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A Neural Network Model of Metric Perception and
Cognition in the Audition of Functional Tonal Music.
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Abstract

In our previous work we proposed a theory of cognition of tonal music based on control of expec-
tations and created a model to test the theory using a hierarchical sequential neural network. The
net learns metered and rhythmecized functional tonal harmonic progressions allowing us to mea-
sure fluctuations in the degree of realized expectation (DRE). Preliminary results demonstrated the
necessity of including metric information in the model in order to obtain more realistic results for
the model of the DRE. This was achieved by adding two units representing periodic index of meter
to the input layer. In this paper we describe significant extensions to the architecture. Specifically,
our goal was to represent more general meter tracking strategies and consider their implications as
cognitive models. The output layer of the sub-net for metric information is fully connected to the
hidden layer of sequential net. This output layer includes pools of three and four units representing
duple and triple metric indices. Thus the sub-net was able to influence the resulting DRE, that
was expected by the net. Moreover, by including multiple metric parsings in the output layer the
net reflects conflicts between parallel possible interpretations of meter. This output was fed back
into the sub-net to influence the next predictions of the DRE and the meter. In addition, the
target harmony element was fed into the context instead of the actual output, thus simulating the
interactive influences of harmonic rhythm and meter.

1 Introduction

”The poets have a proverb: Metra parant animos
(the emotions are animated through verse). They say
such quite rightly: for nothing penetrates the heart
as much as a well-arranged rhyme scheme [Mat39]”.

Johann Mattheson’s awareness of the cognitive
power of underlying metric temporal patterns (be it
musical metric feet or rhythmic modes) in music and
poetry has been consistently stated and, over the past
century, empirically researched. That listening to
music involves an initial creation of a metric schema
has been well documented. What is not clear, how-
ever, is the process in which the listener arrives at a
working schema.

In this paper we explore and model a possible
scenario of metric decision making. As a point of
departure we incorporate observations, speculation,

*Dan Gang is supported by an Eshkol Fellowship of the
Israel Ministry of Science

and perceptual studies that suggest:

1. Constructing a metric schema is a task criti-
cal to music audition. In Mattheson’s words
”...the ordering of the feet in poetry and the well-
constructed alternation of meters, even if there
were no rhyme scheme, produces something ini-
tially so certain and clear in the hearing that the
mind enjoys a secret pleasure from the orderli-
ness and accepts the performance so much the
easier.”

2. Listeners of Western music have preconceived
organizational schemas grouping into duple or
triple metric units. Listeners count in hierar-
chies (base 3 or base 4 for most common me-
ters). [Pov81] demonstrated that untrained lis-
teners can accurately distinguish between duple
and triple metric units. Furthermore, consid-
erable evidence of preconceived grouping pref-
erences suggest that this is applicable to meter
recognition.
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Although generative algorithms (e.g., [LHL82])
and autocorrelative methods (e.g., [DH89]) for
meter recognition are successful in their task
they do not offer a plausible explanation of how
a listener applies schematic based expectation
of duple or triple groupings to determine me-
ter. The music theory literature regarding me-
ter (e.g., [LI83]) similarly fail to account for this
basic task.

. Metric awareness is necessary in building a net-
work of implications and expectations which lies
at the heart of the musical experience. Lon-
don [Lon92] proposes that metric cognition in-
volves a two stage process comprising a recog-
nition phase (establishment of a metrical frame-
work) and a continuation phase (projection of
the chosen framework into the future). Thus me-
ter is critical in establishing expectations. Lon-
don maintains that most computational and ex-
perimental studies of meter regard the recogni-
tion stage while theoretical studies provide ret-
rospective evidence. Implied here is a failure to
provide an adequate study of metric recognition
that incorporates prediction and continuation.
Our experiments take this challenge as a point
of departure.

We propose that a listener simultaneously acti-
vates two parallel metric schemas each with some
degree of independence. When one proves to corre-
late more consistently with other incoming patterns
(dynamic accentuation, harmonic accent, phrase and
articulation accents, etc.) the metric schema that
fails turns off’. Furthermore, our model enables the
integration of mutual influences of two interrelated
aspects of musical expectations: schematic metric
awareness (which influences functional tonal expecta-
tions) and learned functional tonal implications that
in and of themselves create metric expectations. The
merger and integration of these cognitive processes
allow for a more refined model of music audition.

2

2.1 Architecture of the network

In our previous model of fluctuation in DRE (see
[GB96] and [BGY6]), we adopted a three-layer se-
quential net in which 12 state units establish the con-
text of the current chord sequence, and the 12 output
layer units represent the prediction of the net for the
subsequent chord. Both, the state and the output
units are pitch class (PC) representations of triads
and tetrads in the sequence. The output layer is fed

The network design

Figure 1: Simulation of expectancies. From left to
right - 4 units represent duple meter and 3 more rep-
resent triple meter, the last 12 units are the harmonic
expectations represented by 12 PCs. The size of the
squares is proportional to the strength of the units’
activity. Time proceeds from bottom-up. The right
column represents the input and the left column visu-
alizes the net’s prediction for the meter and harmony.
The progression is -
B/4TII—vivii—VVV7—I1]]

Figure 2: The progression is -
[4/411vivi—IVIViiii—VV VT V7 —I11]]
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Figure 3: The progression is -
[4/4IIVVI—viVTIIV—iVVI—III]]

back into the state units to influence the next predic-
tion of the net. The value of the state units at time ¢
is the sum of its value at time ¢—1 multiplied by decay
parameter and value of the output units at timet—1.
By integrating a sub-net with the sequential net we
supplemented the model with a simple metrical or-
ganizer that supplied a periodic beat stream of four
beats per measure of duple harmonic progressions.

This model is extended by adding triple meter
patterns to the architecture. In so doing we exam-
ine how metric expectations can influence the har-
monic predictions and how the harmonic progression
together with the context of the meter influence the
prediction of meter.

This architecture differs from the previous model
in a number of respects. The representation of meter
is extended. We incorporate into the net’s state units
two pools (or a sub-net) of: 4 units to represent du-
ple meter and 3 more to represent triple meter. These
units are connected to the hidden layer together with
the pool of the PCs representing the harmonic con-
text. The hidden units are connected to the output
layer. The output layer contains three pools of units:
a pool for the harmonic expectations represented by
the 12 PCs; and the two pools to represent expecta-
tions for duple and triple meter. The output of the 7
units of the meter is fed back into the corresponding
pools of the state. The output of the prediction of the
net for the harmonies’ expectation were used to mea-
sure DRE and the target was fed into the PC units of
the state, to establish the current harmonic context.
We thus model the mutual influences of harmony on
meter and meter on harmony. We note the enhance-

ment of this method in quantifying the DRE. The
DRE is also influenced by the metric expectations.
This is particularly evident in (fig 4) where conflict-
ing metric information greatly affected the DRE.

2.2 The set of learning examples

We use a learning set of functional tonal harmonic
patterns. The patterns were evenly divided into duple
and triple meter progressions. Harmonic rhythm in
the learning set ranged from one chord per measure
to one chord per beat, although the weighting was
on one and two chord changes per measure for both
duple and triple patterns.

3 Running the Net

3.1 The Learning Phase

For the learning phase the net was given thirty exam-
ples containing duple and triple patterns of harmonic
progressions. After training, the net was able to re-
produce the examples. We have tested the perfor-
mance of the network with several different learning
parameters. For example we found that for this task
the net required relatively high value for the decay
parameter.

3.2 The Generalization Phase

In this phase the net was given four new sequences.
The target sequence was compared to the current har-
monic and metric prediction of the net. The meter
was fed back into the meter’s pools of the state units
and the target of the current harmonies was fed into
the PC units. In analyzing the output we consider the
distribution of the units’ activation. By calculating
how much of the target is present in the harmony pool
of the output units, we were able to suggest a quanti-
tative measurement of the DRE. The units of the me-
ter pools in the output reflect duple and triple inter-
pretations and clearly demonstrate conflicting metric
and harmonic information.

4 Data Analysis
4.1 Figure 1:

[3/4111 —viviii —VV V7T —111]

This example represents the output of a standard four
measure progression in triple meter. The progression
should show a high DRE. The role of the metric sub-
net is critical in the network’s agility in detecting the
correct harmonic rhythm by beat five. Of note is
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the openness of the system to change on beat three
(resulting from the inconclusive assistance of the met-
ric sub-net). However the downbeat of measure two
entrains the network by supposing a metric schema
which fully conditions expectation for harmonic pro-
gression and change. Thus, in measure two the ex-
pectation for a subdominant harmony is progressively
strengthened and the expectation for a change to the
dominant is highly expected. (The inconclusive ex-
pectation for tonic continuance in the final measure
is an artifact of ’padding’ the example in order to
incorporate longer progressions).

4.2 Figure 2:
[4/411vivi—IVIViiii —VV V7 V7T —II1]]

In this example a harmonic progression in 4/4 with
a high DRE is input as a target sequence. In this ex-
ample the initial willingness for change on beat three
(evident in the distribution of strength of PC7 to PC5
and PCY representing an expectation for shift to the
sub dominant) is immediately followed in beat four
by an even stronger expectation for change to a sub-
dominant. The lowest DRE in the entire progression
occurs in beat five. Here, the downbeat is fully rec-
ognized as a point of harmonic shift, with a greater
expectation for sub dominant harmony, but with an
openness for a dominant downbeat. The arrival of a
subdominant in correspondence to the metric down-
beat sets a strong expectation for the completion of
the progression.

4.3 Figure 3:
[4/41IVVI—ViVTIIV —iVVI—II1]]

In this example a distinct conflict between harmonic
rhythm and meter results in significant drops in DRE.
The hastened harmonic rhythm (a chord already on
the second beat, setting up a quarter note harmonic
rhythm) is resisted in the output’s expectation for
continued subdominant harmony in beat 3. The ar-
rival of a tonic on beat four of measure one throws
both the metric counter and the harmonic expecta-
tions into flux. The drop in DRE is particularly in-
teresting in that the distribution of expectations is
not willy nilly but rather reflective of an ambiguity,
in which conflicting functional regions (tonic/ dom-
inant) are confused. This conflict persists until the
final measure.

5 Discussion

Some basic questions regarding the perception of me-
ter in tonal music are raised. Specifically:

1. How does a listener identify the meter, when
hearing an unfamiliar work?

2. Is the process of metric cognition one of parallel
or sequential testing? That is, do we consider
multiple possible meters simultaneously, or do
we test one and, failing to achieve a good ’fit’,
shift to another metric count?

3. What are the implications of these questions on
our theory of musical expectations?

In our first experiment we extended the initial model
by incorporating two parallel and independent coun-
ters for three beats and four beats. An experiment
currently being considered is to commence with two
parallel counters but shut one off when a strong cor-
relation between a high DRE and one of the two pools
in the metric sub-net is established. A second experi-
ment under current consideration involves a change of
data structure, such that multiple metric possibilities
are reflected within a single counter.
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Statistical Pattern Recognition for Prediction of Solo
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Abstract

The paper describes recent work in modeling human aspects of musical
performance. Like speech, the exquisite precision of trained performance and
mastery of an instrument does not lead to an exactly repeatable performed
musical surface with respect to note timings and other parameters. The goal is to
achieve sufficient modeling capabilities to predict some aspects of expressive
performance of a score.

1 Introduction

The present approach attempts to capture the variety of ways a particular passage might be played by a
single individual, so that a predicted performance can be defined from within a closed sphere of
possibilities characteristic of that individual. Ultimately, artificial realizations might be produced by
chaining together different combinations at the level of the musical phrase, or guiding in real time a
synthetic or predicted performance.

A pianist was asked to make recordings (in Yamaha Disklavier MIDI data format) from a progression of
rehearsals during preparation of Charles Ives’ First Piano Sonata for a concert performance. The samples
include repetitions of an excerpt from the same day as well as recordings over a period of months. Timing
and key velocity data were analyzed using classical statistical feature comparison methods tuned to
distinguish a variety of realizations. Chunks of data representing musical phrases were segmented from
the recordings and form the basis of comparison.

Presently under study is a simulation system stocked with a comprehensive set of distinct musical
interpretations which permits the model to create artificial performances. It is possible that such a system
could eventually be guided in real time by a pianist’s playing, such that the system is predicting ahead of
an unfolding performance. Possible applications would include performance situations in which
appreciable electronic delay (on the order of 100’s of msec.) is musically problematic.

Caroline Palmer’s comprehensive review of studies of expressive performance [1] presents several points
that bear importance for the present work. Foremost, she warns against "drawing structural conclusions
based on performance data averaged or normalized across tempi.”

Data in the present work is analyzed in a way that preserves nuances until the final steps of classification.

Several reports are mentioned in conjuntion with the exploration of structure-expression relationships and
corroborate the salience of phrase-level units in performance analysis. For example, errors in complex
sequences when analyzed suggest that phrase structures influence mental partitioning. Errors tend not to
interact across phrase boundaries. Also, phrases appear to be tied to their global context in different ways.
Some phrases appear to be "tempo invariant” where others scale according to tempo-based ratios.

Palmer states, "Each performer has intentions to convey; the communicative content in music
performance includes the performers’ conceptual interpretation of the musical composition.” Expressive
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variations are intentional and show a high degree of repeatibiliy in patterns of timing and dynamics.
Performers are deliberate in applying devices to portray their concepts, for example choosing louder
dynamics to strengthen unexpected structural or melodic events. Events with higher tension (in a tension /
relaxation scheme) might be brought out by being played longer.

2 Data from Rehearsals

Pianist George Barth, a Professor of Performance in the Stanford University Music Department, provided
the recordings. He prepared his performance over the course of four months with nearly daily practice.
The first five samples that are analyzed here were collected over several weeks, beginning after he felt
confident of the notes.

An extract of the fifth movement was targeted for study after an initial look at the data confirmed good
stability across the five samples. The 55 note passage was performed flawlessly in each take and provided
sufficient length and variation for purposes of the analysis. The pianist was unaware of the the choice of
the extract, so as far as he was concerned he was recording a much longer excerpt of the movement, thus
avoiding any likelihood of study-influenced effect on the performance.
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Figure 1: Displayed proportionally, the raw data for note onsets and key velocity shows expressive
variations.

Several steps were necessary to prepare the extract for analysis. The performances were recorded directly
to the Disklavier’s floppy disk in Yamaha’s E-Seq MIDI data format. Conversion to Standard MIDI File
Format type 1 was accomplished in software with Giebler Enterprises’ DOMSMEF utility. Segmentation of
the extract and conversion to type O format was accomplished with Opcode Systems’ Vision sequencer.
Trimmed and converted files were then imported into the Common Music Lisp environment for the first
stages of analysis.

The present study is limited to note onset timings and key velocity {dynamic) information. Duration and
pedaling data have been preserved during the conversion process for possible subsequent use.

Figure 1 is a proportional graph depicting the raw quantities recorded from the five perfomances. In
Figure 2, phrase timing differences are highlighted by connecting a line segment between the positions of
the starting and ending note-heads of each phrase.
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Figure 2; Sketching only phrase boundaries, tempo changes are visible both globally across phrases and
internally within phrases.
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Figure 3: Variation in three parameters across the five performances.
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For ease of comparison, Figure 3 isolates parameters with phrases aligned (by lining up events on the
timings of the first performance and varying the notehead size according to the parameter). In b),
variations of note onset timing use data relative to the first performance (larger noteheads indicate greater
lengthening). Dynamic information is depicted by notehead sizes that depend on the key velocities found
in each performance. Durational information is shown for informational purposes but was not analyzed
further.

3 Covariance Analysis

Performance data, being sequential, requires the choice of a time window relevant to the features that the
analysis intends to capture. As can be seen in the above graphs of the raw data, phrase-level comparisons
are of interest. Phrases have different overall durations and begin times and are influenced by the tempo of
the performance. The first step in preparing features for classification was to isolate the phrases, setting
the elapsed time of each event to be relative to the onset of the phrase rather than its absolute time.

The two features chosen as dimensions for a covariance analysis are note onset timings and dynamics
expressed as differences from a reference performance (key velocities are scaled to a range of 0 - 1). A less
effective approach would be to express differences relative to perfect values derived from proportions in
the score, which itself is a sort of performerless performance. Differences obtained against the score are
distributed more coarsely; timings are relative to a less realistic baseline and values for dynamics have to
be intuited (since they are specified only generally). By referencing to a recorded performance, differences
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are distributed more usefully. Stylistic or habitual features such as phrase-final lengthenings are made
implicit and dynamic differences are relative to actual values.

To compare two performances, three performances are required: the reference (P.p) and the two inputs
(P1 and P2). For each phrase, each event in each input is mapped according to the two feature
dimensions. The intended result is that the inputs will be sufficiently distinguishable in this space. Figure
4 shows the distribution that results for the fifth phrase with Pref as performance #5, P1 as #1, and P2 as
#2. A separator has been calculated based on the Mahalanobis distance to the center of each performance
cluster [2]. The separator as shown correctly classifies 76% of the displayed points.

As the performance unfolds, the relative positions of cluster centers change phrase-by-phrase. Figure 5
shows trajectories mapped for four performances during the second half of the excerpt.

The analysis demonstrates an ability to correctly classify nearby performances. In Figure 6, a
coincidentally close pair of performances for one phrase was correctly classified.
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Figure 4: Note onset timing (feature 1) is plotted
against key velocity (feature 2) for the same phrase in two performances. Quantities are differences from
values for the same notes in a third, reference performance.
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Figure 5: The relative positions of cluster centers change phrase-by-phrase. The trajectories of four
performances are shown for three phrases in the same feature comparison space as Figure 4.

4 Discussion

Phrase-by-phrase tendencies in rhythmic and dynamic articulations can be successfully classified by
covariance analysis. Performances that are not distinguishable are presumed similar for the sake of the



model being developed.
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Figure 6: Successful classification of an "unknown" performance of phrase #4 in the comparison space of
performances 1 and 3. :

A future interest is to produce imitative expressive performances via behavior-based manipulation. A
given passage would be realized by selecting a stored phrase from an analyzed set of phrases. In a purely
guided mode, the operator would determine the sequence of phrase samples, perhaps also choosing from
interpolated combinations as in {3]. Another mode involves real-time analysis / synthesis of expressive
performance. A pianist performing in real time would be located in the comparison space and on-the-fly
classification decisions would predict the most likely stored performance matching the current input. The
ability to predict ahead of a current performance can be useful, for example to overcome transmission
delays.

The predict-ahead capability is analgous to teleautonomous control in robotic applications [4]. The remote
instrument (robot) is played by its predictor (a remote simulator) guided by controls transmitted to it by
analysis of the local performer (human operator). To be agonizingly complete in this analogy, a remote
accompanist’s performance (environmental feedback) is provided back to the local performer via a second
system running in the other direction. A bi-directional setup might allow a piano duo to perform together
across oceans. The two simultaneous concerts would differ, but not by much, assuming the analyzers and
predictors are effective.

A performance is made of many layers. Global tempo

changes and other longer structures remain to be described in the present model. Force-feedback
manipulation of the model is discussed in O’Modhrain’s accompanying article [5]. Her system operates on
the phrase-level substrate that has been the focus of the present analysis and is intended to display the
possible realizations of a given phrase within its comparison space. As a performance unfolds, the
manipulator is guided through a dynamically changing scene, much like Figure 5.

Arkin describes layers of schema operating in combination to enable guided teleautonomous behavior of a
robot. "...that schema-based reactive control results in a 'sea’ of forces acting upon the robot." By
patterning phrase-level behavior according to a predictor, partially antonomous performance is possible
which can be realized in conjunction with global and other performance schema. Control of these other
layers is a subject for future work, either in testing a real-time remote performance venue or in an editing
environment for algorithmic performance.
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