above correspond to passive
lumped terminations. there are situations in higher dimensions when this approach becomes difficult
to apply reliably: in several instances, (see Chapter 5 for some added discussion), this approach has
failed in simulation. The difficulty with approaching boundary termination in this way is that the
physics of the problem (in particular the passivity at the boundary) is not being taken into account;
this method, though easy to apply, is essentially no different from what is done using conventional
finite difference methods. Fettweis and Nitsche [61] provided an alternative method which is more
satisfying from a physical point of view; in this case, the region beyond the boundary is modeled as
a material with extreme parameter values (typically r = oc or g = oo, for the transmission line or
parallel-plate problem). These regions are still passive, though it may now be necessary to employ

a “layer” of this material, which will incur extra calculation costs.

Other recent work has involved more general lumped boundary terminations [5, 211, 212], as well
as the termination of the (241)D parallel-plate problem in hexagonal coordinates; we mention that

these approaches are unwieldy in the extreme; in at least one case [210], the proposed modelling of
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a passive boundary condition requires active elements!

The problem with the termination of MDWD networks is that when spatial dependence is ex-
panded out to get a signal flow graph, we do not end up with a lumped network of portwise-connected
elements: see, for example. the flow graph for the simple advective system. shown in Figure 3.7. Such
is not the case for digital waveguide networks, which are in fact formulated from the outset as large
lumped networks. For this reason., boundary termination is much simpler in a DWN. In Chapter
4, which is devoted to digital waveguide networks, we will discuss boundary termination for the
(141)D transmission line problem in §4.3.9, and for the parallel-plate problem in §4.4.4. Boundary

termination for vibrating beam and plate systems is discussed in detail in Chapter 5.

Note on Perfectly Matched Layers

An interesting and related direction in current research into boundary termination (and one into
which we invested some considerable time and effort) involves the use of so-called perfectly matched
layers (PMLs) [13, 14] as boundary terminations in problems to be solved over an unbounded spatial
domain. The idea, generally speaking, is to surround a numerical problem domain with a layer of
a material which creates as little numerical reflection as possible, while also attenuating waves that
enter from the problem interior.

Absorbing boundary conditions (ABCs) [185] were long used for this purpose in (241)D and
(3+41)D electromagnetic problems: in terms of the (241)D parallel-plate problem (which is equivalent
to (241)D TE or TM mode electromagnetics), the layer is chosen to be matched to the characteristic
impedance of the plates, namely \/17 As such, it can be thought of as an extension to (2+41)D of the
reflectionless matched termination that can be applied to a (141)D transmission line. Unfortunately,
in higher dimensions, such a termination is reflection-free only for waves at normal incidence, and
there will be significant backscatter into the problem interior at oblique incidence; furthermore, the
amount of reflection is frequency-dependent.

Berenger [13] solved this problem, at least in theory, by proposing a new unphysical medium as
an absorbing material. For the parallel-plate problem. the dependent variables in this new medium
are the current density, and two orthogonal (“split™) voltage components; if the layer is infinitely
thick, then it indeed absorbs and attenuates waves of any frequency or angle of incidence. The
problem here, as has been pointed out in [1, 2, 189] is that the proposed medium can be described
by a system which. though hyperbolic, is not symmetric hyperbolic and thus not of the form of
(3.1), and what is worse, is not even strongly hyperbolic [82]: strong hyperbolicity is the necessary
requirement. for the initial value problem to be well-posed. As a result, lower-order perturbations
such as those that might result from numerical discretization, can render such a system ill-posed,
and susceptible to numerical instability. (It is worth noting that the MDKC representations that
we have disussed in this chapter have only been applied to symmetric hyperbolic systems of the

particular form of (3.1). An MDKC representation of a (341)D PML medium has been proposed
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in [129]. but in this case, the asymmetries in the system were lumped into dependent source terms,
and MD-passivity does not immediately follow.) Other more physical reformulations of the PML in
terms of an anisotropic frequency-dependent medium [153, 216] and stretched complex coordinates
[185] do not alleviate this problem significantly, and other similar aproaches, such as sponge layers
[138] and the transparent absorbing boundary [137] and Lorentz materials [217] appear to have
similar problems.

New PML-type media, which can be described by symmetric hyperbolic systems, were put forth
in [2. 189]: they are of the form of (3.1). but for these media the symmetric part of the B matrix is
not positive semi-definite, so an energy estimate of the form of (3.7) is not available. In particular,
though one can indeed develop MDKC representations for these systems, the non-positivity of the
symmetric part of B leads to active (though purely resistive) coupling between the various circuit
loops. This is somewhat curious, because it is shown in [2] that field quantities in the absorbing
medium decay as a function of distance from the boundary in any direction, so it would be expected
that these media are indeed passive. Several questions arise here which are related to the general
issue of the when a passive MDKC representation can be derived from a physically passive system.
In particular: what kind of symmetries are required of the various system matrices? Is it possible to
represent systems which are not symmetric hyperbolic, but only strongly hyperbolic (in which case
non-reciprocal reactive elements would be necessary)?

Finally, we mention that although these absorbing layers have been proposed for use in elec-
tromagnetic field simulation problems, they apply equally well to the associated mechanical and
acoustic systems: a version of the layer intended for use in fluid dynamic problems was put forth
in [93]. Applications in musical and room acoustics would seem to be manifold (calculating the
sound fields radiating from the open end of a musical instrument into a large space, or in open-air

architectural acoustics problems come to mind as two possible examples).

3.12 Balanced Forms

Consider again the (141)D transmission line, with spatially-varying coeflicients. It has been noted

in the past [130, 131] that the restriction on the time step, namely

1

\% lminCmin

with [, = ming [ and ¢,,;,, = min, ¢ is rather unsatisfying: the local group velocity at any point in

vy 2

our domain is given by +1/VIc. so we would hope that a more physically meaningful bound such as

1
A
Yo Z Alv'!ll‘lqma.r ==, IIIJ'(‘l.X r (386)

c
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(which is obtained in using, for example. digital waveguide networks, which will be discussed in
Chapter 4) could be attainable. Depending on the variation in ! and ¢, the new bound can allow a

substantially larger time step. We will show that this is in fact possible via a NDWD approach.

The transmission line equations given in (3.53) can be transformed in the following way: first

introduce new dependent variables
4 = VZi 2 =u/VZ

where Z, the local line impedance is defined by

Z(.r)é\/z

Such a transformation in fact changes to variables which both have units of root power. After a few
elementary manipulations (namely scaling (3.53a) by 1/VZ and (3.53b) by VZ), we have

it ‘?"" + i(111(\/?))?2 +riv/Z+e/VZ = 0 (3.87a)
ot 0.r~ Or
s, O —‘9—(1..(\/2))?, +9Zi,+hVZ = 0 (3.87b)

y ot | or or

System (3.87) is still symmetric hyperbolic; referring to the general system from (3.1), for w =

[i1,12]7, we now have

P= vie 0] A.:[“ 1] B:[ e 5z (n(V2)) (3.88)

0 Vie 1 0 ~ 2 (In(V2)) 9Z

ar

Note that because P is now a multiple of the identity matrix, there is near complete symmetry
between the variables i; and i,. We use the term “balanced” to describe such a system. Note
also that new off-diagonal terms have appeared in B (compare (3.88) with (3.54)), but they appear
antisymmetrically’, and thus do not give rise to loss—in other words these terms do not appear
in (B 4+ B)7, which determines the growth or decay of the solution, as per (3.5). In fact, these

off-diagonal terms yield a lossless (but non-reciprocal) gyrator in the circuit setting.
In terms of the coordinates defined by (3.18), we can then rewrite (3.87) as

L]Df/;l + LoD, (;1 + ;2) + LoD, (;1 —;2) + R(;?-_) +17;1 +e = 0
LQD";Q + LoD, (;_» e ;1) + LoD, (;g - ;|) - RG;I +{);2 +il = 0

TRecall from §3.2 that the term “symmetric hyperbolic” does not refer to the coefficient of the constant-proportional
term B, which is not constrained to be of any particular form.
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Figure 3.23: (a) Balanced MD-passive network for the (1+1)D transmission line equations and (b)
its associated MDWD network.

where

1
Ly=L,= "u\/l_‘f— 1 Ly =

v Bessa (% (1”(\/2))

(which should be compared with (3.60), for the standard form), and

F=r/Z eé=e/VZ

Gg=9Z h= 'z

are given by

As mentioned previously, in a MDKC setting, the terms with coeflicient R¢; can be treated as a
gyrator. The network and its wave digital counterpart are shown in Figure 3.23. The port resistances

2

Rimilym 3) (uo\/ﬁ— 1) =~ Bas¥

Ry = Ry, =4

In order to accommodate the gyrator, we have been forced, in order to avoid delay-free loops, to
set one of the ports to which it is connected to be reflection-free (see §2.3.5). In (141)D. we can
choose either of these ports, but picking the bottom port in Figure 3.23(b) allows us to extend the
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idea to (241)D easily. This port resistance is then constrained to be
Ry =R+ Ra + Ry

We have two simplifying choices for R»: either we can choose it to be reflection-free as well, so that
we will have a general gyrator described by (2.25), or we can choose
2
Ry = #
Gl

in which case the gyrator equations (2.25) reduce to a pair of throughs, scaled individually by
R /Ry and its inverse: this latter choice may be problematic if R¢; approaches zero, because one
of the multipliers becomes unbounded. If I?¢ is small over some part of the problem domain, how-
ever, it is probably wiser to remove the coupling from the network altogether over these regions
(it can be replaced by a simple two-port short-circuit). We have assumed. throughout this devel-
opment, that /(z) and e(r) (or rather, the local characteristic line impedance Z(x) = /l(x)/e(x))
are differentiable. An offset-sampled version of this network is also possible, if we halve the port
resistances Ity and Ry and double the delays at the same ports.

The stability bound, from a requirement on the positivity of R, and I, will be exactly (3.86).
In an implementation, there will be of course the slight additional costs due to the extra gyrator
and the rescaling of the new dependent variables 1, and iy at every time step in order to obtain i
and u. We note that this scaling can be fully incorporated into the MDKC by treating the scaling
coefficients as transformer turns-ratios, though there is no advantage in doing so (other than putting
one’s mind at ease regarding whether such a scaling is a passive operation).

We will examine how this same technique can be applied to more complex systems when we
approach the Timoshenko beam equations in §5.2; in that case, the maximum allowable time step

can be radically increased for a system with only mild material parameter variation.

Extension to (2+41)D

We briefly note that the same approach can be easily extended to the parallel-plate problem as well;

beginning from system (3.64), we can introduce new variables
I.|=VZI', i;v:VZiy i;;zll/VZ

where Z(r,y) £ m and then multiply (3.64a) and (3.64b) by 1/\/7 and (3.64c) by
VZ. The new system is again symmetric hyperbolic. We do not show the network here, but we
mention that we will require two gyrators; one linking the series adaptors with associated currents
;, and ;3. the other between the adaptors for ;2 and ;f;;. One reflection-free port must be chosen for

each gyrator; choosing both reflection-free ports at the adaptor with current 3 must be ruled out,
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but other configurations are acceptable.

The stability bound for the balanced (241)D network will be

2
= - 9.9
Uy 2 max \/ — \/-i", >
z.y 1(, PP maxzr

which is superior to (3.68), the bound for the standard form.

3.13 Higher-order Accuracy

WDF-based numerical methods are, in general, second-order accurate in both the time step and the
grid spacing. In all the schemes that have been examined in the literature, these quantities occur in
a fixed ratio (usually written as vp), so we can say that such schemes are accurate to second order
in either one (or of any of the shift lengths in the new coordinates). A numerical approximation
to a system of PDEs obtained using a NNlDWD network will converge to the solution to the model
problem with a truncation error [176] proportional to the square of any of these spacings.

While this is true in general, in this section we would like to point out that it is indeed possible to
devise MD circuit-based schemes which exhibit a higher-order spatial accuracy. Temporal accuracy,
however, remains fixed at second-order; for this reason, such schemes must operate using a small
time step: this limits their usefulness somewhat. Even more importantly, however, we note that the
schemes we will develop here can be rewritten as very simple finite difference schemes of the form
corresponding to digital waveguide networks (to be discussed in Chapter 4). We include this section
merely to show that higher-order spatial accuracy is not incommensurate with MD-passivity, and to

indicate a possible direction for future research.

Consider again the lossless source-free transmission line problem, defined by

0i  Odu .
15 + 5r 0 (3.89a)
ou 0O g

(Losses and sources may be reintroduced at a later stage in these schemes without any difficulty.)

Because higher-order spatially accurate explicit methods will require access to grid points other than

tWe remark here that this restriction may be fundamental. It should be recalled that MD systems are passive with
respect to the time coordinate—coordinate transformations are simply a means of distributing this passivity property
among all the independent variables of the problem. It is well-known [65] that lumped passive systems of first-order
can be approximated by passive numerical methods which are at best second-order accurate. This restriction would
appear to carry over in MD, though we have not attempted to prove this. Passivity does not hold, however, with
respect to the spatial coordinates, and it may be this distinction which we are able to exploit in this section.
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nearest neighbors, we introduce the following coordinate transformation,

3

H= 1 -1 2 -2 ... qQ —9 H—H:Hl «)(21]+i|(q+ll 0 (3.90)
L 1 1 1 0 3 1 0 !

24
2q

for some positive integer ¢ (if ¢ = 1, then we get the coordinate transformation defined by (3.18),
scaled by a constant factor). 2¢g will shortly be shown to be the order of spatial accuracy of the

resulting difference scheme. As before, we have
u=V 'Ht t=H fvu

with u = [2,#]T, and ¢t = [t;+, ;- 82+ ,82-5:4., | N P I': the coordinate transformation defined
by H thus describes an embedding of the (141)D problem in a 2g-dimensional space. A uniform
sampling of the new coordinates with spacings T+ =T~ = ... = T+ =T,- = A merely regenerates

a uniform grid with spacing A. The first two pairs of unit shifts are as shown in Figure 3.24.

(n+ 1T

......

(i 2)a (i = 1)a A (i+1)Aa (i+2)a

Figure 3.24: Unit shifts in the coordinates defined by (3.90).

We now rewrite system (3.89) as

i 1. O
z‘(,157+rﬂZqu—07 = 0
5 Oia 90
ITU‘FI.UW-’{-,.“ZHW‘OT = 0
j=1

where, as before, we have i} = i, i = u/ry for some positive constant ry, and t = vyt. The Qgjs
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J = 1.....q, are constants which satisfy
q
N g (3.91)

i=1

We may continue and write

0 ai &} ol diy
lul—lozl ”I )’1 l)zl q1|(.)':+1\}-,ll((lQJ)0 ) = g

a Dioy 0
'“”"_'OZ' ail )f: "ZI wl()l,+]s;.,n(n(”) ) = 0
J=1
Because, from (3.25). we have that
a O a .0 a O ad ; @
Ly = = — . Do = = — — ] — = Ysuens
* o, o Var TS, "o ar !
we can immediately write
q
LigDyiy+ Y Myj (Djs (i + Bojin) + Dj-(iy = Byjia)) = 0 (3.92a)
i=1
q
LogDyiz+ Y Myj (Djs(ia + Bojir) + Dj-(iz — Bgjir)) = 0 (3.92b)
j=1
with
|”-71| 2 2 roog;| rofag;|
Lig=vgl — 1 Z Lyq = vocry — Z —F My; = <5< Bqi = sgn(ag;)

23
(3.93)

The system (3.92) can immediately be identified with an MDKC, as in Figure 3.25.

Each of the Jaumann two-ports can be discretized according to the trapezoid rule; as long as
our choice of the constants a,; satisfies the constraint (3.91) and L, and Ly, remain positive, the
resulting MDWD network will be a second-order stable accurate approximation to system (3.89).
Suppose, however, that we apply a different set of discretization rules, namely

Di+ = —(148;-8;4)7" (1=6;+) (1485-) (3.94a)

D.. —

; (146;-6;+) " (1=6;-) (1+6;+) (3.94b)

K
2,
A
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Figure 3.25: MDKC for the lossless source-free transmission line equations, according to the decom-
position given by (3.92).

for j=1,...,9. Here, §;+ and §;- are the shift operators in the directions #;+ and #;- defined by
6J+l’(t)=f(t—T)+) (iJ—l(t)Z((t—TJ—)

for a function e(t), where T;+ and T;- are vectors of length A in directions #;+ and #;- respectively
(see Figure 3.24 for a graphical representation of these shifts on the computational grid). These rules
correspond, in the linear shift-invariant case, to pairs of spectral mappings of the type mentioned
briefly in §3.5.4, with shift lengths equal to A; they are also MD-passivity preserving, and are in
general second-order accurate [61]. To the scaled time derivative, we apply the trapezoid rule with

a doubled time step 7" = 2A. as defined by

'2 « -1 -~ 1 9y —1 =2
Dy — = (1+65) (1-8) =35 (1+6)  (1-4)

Equation (3.92a) then becomes

q
Lig(1482) " (1=02)iv + 3 My (14+6;-050) 7" (1= 8;4) (146;-) (i1 + Byjiz)
Jj=1

+ 3 My (14+685-0;4) 7" (1= 8;-) (14 854) (s = Byjiz)

j=1
= 0(A?) (3.95)

Because, however, 6;146;- = 47, and our system is time-invariant, the operator 1444 d;- commutes




3.13. HIGHER-ORDER ACCURACY 123

with L, and M;, and may be factored out of (3.95), giving

q
Lig (1=67)iv + Y My (1=6;4) (148;-) (i1 + Byjia)
=1
q
+ Y My (1=6;-) (14854) (i = Byjia)
=1
= 0O(A?)

which can be further simplified to

q .
vol (1=67) i1 +r0 Y ’—‘J—”— (8;- = d;+) ia = O(A?)

Jj=1
or, writing d;- = J,IJ;j and 6}»* = (5,'61; where 4, is a simple shift in the = direction of A, as
(6" —dv) . (877 —4]) ,
"Tﬁl-f-l'l)Z(l(” 37 12 = O(A*)
N/ j=1

which is easily seen to be a simple difference approximation to (3.89a). The approximation is nomi-
nally second-order accurate in A, but we have not as yet made any special choice of the a,;. This can
be done via a conventional finite difference approach [176] in such a way as to yield a higher-order

accurate approximation to the spatial derivative.

We can write, expanding the shift operators in Taylor series,

9 (()“} — 5)) _\k—l 9 Ok
927 7 0%) a k=1 9 1 ¢
2_ i 5A 2 Sl ii g e
a1 k>0 odd i=1
There are g degrees of freedom. corresponding to the parameters agj, 7 = 1,.... g. We require,

from (3.91) that the coefficient of the first derivative on the right-hand side of (3.96) equal one. We
may then additionally require that the other coeflicients, for £ = 3....,2¢ + 1 be zero; the resulting

difference approximation will then be accurate to order 2. This yields the linear system
Cor, =6, (3.97)

where C is a ¢ x g matrix with [Cj;] = j2U'" Y, ay = [ag..... age)T . and e, is a g x 1 vector whose first
entry is one, and whose others are zero. C is always full rank, so there is a unique solution for any gq.

The same a, will also give a higher-order approximation to (3.89b), and thus system (3.89) will be

approximated to higher-order accuracy as a whole. For a fourth-order approximation, for example,
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Figure 3.26: Unit shifts in the coordinates defined by (3.98).

we obtain oy = [4/3.—1/3]". and for a sixth-order approximation, we get ay = [3/2,-3/5,1/10]".

These values completely determine the MDKC pictured in Figure 3.25.

The passivity requirement is, as before, a condition on the positivity of L, and Ly,. Choosing

rg = lmin/"min gives
3
vg > ——— Fourth-order accurate scheime
2\/ Imin('min
11 -
vg > — Sixth-order accurate scheme

- GVlmin"min

It is interesting to note that in the constant-coefficient case, this bound is distinct from the stabil-
ity bound obtained from Von Neumann analysis (see Appendix A) applied to the same difference
method. For example, for the fourth-order accurate scheme defined by ay, the stability bound is
vg > 1.377, with v = 1/Vlc: there is thus a range of values of vy for which the scheme will be stable,
but not MD-passive. We will comment extensively on the distinction between passive and stable

methods in Appendix A.

It is also of interest to define a similar scheme with respect to the coordinate transformation

defined by

_2¢-1
2 (3.98)

B3 [

H=

B

L Lo
(Y

4

—

[

Keeping the same notation for the new coordinates, the shifts are as shown in Figure 3.26; now we
have a grid ideal for a staggered or interleaved algorithm, with alternating grid points at alternating

time steps.

For this coordinate system, we follow through a development very similar to that in the previous
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pages. We again have an MD circuit representation as in Figure 3.25, where now we have

5~ o 5 loui rolog;]

— . i it : aJ _ _'01%j

Ll.,—‘n[—'n 1 L'_'.,—'n(’”—'u 1 ‘U'I.I_.)(-_I_)

j=1+ 2 7=1 2 =\J 2

for someset of ag;. j = 1...., g which sum to unity. The symbols D;+ and Dj;- in the figure now refer

to directional derivatives in the coordinate directions defined by (3.98). For higher-order accuracy,
constraint equation (3.97) will apply. now with [C,')'] = (j—1/2)*"=1_ For fourth-order accuracy, we
obtain a, = [9/8.—1/8]7. and for a sixth-order approximation, we get az & [1.179, —0.195.0.0234]".

Because here we are using an alternative discretization rule, the resulting MDWD networks are
more appropriately discussed in the context of digital waveguide networks (which are the subject of

the next chapter). We will return briefly to waveguide network representations of these higher-order

accurate methods in §4.10.5.
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Chapter 4

Digital Waveguide Networks

4.1 Introductory Remarks

We now turn our attention to a different approach to numerical integration which is, in many re-
spects, very similar to the multidimensional wave digital filtering technique discussed in the last
chapter. Digital waveguide networks (DWNs) [166] are also based on ideas of scattering and prop-
agation of wave variables in multiple dimensions; indeed, the basic signal processing block of the
DWN, the scattering junction, is identical to the wave digital adaptor. As such. a waveguide network
will possess the same discrete passivity properties as a wave digital network, and passivity in finite
arithmetic also follows accordingly [165].

The process through which one arrives at a particular DWN intended to simulate the behavior
of a distributed physical system has been, to date, quite different. Following the wave digital
approach, one first obtains a multidimensional circuit representation (MDKC) of a system of PDEs,
then applies a set of coordinate transformations and spectral mappings in order to obtain a discrete
time/space algorithm. As discussed in the previous chapter, all MD circuit elements (as well as
Kirchoff connections between elements) are to be interpreted as distributed, from the outset through
to the final wave digital network. The integrity of each multidimensional circuit element (including
its energetic properties) is preserved through the discretization step, as is network topology as a
whole. As we mentioned in §1.1.2, however, the DWN is usually thought of as a collection of lumped
elements, and as such, there has not as yet been a convenient multidimensional representation for
such a network. We will address this point in some detail in the last section of this chapter. A DWN
always operates on a predefined grid, at the points of which are located scattering junctions. Even
though the paired delay elements (waveguides) which connect the various scattering junctions behave
like transmission lines, we will persist in calling them lumped elements, because they are typically

connected between junctions at neighboring grid points, and their behavior is hence localized in a

way that that of a MDWD element is not.
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A multidimensional WD network will behave consistently with the generating system of PDEs
because the continuous-to-discrete spectral mapping applied approximates differential operators con-
sistently: for a DWN, we must first show consistency of a DWN with a particular physical system.
For both approaches, convergence of simulation results to the true solution of the physical system

follows from this consistency as well as stability implied by passivity [176].

It was shown in [200] and [198] that the DWN structures designed to solve the wave equation in
(241) and (341)D could be recast as finite difference approzimations [176] (and in particular centered
difference approrimations) to these equations; we looked at the (241)D waveguide mesh briefly in
§1.1.2. In infinite-precision arithmetic, these DWNs and centered differences yield identical results.
A similar correspondence holds for the MDWD networks examined in the last chapter, though the
equivalent difference methods are more involved (see §3.9). The distinction between a DWN and
a finite difference approximation is in the types of signals used. Finite difference methods operate
using grid variables which are approximations to the physical dependent variables of the problem
at hand. but the DWN propagates wave variables; in this formulation, the solution to a system of
PDEs is obtained as a by-product of the scattering of these waves. It is perhaps best to think of
the difference between the finite difference scheme and DWN implementations as analogous to the
distinction between direct form and lattice/ladder form digital filters [79]—both can be designed
to implement the same transfer functions, but for the latter forms, stability is tightly controlled by
the range of values which the filter multipliers (“reflection coefficients™) can take. And indeed, as
we saw in §1.1.1, a particular type of (141)D DWN can be shown to be directly related to these
lattice/ladder forms [165]. One goal of this chapter and the next is to show how this correspondence

between the DWN and centered differences may be extended to a wide variety of physical systems.

The immediate question which arises is then: If the DWN is equivalent to finite differences,
then is there a compelling reason for using it? Finite differences, after all, are more straightforward
to implement. The answer is two-fold. First, although the approaches are equivalent in infinite
precision arithmetic, this is no longer true when we are forced, inevitably, to truncate both the
signals and multipliers in a computer implementation: stability of a DWN can be simply maintained
even in finite arithmetic. Second, the stability criterion for a DWN is, as for MDWD networks, a
positivity condition on the values of the elements contained in the network (i.e., the immittances of
the transmission line segments). It thus becomes very simple to check stability of a given DWN,
even in the presence of boundary conditions. Checking the stability of a finite difference scheme
is considerably more involved, especially considering that a difference scheme which is stable over
the interior of a domain may become unstable when boundary conditions are applied [82]. There
is a theoretical machinery for performing such checks (known as GKSO theory [82, 176]), though it
can be formidable even in the (141)D case. It is quite possible, of course, to design a convergent
numerical method using a DWN, and then to apply it as a finite difference scheme; as mentioned

above, however, its stability in finite arithmetic is then no longer guaranteed.




4.1. INTRODUCTORY REMARKS 129

A full technical suunmary of this chapter appeared in §1.3.

4.1.1 FDTD and TLM

Numerical integration methods for the transmission line equations and electromagnetic field problems
have developed along two important directions. The first approach was pioneered by Yee [214]
in the mid 1960s, and has since blossomed into what is now known as the finite difference time
domain method, or FDTD [184]. The idea behind the method is a straightforward application of
centered differences to (in Yee's case) the defining equations of electromagnetics, namely Maxwell's
equations. (241)D simplifications of Maxwell's equations which describe the evolution of transverse
electric (TE) and transverse magnetic (TM) fields can also be treated as well, and are, with some
trivial modifications, equivalent to the (241)D parallel-plate problem. The important advantage
of Yee's method is that, due to the structure of the system of equations to be modeled, it is not
necessary to calculate all the field components simultaneously—the field components are interleaved
both temporally and spatially. We will examine FDTD in the (241)D case explicitly in §4.4. The
literature on FDTD is quite large; we refer to chapters 2 and 3 of [184] for a succinet technical
overview.

The transmission line matrir method, or TLM [4, 29, 90] appeared a bit later, in the early 1970s
[97. 100]. It (like the wave digital filtering approach) is a descendant of the ground-breaking work of
Kron [109], who developed circuit models of electromagnetic field problems before the widespread
availability of electronic computers. TLM is very similar to the DWN, in that it employs a network
of discrete transmission lines connected at scattering junctions in order to simulate the behavior of
a distributed system. The first formulation, known as the ezpanded node formulation was derived
from a lumped (RLC) model of the (241)D transmission line equations [90]. and is identical to the
type III DWN we will present in §4.3.6. TLM has developed in numerous ways since its inception:
the most significant thrust has been towards formulations for which the various field components
are not staggered, but computed together at larger nodes. The symmetric condensed node [99] and
its numerous offspring, such as the hybrid symmetrical condensed node [159] are the results of this
work.

FDTD and TLM have been compared and linked in various ways [38, 98], most significantly
through the use of field expansions [110], and new variants of FDTD have been developed using TLM
as a starting point [27]. We will take a different approach here. Beginning from the observations
that have been made regarding the equivalence of certain DWNs to difference methods [67, 157, 198,
200] we will show that Yee's algorithm is equivalent to a family of scattering structures, some of
which appear to be quite different from those that have been proposed in the TLM literature. The
correspondence holds for media with spatially-varying material parameters; numerical integration of
the equations defining such materials has not, as yet, been approached using DWNs. We also note

that the TLM community appears to be aware neither of the many valuable numerical properties
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which scattering-based numerical methods possess [46, 165]. in particular their behavior in finite
arithmetic, nor of other useful signal-processing manipulations (such as power-normalization of wave

quantities and dynamic range minimization [167]) which have their roots in electrical network theory.

4.2 Digital Waveguides

We surveyed the basics of digital waveguide networks in §1.1.2. In this section, we review the main
principles of waveguide networks, now in the transmission line setting. For a full treatment, we refer

the reader to [166].

4.2.1 The Bidirectional Delay Line

The basic element in a waveguide network, and the one which does the work of moving energy from

one part of the network to another, is the bidirectional delay line, shown in Figure 4.1. It is no more

LYI_ ———T L’;
(-.|+ yr—bugJmI'—— (-._)_

Figure 4.1: Bidirectional delay line.

than a pair of digital delay lines, whose delays are equal length (m samples of duration T in Figure
4.1). It should be understood that, for realizability, all delay lengths in a given network should be
multiples of a common smallest (“unit™) delay. We will use the terms waveguide and bidirectional
delay line interchangeably in this work.

Associated with the bidirectional delay line are two sets of signals, called waves: voltage waves
U, and current waves I. Only voltage waves are shown in Figure 4.1. Waves of either type are
indexed with respect to a particular end of the delay line: in Figure 4.1, waves at the left end of the
delay line pair are subscripted with a “17, and those at the right end with a *2”. In addition, one
of the waves at either end enters the waveguide, and one leaves; the waves are superscripted with —

or + respectively!. We can immediately read the relationship among the variables from Figure 4.1:

U;‘(n) =U;(n—m) Uff(n)= Uy (n—m) (4.1)

fWe have chosen here to break with the notational tradition in [167], in which the superscripts are reversed. We
choose the above notation so that signal nomenclature in a waveguide network is well-defined. That is, a signal
leaving a bidirectional delay line, and a signal entering a scattering junction (to which each end of the waveguide
will ultimately be connected) are both superscripted by a +. This will simplify the derivation of difference schemes
later in this chapter. The other indexing method is more useful from the point of view of a unified treatment of both
scattering junctions and bidirectional delay lines as digital n-port devices (where we would want + and — to denote
incoming and outgoing signals, respectively, for any N-port).
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The delay duration T" is implicit. so that a wave variable indexed by n refers to the value of that
quantity at time t = nT. In terms of z-transformed quantities [133] (which we will denote with a

hat).

U =2~ 0=~ U7 (4.2)

We also define, at either end of the waveguide, the so-called physical voltage by

Ui =U} +U; i=12 (4.3)

4.2.2 Impedance

From the point of view of a programmer, the above description of the operation of an isolated bidi-
rectional delay line is complete. In order to connect one bidirectional delay line to others, however,
we must introduce the impedance Z, a positive number associated with a particular waveguide. The
impedance allows us to define the relationship between the voltage waves and the current waves

which were mentioned in the last section, which is:

uf = ZzIf (4.4a)
Uy = -ZI; (4.4b)

where j = 1,2 referring to Figure 4.1, which implies, from (4.1), that we have
IT(n)=—I(n—m) IV (n)=—I;(n—m) (4.5)

Thus current waves entering a bidirectional delay line are delayed by the same amount as their
voltage wave counterparts, but with sign inversion. In view of (4.4). we need only propagate a
particular type of wave (i.e., either voltage or current) in a particular waveguide. In a waveguide
network, however, we are free to use different types of waves in different waveguides, converting
between the different types with (4.4) where necessary.

The admattance Y of the waveguide is defined by

and we define the physical current at either end of the waveguide, like the voltage, to be the sum of

the wave components. Thus we have

=i+ j=1.2 (4.6)
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4.2.3 Wave Equation Interpretation

The second-order PDE describing the voltage distribution u(r.t) along an electrical transmission
line with constant inductance and capacitance | and ¢ per unit length and which runs parallel to the
r-axis is

*u AQO“'U
or ' Ox?

(4.7)

where the wave speed v is 1/y/Ie. As we saw in §1.1.1, the solution to this equation, if we set aside

boundary conditions for the moment, can be written in terms of traveling waves:
u(.r,t)=ul(.r+‘,l)+ur(.r—~,f) (4.8)

That is, the solution at any time ¢ > 0 is made up of a sum of two shifted copies of the initializing
functions u!(x) and u”(x), which have traveled to the left and right respectively with velocity v over

a distance v¢. For any A we have, for the leftward-traveling wave, the identity

ul(z+t) =u'((x4+2)+1(t—2/7)) (4.9)
If we set v = A/T, then at time t = nT,

u'(x +ynT) = u'((x + A) + y(n — 1)T)) (4.10)

Associate now with a particular waveguide a delay T and a physical length A, so that in Figure 4.1
U;" represents an outgoing voltage wave quantity at position r, and U, an incoming wave at position
xr+ A. It is then clear that if we have A/T = 4, then (4.10) is equivalent to the second equation of
(4.1), with m = 1, and with u/(z4+ynT) = U;f (n) and u!(z + A +~y(n=1)T) = U; (n—1). A similar
correspondence holds for the right-going traveling wave component u” and the wave variables at
either end of the rightward waveguide, U; and U;". A chain of bidirectional delay lines, connected
in cascade will then implement an exact traveling wave solution to the wave equation. The physical
voltage u may be obtained (as should be clear from (4.8)) by summing the leftward and rightward
traveling components at any particular location in the cascade, as per equation (4.3). Note that
because v = A/T, the delay period and the waveguide length cannot be chosen independently, if

the discrete wave quantities are to behave as traveling wave solutions to (4.7).

4.2.4 Note on the Different Definitions of Wave Quantities

Waveguides are sometimes defined in a slightly different way [165], as pictured in Figure 4.2. Now
the superscripted + and — refer to a direction of propagation (to the right or left, respectively)

rather than to outputs and inputs to the delay line pair. If we still assume (4.4a) and (4.4b) to
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('I— - \mT (—f

Figure 4.2: Oriented bidirectional delay line.

hold for some positive impedance Z, then this definition of wave quantities implies that there is a
direction associated with a particular waveguide—that is, a leftward (—) traveling current wave is
sign-inverted with respect to the leftward traveling voltage wave, but the same is not true for the
rightward traveling waves. It should be obvious that this definition of wave quantities also leads to
a traveling wave solution of the wave equation (indeed, the bidirectional delay line of Figure 4.1 is
identical to that of Figure 4.2 if we are using only voltage waves). The difference here is that we can
now interpret the traveling wave pair (U, I) to be a solution to the transmission line or telegrapher’s

equations [28], a set of two first order PDEs (from which the wave equation is often derived):

iy = 1 (4.11a)
ot " or =
LW (4.11b)
{ ot or SuLER

which. for constant [ and ¢ has a solution

u(r.t)

u(e + ~t) + up(r —~t)
(e +t) + i (x — t)

l. l.
U =—\/-u Ur = \f/ =5
C [ &

and 7 is again given by ]/\/I—( It should be remarked that if we had chosen the relationship between

i(x.t)

Il

where

the wave variables to be such that (4) superscripted current wave were to be sign-inverted with
respect to the (+) voltage wave, then we would be solving the “mirror-image™ PDEs that one would
get if one replaced r by —r in system (4.11). The definition of wave variables (which we might call
the “input-output™ definition) given in §4.2.1 solves the wave equation which results from eliminating
variables in system (4.11), or its mirror image, and hence does not have an orientation.

In practice, in order to proceed with numerical methods in systems of PDEs for which direction
is important, we can either use the oriented wave variable definition given in this section, or we can

use the input-output formulation, and reintroduce directionality into the network where appropriate.
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We have chosen the latter course, and we will indicate which changes must be made (usually through
the use of transformers) explicitly on the signal flow graph. From a progranmmer’s point of view,
there is no substantial difference between the algorithms which develop using the different definitions.
Both definitions lead to the same scattering equations (to be discussed in the next section) and are
identical from a power conservation point of view (that is to say, sign-inversions of wave quantities
do not affect the energy measure of the network).

An additional reason for choosing the input-output definition of wave variables is that it will

require less notational juggling when we eventually link DWNs to MDWD networks in §4.10.
4.2.5 Scattering Junctions

connecting bidirectional delay lines; this is done in the same way as in the wave digital filtering
framework, namely through the use of Kirchoff’s Laws. which conserve instantaneous power at
a connection. The resulting equations relating input to output waves at such a connection or
scattering junction are identical to the adaptor equations for wave digital filters already mentioned
in §2.3.5. For completeness sake, we will re-derive the scattering equations for a series connection of
M bidirectional delay lines, of impedances Z;, j =1,...,] V.

At such a series connection, we must have

I o=Iy 21, (4.12)

U+Us+... 44Uy =0 (4.13)

where I; is defined to be the junction current common to all waveguides.

Thus, we have
(4.13) M (4.3) — (4.4a) ,{4.4b) Bl (4.6 il
A (4. " —— (4.42),(4.4b _y (4.8) —_—
0 =Y U = Y (UF+Uy) TET Y 2, (i - 1) S )75 (20 - 1)
J=1 Jj=1 ji=1 j=1

where the equation numbers appear over the equalities to which they pertain. Using (4.12), we can

then write the equation used to calculate the junction current from the incoming current waves

o M
= — gt
. s Zy ZZJI}
J=1
as well as the scattering equation
0 M
I =-If + =) _ 71}, k=1,....M
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where we have defined the junction impedance Z, by

M
Z.I é sz

i=1

In terms of voltage waves, using (4.4a) and (4.4b), the scattering equations can be written as

M
27,
Ur =Uf - Z_I‘Z(.fj*. k=1,....M
2

This is identical to the definition of a wave digital series adaptor (2.31) for voltage waves, where we
replace U~ by by. l;’ by ap and Z; by R, for k=1,... M.
The scattering equations for a dual parallel connection are similar under the replacement of U’

and U by I and I, Z;. by Yi and Z; by the junction admittance, defined by

M
Y;2) Y
J=1
so that we have
5 M
- _— ; —' -+
Ui=g Z}’(f (1.14)
=1
and
5 M
= 3 = £ FTE B r
Up = =Uf + 3= D_YiU}, k=1,...,.M (4.15)

The representation we will use for scattering junctions in the waveguide networks in this and the
subsequent chapter will usually be as shown in Figure 4.3 (in the case of a connection of four

waveguides).

A waveguide's immittance is placed at the port at which it is connected to the junction, and
the junction quantity to be calculated from incoming waves appears at the center of the junction.
Sometimes, if there is no room in the figure, we will indicate the immittance of a waveguide by
an overbrace (see, e.g.. Figure 4.8). In the case of electrical variables, a junction current I; is
calculated at a series junction, and a junction voltage U'; at a parallel junction, but when we move
to mechanical systems in the next chapter, we will of course use different variable names. A small
“s™ or “p” is placed in a corner of the junction in order to indicate that the junction is series or
parallel, respectively. In addition, because it is only necessary to propagate one type of wave in a

bidirectional delay line, a graphical representation of a waveguide network will always imply the use
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Figure 4.3: Graphical representations of scattering 4-port junctions— (a) series and (b) parallel.

of voltage waves everywhere. This is the same convention that is used in wave digital signal flow
graphs. This is important, because it will be recalled from §4.2.2 that current waves require an
additional sign inversion that is not shown in the network diagrams.

Instantaneous power is preserved at the scattering junction (here again, as in the WDF case,
the scattering junction is no more than a wave variable implementation of Kirchoff’s Laws, which
preserve power by definition). The power-normalization strategy employed in the wave digital filter
setting can also be used here as well, and gives rise to the same orthogonality property of the
scattering junction in either the series or parallel case (see §2.3.5). Power-normalized waves can be
used in order to construct time-varying passive waveguide networks [165], though for time-invariant

problems, the use of such power-normalized quantities involves more arithmetic operations.

4.2.6 Vector Waveguides and Scattering Junctions

It is also possible to extend a DWN to the vector case [167, 169]; this has also been done in the WDF
framework in [46, 131]. as discussed in §2.3.7. We briefly introduce vector waveguides, because it
will be necessary to apply them when simulating the behavior of stiff systems and elastic solids; we
will examine this problem in depth in Chapter 5.

A vector waveguide accepts two incoming signals Ul" and U; and outputs UT and U;’ all are
assumed to be g x 1 vectors (note that we have used z-transformed quantities here). The waveguide
itself, like its scalar counterpart, is described by two parameters: its impedance Z, a g X g matrix,
which we will assume to be constant and symmetric positive definite (though it may be generalized
to a para-Hermitian matrix function of the unit delay ="' [169]) and its generalized delay, H(z""'),
a 2¢ x 2q matrix function of the unit delay, which we assume to be para-unitary (lossless) [193]. The

input and output voltage waves are related by
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o

.T( =H(:™) [:J';(
Uy (z71) U, (

18

(In applications in Chapter 5, where bidirectional delay lines are extracted from an MDKC, we will
always set H(z7!) to be a multiple of the 2g x 2¢ identity matrix.) We can define instantaneous

current wave vectors I;’ and I, for j = 1,2, and Olm’s Law becomes, in the vector case,
+ _ oyt - — o1~
Uj =ZI] U; =-ZI;

The scattering equations at a series or parallel junction of & waveguides generalize in a straightfor-

ward way to the vector case—we have

M
I = —Iz_’ + ‘_’Zj' Z ZJ-IjL Series junction (4.16a)
j=1
M
Uy =-Uf +2Y;' ) YU} Parallel junction (4.16b)
i=1
fork=1,...,M, whereY; = Zj" is the admittance of the jth waveguide, which must exist because

Z; is assumed positive definite (for passivity) [167]. The vector junction admittance and impedance

are defined by

M

Z, 2 Z Z; Series junction
i=1
M

Y, 2 Z Y; Parallel junction
i=1

By virtue of the fact that they are sums of positive definite matrices, they will also be positive definite,
and thus their inverses, used in the scattering equations (4.16), must exist. Vector waveguides were
explored extensively in [169] in the context of artificial reverberation. Power normalization may also
be applied by scaling the wave variables by a square root of the impedance (which is non-unique)

[167]. Vector junction passivity has been shown to hold in the fixed word-length case in [167].

Vector/Scalar Waveguide Coupling

In a few cases, it is useful to have a means of connecting vector and scalar network elements. This
comes up when designing networks to simulate mixed vector/scalar systems of PDEs; in particular,
it will be necessary to use vector methods when working in non-orthogonal coordinate systemns (see

§4.8) and in the WDF context for some of the mechanical systems of Chapter 5.
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We will always assume that for any given scattering junction, the number of components of
any approaching wave is the same at every port: it may not be, however, that every junction in
the network accepts waves with some universal number of components. In particular, a vector
wavegnide, one of whose ends is connected to a vector junction may be split into several scalar
waveguides, or more generally into a number of vector waveguides each with a smaller number of
components. Similarly, it is possible to “bundle” several waveguides into a single larger waveguide.

Let us assume that all splittings and bundlings are from vector to strictly scalar and scalar to
vector respectively. An element which splits a single three-component waveguide into three scalar
waveguides is shown in Figure 4.4(a), and its simplified graphical representation for arbitrary ¢ in

(b). In (b) the admittance of the jth scalar waveguide, j = 1,...,q is Yj. and the voltage waves

(a) (b)

Figure 4.4: (a) Element for splitting of a vector waveguide into three scalar waveguides and (b) a
simplified graphical representation in the general case of q scalar waveguides.

entering and leaving the splitter at the connection with this waveguide are (’; and l']-‘. On the
other side of the connection. we have a single g-vector waveguide, of matrix admittance Y. The
column vector voltage waves entering and leaving the connection are V™ and V™. In order for this
connection to make sense, we must choose Y = diag(17,....15), and order the splitting such that
the jth components of V_ and V. are equal to I,’f and U} respectively: such an ordering for a
1:3 splitting is shown in (a). In this case, it is easy to see that energy is conserved across such a
connection (indeed, if the scalar waveguides are thought of as acoustic tubes, then the black bar in
(b) is merely equivalent to a “rubber band” joining them). The power entering the connection from
the vector side can be written as

q

(VE4+ V) Y (VE=vT) ==S (U +U)) Y; (Uf - U))

i=1
which is the total power leaving the connection through the scalar waveguides. It is important to
note that such a connection can not be viewed as a multi-port element. In addition, passivity is

contingent upon this choice of Y. It is easy to generalize this picture to a connection which splits a
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vector waveguide into various smaller vector waves (instead of scalars). In that case, Y should be
chosen to be the block diagonal “direct sum” of the various matrix admittances on the other side of

the connection.

4.2.7 Music and Audio Applications of Digital Waveguides

Digital waveguide networks have been widely applied towards the synthesis of musical sound. Sig-
nificant portions of many musical instruments can be simply modeled as nearly lossless uniform
transmission lines: strings support transverse wave motion, and stiff strings and bars allow longitu-
dinal and torsional motion as well: acoustic waves travel in the tubes that make up brass and wind
instruments, organ pipes, as well as the human vocal tract, as we saw in §1.1.1. As such, there is a
traveling wave decomposition of the motion in these systems.

As we already mentioned in §4.2.3, a bidirectional delay line can be thought of as a discrete-time
description of traveling wave propagation in a uniform transmission line. Thus a single waveguide.
which is in itself no more than a pair of delay lines, can be used to model an uninterrupted stretch
of a tube or string, without requiring any machine arithmetic. Scattering occurs only at the ends of
the waveguide, and in fact, it is possible to use bidirectional delay lines to model wave propagation
even in lossy [160] or dispersive [199] media by consolidating these effects at the terminations. If
the length of the string or tube does not correspond to an integer number of delays at a given
sample rate, then it is possible to employ fractional delay lines [114, 195], which approximate non-

integer delay lengths using all-pass (lossless) filters’. A typical situation is shown in Figure 4.5. The

To tone hole,
bow, hammer

t
— ] - EEl ] -

To mouthpiece, To bell, nut,
bridge sound board

{2 ] -+ (Talrofale] - [Elr—

Figure 4.5: Typical digital waveguide configuration for musical sound synthesis.

string (or tube) is modeled as two bidirectional delay lines; at the extreme left and right. digital
filters may be employed which model bridge terminations [164], horn bells and acoustic radiation
[15, 160], coupling with an instrument body or resonator such as a stringed instrument body [102],

and, conceivably, coupling between different strings, and for a stiff string, even coupling between

tThis is often essential, because working at the audio sampling rate often forces a large grid spacing. In an acoustic
tube, for example, the wave speed is 7 = 330 m/s. At the audio sampling rate we will have a waveguide delay of
T = 1/44100 s, which implies a waveguide length of A = 330/44100 m = 0.75 em. For a woodwind instrument,
this distance is on the order of the tone hole separation distance, and will thus be far too crude for good physical
modelling.
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different types of motion (i.e. transverse, longitudinal and torsional). Excitation mechanisms (such
as mouth pressure for a woodwind instrument [164] and lip pressure in brasses [15]) may be modeled
as sources, are also used to terminate the waveguide; these may be linearly or nonlinearly coupled
to the instrument body. If wave propagation is disturbed along the length of the tube or string,
either by an excitation (such as a piano hammer [197] or bow [164]), or by an impedance change
(due perhaps to a woodwind tone hole [160, 194, 196]. or a change in the cross-sectional area of the
vocal tract [30]), then these effects may be modeled at the junction between the two waveguides. In
some situations, it may be necessary to employ a larger network of interconnected waveguides, as
when the vocal tract is to be coupled with the nasal passageways. A full articulatory model of the

human vocal tract has been built in this way to simulate the singing voice [30].

Digital waveguide networks have also been used to simulate wave motion in higher dimensions,
in which case they are sometimes called waveguide meshes [198, 200]: cases of particular interest
have been (241)D meshes (see §1.1.2) used to simulate the vibration of a uniform membrane [67],
and (341)D meshes used to model acoustic spaces [156]. Many different types of mesh have been
proposed: they differ chiefly in their numerical dispersion properties [157], and we will analyze these
forms in detail in Appendix A. A good deal of recent work has gone into the problem of correcting
numerical dispersion by introducing terminating filters at the boundaries. and by using interpolation
and frequency warping techniques [157]. A (241)D rectilinear mesh is shown in Figure 4.6(a). Unit-
sample bidirectional delay lines (here represented by two-headed arrows) are connected to scattering
junctions (white circles) located at the nodes of a rectangular lattice. Such a mesh has been used
to model drum heads as well as gongs (where a nonlinear mesh termination has been applied) [197].
We mentioned in §1.1.2 that this mesh indeed solves the (241)D wave equation numerically [198].

We will elaborate on this idea extensively throughout the rest of the chapter.

Waveguide networks have also been used in a quasi-physical manner in order to effect artificial
reverberation [163]. In this case, an unstructured network of waveguides of possibly time-varying
impedance is used: such a network is shown in Figure 4.6(b), where the number of samples of delay
in each waveguide (integers a through h) may be different. Such networks are passive. so that signal
energy injected into the network from a dry source signal will produce an output whose amplitude will
gradually attenuate, with frequency-dependent decay times dependent on the delays and immittances
of the various waveguides—some of the delay lengths can be interpreted as implementing “early
reflections.”[163]. Such networks provide a cheap and stable way of generating rich impulse responses.
Generalizations of waveguide networks to feedback delay networks (FDNs) [149] and circulant delay

networks [150] have also been explored, also with an eye towards applications in digital reverberation.

We will call these DWNs used for reverberation unstructured; by this we mean that the waveguides
and scattering junctions are not necessarily arranged according to a regular grid in any coordinate
system. Yet such a network is, by construction, passive. This contrasts sharply with the MDWD

networks discussed in the previous chapter. In that case, discretization is performed through the use
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Figure 4.6: Other waveguide network configurations— (a) a (241)D waveguide mesh. and (b) an
unstructured network suitable for implementing artificial reverberation.

of a spectral mapping or integration rule; implicit in such an approach is that the algorithm operates
on a regular grid in some system of coordinates (and the same will be true of the DWNs that are
derived through an MDWD-like discretization procedure, as will be discussed in §4.10). The reason
for this is that the DWN, as we have described it in this section, is essentially a large network of
lumped elements, whereas the MDWD network is a multidimensional object. In certain cases (see

§4.9), unstructured DWNs may come in handy.

4.2.8 Transitional Note

We have now finished reviewing the fundamentals of digital waveguide networks. On the more prac-
tical level of the implementation of DWNs, there are many more topics which deserve elaboration,
including strategies for reducing the numbers of delays, and also various normalization techniques
which can be used to vary the number of required arithmetic operations. In this last respect, we
note that it is possible to establish formal links between chains of bidirectional delay lines and other
similar filter designs such as the normalized ladder form [80]. etc. We refer the reader to [166] for

an in-depth treatment.

4.3 The (14+1)D Transmission Line

We return now to the transmission line, which served as a useful model problem for MDWD network
methods in §3.7 of the last chapter, and show that its numerical solution can also be approached

using waveguide networks. The material in this section has also appeared in [19].
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4.3.1 First-order System and the Wave Equation

We recall that the set of PDEs which describes the evolution of the voltage and current distributions

along a lossless, source-free transmission line in (141)D is:

i Ou
l—+ = = 0 4.17¢
T VLI
Ou i -
{'E-i- 07 — (] (‘1.1‘[))

where i(r.t) and u(x.t) are, respectively, the current in and voltage across the lines, and I(x) and
¢(x), both assumed strictly positive everywhere, are the inductance and capacitance per unit length.
For the moment. we will leave aside the discussion of boundary conditions, and deal only with the
Cauchy problem (i.e., we assume the spatial domain of the problem to be the entire r axis). Note
also that this system includes the vocal tract model (1.20) as a special case, under an appropriate
set of variable and parameter replacements.

As discussed in §4.2.3, if we assume that / and ¢ are constant. then the set of equations can be
reduced to a single second order equation in the voltage alone':

9% u » Fu

— = 4° 4.1
or? " Ox? (L40)

where the wave speed ~ is given by

Vie
This equation and its analogues in higher dimensions (see Appendix A) are collectively known as
the wave equation. The solution, as mentioned in §4.2.3. can be written in terms of traveling waves.
In the (141)D case, we can write an identical wave equation in the current alone, but this does not

hold in higher dimensions.

4.3.2 Centered Difference Schemes and Grid Decimation

Suppose we are interested in developing a finite difference scheme to calculate the solution to (4.17)
numerically. We first define grid functions I;(n), and U;(n) which. for convenience, will run over

half-integer values of 7 and n, i.e.,

in=..=1=204%1.,.

207 2

tEven if | and ¢ are functions of z, it is still possible to reduce system (4.17) to a second order equation in the
I 2 l
voltage alone, but it does not have the simple form of (4.18).
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They are intended to approximate / and u at the points (1A, nT), where A is the spatial grid
step, and T the time step. We note that we have used the same variable, 7, to stand for both the
continuous-time current which solves (4.17). as well as the discrete-valued variable representing the

spatial coordinate on the grid.

We have the centered difference approximations

ﬂ ll‘(i..\.(l'+%)T)_“'(iA-(”_%)T] +()(T.’) (4193)
ot iAnT $
dw w((i+ §)A,nT) —w((i — §)A,nT) +0(A2) (4.19b)
OF |ip A

where w stands for either of i or u.

Employing these differences in (4.17), and replacing the continuous time/space variables i and u

by their respective grid functions yields the difference scheme

Lin+}) = litn—4) +— (Lf,.+l(,,) = l’i_l(n)) - (4.20a)

vol; 4 s

) , i , 1 .

Uiin+ 1) - Uiin- 1)+ — (1,.+%(n) - 1,._é(n)) =0 (4.20b)

- ol g ¢

Here, we have chosen

I; £1(iA) + O(A?) (4.21a)
& £ e(iA) + 0(A?) (4.21b)

for half-integer i. Because the centered difference approximations (4.19) are second-order accurate,
I and ¢ may be approximated to the same order without any decrease in accuracy. We leave the
exact form of these approximations, I and ¢ unspecified for the moment, but will return to various
settings in §4.3.6. Also, in order to remain consistent with the notation in the MDWD schemes of

the last chapter, we have set

. A
Up =

Nl

Thus difference equations (4.20) are consistent with (4.17), and accurate to O(A%, T?).

In a difference scheme for a general system of PDEs, it would be necessary to update all the
grid functions every time step, and at every grid point—that is to say, at every increment in n
and i of one-half, new values of the grid functions would have to be calculated. and indeed, we can
proceed in this manner in with the scheme (4.20) as well. In this case, however, it is easy to see that
updating Ui(m), for 2k and 2m even requires access only to I(m) at the previous time step, and

at neighboring grid locations (thus for 2m odd and 2k odd), as well as U at the same location, two
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time steps previously (2m and 2k again even) [131, 184]. Similarly, updating Ix(m) for 2m odd and
2k odd involves only values of U for 2m even and 2k even, and I for 2m odd and 2k odd. It is then
obvious that only values of Uy (m) for which 2m is even and 2k even (and values of I.(m) with 2m
odd and 2k odd) need enter into our scheme. We can thus decimate the grid in the manner shown

in Figure 4.7. We calculate the values of Uj(n) at the grey dots in Figure 4.7, and I, 1 (n + %) at

I l I l I i I %
® (&) (=
(i-$)a (i-1a (i-4)a ia (i+41a (i+na  (i+$a

Figure 4.7: Interleaved sampling grid for the (1+1)D transmassion line.

the white dots. The difference scheme on the decimated grid can be written as

1
l,-+;(n+%)—1,v+n_(n—%)+ = (Uigi(n)=Ui(n)) = 0 (4.22a)
1 ) " o ol
={F:ln= _1_ W 1) T =i S 929
Uin) =Ui(n—=1)4+ — (L;11(n 3) I,_i(n—3) = 0 (4.22b)
UgCi . '

for i1, n integer. We perform the calculation on the decimated grid with no decrease in accuracy,
although we are of course approximating the solution at fewer grid points. In analogy with the
continuous case, when ! and ¢ are constant it is possible to combine the difference equations (4.22)

into a single equation for the voltage grid function U, which is

-

Uln+1)=2U;(n)+ U;(n—=1) =

!

(Uigr(n) = 2Ui(n) + Ui_1(n)) (4.23)

S

(

and which solves the (141)D wave equation (4.18). For the so-called magic time step [184],

Byl e
0=" Jie
the difference scheme (4.23) reduces to
Un+ 1)+ Ui(n—1)=Ujy(n) + Ui=1(n) (4.24)

a form which has great relevance to the discussion to follow on the waveguide implementation. It
is interesting that in this case, the grid may be further decimated; we need only calculate U;(n) for
i+n even (or odd), for 7, n integer. We will examine this point in further detail in higher dimensions

in Appendix A.
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4.3.3 A (141)D Waveguide Network

Consider the waveguide network pictured in Figure 4.8. Each scattering junction (in this case
parallel) is connected to its two neighbors by unit sample bidirectional delay lines. The spacing
of the junctions is A and the waveguide delays are of duration T. The voltage at a junction with

coordinate i\ and at time nT is denoted by U ;(n) for integer i and n'.

¥ -
L r
x =1 lr+,x+l
- I
Usia Usidi | s vom
[ —
v o+
= i=1 p =t.i+i
(+ = 11Aa ia (i+ 1)A

Figure 4.8: (1+1)D waveguide network.

We can name the voltages and current flows in individual waveguides in the following way. At

junction 7, the line voltages are:

r

»+.i = voltage in waveguide leading east

U, - ; = voltage in waveguide leading west

and the flows are:

current flow in waveguide leading east

11‘*,:’

I,- ; = current flow in waveguide leading west
The constraints, imposed by Kirchoff's Laws at a parallel junction, are:
(.-_]v,'zl..’+',':(<').—.,‘ [I+.i+1!".i=0 (4.2-))

As discussed in §4.2, the voltages and current flows in the individual waveguides can be further

broken up into mmcoming and outgoing waves. That is, we have, at a junction at grid location i:

£ .. o TTE g . . -
Ui = U + U, Loi= I3+ 1;
where g is either of #* or #7. The variables superscripted with a + refer to the incoming waves,

fIn any case where the time index n is omitted, we mean for the statement to hold at any time step.
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and those marked — to outgoing waves. In a particular waveguide section, the current and voltage

waves are related by:

=Y, Ut I= = =Y;.U: (1.26)

q,i q.i q,i q.i

where Y ; is the characteristic admittance of the waveguide connected to junction 7 in direction ¢. In
addition, because the junctions at i and i+ 1 are connected to opposite ends of the same waveguide,

we have
Vo-it1 = Yot

As before, we will also define the impedance of any waveguide to be

At a particular parallel junction, the junction admittance will thus be
2 &= ,
Yii=Ysr i+ Ye-

In this case, from (4.14), the junction voltage can be written in terms of incoming wave variables as

92

Ujyi=—
o Yii

- + . -+ 9~
():“.ilf-‘,'+}:‘.i(,e.,') (‘_)l}
and the outgoing voltage waves from any junction are related to the incoming waves by

fa  wmb -
L rd = =1 ri +L Ji

where r refers to either of the directions % or x~
The incoming voltage wave entering each junction from a particular waveguide at time step n
is simply the outgoing voltage wave leaving a neighboring junction, one time step before. Reading

directly from Figure 4.8, we have

UL n) = UZ, . (n-1) (4.28a)
Ur n) = UL, (n-1) (4.28b)

The case of flow waves is similar except for a sign inversion—that is, we have

It,n) = =I_ ., (n=1) (4.29a)
Ij——y,‘(”) _ _I;+‘,'-](” - l) (llgl))
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As discussed in §4.2, we can perform all calculations using voltage waves: in the waveguide networks
pictured in this chapter, we will always assume, without loss of generality, that we are dealing with

voltage waves.

4.3.4 Waveguide Network and the Wave Equation

Now consider the case in which Y, ; = Y is invariant over ¢ (and thus g. where again. g stands for
either r™ or 7). At all junctions, then, we have Y;; = 2Y. From (4.3.3) and (4.28), it is possible
to obtain a finite difference scheme purely in terms of the junction voltages U ;. Beginning from

(4.27), we have

2
= (’;*,.'—l(“) +U,- ia(n)
= Usiaa(n)+Ujiga(n) - lr:,‘,;,(“) =UZ. (n)

z- i+l

Usitn+1) = = (Yoo dUF 00+ 1)+ Yo U, (4 1)

= Usi-i(n)+Usipa(n)=U__ ;(n=1)=U_, i(n-1)
= Uji-1(n) +Usiza(n)=Usi(n—1) (4.30)

This is identical to (4.24) if we replace U; by U. In this case of identical impedances in all the
waveguides, there is no scattering, so the parallel junctions in Figure 4.8 reduce to simple “throughs,”
and Figure 4.8 becomes Figure 4.9. Thus we have a discrete equivalent to the traveling wave solution
to the wave equation, to be expected when the impedance does not vary spatially along the line.
This particular case, which is trivial to implement (as a single many sample bidirectional delay line),
has enormous applications to (141)D problems in homogeneous media, as were mentioned in §4.2.7.
We also note that if the impedances do vary from one waveguide to the next, as in Figure 4.8, then
we have a useful model of a system such as a tube with varying cross-sectional area or horn [66], a

system whose impedance varies along its length, but whose wave speed remains constant. (In order

) ]
———— —
| aRE e B " T 2 ST
S | Vo401 ':-;‘ Vot s ’x*-u 1V + 141
= } rb—= i e - o
.......... I S N— - b cnncessame
L e 1 o
T ¢ - 7 ¢ -
P ( )+ | )+ |_|,.— | 1.+
= i=1 P rti-1 2=t P =t rT a4l P xt i41
(i-1)a ia (i+1)a

Figure 4.9: Simplified (1+1)D waveguide network.
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to deal with local changes in the wave speed, we will have to introduce self-loops, which we will do
shortly in §4.3.6.) This waveguide network is essentially equivalent to the Kelly-Lochbaum model
used in speech synthesis [104], which we discussed in §1.1.1. It is interesting that linear predictive
coding (LPC) [124]. which is used to design filters to fit the spectrum of an analysis signal, essentially
synthesizes a waveguide network like the one shown in Figure 4.8 (in effect it produces, as a by-
product of the main calculation of direct-form filter coefficients, the reflection coefficients at the

scattering junctions, from which impedances can then be deduced).

Comment on Numerical Instability

We have just shown, in the derivation ending with (4.30), that scattering in a particular waveguide
network can be rewritten as a finite difference scheme purely in terms of the junction quantities.
Thus all numerical solutions obtained using the waveguide network implementation could also bhe
obtained (at least in infinite-precision arithmetic) using such a scheme. It is interesting to note
that certain solutions to the finite difference equation (4.30) can not be obtained using the DWN,
if we require that the wave variables in the network be bounded in magnitude. As a very simple
example, consider initializing scheme (4.24) with U;(0) = —1 and U;(1) = 1, for all i. Then we
will have U;(2) = 3. U;(3) = 5. and in general, U;(n) = 2n — 1 for all /. Similar linear growth
will result from setting U;(0) = U;(1) = (—=1)". We will then have, at any future time step n,
Ui(n) = (2n = 1)(=1)"*t"-1,

Though these solutions would appear to be completely unphysical, it is worth mentioning that
the (141)D wave equation (to which (4.24) is an approximation) admits linear growth as well; u =,
for example, is a solution to (4.18). It is possible to view this solution as the sum of two traveling
wave solutions (x/7 + t)/2 and (—x /v + t)/2: these, however are unbounded in magnitude, and
thus the wave variables used to initialize the DWN will be as well; the finite difference scheme, on
the other hand, produces this behavior for the bounded initial conditions mentioned above. It is
important to note that this linear growth occurs at the spatial DC and Nyquist frequencies; it is
simple to show that these are in fact the only spatial frequencies for which scheme (4.24) will admit
such behavior. We will return to this point in some detail in Appendix A, because the analysis is

somewhat easier in the frequency domain.

4.3.5 An Interleaved Waveguide Network

The simplified waveguide network described above solves the wave equation for voltage, at the magic
time step, 7' = A /7. That is, the junction voltages U solve the difference equation (4.24), and hence
approximate u. We would, however, like to be able to have direct access to a discrete equivalent of
the other variable as well, the current i.

Bearing in mind the discussion in §4.3.2 on interleaved grids, examine the identity pictured in

Figures 4.10 and 4.11. We have merely split the unit sample bidirectional delay line into two half-
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_____ -1
I
T - T/z—»,—lo 4 O T/21—>
= I
: l 1, I
ur— T — ~fr——0——te0—Jrr2
——— — — -]
Figure 4.10: Bidirectional de- Figure 4.11: Split equivalent to the bidirec-
lay line. tional delay line.

sample delay lines of equal impedance, and placed a series junction (in cascade with sign inverters)
in between. In this case, since there is no scattering, the net behavior of the junction and sign

"

inversion is that of a simple “through,” with sign inversions exactly canceling those that appear in
the signal path (these can be added formally using transformers). Later we will add additional ports
to this new junction. We introduce these series junctions so as to be able to associate a junction
current with them, which we will identify with the physical current in the transmission line.

If we now replace all the bidirectional delay lines in Figure 4.8 by the split pair of lines, then

we get the arrangement in Figure 4.12. As at the parallel junctions, we can define wave voltages

1 = ; R 1 5 _ i
Vot 51 Ban -% Z"*'“!}i’x*: LT /“_‘** Z‘?‘*ﬁu‘;-txw
—_— —— —— r——
-1 1 == ——
- ”/2, — ——T/ 2 - 4'1/'2»’ -l — ~ —— 1
A | {
U, I; o Uy 1; : U,y
- p— 1'[/2) . r I g[}/-‘r‘, P.. 1]/}; | ‘711- ‘ pl‘i
(i—-1)Aa ti-4a ia i+ Ha (14 11A

Figure 4.12: (1+1)D interleaved waveguide network.

and currents at the series junctions, which we will index by i + L for i integer. Furthermore, we

name the impedances at the left- and right-hand ports of the series junctions Z,

- =

and Z,+ ;_1

respectively. As indicated in Figure 4.12, we must also have

The junction impedance at the series junctions will be

a . 5
Z*’.iﬁ-%—ZI’,i+;l;+Z;+‘i+%—1_—'+r—
’ : 2+ i z- i+l

See Figure 4.13 for a complete picture of the various wave quantities at the interleaved junctions.

Assuming that the impedances in all the delay lines are identical and equal to Z (and so Z.,‘,-_% =




150 CHAPTER 4. DIGITAL WAVEGUIDE NETWORKS
: = - 4)a =il
‘:, i U 1 -1 vy, Uy,
SUESES. ™ O T/2 L
i1 . : Uy,
- . T/2 - —
- | oot __] - -
2~ =4 R A T - -1 b 1) lr* i

; "
Zst i=L =V
g Ty

Figure 4.13: Wave quantities in the interleaved network of Figure §.12.

2Z7Z). we can now define

P + " +
I.I,i—% = Zl,'__l (Z.r+ 1431;+i }?+Z.r“.i~—%1‘,A',' 1-‘)
= 1j+,' +1+ i-1
We also have that
Uy_in) = UL, (n—3)
U4 d) = UZ )

and (4.26) holds as before.
We now show that this waveguide network performs a calculation identical to that which we
would get for centered differences on a decimated grid, exactly as in Figure 4.7. For integer i and

n. we have:

Uyi(n)

+(n)+ UL (n)
( 5+ I ()
;*.F%(”_%))
= (1,,+ “—%)—1./,1'—%(”_%))
o z( win=P-1, <~—%))
et [ plti= .;,)—1.[,-_%(”— b)
+ Uy in=1)+U_ ;(n-1)
=7 (Lyipy (=) = Loy (= 1)) + Usi(n = 1) o

= Z(l l(n l,)—l

T
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If we now identify I; with I and U; with U, we get (4.22b) (in the constant-coefficient case),
with Z = 1/(vge). A similar derivation beginning from the series (white, in Figure 4.12) junctions
yields (4.22a), with Z = vyl, for constant /. Together, these constraints imply that:

1 l

T - = {[=

vo T Z ;
so that we are again at the magic time step. Furthermore, the impedance of any waveguide in the
network must be set equal to the characteristic impedance of the continuous time/space transmission
line described by (4.17), whereas in the network of Figure 4.8, the constant impedance value could
be set arbitrarily, since it is not used in the simulation. It is important to realize that, at least in
this constant-coefficient case, no scattering occurs at any of the junctions. We can still perform all
operations at the original sampling rate, and on the original grid (i.e., with grid spacing A and time
step T'). It is, however, possible to see more clearly how initial (and boundary) conditions must be
set, and also to extend the network to handle more complex problems. We will deal with one such

generalization in the next section.

4.3.6 Varying Coefficients

We now return to the more general case in which the material parameters [ and ¢ have spatial
dependence. The staggered, or interleaved network of delay lines and scattering junctions presented
in the last section gives rise to a centered difference method which approximates the solution to

system (4.17). Consider the waveguide network in Figure 4.14.

74 2 i
] 5 -1
z. -1 Ze
= O—{T/3— T/2 -
12— Ij Zpdf--oooemooenennnss Y- Uy s} S EEEEETT e R e >
- -—()—T/2 4 - T/2 -
8 -1 e P
(l—‘%l;\ T I:+%l;\

Figure 4.14: Waveguide network for the (1+1)D transmission line equations with spatially-varying
coefficients.

The picture is the same as in the constant-coeflicient case, except that we have added an extra

port to each scattering junction. which is connected to a delay line of impedance Z,. (marked as Y, at

the parallel junctions). These self-loops [167] are bidirectional delay lines in their own right—since
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both ends are connected to the same junction, we are free to drop one of the line pairs. Note that the
loop connected to the series junction contains a sign inversion (like a lumped wave digital inductor)
and the loop at the parallel junction does not (like a capacitor). Also note that the delay in this
line is a full sample, so that we are able to operate on the interleaved grid. The reason for this
choice should be clear from Figure 4.7. Now, the immittances of the delay lines are in general no
longer identical, so we expect non-trivial scattering to occur, due to the spatially-varying material
parameters. The admittances of the lines connected to the parallel junction at grid point i, 7 integer,
are denoted by Y,+ ;, Y,- ; and Y, ;. The impedances of the self-loops at grid points i + % for 7
integer will be called Zp‘,-+% . (We have marked these new immittances in Figure 4.14.) The junction

immittances are now

Y3i 2V i+ Y- i+ Yes Parallel junction
Z.I,i+% _ Z,+‘,>+% +Z,- ipi ¥+ 2501 Series junction
1 1
==+ +Z.i41

)I_.H—I }z“'.i

at parallel junctions at grid point ¢ and series junctions at grid point 7 + % for integer 1. We will
call the new voltage wave variables entering and leaving the parallel junction from the new port
U¥.(n) and U_;(n) respectively, and those entering and leaving the series junction from its new port

U:i+% (n+ %) and L»";i+% (n+ % ), for integer values of i and n. In addition, we will adopt the notation
Ir £ 1(kA) cr 2 e(kA)

for half-integer values of k.

One physical interpretation of the need for these self-loops is that if / and ¢ vary over the
domain, the effective local wave speed does as well. Thus, if we choose a regular grid spacing, there
are necessarily grid points at which the space step/time step ratio is not the magic ratio (it must
be greater, by the CFL criterion). Thus if we were to try to use a structure such as that pictured
in Figure 4.12, regardless of how the waveguide impedances are set, energy would be moving “too
fast” through the network. The extra delays at the junctions serve to slow down the propagation
of energy, by storing a portion of it for a time step. The amount of slowdown is locally determined
by the values of self-loop admittances and impedances. Self-loops are used for the same purpose in
TLM [29, 90]—in this context they are called inductive or capacitive stubs, depending on whether

or not they invert sign.

Beginning from a parallel junction in Figure 4.14, we can proceed through a derivation similar
: I .

tWe take care to distinguish these quantities, which are simply values of the continuous functions ! and ¢ from the
indeterminate quantities [; and ¢; defined in (4.21).
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to that leading to (4.31):

9
Usiln) = (1;+..l't (n)+ Y- ;UL .(n)+ ):.‘.-l".*,.(n))
).l‘,‘ il 258 c,
2 ,
= Nt (1j+ ‘,-('l) + 1:’..’.(11) + )',..,»(':i(n))
2 = 1 o 1 -
= )_” (_1,<‘,-+_1__(” o 5) +Ir*.iﬁ %(N P 1”-(11))
2 N :
= Yiii (_I.I‘H-%(”_ ‘_T)+I_,‘,;%(H—§))
2 -
i o ﬁ (1: ‘,-+%(“ -3) = I;‘;_,{,(“ - ;1;) I (n— l))
9
| (S SNSRI | . il E
Yy ( Liivy(n—=3)+ 1 4(n 2))
2
- o (I =D+ I (= )+ 150 = 1))
2 v i 4
— B S - & - B . 1 —" 7 z s 29
= 7 ( I,:.,+,-E(n g 1_,‘,_§(n 3 )) +Usiln—=1) (4.32)
In order to equate this difference relation with (4.22b), we must have, recalling (4.21b),
Y i = 2006 (4.33)
Beginning from the series junctions at r = (7 + ._%)A. for i integer, we obtain similarly an

interleaved central difference approximation to (4.17a), under the constraint
Z‘,',-_*% = '2001,4_,_% (4.34)
Under the further condition that all impedances in the network be positive, these constraints give

rise to a family of stable centered difference approximations to (4.17). We can distinguish three

special types:

Type I: Voltage-centered Network
We set the admittances of the waveguides leading away from a parallel junction to be identical. i.e..
)-.z" g = ).,e-.,' = UyC; (‘-33)

and set

);.,'J = ()




154 CHAPTER 4. DIGITAL WAVEGUIDE NETWORKS

which satisfies (4.33) with @; = ¢;. From (4.35). we have that

1 1

UpCit e Uy

Zpt jp1 =

Thus the series junction impedance at location 7 4+ & will be

We can then set

Lcis

€,

Wl

Ci Ci41

| 1 1
= vg(li+lig1) = — (—‘ + ——>
to

which satisfies (4.34) with ’i+§ = %(1; +1liyy).

Ounly the series self-loop impedances are possibly negative, so the network will be passive if
Z. ;w1 2 0. This will certainly be true if we choose

' 2

|
vg > max — (4.36)
? 1,‘(',‘

Recall that in our earlier discussion of group velocities for symmetric hyperbolic systems in §3.2 and
for the transmission line in particular in §3.7, the maximum group velocity for the transmission line

is

1
g = max —= (4.37)

ITL,
mazr 2D \/[T

The optimal space step/time step ratio from (4.36) is exactly the maximum of the local group
velocity of the transmission line, at least over the range of values of | and ¢ sampled at the parallel
junction locations; thus it approaches the maximum group velocity for the continuous system in the

limit as the grid spacing A becomes small.

Type II: Current-centered Network

This arrangement is the dual to the previous case. We now set
Ze+ jgy = Zp- iy =voliy s Zeivy =0

and

Yei=w ("i+% + ('i_%) - L 'l— + 'L (4.38)
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7, ave s O s 7 a Ll " , § = > atyus ‘ PO
We have thus chosen ¢; = 2(Ciss +oi ;L_).md 1,-+.1? = l;; 1. Now we must have

vg 2 max
i

which is very similar to condition (4.36), except that the maximum is now taken over the series
junction locations.

Here, scattering at the series junctions is trivial, since the impedances at the two connecting
ports are identical, and the self-loop impedance is zero (and we thus drop entirely any calculation
of the value in the self-loop at the series nodes). We can operate at the down-sampled rate, with
scattering occurring only at the parallel junctions. In this case, we are directly computing only
junction voltages, and are in fact solving the second-order reduction of system (4.17), namely

du 10 lOu) 1.39
o = cor (7:77 s
We could have made a similar statement about scattering at the parallel junctions in the previous
case. This efficient configuration, unlike type I, however, generalizes to the (241)D case, as we will

see in §4.4.2.

Type III: Mixed Network

Suppose we set all the impedances which connect one grid point to another to be equal to some

constant Z,,, s which is independent of position. Thus

}‘I, = ):,.+_,' = l/Z.-nnst

We then choose, to satisfy (4.33) and (4.34),

2
Yoi = 2vp¢i— o—
Zrnns!
Z.‘,i+ L = 2"()1,'4.% = 2Zl‘(711$l
and this leads to the conditions
1 Zn)nst Znunsl
vy > max = vp 2max —— = ——
' "imesl Cmin Zrunsi s ,‘+}; Imin

where

Crti = lllilllr'i bniin = 111{111/,-“?
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The lower bounds on vy coincide when
0

Z(‘onst - Y Imin/"min

in which case we have

1

IminCmin

Ug 2

Since in general. l,pinCmin < min;(l;e;), for 2¢ either even or odd, we are no longer at the optimal
bound, and are forced to use a smaller time step than in the previous two cases, if we wish the
network to remain concretely passive. This arrangement bears a strong resemblance to the MDWD
network in [107] and [131], and discussed in §3.7. We will explore this similarity in more detail
in §4.10. Many other choices are of the waveguide immittances satisfying (4.33) and (4.34) are of

course possible.

Comment: Passivity and Stability

At this point, we would like to mention an interesting property of the interleaved waveguide net-
works discussed in the earlier part of this section. We showed, in the last few pages, that three
different types of immittance settings for the waveguide network could be used to solve the (141)D
transmission line equations, and could, in fact. be interpreted as centered difference approximations.
The three types of network integrate system (4.17) using slightly different effective inductances [
and capacitances ¢ which converge to | and ¢ in the limit as the grid spacing becomes small. We

had, for integer 1,

- 1

livy = 5 (li+1ig1) Ci = ¢ Typel

= 1

iy =l (_::‘,(";+l,+‘,—%) Type I1
I_,-,,_% ST Z; =t Type I11

Up,

1
vp > max ( I_) Typel (4.40)
i iCi
Uy Type I1 (4.41)
1
vo > Type I11 (4.42)

min; 1 {; min; ¢;
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The first two bounds are roughly the same. and are close to optimal. in the sense that vy is bounded
by(in the limit as A approaches 0) the maximum of the local group velocity over the transmission
line. The type III bound, however, may be substantially poorer. and is similar to that which arises
in NMDWD networks (see §3.7).

If we choose [(x) and ¢(x) to be positive affine functions (linear in o with a constant offset ), then
I and @ are the same in all three cases, so the three networks will, in infinite-precision arithmetic,
calculate identical solutions. But there will be a range of values of vy (namely, the range of vy greater
than the bounds given in (4.40) and (4.41). but less than that of (4.42)) for which the type I and
II networks are concretely passive [12], but for which the type III network is not. Over this range,
some immittances in the type III network will necessarily be negative.

We can conclude that there is a large middle ground between passivity and global stability of
networks. One important difference would seem to be that wave quantities in a concretely passive
network are power-normalizable, whereas if a network is only abstractly passive—that is, its global
behavior is passive, even though it contains elements which are themselves not—may not be. We
do not investigate this further here, but comment that it would be of great interest to make clearer
the distinction between passive and stable numerical methods for solving PDEs. This subject has
been broached in some detail for ODEs [32, 75]. and we will see some other interesting examples of

this distinction in Appendix A.

4.3.7 Incorporating Losses and Sources :

We now reconsider the full (141)D transmission line equations, including the effects of losses and

sources; this system was presented earlier in §3.7, and we repeat its definition here:

i Ou
’E+0—+11+P = 0 (413(1)
)
(0«; o 0_ +gutbh = O (4.43b)

Here r(r) > 0 and g(x) > 0 represent resistance and shunt conductivity at any point in the domain,
and e and h are driving terms and can be functions of r and ¢.

In order to add these terms to the centered difference approximation in such a way that we may
still use an interleaved scheme, we can use the semi-implicit [184] approximations to i, and u given

by

i(z,t) = l( (et =T/2)+i(x, t +T/2)) +0(T?

u(J'.f)——(u(r t—T/2)+ u(x, t+T/2))+ O(T?)
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We also define

ries 2r((i+3)A) gi = g(iA)
cipin+ ) Ze(i+ A (n+3)T) hi(n) £ h(iA,nT)

and use the second-order approximations

1
€iry(n) = 5(E"+%("'+%)+"i+%(”_'-%))
hin=1) = () +hin—-1)

We then get, as an approximation to (4.43).

Lipy(n+3) = privglivy(n—13)
+ Oyt (l,’,-H(u)—U,'('n))+_\0,‘1.4_%?',44_%(”) =) (4.44a)
Ui(n) — puililn—1)

+ m'_i(li+.’~,(n— =1 _y(n= l')) +Aayihiln - 3) =0 (4:ddl)
with
2i1+i "7'i+%T A 2(“1_(’1,1‘
Il = 4 Wi = o=
/l.l+5 21i+,§ 4- ".’+%T Ui 2(”"- + ‘IJT
. A 2 - a 2
. 1 = i = = . A
i+l v 2u9C; + giA

i) 7 " >
2vgliy 1 +1,-+57._\

Losses and sources can be added to the waveguide network scheme rather easily, by introducing
new ports at each series or parallel junction. In fact, as per wave digital filters, each pair of terms
ri+ e, and gu + h can be interpreted as a resistive source [46], and only requires the addition of
a single new port at each junction. (The resistive voltage source was discussed in §2.3.4.) For
any parallel port we will call the new port admittance Y5 ;, and the voltage wave variable entering
the port (';}"i. For a series port, we call the new impedance Zn,i+§- and the incoming voltage

wave variable U The generalized network is shown in Figure 4.15, with the new loss/source

Rji+3"
port immittances marked. As a result of the addition of this port, the junction admittances and

impedances become

|l

Ye- i ¥ Yo s+ Yo i+ Yai
Zpripr ¥ Zp-jpr V2, 1+ 2p;,1

2

4

[le>

Z.l.i+§

Beginning again from a parallel junction, and proceeding through a derivation similar to that which
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Figure 4.15: Waveguide network for system (4.43).

leads to (4.32), we obtain a difference relation among the junction voltages and currents:

. Y;; —2Ygpi. . 2
Usi(n) - "—)#;l’.l.i(“ =1} * Yy (1,1.;+%(“ -4) = Lyig(n = l,))
2YRi (114 :
= ﬁ('lti(")*'L;i(”_l))=()

In order to equate this relation with (4.44h). we can set

Yri = @A
h;i(n)

2g;

';'i(n) =

Beginning from a series junction, we obtain an analogous relation, which becomes (4.44a) under the

choices

Zn..'+.{, = "i+%A
. Aejpi(n+ '.l')
L;.i+§(”+%) | = eelom——

Note that in the case where the loss parameter g is zero, or close to zero, l’,";‘i(u) will become
infinite, or very large. For this reason, it will be necessary in this case to use the dual type of
wave: i.e., if g; is small, set 1;1- — Y".,-l',t‘,. = —f—,h,-. and use current waves at the series junctions.
The other impedances in the network remain unchanged under the addition of losses and sources:

thus all the stability criteria mentioned in §4.3.6 remain the same. It is rather interesting to note.

however, that in the case of the current-centered network, for example (type II), scattering at the
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series junctions is no longer trivial if we have non-zero sources ¢ or loss r. That is, the series
junctions cannot be treated as simple throughs. A similar statement holds for the dual case of the
voltage-centered network (type 1) in (141)D, but will not be true when we generalize to the (2+1)D

mesh (see §4.4).

4.3.8 Numerical Phase Velocity and Dispersion

We now make a few comments regarding the spectral properties of these difference methods; a
detailed summary of spectral methods is provided in Appendix A.

Consider again the type II DWN for the (141)D transmission line equations, as discussed in
§4.3.6. In the lossless, source-free case, the difference scheme can be written purely in terms of the
junction voltages, and for integer time steps n as

Usi(n+ 1)+ Usiln = 1) = 7= (Yom iUnica(n) + Yor Usia () + YeiUsi(m) - (4.45)
Jyi
where Y- ; = 1/(vol;_1) and Y+ ; = 1/(vol;+ 1), and the self-loop admittance is given by (4.38).
In effect, we are numerically solving the reduced form (4.39) of (4.17) obtained by elimination of
the current 7.

If the material parameters are constant, then (4.45) can be rewritten as
Usiln+ 1)+ Uyi(n—1) = A? <UJ,i—1(") + U.l‘i+l(”)) + 2(1 = A*)Uyi(n)

where A = 9/vy and v = 1/Vle is the wave speed. It is possible to examine this scheme in terms of
discrete spatial frequencies 3. as per the methods discussed in [176]: the range of spatial frequencies
which are available on this grid of spacing A are —x/A < 3 < x/A. The spectral amplification

factors (defined in §A.1) for this scheme are given by

(522 7F)

BN |<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>