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Current acoustic theory regarding single-reed woodwind instruments is reviewed and summarized,
with special attention given to a complete analysis of conical air column issues. This theoretical
acoustic foundation is combined with an empirical perspective gained through professional perfor-
mance experience in a discussion of woodwind instrument design and performance issues. Early
saxophone design specifications, as given by Adolphe Sax, are investigated to determine possible
influences on instrument response and intonation. Issues regarding saxophone mouthpiece geometry
are analyzed. Piecewise cylindrical and conical section approximations to narrow and wide mouth-
piece chamber designs offer an acoustic basis to the largely subjective examinations of mouthpiece
effects conducted in the past. The influence of vocal tract manipulations in the control and perfor-
mance of woodwind instruments is investigated and compared with available theoretical analyses.
Several extended performance techniques are discussed in terms of acoustic principles.

Discrete-time methods are presented for accurate time-domain implementation of single-reed
woodwind instrument acoustic theory using digital waveguide techniques. Two methods for avoiding
unstable digital waveguide scattering junction implementations, associated with taper rate discon-
tinuities in conical air columns, are introduced. A digital waveguide woodwind tonehole model is
presented which incorporates both shunt and series impedance parameters. Two-port and three-
port scattering junction tonehole implementations are investigated and the results are compared
with the acoustic literature. Several methods for modeling the single-reed excitation mechanism are
discussed.

Expressive controls within the context of digital waveguide woodwind models are presented,
as well as model extensions for the implementation of register holes and mouthpiece variations.
Issues regarding the control and performance of real-time models are discussed. Techniques for
verifying and calibrating the time-domain behavior of these models are investigated and a study
is presented which seeks to identify an instrument’s linear and nonlinear characteristics based on

periodic prediction.
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Preface

The study of musical instrument acoustic behavior is a relatively young science. Early work with
direct application to woodwind instruments was conducted by Weber (1830), Helmholtz (1954), and
Bouasse and Fouchée (1930). It is clear, however, that the instruments themselves “came first.” The
art of instrument building was acquired principally through empirical means. Over the course of
several centuries, knowledge was handed down from generation to generation and incremental gains
were achieved. Most modern acoustic instruments reached their present form by the late nineteenth

century and have undergone relatively little improvement since.

In the past, there was little association between the instrument builder and the physicist studying
musical instrument acoustics. Several large instrument manufacturers, such as C. G. Conn Ltd.,
employed scientists for the purpose of improving their instrument designs, though their research was
largely based on experimental measurements. Only in recent years has musical instrument theoretical
acoustics reached an advanced enough level to offer potential rewards to the design process. One aim
of this study is to demonstrate that these theoretical advances have necessitated close cooperation
between scientists and professional instrument performers. That is, the theory has progressed to a
point where subtle control issues incorporated by professional performers, but otherwise unknown to
the physicist, can have great importance in confirming or refuting theoretical models. The insight of
expert performers with reasonable grounding in acoustic fundamentals will play a significant role in

refining current theory, as well as in further explorations into delicate issues of instrument behavior.

The primary objective of this study is to detail the implementation of the best available acoustic
theory regarding single-reed woodwind instruments using digital waveguide techniques. Digital wave-
guide modeling is an efficient discrete-time method for time-domain simulation of one-dimensional
wave propagation, which has gained increasing popularity in the field of musical acoustics research
since the publication of McIntyre et al. (1983). Several studies have previously been conducted with
regard to waveguide modeling of woodwind instruments (Hirschman, 1991; Vilimaki, 1995). What
distinguishes this work is its comprehensive scope, together with its foundation on the most current
literature from the musical acoustics research community. Issues regarding conical air columns in

general, and saxophones in particular, are analyzed in great detail. Instabilities associated with
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discrete-time models of conical-section discontinuities are discussed and stable solutions are pre-
sented. A variety of extensions regarding toneholes, mouthpieces, and performance expression are
introduced.

Chapter 1 of this study presents a detailed and comprehensive discussion of the acoustic behav-
ior of single-reed woodwind instruments, as determined from available musical acoustics research
literature. No new theory is presented in this chapter, though the discussion with regard to conical
air columns is particularly comprehensive in comparison to most sources. Chapter 2 seeks to build
on the material of the previous chapter and combine it with insights gained from professional per-
formance expertise. Several issues relevant to instrument design and the performance community
are analyzed in terms of acoustic principles. Chapter 3 shadows Chapter 1, detailing the implemen-
tation of the theory presented in the first chapter using digital waveguide techniques. A variety of
improvements and/or extensions to current waveguide modeling theory are discussed. Chapter 4
offers further extensions to digital waveguide models of woodwind instruments which are inspired,
in part, from the discussion of Chapter 2. Further, techniques for calibrating the models based on
time-domain measurements are reviewed and an investigation of linear and nonlinear instrument

behavior is presented.




Contents

Acknowledgements
Preface

List of Figures
List of Tables

List of Symbols

1 Single-Reed Woodwind Acoustic Principles

1.1 Sound Propagationin Air . . . ... ... .. .. ... .. ........
1.2 Lumped AcousticSystems . . . . . .. .. ... ... ... .......
1.3 Woodwind Instrument Bores . . . .. .. .................
1.3.1 Cylindrical Bores . . . . . . . ... ...
132 Conical Bores . . . . . ... ... . ..
1.3.3 Boundary Layer Effects . . ... ... ...............
1.3.4 Time-Domain Descriptions . . . .. ... ... ..........
14 Bownmd Radiation . « v s o v v 50 v v v v v v v e cem e s e a s
141 Non-FlaringEnds . ... ... ... ... .............
L G (o3 o+
143 Toneholes , ¢ o v v mw s w 5 7 6 o b v oo wiaein s os o vw s
1.5 The Nonlinear Excitation Mechanism. . . . . ... ............

2 Acoustical Aspects of Woodwind Design & Performance

2.1 Woodwind Air Columns . . . . .. ... ... ..
2.1.1 Cylindersand Cones . . . . ... .. v v v v
2.1.2 Perturbations . . . .. . ... ...
2.1.3 The Saxophone’s “Parabolic” Cone . . . . .. ... ........

2.2 Woodwind Toneholes . . . .. ... ... ............... ...
2.2.1 The Tonehole Lattice . . ... ...................
2.2.2 The Single Tonehole . . .. ... ..................
223 Register Holes . ... ... ... ... ... . ... . .. . ... .

2.3 The Single-Reed Excitation Mechanism . . ... .............
231 Mouthpieces : . « i v v vw v v v v ey o i vunnnesnss
232 Reeds . ...........cumourwmesssnsnmomesemin

24 TheOral Cavity . .. ....... ... .

2.5 Contemporary Performance Techniques

vii

2.5.1 Multiphonics . . . .. ... L

iv




viii CONTENTS
2.5.2 The Saxophone’s Altissimo Register . . ... ... ... ............ 92
2.5.3 Additional Contemporary Techniques . . . . .. ... ... .. ........ 93
3 Digital Waveguide Modeling of Single-Reed Woodwinds 95
3.1 Modeling Sound Propagation in One Dimension . . . . . . ... ... ......... 96
3.2 Modeling Lumped Acoustic Systems . . . . . . ... ... ... 98
3.3 Modeling Woodwind Instrument Bores . . . . . ... ... ... ............ 101
3.3.1 Cylindrical Bores . . . . . . . . . . . e 102
332 Comnical Bores . . . . . .. . ... 105
3.3.3 Diameter and Taper Discontinuities . . ... ... ... ... ......... 111
3.3.4 Fractional Delay Lengths . . . .. ... ... ... ... ... . ........ 124
3.3.5 Boundary-Layer Effects . . ... ... ... ... ... ... . ... ...... 128
3.4 Modeling Sound Radiation. . . . . . .. ... ... ... .. ... 131
341 Non-Flaring Ends . . .. .. ... ... ... .. . ... 131
3.42 Horns . . . . . o e e 134
343 Toneholes . . . . . . . . . . e 135
3.5 Modeling the Nonlinear Excitation Mechanism . . . ... ... ............ 147
3.5.1 The Pressure-Dependent Reflection Coefficient . . . . ... ... ....... 149
3.5.2 The Reed-Reflection Polynomial . ... ... .................. 152
3.5.3 The Dynamic Woodwind Reed Model . . ... ................. 153
3.5.4 [Excitation Mechanisms Attached to Truncated Cones . ... ......... 157
4 Digital Waveguide Model Extensions and Calibration 159
4.1 Extensions to Digital Waveguide Models of Woodwinds . . . ... .......... 160
4.1.1 Register Holes . . . . .. ... .. .. ... 160
4.1.2 Mouthpiece Models. . . . . ... ... ... 162
4.2 Performance Expression in Digital Waveguide Woodwind Models . . . . ... .. .. 166
4.2.1 ImplementationIssues . . .. .. ... .. ... ... ... . ... . ... 166
422 ControlISSHeS. . & ¢ v o v v i v i it it e it e e e e e 170
4.2.3 Summary . .. ... i e e e e 172
4.3 Calibrating Digital Waveguide Woodwind Models . . . . . . .. .. .. .. ...... 172
4.3.1 Measuring Woodwind Instrument Responses in the Time Domain . . . . . . . 172

4.3.2 Periodic Prediction for the Determination of Linear and Nonlinear Instrument
BRHBIOE « 5 ¢ + 5 5 o nn domwismn s on ey pmmmedbnes L5 wesans 173
5 Conclusions and Future Research 197
5.1 Summary and Conclusions . . . . . . . . .. .. .. 197
5.2 Suggestions for Future Research. . . . . . ... ... ... ... ............ 198
A The Surface Area of a Spherical Wave Front in a Cone 201
B Saxophone Air Column Measurements 203
C Experimental Equipment 204
D MATLAB Code 205
DI OPOnpIBEIn. o . i o v s 6 46 5 4 vt v ms cem e b ek S ey s 205
B2 Doumdaryam « o « v o0 v 0 v o i e e i v e v ek s b s b e s e e 207
D.3 openholem . . .. ... ... 209
A N LA S I 212
BB DOBAENIN. « o « v o 50 p o5« a'e 0 x b am s we o s ks n s n el e . 215
T T LT L L T LT Y T 217




List of Figures

11
1.2
1.3
14
1.5
1.6

1.7

1.8

1.9

1.10
1.11
112
1.13
1.14
1.15
1.16
1.17

1.18
1.19

1.20
1.21
1.22
1.23
1.24

1.25

Wave-induced pressure variations on a cubic section of air. . . . . . .. .. ......
Linear acoustic system block diagrams. . . . . . . .. ... ... ... ... ... ...
The Helmholtz resonator and its mechanical analog. . . ... .. ...........
A cylindrical pipe in cylindrical polar coordinates. . . . . ... ... .........
A non-uniform bore (a) and its approximation in terms of cylindrical sections (b).

Theoretical input impedance magnitude, relative to Zy at = 0, of the cylindrical
section structure shown in Fig. 1.5(b). . . ... ... ... ........ Ve o L
A conical section in spherical coordinates. . . . ... ... . ... ... ... . ... .
A divergent conical section and its associated dimensional parameters. . . . . . . . .
A convergent conical section and its associated dimensional parameters. . . . . . . .
Partial frequency ratios, relative to fo, for a closed-open conic frustum. . .. .. ..
A non-uniform bore (a) and its approximation in terms of cylindrical and conical
sections (b). . . . ...
Theoretical input impedance magnitude, relative to Z, = pc/S at x = 0, of the
cylindrical and conic section structure shown in Fig. 1.11(b). . . ...........
Phase velocity (vp) normalized by c vs. frequency (top); Attenuation coefficient (a)
vs. frequemcy (Botbom). .+ . . 0. . ot n i e e e e e s e
Input impedance magnitude of an ideally terminated cylindrical bore with viscous
and thermal losses (bore length = 0.3 meters, bore radius = 0.008 meters). . . . . .
A general wind instrument represented by linear and nonlinear elements in a feedback

Theoretical input impedance magnitude (top) and impulse response (bottom) of a
cylindrical bore, normalized by the bore characteristic impedance. . . ... ... ..
Theoretical input impedance magnitude (top) and impulse response (bottom) of a
conical bore, relative to Ry = pc/S(0) at the small end of the bore. . . . . ... ...
AconiCal FUBBIIN: . ¢ » o o 4 v o 40 v e a e et h e e
Reflectance magnitude and length correction (I/a) versus the frequency parameter ka
for a flanged and unflanged circular pipe. . . . .. ... ... ... ... ... .. ..
Cross-section of a horn and the displacement of a volume element within it
Basic tonehole geometry.

T section transmission-line element representing the tonehole. . . . . . ... ... ..
L section transmission-line element representing the tonehole. . . . . . ... ... ..

Input impedance magnitude (top), relative to the main bore wave impedance Z,, and
reflectance (bottom) for the written note G4 on a simple six-hole flute, as described
i A TR T

ix

©O© 00 O W

14




1.27

1.28
1.29

2.1

2.2

2.3

24

2.5

2.6

2T
2.8

29

2.10
2.11

242
213

2.14

2.15
2.16
2.17

2.18

2.19

LIST OF FIGURES

The volume flow and pressure relationships for a single-reed oral cavity /mouthpiece
BEOIAELEYE. on's m o < 5 a5 vt a B e E R e e RS e E T e T et e
Steady flow (u,,) through a pressure controlled valve blown closed. . . . . .. .. ..
Dynamic flow through a pressure controlled valve blown closed for p,./pc = 0.4.

Open-end radiation characteristics for an unflanged cylindrical pipe: (top) Load
impedance magnitude relative to the wave impedance Zy; (bottom) Tuning devia-
VBT AT TGOIESL | o w o (5 5 5 5 5 5 5 5 % 5 5 e e o o m e e o e e e e e s e b
Thermoviscous effects for wave travel over two lengths of a cylindrical pipe of length
0.5 meters and radius 0.008 meters: (top) Attenuation characteristic; (bottom) Tuning
AEVABON S0 COMEE. . o « « o v 5 b 5 s E e s e e h e h e e et re e
Partial frequency ratios for a closed-open conic section versus 3, the ratio of closed-
to open-end radii. The frequencies are normalized by fy, the fundamental resonance
for an open-open pipe of the same length as the frustum. . ... ...........
Partial frequency ratios for a closed-open conic section versus 3, the ratio of closed-
to open-end radii. The frequencies are normalized by f., the fundamental resonance
for the same conic section complete toitsapex. . . . . . .. .. .. .. ... .....
Partial frequency ratios for a closed-open conic section versus frustum length, for a
cone of half angle 2° and small-end radius of 0.005 meters. The partial frequencies
are normalized by fy, the fundamental resonance for an open-open pipe of the same
length as thefrustum. . . .. ... ....... .. .. .. ... ... .........
The input impedance magnitude, relative to Ry = pc/S at its input end, of a conical
frustum of length 0.5 meters, small-end radius 0.005 meters, and half angle of 2°. . .
Exponential horn profiles for flare parameters of m = 2 (-) and m = 3 (- ) AR
Partial frequency ratios, relative to the fundamental resonance, for exponential horns
defined by flare parametersof m =2 (<) and m=3 (--). ...............
Partial frequency ratios, relative to the fundamental resonance of an open-open conic
frustum of the same length, for exponential horns defined by the flare parameters
m=2()andm=3(--).. ... ... ...
The profile of an alto saxophone built by Adolphe Sax, in exaggerated proportions
[after (Kool, 1987)]. . . . . o o v i it ittt e e i e e e
Quadratic surfaces: (a) Circular cone; (b) Elliptic cone; (c) Hyperboloid of one sheet;
(d) Elliptic paraboloid. . . . . . . .. ...
Various views of a “Parabolic cone.” . . . ... ... .. ........... ... ..
Profile of an alto saxophone bore, up to its lower bow. The bore section between the
neckpipe and lower bow is represented by a conical frustum (-) and an exponential
L O L S A
Partial frequency ratios, relative to the fundamental resonance of an open-open conic
section of the same length, of a combined cone/exponential horn structure (-) and
a closed-open conical frustum (- -). The dotted lines indicate exact integer multiple
relationships to the first closed-open conical frustum resonance. . . . . . ... .. ..
An early saxophone mouthpiece design. . . . . ... ... ... ....... . ....
Approximate saxophone mouthpiece structures: (top) Wide chamber design; (bot-
tom) Narrow chamber design. . . . . ... ........ ... .. ... ...
Theoretical inouthpiece and air column structure input impedances, relative to Ry =
pc/S at the input of the structure: (top) Wide chamber design; (bottom) Narrow
chamberdesign. . . . . . . .. it i e e e e e ey s

A Bb clarinet multiphonic fingering and the corresponding written notes it produces.

62
65




LIST OF FIGURES xi

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8
3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

3.21

3.22

3.23

3.24

3.25

Digital waveguide implementation of ideal, lossless plane-wave propagation in air [after

(Smith, 1996a)]. The z~! units represent one-sample delays. . . . . . . .. ...... 97
Lumped impedance block diagrams [after (Smith, 19964)]: (a) Impedance represen-
tation; (b) Digital waveguide representation. . . . . . . . .. ... ... ... ... .. 98
Digital waveguide implementation of ideal, lossless plane-wave propagation in a cylin-
drical tube. The z~! units represent one-sample delays. . . ... ........... 102
Digital waveguide implementation of plane-wave propagation in a cylindrical tube,
neglecting viscothermal losses. . . . . . . . . ... ... . . ... . . ... ... 103

Simplified digital waveguide implementation of plane-wave propagation in a cylindri-
cal tube using a single delay line and neglecting viscothermal losses. The pressure

observation point is constrained to the entryway of thebore. . . ... ... ..... 104
Digital waveguide model of a closed-open cylindrical bore. . . . . ... ........ 104
Digital waveguide implementation of ideal, lossless spherical-wave propagation in a
conical tube [after (Smith, 1996a)]. . . . . . . .. .. ... ... 106
Divergent conical section rigidly terminated by a spherical cap at zg. . . . . . .. . . 107
The conical truncation reflectance: (top) Continuous-time and discrete-time filter
phase responses; (bottom) Digital allpass filter coefficient value versus zg. . . . . . . 108
Digital waveguide implementation of a closed-open truncated conical section excited
SOl 5o 8 4 8 5 5 $ 8 B E W E 5 § 55 5 5 5 i om o s e e e e e e v e e 109

Impulse response of conical bore closed at + = zo and open at = L. Open-end
radiation is approximated by a 2nd-order discrete-time filter and viscothermal losses

AREACIOTEd: v v cov v mb s Bww ww s 5 5 5 5 8w S LAl 3 h s A R R e e s 110
Equivalent circuit of a conical waveguide [after Benade (1988)]. . ... ... ... .. 110
Junction of two cylindrical tube sections. . . . . .. ... ... . ... ... ..... 111
(a) The Kelly-Lochbaum scattering junction for diameter discontinuities in cylindrical

bores; (b) The one-multiply scattering junction [after (Markel and Gray, 1976)].. . . 113
The digital waveguide model of two discontinuous cylindrical sections. . . . . .. . . 113
(a) A non-uniform bore and (b) its approximation in terms of cylindrical sections. . 114
Input impedance magnitude, normalized by Z; at x = 0, calculated using a digital

waveguide model of the cylindrical section structure shown in Fig. 3.16(b).. . . . . . 114
Junction of two conical tubesections. . . ... ... ... ... ... .. ... ... 115

(a) The scattering junction for diameter and taper discontinuities in conical bores; (b)
The one-multiply scattering junction for a taper discontinuity only [after (Valimaki,

L O 116
(a) Cylinder-diverging cone junction; (b) Cylinder-converging cone junction. All
lengths are in millimeters. . . . . .. ... ... .. ... .. ... . 118

(top) Discrete-time reflection function r(n) and (bottom) discrete-time impulse re-
sponse, normalized by Zj of the cylinder, calculated using a digital waveguide model

of the cylinder-diverging cone structure shown in Fig. 3.20(a). . . . .. ... ... .. 118
Discrete-time reflection function r(n) calculated using a digital waveguide model of
the cylinder-converging cone structure shown in Fig. 3.20(b). . . ... .. ... ... 119
(a) A non-uniform bore and (b) its approximation in terms of conical and cylindrical
BIBLIBIE. « « v v 050 % 6 R G 4% 5 5 5 s mm o m kb e s m e M e s s 120

Input impedance magnitude, normalized by Z, at # = 0, calculated using a digital
waveguide model of the conical and cylindrical section structure shown in Fig. 3.23(b).121
(a) A bore profile which results in an unstable digital waveguide filter implementa-
tion and (b) a lumped-section model which allows a stable digital waveguide filter
implementation.. . . . . . . v v i e e e e S e s s e i e e e e 121
Input impedance magnitude, normalized by Ry = pc/S (z) at the bore input, calcu-
lated using (top) transmission matrices and (bottom) a lumped section digital wave-
guide model as illustrated in Fig. 3.25(b). . . ... ... ... ............. 123




xii

3.27

3.28

3.29

3.30

3.31
3.32

3.33
3.34

3.35

3.36
3.37

3.38

3.39

3.40

3.41
3.42

3.43

3.44

3.45

3.46

3.47

3.48

3.49

3.50

LIST OF FIGURES

Impulse response, normalized by Ry = pc/S(z) at the bore input, calculated using
(top) transmission matrices and (bottom) a lumped section digital waveguide model
as illustrated in Fig. 3.25(b). . . .. .. .. ... .. ...
The digital waveguide lumped section scattering junction with extracted linear phase
terms and modified reflectance and transmittance filters. . . . . . ... ... ... ..
Frequency response and phase delay of first-order, Lagrange interpolation filters for
11 delay values in the range 0 < D < 1 [after (Jaffe and Smith, 1983)]. . . . ... ..
Frequency response and phase delay of third-order, Lagrange interpolation filters for
11 delay values in the range 1 < D < 2 [after (Jaffe and Smith, 1983)]. . . . ... ..
Phase delay of first-order, allpass interpolation filters [after (Jaffe and Smith, 1983)].
Impulse response of digital waveguide system using (top) first-order Lagrange inter-
polation and (bottom) first-order allpass interpolation. . . . .. .. .. .. ... ...
Frequency response of the filter H(z) : Magnitude (top); Phase delay (bottom). . . .
Digital waveguide implementation of lossy plane-wave propagation in air [after (Smith,
1996a)]. The unit delays have been incorporated into H(z). . . . .. ... ......
Commuted thermoviscous losses in a digital waveguide cylindrical air column imple-
mentation. . . . . ... e
Continuous-time filter H®(s) and 5th-order discrete-time filter HJ%(z) responses. . .
Continuous-time and digital filter magnitude and phase characteristics for the Levine
and Schwinger reflectance in a cylindrical duct of radius 0.008 meters. . . .. .. . .
Sound radiation filter implementations in a digital waveguide cylindrical duct model:
(top) Complementary transmittance filter [after (Smith, 1986)]; (bottom) Residual
sound OUEPUL. . . . . . L. e e
Levine and Schwinger unflanged open end reflectance magnitude and length correction
EXLEMSIONS: o o v s o o o b ow i i e B s ma A m e s E s B E S e e s
T section transmission line element representing the tonehole. . . . . . . .. ... ..
Tonehole two-port scattering junction. . . . . .. ... ... ... ... ........
Two-port tonehole junction closed-hole reflectance, derived from Keefe (1981) shunt
and series impedance parameters [(—.—) continuous-time response; (—) discrete-time
filter response]. (top) Reflectance magnitude; (bottom) Reflectance phase. . . . . . .
Two-port tonehole junction open-hole reflectance, derived from Keefe (1981) shunt
and series impedance parameters [(~.—) continuous-time response; (—) discrete-time
filter response]. (top) Reflectance magnitude; (bottom) Reflectance phase. . . . . . .
Reflection functions for note B (all six finger holes open) on a simple flute [see (Keefe,
1990)]. (top) Transmission-line calculation; (bottom) Digital waveguide implementa-
BB, o s vomom e o e Bl RS R R R AR S F e n s e e e x4 s
Reflection functions for note G (three finger holes closed, three finger holes open) on a
simple flute [see (Keefe, 1990)]. (top) Transmission-line calculation; (bottom) Digital
waveguide implementation. . . . .. .. ... ... L L L
Reflection functions for note D (all six finger holes closed) on a simple flute [see

(Keefe, 1990)]. (top) Transmission-line calculation; (bottom) Digital waveguide im-
plementation

The three-port tonehole junction where a side branch is connected to a uniform cylin-
drical tube [after (Valimaki, 1995)].. . . . . . .. ... .. ... ... ...,
Tonehole three-port scattering junction implementation in one-multiply form. . . . .
Reflection functions for notes B (top) and G (bottom) on a six-hole flute, deter-
mined using a digital waveguide three-port tonehole junction implementation and an
inertance approximation for the tonehole driving-point impedance.

Continuous-time magnitude responses for two open-tonehole reflectance models. . . .




LIST OF FIGURES xiii

3.51

3.52

3.53

3.54

3.55

3.56
3.57

3.58

3.59
3.60

4.1

4.2

4.3

4.4

4.5

4.6
4.7
4.8
4.9
4.10

4.11

4.12
4.13
4.14

4.15
4.16
4.17
4.18

4.19

Reflection functions for notes B (top) and G (bottom) on a six-hole flute, determined
using a digital waveguide three-port tonehole junction implementation and an explicit

open cylinder approximation for the tonehole driving-point impedance. . . . . . . . . 145
The volume flow and pressure relationships for a single-reed oral cavity/mouthpiece

BEOMICELY: & 4 o s o o iv o b s o viw b e e e e G e s s ws e e N N d e 6w # s 147
Dynamic flow through a pressure controlled valve blown closed for p,./pc = 0.4. . . 148

Pressure-dependent reflection coefficient curves versus reed stiffness (top) [reed reso-
nances of 2500 Hz (-), 3000 Hz (- -), 3500 Hz (--)] and equilibrium reed tip opening

(bottom) [yo = 1.5 mm (=), 1.0mm (- -), 0.5 mm (=)]. . . . . ... .......... 150
An example reflection coefficient table #(p} ) (top), and the corresponding reed volume

flow 4,(p}) (bottom). . . . . . . . .. 152
The reed/bore scattering junction. . . . .. ... ... ... .............. 152
(a) The pressure-dependent reflection coefficient digital waveguide implementation;

(b) The reed-reflection polynomial digital waveguide implementation. . . . . . . . . . 153
The single-reed as a mechanical oscillator blown closed. . . .. ... ......... 153
Second-order reed filter Hy.(2). . . . . ... ... 155

Oscillation onsets for digital waveguide clarinet implementations: (top) Pressure-
dependent reflection coefficient; (middle) Reed-reflection polynomial; (bottom) Dy-
pamieTeed MOdel, o o v 5 v 5 f 4 s s e e e e e e e e e e w s e s s 157

A cylindrical and conical section approximation to a narrow chamber saxophone
mouthpiece structure. . . . . . ... 162
(a) A saxophone mouthpiece and air column profile approximated by cylindrical and
conical sections and (b) a lumped-section model which allows a stable digital wave-
guide filter implementation. . . . . . ... ... ... 163
Continuous- and discrete-time frequency responses for the forward reflectance R+
determined by lumping the three left-most sections of the mouthpiece shape of Fig. 4.1.164
Forward reflectance R* (z) discrete-time filter approximation zero and pole locations
R T 165
Impulse response, normalized by Zy = pc/S at the bore input, calculated using (top)
transmission matrices and (bottom) a lumped section digital waveguide model as

Husteated M FIE 42(b). . . v v o6 o 0 56 v 0 0 b v m e s s e e b 165
A digital waveguide system for implementing tonguing variation. . . .. ... ... . 167
A digital waveguide system for implementing breath pressure modulation. . . . . . . 168
An efficient digital waveguide system for implementing multiphonic tones. . . . . . . 169
The experimental setup of Agullé et al. (1995). . . . ... .. ............. 173
A general wind instrument represented by linear and nonlinear elements in a feedback

S T B I T A A A 173
A general wind instrument represented by linear, nonlinear, and delay elements in a

e T 174
An experimental “pseudo-clarinet” instrument. . . . .. .. ... .. ... ...... 175
Steady-state waveform measured inside the “pseudo-clarinet” instrument. . . . . . . 175
A general wind instrument air column represented by delay and lumped linear ele-

ments in a feedback loop. . . . ... ... .. L 176
An adaptive linear periodic forward predictor. . . . . . . .. ... .. ... ... ... 177
The assumed wind instrument model used for the nonlinear prediction experiment. . 177
An adaptive nonlinear periodic forward predictor.. . . . . . . . .. .. ... .. ... 178
An example piecewise reflection coefficient table and its polynomial approximation

(top), and the corresponding general nonlinear function responses (bottom). . . . . . 183
Linear element experiment setup. . . . . . . . . . .. ... 184




xiv

4.21
4.22
4.23
4.24
4.25
4.26

4.27
4.28
4.29
4.30
4.31

4.32

4.33

4.34

LIST OF FIGURES

Single pulse response in the PVC tube. . . . . . . . . .. ... ... ... ....... 186
Pulse response in the PVC tube via a palm-strike. . . .. ... ............ 186
Measured input signal: (top) Time domain; (bottom) Frequency domain. . . . . . . 187
Frequency Response Magnitude of Linear Weights. . . . . . ... ... ........ 188
Direct palm strike signal: (top) Time domain; (bottom) Frequency domain. . . . . . 188
Frequency response magnitude of the predicted linear weights using the palm strike

eXCIEABION. « &« v v v i e i e e i e e s s e e s e e s e s e e s 189
Nonlinear element experiment setup. . . . . . . . . . v v v vttt e 190
Internal pressure signal in PVC tube under normal blowing conditions. . . . . . . . . 190
Nonlinear polynomial function extracted from a synthesized sound. . . . . ... . .. 191
Nonlinear reflection coefficient, as determined using nonlinear predictor weights which

were extracted from a synthesizedsound. . .. ... ... ... .. .......... 191
Nonlinear polynomial functions extracted from the internal pressure signal measured

in the experimental instrument. . . . . . . . . ... ... ... 192

Nonlinear reflection coefficient, as determined using nonlinear predictor weights which
were extracted from the internal pressure signal measured in the experimental instru-

L O U PR 193
Histograms of the transient (top) and steady-state (bottom) portions of the recorded
L A B T LI 194
A revised wind instrument model that might better correspond to the experimental
INSERUIIEHt. v v 1 5 & 5 5 s m % 5 i 5 8 55 4 o e e e e e e e e s e e e e 195




List of Tables

1.1

2:1

B.1

Hypothetical dimensions (in meters) of the bore shape shown in Fig. 1.5(a) and its

approximation by cylindrical sections in Fig. 1.5(b). . .. ... ... ... ...... 15
The first four partial frequency ratios, relative to the first resonance frequency, for
conical frusta defined by 8 equal to 0.15and 0.24. . . . . ... . ... ... ..... 61
Air column measurements and estimated truncation ratios (3) for Selmer and Schenke-
laars alto saxophones. . . . .. .. ... ... ... 203

Xv




List of Symbols

These symbols are used consistently throughout this study for the following representations:

p density of air

c speed of sound in air
s Laplace transform frequency variable
Q continuous-time frequency variable

discrete-time frequency variable (—7 < w < )

f frequency variable

I discrete-time sampling frequency
) imaginary unit (j = /=1)

k wavenumber (k = Q/c)

t continuous time variable

n discrete time index

- z-transform variable

S surface area

Zy characteristic or wave impedance
Yo characteristic or wave admittance

uor U volume velocity within an acoustic structure
por P sound pressure
R frequency-dependent reflection coefficient or reflectance

T frequency-dependent transmission coefficient or transmittance

xvi




Chapter 1

Single-Reed Woodwind Acoustic

Principles

All musical instruments are united by the fact that each produces vibrations of air pressure or
sounds. In each case, a resonator is forced to oscillate by a particular means of excitation and
the resulting vibrations are transferred to the surrounding air in a suitable manner. Instruments
which produce periodic sounds can be grouped by the particular medium in which the vibrations
occur. Only uniform tubes of air and stretched strings have been found to adequately maintain
one-dimensional oscillations in a quasi-periodic manner. In general, instruments which incorporate
stretched strings are excited by impulsive and “stick-slip” mechanisms, while those using uniform
tubes are excited by “blowing” mechanisms. This study is primarily concerned with single-reed
woodwind instruments such as clarinets and saxophones, as well as less common folk instruments
such as the tarogato and tenora. All common woodwind instruments have a series of finger holes
along the length of their air columns through which sound radiation and pitch variation are achieved.
The single-reed excitation mechanism is particular to a limited subset of woodwind instruments,
though its operation is similar in many ways to that of lip-driven brass instruments and to a lesser
extent, the human voice. In the case of the human voice, however, the presence of the vocal tract is

not necessary for the production of periodic vibrations of the vocal folds.

Because of their similarities, the operation of all musical instruments can be analyzed in terms
of three principal components: an excitation mechanism, a resonator, and a radiating element. For
single-reed woodwind instruments, the performer, reed, and mouthpiece combination produces the
excitation, the air column is the resonator, and sound radiation is accomplished via the tonehole
lattice and air-column open end. Adolphe Sax’s invention of the saxophone around 1840 can be
viewed as a combination of the clarinet’s excitation mechanism and the oboe’s resonator and ra-

diating components. In this way, Sax was experimenting with acoustical building blocks, though
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considerable craft was necessary to make them function properly as a whole.

This chapter reviews the current understanding of woodwind instrument acoustic principles.
Most of the information presented here has previously been covered in acoustic texts or journal
publications. Issues relating to the conical bore are discussed in this study with as much detail as the
more common cylindrical bore and to a greater extent than in most sources currently available. The
material of this chapter is presented as a foundation for the analyses of the subsequent chapters. This
chapter deals exclusively with continuous-time representations, for which the frequency variable {2 is
used. Discrete-time frequency will be indicated with the variable w. Frequency-dependent variables
are represented throughout by upper-case symbols, while time-domain expressions are represented

by the corresponding lower-case symbols.

1.1 Sound Propagation in Air

Many musical instruments, such as those of the string and percussion families, produce sounds via
the coupling of mechanical vibrations to the surrounding air. In wind instruments, however, sound
generation is directly initiated and maintained in the air medium. The propagation of sound in air
thus plays a fundamental role in the study of woodwind acoustics. Air has both mass and elasticity
and these properties allow it to store kinetic and potential energy, respectively. The propagation
of air pressure variations, or sound waves, is possible through the alternating transfer of energy
between its kinetic and potential states. Such motion is primarily longitudinal because gases, such
as air, do not support shear forces to first approximation.t

Figure 1.1 illustrates a cubic section of air exposed to wave-induced pressure variations on all six
sides. These forces produce a volume change d@ in the gas with respect to its unperturbed volume

Q, called dilation or volume strain, which is given in Cartesian coordinates by

sl N N

where g(r,t) is a vector function of air displacement. The dilation, in turn, produces an elastic
restoring force due to the compressibility of the gas. The relationship between applied pressure
and dilation may be estimated using Hooke’s law for fluids. For € <« 1, the dilation and associated

incremental pressure are linearly related through the elastic bulk modulus B as
p=—Be=—-BV . p. (1.2)

This relationship is the acoustic counterpart to Hooke’s law for mechanical springs. The negative

sign in Eq. (1.2) results from the fact that positive pressure produces a negative dilation.

tAir can support shear forces via viscosity, but in the frequency range of interest to this study, the most significant
influences of this viscosity can be localized within a boundary layer between the air and the walls of a wind-instrument
air column.
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pAyAz (p+ 2Az) Ay Az

z

Fig. 1.1. Wave-induced pressure variations on a cubic section of air.

The kinetic energy component of air is manifest in the motion of the gas in Fig. 1.1 and its asso-
ciated inertia. The net force in the positive = direction is given by —(dp/9z) Az Ay Az. Summing

the forces along each of the coordinate axes, the net vector force on the cubical element is

AF = —Vp Az Ay Az, (1.3)
where . g 3
_;op , 0p  0p
Vp_lan: +‘](9y+k8z (1.4)

is the pressure gradient. The mass of the fluid is p Az Ay Az, where p is the fluid density, and its
vector acceleration is 8%29/0t2. Newton’s second law, normalized by the cubic volume Az Ay Az,

results in the relationship

%o
= =p—. 1.
Vp=po; (1.5)
Equations (1.2) and (1.5) can be combined to produce the three-dimensional scalar wave equation
1 8%
2, —
- Foe (16)

where ¢ = (B/p)l/ ? is the wave velocity. The left side of Eq. (1.6) is the Laplacian of the pressure
p, which can subsequently be expanded in the desired coordinate system for any given problem.
Assuming sinusoidal wave components with time dependence e/, Eq. (1.6) simplifies to the time-

independent wave equation (or scalar Helmholtz equation)

VP 4+ kP =0, (1.7)
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where P is the spatial part of the sinusoidal pressure wave and k = Q/c' is the wave number (Elmore
and Heald, 1985, p. 138). In deriving the linear wave equation, any variation in the fluid density
p with respect to position has been ignored. For sound propagation in air, this approximation is
normally valid. The use of Hooke’s law assumes small particle displacement, which is accurate for
most applications in musical acoustics. However, there are instances in which this approximation
may break down, such as in brass instruments at forte dynamic levels.
Sound waves are often adequately represented by plane wave fronts normal to their direction of
travel. For plane-wave propagation along the z-axis only, Eq. (1.6) reduces to
i R )
8z2 2 o2’

(1.8)

Solutions to this equation describe the pressure evolution of one-dimensional plane waves of sound
propagating in air. By assuming sinusoidal time dependence, a general frequency-domain solution
to Eq. (1.8) is

P(z,t) = [Ae™7%" 4 Beik®] &I, (1.9)

where A and B are complex amplitudes for wave components traveling to the right and left, respec-

tively. For this solution, the particle velocity can be found with the aid of Eq. (1.5) as
Op 1 e . .
V{z,t) = r i [Ae~7*® — Beik=] ei%, (1.10)
The ratio of sinusoidal pressure to sinusoidal particle velocity for wave components traveling to the
right only (B = 0),
_ P(z,t) .
T V(z,t) Pes

is called the wave impedance or characteristic impedance. The wave impedance is defined in terms

7 (1.11)

of frequency-domain quantities, namely the ratio of pressure to particle velocity at a particular
frequency. For plane-wave propagation in open air, the wave impedance is purely real and frequency
independent. Further, the wave impedance for plane waves is independent of direction.

Sound waves generated by a point source spread out in all directions in a nearly spherical manner.
For one-dimensional spherical-wave propagation, Eq. (1.6) reduces to
1 8 9] 188
o (o250 ) = 552, (1.12)
2Oz Oz c? ot?
where z measures the radial distance from the point source. A general frequency-domain solution

to Eq. (1.12) which assumes sinusoidal time dependence is given by

P(z,t) = [%e‘j’“’ + Eejk’] = (1.13)
T

tThe symbol  will be used throughout this study to represent continuous-time frequency. Discrete-time frequency
will be represented by the symbol w.
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where A and B are complex amplitudes for outgoing and incoming wave components, respectively.

For this solution, the particle velocity can be found with the aid of Eq. (1.5) as

e 1A 1 —jbe B 1\ ] i
=== |= —_— 1= — % . L
V(z,t %= [x (1 + jk:x) e — 1 e Lol o (1.14)

The wave impedance for spherical waves is dependent on both frequency and direction and varies
with position z. For outgoing wave components (B = 0),

_P(t) [ jke
Z(z)= V) = pc (m) : (1.15)

while the incoming wave impedance is given by Z*(x) or the complex conjugate of the outgoing wave
impedance. For kz 3> 1 or when z is much greater than one wavelength, these impedances reduce
to pc, which is the wave impedance of plane waves of sound. In effect, one-dimensional spherical
wave components far from their source can be approximated by plane waves of sound. Near the
source, however, kz < 1 and pressure and particle velocity wave components grow increasingly out

of phase.

1.2 Lumped Acoustic Systems

An acoustic system in which sound wave propagation is determined by solutions to the wave equation
is referred to as a distributed system. In such a structure, system parameters, such as air mass and
elasticity, are considered evenly distributed throughout its volume and wave variables are given by
functions of both space and time. It is often convenient or necessary to determine a lumped input-
output response of sound wave propagation through an acoustic system without knowing the exact
behavior everywhere within it. This is the case when wave propagation within an acoustic structure is
extremely complex and inadequately represented by solutions to the one-dimensional wave equation.
A lumped acoustic response may be experimentally measured which describes the total system output
for a known input but which provides no information regarding wave propagation at points within
the system. A lumped system description is also convenient when analyzing the behavior of large
wavelength (or low-frequency) sound waves within small structures. In the low-frequency limit, an
acoustic system can be characterized in terms of fundamental acoustic components analogous to
masses, springs, and dampers in mechanical system analysis or inductors, capacitors, and resistors
in electrical circuit analysis. The remainder of this section explores lumped acoustic systems in the
low-frequency limit. The determination of lumped system responses by experimental measurement
will not be considered in this study.

Assuming an acoustic system is well approximated by linear theory, its frequency-domain response
can be given by an admittance T', or the velocity response of the system to an applied pressure input,
as represented in Fig. 1.2a. Velocity can take the form of either particle velocity V (in meters per

second) for systems in open air or volume velocity U (in meters cubed per second) for enclosed
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structures. Inversely, a system can be characterized by its pressure response to an applied velocity
input, or its impedance, as represented in Fig. 1.2b. The impedance or admittance of a system
is a frequency-domain description, indicating the relationship between pressure and velocity at a

particular frequency.

P(s) ——{ T'(s) —— U(s) U(s) — Z(s) — P(s)

(a) (b)

Fig. 1.2. Linear acoustic system block diagrams.

The fundamental wavelength of sound produced by a musical instrument is generally much larger
than the dimensions of certain of its component parts, such as toneholes and mouthpieces. The
behavior of large wavelength sound waves within small structures is generally well approximated by
assuming uniform pressure throughout the volume of interest (Fletcher and Rossing, 1991). In the
low-frequency limit, the air within a short, open tube will be displaced by equal amounts at both
its ends when subjected to an external pressure at one end only. If the length and cross section of
the tube are given by L and S, respectively, then the enclosed air has a mass of pLS, where p is the
density of air. The frequency-domain response of this system is analyzed by assuming an applied
sinusoidal pressure P of frequency Q2. Using Newton’s second law (force = mass x acceleration),

dUu

av
P§=pLS — =pL—,

(1.16)

where U = SV is the acoustic volume velocity of the air mass. The volume velocity response to the
applied pressure will also vary sinusoidally with frequency 2, so that Eq. (1.16) reduces to
JQpL

P@) = 222u(). (1.17)

The acoustic impedance of the tube, expressed in terms of the Laplace transform with frequency
variable s = o + j, is completely reactive (¢ = 0) and is given by
Z(s) = g,% o (%) ’ (1.18)
for zero initial volume velocity. In the low-frequency limit, the open tube is called an acoustic
inductance or an inertance and it has a direct analogy to the inductance in electrical circuit analysis
or the mass in mechanical system analysis. The impedance of a mechanical mass is equal to ms, and
thus the open tube has an equivalent acoustic “mass” equal to pL/S. An inertance is also sometimes
referred to as a constriction (Morse, 1981, p. 234).
The acoustic analog of the electrical capacitor or the mechanical spring is a cavity, or a tank

(Morse, 1981, p. 234). In the low-frequency limit, an applied external pressure will compress the
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enclosed air, which then acts like a spring because of its elasticity. Assuming a cavity volume Q,
an increase in applied pressure P will decrease this volume by an amount —dQ. As discussed in
the previous section, the ratio of change in volume to original volume is called volume strain or
dilation and is given by € = —dQ/Q. For small dilation, Hooke’s law for fluids provides an accurate
approximation to the relationship between the increase in applied pressure, the resulting strain, and
the bulk modulus B,

P %@ = B, (1.19)

The bulk modulus for sound waves is nearly adiabatic' and is expressed in terms of the density of
air p and the speed of sound ¢ as Bysg = pc®. Using Eq. (1.19) and writing the change in cavity

volume, —d@, in terms of the sinusoidal volume velocity U as

—dl) = / Udt = ]% , (1.20)

the acoustic impedance of the cavity is given in terms of the Laplace transform by

Fia)= (”Qﬁ) . (1.21)

8

The impedance of a mechanical spring is equal to k/s, so by analogy the acoustic cavity has an
equivalent “spring constant” equal to pc?/Q.
There are instances when losses within an acoustic system can be approximated by a real-valued,

frequency-independent resistive component with impedance
Z(s)=R. (1.22)

The volume velocity and applied pressure are in phase, analogous to an electrical resistor or a
mechanical dashpot. Viscous and thermal losses in short acoustic tubes may be characterized in this
way, though such losses in larger structures are most accurately represented by complex, frequency-
dependent parameters.

The Helmholtz resonator can be easily analyzed in the low-frequency limit in terms of an acoustic
inertance and cavity. The enclosed volume of air, or cavity, is coupled to the outside air via the short
tube. If excited at the open end of the short tube, this structure is acoustically equivalent to the
mechanical mass-spring system shown in Fig. 1.3. A volume velocity impulse initiated by an external
pressure source will flow through the short tube and the cavity in series, so that the resulting lumped

impedance of the resonator is given by the sum of the short tube and cavity impedances,

B (BSE) .k (p—g) % (1.23)

tAn adiabatic process is one in which no heat flows into or out of the system. Under normal circumstances, a gas
which is compressed will incur a temperature increase unless heat can flow out of it. In sound waves, the thermal
conductivity of air is low and the distance between adjacent compressions and expansions is relatively large. Further,
the rate or frequency of these alternating compressions and expansions is high. Therefore, this process is nearly
adiabatic.
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Fig. 1.3. The Helmholtz resonator and its mechanical analog,.

The resonance frequency of this system occurs at the impedance minimum and is easily found to be
Qo = ¢(S/LQ). A musical instrument which operates under the same principles as the Helmholtz

resonator is the ocarina.

1.3 Woodwind Instrument Bores

The resonator of a musical instrument serves to emphasize certain desirable frequencies of sound,
corresponding to its normal modes. A wind instrument bore is a subclass of general resonators and
functions to encourage the production of sustained, quasi-periodic oscillations of sound within a
feedback system. In order that the bore be musically useful, it is necessary that it support sound
production over a wide range of frequencies. This is accomplished by allowing the tube length to
be variable while also encouraging sound production based on higher normal modes. Acoustically
speaking, two principle requirements need be met for a wind instrument resonator to be musically
useful. It is first necessary that the ratio between the first and successively higher normal modes
be independent of horn length. In this way, the perceived timbre or spectral content of sounds
will remain similar over the full range of the bore. Further, this permits the production of sounds
based on second and third resonances, or overblowing, over the full length of the tube. Secondly, a
stable regenerative process associated with the nonlinear excitation mechanism in wind instruments
is favored when the successive partial frequencies, particularly the first few, are related to the
fundamental frequency by integer multiple ratios (Benade, 1959, 1977).

In woodwind instrument bores, the primary mode of wave propagation is along the central axis
of the tube. Equations describing this wave motion are possible if a coordinate system can be
found in which one coordinate surface coincides with the walls of the given pipe and in which the
Helmholtz equation, Eq. (1.7), is separable (Fletcher and Rossing, 1991, p. 187). There are 11
coordinate systems in which the Helmholtz equation is separable. One-parameter waves, however,
are possible only in rectangular, circular cylindrical, and spherical coordinates, which correspond to
pipes of uniform cross-section and conical horns, respectively (Putland, 1993). Wave propagation

in the other separable coordinate systems must be comprised of an admixture of orthogonal modes
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and be a function of more than one coordinate. In order to perfectly meet the requirements of
a musically useful wind instrument bore as discussed above, one-parameter wave propagation is
necessary. Thus, cylindrical pipes and conical horns are the two obvious choices for wind instrument
bores. All woodwind air columns are based on shapes roughly corresponding to cylinders or cones.
Further, accurate representations of wave propagation in actual, imperfectly shaped bores can be
well approximated in terms of cylindrical and conic sections.

The three-dimensional wave equation derived in Section 1.1 applies to the propagation of sound
waves in any homogeneous, isotropic fluid and in any coordinate system. In this section, propagation
within cylindrical and conical bores is explored by solving the associated Helmholtz equation in
circular cylindrical and spherical coordinates and applying the boundary conditions appropriate for
each of these structures. The presence of a rigid tube implies the fundamental limitation that the
acoustic volume flow normal to the walls be zero at the boundary. This condition is usually expressed
in terms of the pressure wave component p as n- Vp = 0 on the boundaries, where n is the unit

vector normal to the boundary.

1.3.1 Cylindrical Bores

In the woodwind family, clarinets and flutes are the most prominent members built with cylindrical
bores. Plane waves of sound can theoretically propagate without reflection or loss along the principal
axis of an infinite cylindrical pipe, assuming the walls are rigid, perfectly smooth, and thermally
insulating. Longitudinal wave motion is also possible in planes orthogonal to the principal axis,
though it will be seen that these transverse modes are only weakly excited in musical instrument
bores of small diameter. This section presents the basic properties of cylindrical tubes, without

accounting for radiation at open ends, the effects of toneholes, or viscothermal losses.

; 4
Cross-section =1 z

Fig. 1.4. A cylindrical pipe in cylindrical polar coordinates.

A short section of cylindrical pipe in cylindrical polar coordinates (r, ¢, ) is depicted in Fig. 1.4.
The wave equation in this geometric coordinate system is

10 ( op 10%p 8% 18%
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The Helmholtz equation is separable in circular cylindrical coordinates, resulting in the following

differential equations

6%®
Fr +m?2® =0, (1.25a)
o e o - [
rdr(rdr)+(ﬂr m?) R =0, (1.25b)
22X .
e + (k2 - B ) X =0, (1.25¢)

where m and [ are separation constants. Equation (1.25a) governs motion along transverse concentric
circles in the pipe. The solution ®(¢) must be periodic with period 27, so that m = 0,1,... and
®,, = cos(m¢), @}, = sin(me). Solutions to Eq. (1.25b) describe transverse radial motion within
the pipe. The boundary condition at the tube walls is Op/0r = 0, which allows a solution for the
radially dependent variable of the form (Benade and Jansson, 1974a; Fletcher and Rossing, 1991)

Ryun(r) = Jum ("";"’") , (1.26)

where Jp, is a Bessel function, a is the radius of the cylinder, and a,,, denotes the positive zeros of
the derivative J,,(amn). Pressure wave motion of this form results in transverse circular nodal lines.

Axial motion in the cylinder is described by solutions to Eq. (1.25¢), which have the form
X(z) = Ceikmnz, (1.27)
where C' is a constant,
k12'nn = kz e 162 = k2 ax (amn/a)2, (128)

and k is the wave number for propagation in free space. Boundary conditions in z determine exact
solutions to Eq. (1.27). A complete general solution to the Helmholtz equation in circular polar

coordinates is then given by

Poun(r;¢,) = 8($)R(r) X (z) = Py cos(mg)Jn (T2 ) e~ikmn, (1.29)

The wavenumber for a sinusoidal disturbance propagating axially along the tube, k., varies with
mode (m,n). One-dimensional plane-wave propagation corresponds to mode (0,0), for which koo =
k = Q/c. Higher modes, however, will propagate only if k., is positive, so that the frequency must
exceed a cutoff value given by

By C

Q= = (1.30)

For frequencies less than (2., the mode is evanescent and decays exponentially with distance. The
plane-wave mode has a cut-off frequency of zero and no transverse wave motion. The next two
propagating modes are the (1,0) and (2,0) nodal plane modes, which have cutoff frequencies 2, =
1.84c/a and Q. = 3.05c/a, respectively. A typical clarinet has a radius of about 7.5 millimeters
for a majority of its length, while that of a flute is about 8.5 millimeters. With the speed of sound
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approximated by ¢ = 347.23 meters per second for a temperature of 26.85°C, these cutoff frequencies
are 13.56 kHz and 22.5 kHz for the clarinet and 11.96 kHz and 19.8 kHz for the flute. The first
propagating transverse mode is well within the range of human hearing. However, excitation of
this mode requires transverse circular motion, which will not occur with any significance in musical
instruments. Evanescent mode losses may be possible in a woodwind instrument mouthpiece and
near toneholes, though such losses will be minimal for the purposes of this study.

Given the previous analysis, wave motion in cylindrical woodwind bores is primarily planar and
along the principal axis of the tube. The equation of motion for a pressure wave propagating in this

way along the z-axis with sinusoidal time dependence has the form
P(z,t) = Cel¥t-k2), (1.31)

as found by substitution in Eq. (1.29) for the (0,0) mode. In order to determine the associated
volume velocity within the tube, the three-dimensional expression for Newton’s second law found in

Section 1.1 [Eq. (1.5)] can be rewritten for one-dimensional plane waves as

Op 0%¢
This same expression in terms of volume velocity is
Op p OU
dr ~ S at’ (1.33)

where § is the cross-sectional area of the pipe. For pressure waves given by Eq. (1.31), the associated

volume flow is found from Eq. (1.33) as

Uz t) = (%) ek} (1.34)

and the characteristic or wave impedance is

20(0) = 3 = 5. (1.35)
Similar relationships were previously found in Section 1.1 for plane waves of sound in free space,
though in terms of particle velocity instead of volume velocity. These traveling-wave components of
pressure and velocity are in-phase and the wave impedance is purely resistive.

The discussion thus far has been concerned only with bores of infinite length. In a pipe of finite
length, propagating wave components will experience discontinuities at both ends. A longitudinal
wave component which encounters a discontinuous and finite load impedance Z; at one end of
the tube will be partly reflected back into the tube and partly transmitted into the discontinuous
medium. Wave variables in a finite length tube are then composed of superposed right- and left-going

traveling waves. In this way, sinusoidal pressure in the pipe at position z is given by

Plzt) = [Ae=t%= 4 Beik®] I, (1.36)
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where A and B are complex amplitudes. From Eq. (1.33), the corresponding volume velocity is

found to be

Uls,t) = (pic

= Z—l- [Ae‘j'“” s Bej'”] eIt (1.37)
0

) [Ae—jkz _Bejkz] ejﬂt

At any particular position x and time ¢, the pressure and volume velocity traveling-wave components
are related by
Pt = Z,U* P =-Z,U" (1.38)

with
P=Pt 4+ P~ U=Ut+U" (1.39)

The plus (4) superscripts indicate wave components traveling in the positive z-direction or to the
right, while negative (—) superscripts indicate travel in the negative z-direction or to the left. The
characteristic wave impedance Z; is a frequency-domain parameter, though for plane waves of sound
it is purely real and independent of position. Therefore, these relationships are equally valid for both
frequency- and time-domain analyses of pressure and volume velocity traveling-wave components.
Traveling waves of sound are typically reflected at an acoustic discontinuity in a frequency-
dependent manner. A frequency-dependent reflection coefficient, or reflectance, characterizes this
behavior and indicates the ratio of incident to reflected complex amplitudes at a particular fre-
quency. Similarly, the ratio of incident to transmitted complex amplitudes at a particular frequency
is characterized by a frequency-dependent transmission coefficient, or transmittance. For a pipe
which extends from z = 0 to # = L and is terminated at + = L by the load impedance Z L, the

pressure wave reflectance is

»| o

: ZL — Z
2jkL | ZL 0
=e [ZL Zo] (1.40)

and the transmittance is

Pllat) _ gz [ﬂ} _ (1.41)

ZL+ Zy

h

The phase shift term e~2/%L in Eq. (1.40) appears as a result of wave propagation from z = 0 to
z = L and back and has unity magnitude. Sound radiation at the open end of a tube and the
corresponding characteristics of the load impedance Z;, will be covered in Section 1.4. However, for
low-frequency sound waves, the open end of a tube can be approximated by Z; = 0. In this limit,
the bracketed term of the reflectance becomes negative one, indicating that pressure traveling-wave
components are reflected from the open end of a cylindrical tube with an inversion (or a 180° phase
shift). There is no transmission of incident pressure into the new medium when Z; = 0. If the
pipe is rigidly terminated at z = L, an appropriate load impedance approximation is Z; = 00,
corresponding to U(L,t) = 0 for all time. The bracketed term in Eq. (1.40) is then equal to one,

which implies that pressure traveling waves reflect from a rigid barrier with no phase shift and no
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attenuation. At the same time, the pressure transmittance magnitude is equal to two for the rigid
barrier approximation. Though physically unintuitive, this value reflects the assumed continuity of
pressure at £ = L, which has a magnitude of 2A4.

The impedance at = = 0, or the input impedance of the cylindrical tube, is given by

ZIN = 553’3 = Zp [jtg] (1.42)
Zy cos(kL) + jZy sin(kL)
Zo [ jZsin(kL) + Z, cos(k,-L)] ; (1.43)

The input impedance of finite length bores can be estimated using the low-frequency approximation

Zy, =0 for an open end and Z; = oo for a closed end. Equation (1.43) reduces to
ZiN = —jZy COt(k‘L) (1.44)

for the rigidly terminated pipe and
Zin = jZotan(kL) (1.45)

for the ideally open pipe. In the low-frequency limit, tan(kL) is approximated by kL and the input
impedance of the open pipe reduces to jQpL/S. This is the same expression found in Section 1.2
for the impedance of a short open tube, or an acoustic inertance. Making a similar approximation
for cot(kL), the input impedance of the rigidly terminated pipe reduces to —(j/ Q)(pc?/LS), which
is equivalent to the impedance of a cavity in the low-frequency limit. By equating an open pipe
end at z = 0 with a value of Z;y = 0 in the previous expressions, the resonance frequencies of the

open-closed (o-c) pipe and the open-open (0-0) pipe are given for n = 1,2,... by

(0-¢) e (2n _— l)C

f e (1.46)
(0-0) _ nc

f 30 (1.47)

respectively. The open-closed pipe is seen to have a fundamental wavelength equal to four times its
length and higher resonances which occur at odd integer multiples of the fundamental frequency. The
open-open pipe has a fundamental wavelength equal to two times its length and higher resonances
which occur at all integer multiples of the fundamental frequency.

The input impedance of an acoustic structure provides valuable information regarding its natural
modes of vibration. Various methods for measuring and/or calculating the input impedance of
musical instrument bores have been reported (Benade, 1959; Backus, 1974; Plitnik and Strong,
1979; Caussé et al., 1984). No wind instrument is constructed of a perfectly uniform cylindrical
pipe. However, it is possible to approximate non-uniform bore shapes with cylindrical sections, as
illustrated in Fig. 1.5. The input impedance of such a structure can then be estimated in terms
of the individual cylindrical section impedances. The calculation procedure is initiated at the last
of a sequence of cylindrical sections by applying Eq. (1.43) with an appropriate approximation for

the load impedance Z, at the output of the structure. The input impedance Z;y determined for
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(b)

Fig. 1.5. A non-uniform bore (a) and its approximation in terms of cylindrical sections (b).

this section then becomes the load impedance for the adjacent section. Working back from the
output end of the bore, the input impedance is calculated for the entire acoustic structure. These
calculations can be formulated in terms of transmission matrices (Keefe, 1981) which relate pressure

and volume velocity at the input and output of a single cylindrical section of length L as

HEMH

and where the lossless transmission-matrix coefficients are given by

a = cos(kL)

b = jZysin(kL)
= L

Fo sin(kL)

d = cos(kL).

In this way, each cylindrical section is represented by a separate transmission matrix, according to
its particular length and radius. By comparison with Eq. (1.43), the input impedance of the section
can be calculated from the transmission-matrix coefficients as

il b+aZp

L PPN S
W Sk el

(1.49)

For a sequence of n cylindrical sections, the input variables for each section become the output
variables for the previous section. The transmission matrices can then be cascaded as
P| _ |a b az by an  bn
Uo (&3] d1 C2 d2 Cn dn

Py,
UL
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= [ABHPL] (1.50)
C D||Ug

A B 2| ai b
[C D]:H[q d‘], (1.51)

f=1

where

and the input impedance found for the entire acoustic structure as
ZIN = ————. (1.52)

As an example of this procedure, the input impedance of the cylindrical section structure shown
in Fig. 1.5(b) is calculated and assumed to approximate the input impedance of the non-uniform
bore shape of Fig. 1.5(a). Table 1.1 provides hypothetical dimensions for these structures which
are used in the calculations. Boundary layer effects are ignored, though a theoretically accurate

representation of Z; at the open end of the bore is incorporated. Figure 1.6 is a plot of the

Bore Bore Cylindrical
Position | Diameter Section
(z) at z Diameter
0.0 0.016 0.016
0.1 0.016 0.020
0.2 0.024 0.024
0.3 0.024 0.032
04 0.040 0.040
0.5 0.040 0.036
0.6 0.032 0.032

Table 1.1. Hypothetical dimensions (in meters) of the bore shape shown in Fig. 1.5(a) and its
approximation by cylindrical sections in Fig. 1.5(b).

calculated input impedance of the structure in Fig. 1.5(b). Frequency values have been indicated
over the first six impedance peaks in order to clearly point out the inharmonicity of this structure’s
normal modes. The accuracy of the approximation is, of course, dependent on the size and number

of cylindrical sections used to approximate the actual bore shape.

1.3.2 Conical Bores

Woodwind instruments constructed with bores which are primarily conical in shape include oboes,
bassoons, and saxophones. Spherical waves of sound can theoretically propagate without reflection
or loss away from the apex and along the principal axis of an infinite conical bore, assuming the walls
are rigid, perfectly smooth, and thermally insulating. Longitudinal wave motion in conical bores is
also possible along orthogonal trajectories to the principal axis. While these transverse modes are

only weakly excited in most musical instruments, they can become significant, for example, in the
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Fig. 1.6. Theoretical input impedance magnitude, relative to Zy at = 0, of the cylindrical section
structure shown in Fig. 1.5(b).

vicinity of a strongly flaring bell. This section presents the basic properties of conical bores, without

accounting for radiation at open ends, the effects of toneholes, or viscothermal losses.

! 4
Cross-section z=10 e=1L

Fig. 1.7. A conical section in spherical coordinates.

A conical bore section in spherical coordinates (z, @, 6) is depicted in Fig. 1.7. The wave equation

in this geometric coordinate system is

1 8 { .00 1 8 (. .ap r g 1
z? Oz (a: Bx) i z2sin 6 59 (Smeae * T2

2

Q

p
22sin?20 092 2 o2 (1.53)

The Helmholtz equation is separable in spherical coordinates, and the resulting differential equa-

tions describe sinusoidal wave motion, or standing-wave distributions, along each of the spherical
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coordinate axes,

o2

Fre +m?® =0, (1.54a)
d (. ,dO g m _
d*(zX) g _

20, (- 2) )=, (L340

where m and 3 are separation constants. Equation (1.54a) governs sinusoidal motion along transverse
concentric circles in the cone. The solution ®(¢$) must be periodic with period 27, so thatm = 0,1, ...
and ®,, = cos(m¢), ®;, = sin(me). Solutions to Eq. (1.54b) describe transverse radial motion within
the cone and are given by associated Legendre functions

m/2 dm(')n

O (y) = (1-v*) T

(1.55)

where y = cos(f) and 8 = n(n+1). In order that the Legendre functions remain finite over the range
0 < 6 < m, n must be an integer equal to m or larger (Morse and Feshbach, 1953, p. 1462). However,
for cones of central angle 26y, n will in general be nonintegral because of the limited domain of 6
(Benade and Jansson, 1974a). Pressure wave motion of this form results in transverse circular nodal
lines which vary in diameter with distance from the cone apex. Axial motion in the cone is described
by solutions to Eq. (1.54¢c), which have the form

X(2) = (k2) 4T, 4 (k2), (1.56)

where J,, %(kw) is a Bessel function. A complete general solution of the Helmholtz equation in

spherical coordinates is then given by

Ppn(z,9,0) = 8(4)0(6) X (z) = (_kl;o)_ cos(me)O7(cos ) J,,, 1 (kz). (1.57)

1
2

One-dimensional spherical-wave propagation along the central axis of the cone is possible for m = 0

and # = 0, in which case Eq. (1.57) reduces to a general solution of the form
C .
P(z) = ;e_J’”, (1.58)

where C' is a constant and k is the wave number in open air. Waves of this type will propagate at
all frequencies.

The boundary condition at the tube wall, or at 6 = 6, is Op/86 = 0, which can be met by
adjusting the values of m and n so that an extremum of ©(cos#) occurs at the wall. Calculation
of the Legendre functions for nonintegral n is nontrivial, and an accurate determination of cutoff
frequencies for these modes is beyond the scope of this study. For axial symmetric waves (m =0),
Hoersch (1925) has presented a method for determining values of n which satisfy the boundary

condition in conical horns of various angles. Typical values of 6 for saxophones, oboes, and bassoons
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are 2°, 1.5°, and 0.5°, respectively (Nederveen, 1969). Using this procedure, the lowest values of
n calculated for these angles are 109.27, 145.86, and 438.58, respectively. Computer calculations
using MATLAB® of the associated Legendre functions for integer values of n support these values
and further indicate that solutions with m = 1 and n approximately equal to 53, 70, and 213,
respectively are possible. These are nodal plane modes which correspond to the (1,0) mode in
cylinders. Cutoff frequencies for these values of n are determined where the expression k2 — 32 /22 in
Eq. (1.54c) becomes positive. These cutoff frequencies are dependent on z, so that waves of sinusoidal
type having 3 # 0 are only possible in the outer or wider portions of a cone (Benade and Jansson,
1974a). Near the cone tip, any higher order modes that are excited will be evanescent. For the m = 1
mode solutions given above, the corresponding cutoff frequencies are approximately f. = 2.94/z kHz
for saxophones, f. = 3.87/x kHz for oboes, and f. = 11.72/z kHz for bassoons, where z is given in
meters. Alto saxophones, oboes, and bassoons have approximate lengths of 1 meter, 0.64 meters,
and 2.5 meters, and thus transverse modes can propagate well within the audio spectrum at certain
locations in these instruments. In comparison to cylindrical tubes, these higher modes propagate at
much lower frequencies. However, excitation of the m = 1 mode requires transverse circular motion,
which will not occur with any regularity in musical instruments. As mentioned with regard to
cylindrical bores, evanescent mode losses may occur in a woodwind instrument mouthpiece and near
toneholes. It is expected, however, that such losses will generally be insignificant for the analyses of
this study.

For musical purposes, the principal mode of wave propagation in conical tubes is spherical and
along the central axis of the tube. During a steady-state excitation, sinusoidal pressure at position
 in a finite length conic section is composed of superposed spherical traveling-wave components of
the form

Plz,t) = [ge_j’” + —f—eﬂ”] eI (1.59)

where A and B are complex amplitudes and sinusoidal time dependence is assumed. The associated
volume velocity in the cone is found by rewriting the three-dimensional expression for Newton’s

second law [Eq. (1.5)] for one-dimensional spherical waves as

o T
oz~ S(z) at”’ (2.80)

where S(z) is the surface area of a spherical cap which intersects the principal axis of the pipe at

position zf. For pressure waves of the form of Eq. (1.59), the corresponding volume flow is found
using Eq. (1.60) as

Up,t) = e [A (1 ¥ ]%) T L (1 - L) ejkr] Ry

zpc jkz
1 A : B . ;
FL | —jkx _ jkz | _jQt
= [Zo(z)e —Z(’,“(z)e ] et (1.61)

tA derivation of the spherical wave front surface area is provided in Appendix A.
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The wave impedance for spherical traveling-wave components propagating away from the cone apex

is

Pz C ik C 1

i) = ng; - S/zw) (1—]+-jk:c) - Sp(z) (1+ ﬂ%) . e
which depends both on position z and frequency €. The characteristic impedance for spherical
traveling-wave components propagating in a cone toward its apex is given by Z3(z), or the complex
conjugate of Zo(z). For kz >> 1, the spherical wave fronts become more planar in shape and Z,(z)
approaches pc/S(x), the wave impedance for plane waves in a duct of cross section S. Near the apex
of the cone, however, the imaginary part of Zy(z) becomes increasingly dominant and in the limit
as z — 0, the pressure and velocity traveling-wave components become 90° out of phase at the cone

tip. It is intuitively helpful to rewrite the characteristic impedance in the form

1
ZO(:L') = Sk , Sk’ (163)
pc ¥ JQpzx

which is equivalent to the resistive wave impedance of a cylindrical bore in parallel with a lumped
inertance of acoustic mass pz/S(z)!. At low frequencies and near the conical apex, the inertance
effectively shunts out the resistive element.

At any particular position z and frequency €, sinusoidal pressure and volume velocity traveling-

wave components are related by
Pt(z,Q) = Zo(z,Q) Ut (z,9Q) P~ (2,9) = -Z§(z,Q) U (z,Q) (1.64)

with
P{x, ) = P+(z,Q) + P~ (z,9) U{z,0) = U+(a:,ﬂ)+U_(z', Q) (1.65)

The plus (+) superscripts indicate wave components traveling in the positive z-direction or away
from the cone apex, while negative (—) superscripts indicate travel in the negative z-direction
or toward the apex. These relationships are similar to those for the cylindrical bore, with the
important difference that the characteristic impedance for waves traveling toward the cone tip is the
complex conjugate of that for waves traveling away from the apex. In other words, wave propagation
toward the apex is different from propagation away from the apex because a conical waveguide is
nonsymmetric about its midpoint (Keefe, 1981, p. 70). This point has an important consequence in
the time-domain analysis of wave propagation in conical tubes, to be discussed later in this study.
Also, because the wave impedance for spherical-wave components is frequency dependent, these
relationships are valid only for frequency-domain analyses.

Figure 1.8 illustrates a divergent conical frusta for which the apical section is truncated at z = z,.

The frequency-domain pressure wave reflectance and transmittance for such a section, assuming a

*While mechanical impedance is measured in units of kilograms/second, acoustic impedance is given in units of
kilograms/(meters*. second). Thus, acoustic mass is not equivalent to mechanical mass.
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Fig. 1.8. A divergent conical section and its associated dimensional parameters.

load impedance Zj, at z = L, are given by

B _ _ejr [Z0Z5(L) — Zo(L)Z5(L)
a= [ZiZO(L) + Zo(L)Z3(L) |’ (1.66)
and
p(L,t) e L[ Z;Zo(L) + Z,Z¢(L)
A L I:ZLéo(L) + Zo(LL)Zg(L)] : (1.67)

respectively. The phase shift term e~2/*L in Eq. (1.66) represents wave propagation to x = L and
back and has unity magnitude. The length parameter in this term is 2L because the cone apex is
defined at = 0. In this context, it would be more intuitive to set the input or small end of the cone
at z = 0, so that the length parameter is equal to two times the length of the conic section. In order
to maintain a consistent approach throughout this section, however, the conventions established
in Fig. 1.8 will continue to be followed. The 1/L factor in the transmittance is characteristic of
conical waveguides and results from the spreading of pressure across an increasing surface area as
the traveling-wave component of pressure propagates away from the cone apex (Benade, 1988).
The load impedance at the apex is given by Z; = oo and in the limit as z — 0, the term in
brackets reduces to negative one. Thus, while the apex of a cone is a pressure antinode, pressure
traveling-wave components reflect from the apex with an inversion, a behavior which at first appears
paradoxical. It should be remembered that the boundary condition at the tip must be met by the
sum of the two traveling-wave components and their corresponding 1 /x factors. The inversion of
reflected pressure is necessary to maintain a finite pressure at = 0, which can then be determined
by 'Hépital’s rule (Ayers et al., 1985). This behavior can also be explained in terms of pressure wave
reflection at a rigid termination, as discussed above. It was seen that pressure wave components
reflect from a rigid conical bore boundary with unity magnitude and a phase shift equal to 2 £Z,.
Since the angle of Zy(0) is 90°, pressure is reflected from the tip with a 180° phase shift or with an

inversion.
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Fig. 1.9. A convergent conical section and its associated dimensional parameters.

The input admittance Y (z) of a conical bore is more simply stated than its input impedance.
For a conic section truncated at z = ¢, the input admittance is

Yin(zo) = 1 _ Uzot) _ S(z0) {le_jk“ . %eﬂm] P }, (1.68)

Z(z0) - P(z0,t) ~ pc e—Jkzo 4 %ejkzo jkazo

where the pressure wave reflectance B/A is determined by the length of the bore and the boundary
conditions at the opposite end, as discussed above. Equation (1.68) applies equally well to bores
of increasing and decreasing diameter by using either positive or negative values of = as indicated
in Figs. 1.8 and 1.9, respectively. Equation (1.68) may be interpreted as a parallel combination of
an acoustic inertance and a term reminiscent of the impedance of a cylindrical waveguide (Benade,
1988). The impedance of the acoustic inertance, which has an equivalent acoustic mass pxg /S(zo),
approaches infinity as o — 0. The input admittance seen from the open end (at z = —L) of a

complete cone reduces to

- - S[oge] 1)

pc eikL  Beo—jkL "~ kL
_ S(L) [[e*L 4 e IkL 1
T pe elkL — g—jkL JkL
S(L) 1
= —= |cot(kL) — — ’
where the pressure reflectance at the cone apex (z = 0) is negative one. An open end at z = —L can

be approximated by the low-frequency estimate Y7y = co. The resonance frequencies of a complete
cone ideally open at its large end are thus found at the infinities of Eq. (1.69), which are given for
n=1,2,.. by
ne
= 3 (1.70)
The complete cone with open mouth has a fundamental wavelength equal to two times its length

and higher resonances which occur at all integer multiples of the fundamental frequency, as was
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observed for open-open cylindrical pipes. The anti-resonances of the complete cone, however, do not
fall exactly midway between its resonances, but are influenced by the inertance term in Eq. (1.69).

The complete cone, of course, is musically useless. Conical bores are always truncated to some
extent, to allow excitation at their small end. Assuming the mouth of the cone at z = L is ideally

—2jkL

open, so that Z, = 0, the reflectance B/A becomes —e and the input admittance of a truncated

cone reduces to @)
S(L 1
Yin(zo) = e [COt(k’Y) = k_wo] ; (1.71)

where v = L — z¢. If the small end of the cone, at x = zg, is assumed ideally open, the resonance
frequencies of the open-open (0-0) conic frustum are at the infinities of Eq. (1.71), which are given
forsn = 1;2,... by

(0-0) _ ne o IE 1
f —2(L—z0) 2y (1.72)

Thus, the higher natural frequencies of the open-open conic frustum are also related to the funda-
mental by integer multiple ratios. If the input end of the cone at z = z¢ is assumed ideally closed,
which is nearly the case for reed-driven conical woodwind instruments, the resonance frequencies
are found at the zeros of the input admittance. In this case, the partials of the closed-open conic
frustum do not occur at exact integer multiples of the fundamental frequency, but are generally more
widely spread apart depending on the magnitude of zo. The natural frequencies of the truncated

cone closed at its small end are found by solving the transcendental equation
tan(ky) = —kz,. (1.73)

Equation (1.73) can be rewritten in the form

o (of) 25 (o)

where 8 = z9/L and fy = ¢/(27) is the fundamental frequency for the open-open conic frustum of
length v (Ayers et al., 1985). Figure 1.10 illustrates the partial frequency ratios for a closed-open
conic frustum, relative to the fundamental frequency of an open-open conic frustum of the same
length, for 3 = 0 (complete cone) to 8 = 1 (closed-open cylinder). The dotted lines indicate exact
integer relationships above the first partial and serve only to make more apparent the stretching of
the partial ratios. The perfect harmonicity of the partials of an open-open conic frustum are distorted
when a single-reed excitation mechanism is placed at one end. The fundamental frequency of the
conic section is most affected by truncation and closure, as the inertance term in the admittance is
largest for low frequencies. In terms of the fundamental wavelength of an open-open conic frustum
of the same length, the inertance contributes a positive length correction which increases with
truncation xo but decreases with frequency. Viewed in terms of the normal modes of a closed-
open cylinder, however, the inertance contributes a negative length correction which is inversely

proportional to truncation z¢ and frequency.
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Fig. 1.10. Partial frequency ratios, relative to fo, for a closed-open conic frustum.

The approximation of real wind instrument bore shapes and the calculation of their associated
input impedances using cylindrical sections was described in Section 1.3.1. A similar procedure is
also possible with conical sections, and usually results in more accurate approximations. Figure 1.11
illustrates the use of both cylindrical and conical sections to approximate the non-uniform bore
shape originally shown in Fig. 1.5. This approximation is clearly better compared with that using
cylindrical sections.

For a diverging conical section as shown in Fig. 1.8, the input and output pressure and volume

velocity are related through the transmission matrix

a b PL
afie sl ar

where the lossless conical waveguide transmission-matrix coefficients are given by (Keefe, 1981;

Caussé et al., 1984; Mapes-Riordan, 1993; van Walstijn and de Bruin, 1995)

e (L)cos(kv) (,:70) sin(k7),

) JRz, sin(k7),

(T
) (&) () s~ (2) () e}
0= (3) e+ (1) st

PxO
U:cO

o
]
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P

(b)
Fig. 1.11. A non-uniform bore (a) and its approximation in terms of cylindrical and conical sections

(b).

R, = pejnal o» and ag, is the radius at = x¢. These coefficients have been simplified by assuming
that spherical wave fronts at the beginning and end of each section are reasonably well approximated

by plane wave fronts. Without such an assumption, the transmission-matrix coefficients are given
by

5 i 11?%? [(32) costkn) - () sin(k)]
b = (3)iZosin(kn),

= (@) {69+ () oo ()i}
d = (%) [cos(k'y) + (kim) Sin(k’Y)] )

where R;, = pc/S(zo) and the surface area of the spherical wave front which intersects the principle
axis of the cone at # = zo with half angle 6 is S(z¢) = 2rz3(1 — cos)!. A converging conical
section, as shown in Fig. 1.9 and also found at the sixth segment of Fig. 1.11b, is represented by the

inverse conjugate matrix of Eq. (1.75) or

Prl fao]l[era
E R (| o

where all length parameters in the transmission-matrix coefficients are given by positive values.
The input impedance of the cylindrical and conical section structure of Fig. 1.11b is calculated and

plotted in Figure 1.12. Boundary layer effects are ignored in the calculations, though a theoretically

tA derivation of the spherical wave front surface area is provided in Appendix A.




1.3. WOODWIND INSTRUMENT BORES 25

accurate approximation to Zy at the open end of the bore is employed. The impedance peak
frequencies and amplitudes are close to those found using cylindrical sections only [Fig. 1.6] and
most likely represent a better approximation to the resonances of the non-uniform bore shown in
Fig. 1.11a. The accuracy of the approximation is again dependent on the number and size of the

sections used.
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Fig. 1.12. Theoretical input impedance magnitude, relative to Zy = pc/S at z = 0, of the cylindrical
and conic section structure shown in Fig. 1.11(b).

1.3.3 Boundary Layer Effects

The preceding analysis of woodwind bores assumed lossless wave propagation. In practice, however,
viscous drag and thermal conduction occur along the tube walls and cause deviations from ideal
behavior!. Friction along the walls acts to resist the acceleration of air in a pipe and decreases the
storage of kinetic energy. Thermal energy exchange between the air and tube surface violates the
assumed adiabatic character of sound waves and reduces the potential energy component of wave
motion in the pipe (Benade, 1968). These effects take place within a thin boundary layer along
the bore walls. The thicknesses of the viscous and thermal layers are dependent on the angular

frequency 2 and are given respectively by (Benade, 1968)

" 1/2
i A . -3,-1/2 5
8o (Qp) 1.6 x 1073f~1/2, (1.77)

tMolecular viscosity and heat conduction cause internal losses for wave propagation in free space as well, though to
a lesser degree than in narrow ducts (Morse and Ingard, 1968). Further losses, such as hysteresis in internal heat
absorption and nonlinear effects, will not be considered here.
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1/2
K
= ~ 1. =8 g1/ 1.
5 <ﬂp0p> 9 x 10-2f-1/2, (1.78)

where §, and J; are given in meters, f is the frequency in hertz, p is the density, 5 the viscosity,
the thermal conductivity, and C, the specific heat of air per unit volume. The frictional effects are

characterized by the parameter r,, given as the ratio of the tube radius a to the viscous boundary

i (@) e (1.79)

n
Similarly, the thermal effects are characterized by the parameter r;, which is proportional to the

layer thickness 4§,

ratio of the tube radius to the thermal boundary layer thickness &;. This parameter is given by

1
2
- (Q”CP) a. (1.80)
K
Near 300 K (26.85°C), Benade (1968) provides the numerical values
ry & 632.8af/%(1 — 0.0029AT), (1.81)
and
re & 532.2af/%(1 - 0.0031AT), (1.82)

where the tube radius a is in meters, the frequency f is in hertz, and AT is the temperature deviation
from 300 K. Within the main bore of typical clarinets and flutes, r, ~ 67.1 and 76.1, and r; ~ 56.4
and 64, respectively, at 200 Hz and 300 K.

The effects of these losses are incorporated into the wave propagation expressions by rewriting
the wave vector k as the complex number /v, — j a, where vp is the phase velocity and « is an
attenuation coefficient per unit length. The wave amplitude then decays as e~** for plane waves

or e~** [z for spherical waves. The phase velocity and attenuation coefficient are approximated for
large r by (Keefe, 1984)

el _ g v—1

=t o (52) (14 252) - a5
ST w1 1 sty Lfei -~ 14* =31
B Fleainlu iy 2fiady 1i9-3Y HMa-4 1
Vv2) |8 v 2\ 2 8\ 3 2 v 2 3 2

and

Q= (%) {(7551) <1+7;—1)+r;2 [1+7—;l—%(7;—21> —%(7;1)2] + (1.84)
() 2241 4 (5 25 5

where v is the square root of the Prandtl number

V= (%)2. (1.85)
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For the special case of air at 300 K and r, > 2, these values can be simplified to (Keefe, 1984)

vt =c7! (14 1.045r)1), (1.86)

a= (9) (1.045r; ' +1.080r; % + 0.750r, %) . (1.87)
(4]

The characteristic impedance of cylindrical ducts is also affected by viscous and thermal losses.
The ideal, real valued characteristic impedance becomes frequency dependent and is given by (Keefe,
1984)

wa=afir () (-5 -

(-2 ) () (5 152102}
sa=a((5) (- ) e - () (5] e
(B[54 ()15 - 1210

where Z is the real-valued wave impedance of the pipe in the absence of losses. For air at 300 K

and ry > 2, the characteristic impedance reduces to (Keefe, 1984)
Ze=Zo{(1+0.369r,") — j (0.369r; " + 1.149r;2 + 0.303r;%) } . (1.90)

Figure 1.13 illustrates the frequency dependence of the phase velocity and attenuation coefficient
for a bore radius of 0.008 meters. The attenuation coefficient is proportional to /F, so that high
frequency sound components are damped more than low ones. All resonance frequencies in the bore
will be lowered to some extent because the phase velocity is always less than c. Inharmonicity of
the bore resonances, particularly at low frequencies, will also occur due to the variation of vp With
frequency. The input impedance magnitude of an ideally terminated (Z, = 0) cylindrical bore with
viscous and thermal losses is shown in Fig. 1.14. The resonance peaks decrease in magnitude with
frequency, as expected from the characteristic of the attenuation coefficient. A small frequency shift
of the resonance peaks is measurable but too slight to be observed in the plot. For low- and mid-
frequency sounds, thermal and viscous losses in the main air column of a musical instrument are
generally more significant than radiation losses via open ends and/or toneholes. These effects may

also be important when considering wave behavior within the smaller tubes of woodwind toneholes.

Thermoviscous losses can be incorporated into the cylindrical and conical transmission matrices

presented in the previous sections by defining a complex propagation wavenumber I' = a+ /v, and
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Fig. 1.13. Phase velocity (v,) normalized by c vs. frequency (top); Attenuation coefficient (a) vs.
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Fig. 1.14. Input impedance magnitude of an ideally terminated cylindrical bore with viscous and
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using the complex characteristic impedance Z, as defined above. The lossy cylindrical transmission-

matrix coefficients are then given by

a = cosh(I'L)

b = Z.sinh(T'L)
& = Zic sinh(I'L)
d = cosh(T'L),

while the lossy conical transmission-matrix coefficients are (Keefe, 1981; Caussé et al., 1984; Mapes-

Riordan, 1993; van Walstijn and de Bruin, 1995)

¢ o (2) - )]

b = (%) Z,sinh(T'y),

([~ (e () e}
d = (%) [cosh(F7)+ (Fixo) sinh(I"y)].

The length parameters in these expressions remain as originally defined for cylindrical and conical

)
|

sections. The conical coefficients have been simplified by assuming that spherical wave fronts at
the beginning and end of each section are reasonably well approximated by plane wave fronts.
Thermoviscous losses are defined above for cylindrical waveguides. In order to calculate appropriate
values of I' for the conical coefficients, it is common to determine a “mean” conical section radius
which is used to define r,. The conical section characteristicimpedanceis calculated using Z, = pc/ S,
where S is the cross-sectional area at the input to the section.

The results provided above for thermal and viscous losses in a rigid pipe were derived under
the assumption that the inner walls remain isothermal during the oscillatory cycle. However, an
exchange of thermal energy at the walls inherently contradicts an isothermal condition and thus, the
heat losses discussed above are overestimated to some extent. Franken et al. (1981) have provided an
analysis of non-isothermal heat exchange in a cylindrical tube when the outside walls are assumed
isothermal. Keefe (1984) has shown that these results can be incorporated in the previous expressions
[Eqgs. (1.83, 1.84, 1.88, 1.89)] by substituting . for v, where

vy—1

Yo o i 1 (1.91)

The dimensionless parameter €,, which governs the oscillatory heat transfer characteristics of a

solid-gas interface (Keefe, 1984), is given by

c 1/2
€w = (ﬁ;) , (1.92)
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where p,, is the mass density, C,, is the specific heat, and k,, is the thermal conductivity of the tube
wall material. The effects of non-isothermal inner tube walls will not be further accounted for in

this study.

1.3.4 Time-Domain Descriptions

Because wave propagation in isolated wind instrument bores is well approximated by linear theory,
the acoustic behavior of these structures can be described using frequency-domain analysis tech-
niques. The operation of a complete wind instrument, however, is dependent on the interaction
of the air column and a nonlinear, time-varying excitation mechanism, represented by the block
diagram of Fig. 1.15. The nonlinear element, or reed mechanism in woodwind instruments, excites
a passive linear element, such as a cylindrical or conical tube. Feedback from the bore subsequently
influences the operation of the nonlinear element. In the study or simulation of such coupled sys-
tems, it is most appropriate to use time-domain representations for both the linear and nonlinear
elements. The frequency-domain descriptions previously derived in this section for woodwind in-
strument bores have time-domain counterparts which are briefly explored here. This discussion is
intended only as an introduction to time-domain analysis of acoustic systems. A more detailed

investigation of time-domain acoustic modeling will be conducted in Chapter 3.

energy
source O©—> nonlinear linear
.| element element

<
<

Fig. 1.15. A general wind instrument represented by linear and nonlinear elements in a feedback
loop.

The time-domain description of linear acoustic systems is traditionally given by the inverse
Fourier transform of the input impedance, called the impulse response h(t) or the Green’s function
of the system. The impulse response describes the pressure evolution at the input of an acous-
tic structure originated by the introduction of a volume velocity unit impulse at this same point.

Pressure and flow at the input are then related by means of the convolution product

p(t) = /0 t h(t — t")u(t')dt' = h(t) * u(t). (1.93)

The theoretical input impedance and impulse response for a cylindrical bore with thermoviscous
losses and open-end radiation are shown in Fig. 1.16. Because radiation and internal damping are
typically low in musical air columns, the impulse response is a slowly decaying function, as expected

from the sharply peaked nature of the input impedance. In the time-domain simulation of a musical
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Fig. 1.16. Theoretical input impedance magnitude (top) and impulse response (bottom) of a
cylindrical bore, normalized by the bore characteristic impedance.

instrument feedback system, the calculation of p(t) using Eq. (1.93) is therefore extremely inefficient.
Inspection of the theoretical impulse response of a cylindrical bore in Fig. 1.16 reveals a series of
reflected pulses which are successively distorted by viscous and thermal losses at the tube walls and
by radiation at the open end of the tube. The physical characteristics of the tube are completely
defined, however, in the first 2L /c seconds, or the time necessary for the original impulse to travel
to the opposite end of the tube (at = L) and back with speed c. Subsequent reflections are given
by the reapplication of this tube characteristic to the result of the previous roundtrip. In this sense,
the instrument air column has an effective “memory” of only the past ¢ = 2L /c seconds. The phase
delay and attenuation characteristics associated with pressure traveling-wave propagation to the end
of the bore and back are specified by the plane-wave pressure reflection function rp(t). The plane-
wave reflection function is defined as the inverse Fourier transform of the plane-wave reflectance,

previously derived for cylindrical pipes in Eq. (1.40) as

Rp() = e kL [%%] (1.94)
Z(D)~ Z,
Z(Q) + 2o’

where L is the length of the pipe, Z; is the real characteristic wave impedance of the cylindrical
pipe, Z1 (1) is the load impedance at z = L, and Z(Q) is the input impedance of the pipe given by
Eq. (1.42). The successive reflections typical in the impulse response do not occur in the reflection
function because it essentially characterizes traveling-wave propagation to the end of the pipe and

back only. However, it is common to interpret the plane-wave reflection function in terms of the
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response of a cylindrical bore fitted with an anechoic termination at its input end. The reflection
function then represents the pressure evolution at the input of an anechoically terminated cylindrical
section caused by the introduction of a pressure unit impulse at this point. In this sense, traveling-
wave components reflected from the open end of the pipe experience no discontinuity at the input
end and propagate without reflection into the anechoic termination. Neglecting viscous and thermal
losses along the bore walls, the phase term in Eq. (1.94) represents a time delay of 2L/c seconds
in rp(t), so that the reflection function is given by a time shifted representation of the reflectance

property of the load at the end of the pipe. The input impedance can be written in terms of the

Z(2) = 2y (%) ; (1.95)

verifying the suggestion above that Z(Q2) is completely defined by R, () (or h(t) is defined by rp(t)).
Equation (1.95) may be rewritten as (Ayers, 1996)

reflectance as

Z(Q) = Zo + ZoRp(Q) + Rp(Q) Z(Q), (1.96)
which has an inverse Fourier transform given by
h(t) = Zod(t) + Zorp(t) + rp(t) * h(t). (1.97)

By convolving both sides of Eq. (1.97) with an injected flow u(t) and using Eq. (1.93), the pressure

at the junction of a nonlinear excitation mechanism and a cylindrical air column can be written as
p(t) = Zou(t) + rp(t) x [p(t) + Zou(t)], (1.98)

an expression generally attributed to McIntyre and Woodhouse (1979) and Schumacher (1981).
Because the nonzero length of r,(t) is generally several orders of magnitude shorter than h(t),
Eq. (1.98) offers an efficient means for the calculation of pressure in a musical instrument feedback
system. The volume velocity terms u(t) in Eq. (1.98) represent flow entering the junction via the
nonlinear excitation, while the term [p(t) + Zou(t)] represents the past components of pressure and
injected flow feeding back from the bore. Given the nature of r,(t) discussed above, only 2L/c
seconds of past history need be retained for the calculation of present values. For an isolated air
column without an excitation mechanism, u(t) = 0 and Eq. (1.98) reduces to p(t) = r,(t) * p(¢).
This is equivalent to rewriting Eq. (1.93) in terms of the reflection function and indicates that the
current pressure is simply the past pressure convolved with the reflection function.

The theoretical input impedance and impulse response of a conical divergent bore with thermo-
viscous losses and open-end radiation are shown in Fig. 1.17. The essential characteristics are similar
to those of the cylindrical air column, though exponential wakes are evident which arise from the
complex wave impedance of conical bores. The phase delay and attenuation characteristics associ-
ated with pressure traveling-wave propagation to the end of the conical bore and back are specified

by the spherical-wave pressure reflection function r,(t). The spherical-wave reflectance R,(f2) for a
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Fig. 1.17. Theoretical input impedance magnitude (top) and impulse response (bottom) of a conical
bore, relative to Ry = pc/S(0) at the small end of the bore.

divergent conical section was derived in Section 1.3.2 and given by Eq. (1.66). For the conic section
depicted in Fig. 1.18, Rs(f) is

Rs(ﬂ) = e 2JkL [ZL(Q)Z(,;(Lv Q) = ZO(L’ Q)ZS(La Q)] , (199)

Z1()Zo(L, Q) + Zo(L,N)Z5 (L, Q)
where L is the length of the segment, Z1(f) is the load impedance at z = L, and Z,(L,Q) is the
spherical-wave characteristic impedance evaluated at = L. The input impedance of a divergent
conical bore can be expressed in terms of the spherical-wave pressure reflectance as

_ Z2o(W)Z5(Q)[1 + Rs(D)]
2(9) = “Ze = AR (1.100)

z=0 =1

Fig. 1.18. A conical frustum.
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Due to the frequency-dependent nature of its characteristic impedance, the divergent conical bore
has an impulse response which is more complex than its plane-wave counterpart. Expressed in terms

of r4(t), the impulse response is given by

h(t) = =5 S(O) [6(t) + rs(t)] + rs(2) * [ (t) - fg /0 h(A)dA] - m—co /0 h(A)dA, (1.101)

where S(0) is the surface area of the spherical wave front at the input end (z = 0) and o is the
distance from the imaginary cone apex to the input of the conic section. Pressure at the junction of
a nonlinear excitation mechanism and a conical air column is then determined from Eq. (1.101) by

convolution with the input volume velocity u(t) as (Agullé et al., 1988)

p(t) = S(O)u(t)+rs(t) (p(t)+ oK ;% /0 p(,\)dA> - :—0 /0 p(\)dA. (1.102)

The spherical-wave pressure reflection function is similar in shape to r,(t) for open-end discontinuities
and decays much faster than the conical bore impulse response. Equation (1.102) thus offers a
significantly more efficient means for the time-domain calculation of pressure at the input of a
conical section.

The origin of the exponential wake in the impulse response of conical bores is found by considering
the impedance relationship between spherical traveling-wave components of pressure and velocity.

The frequency-domain expressions are given by

Pt (z,9) = Zy(2,Q) UT (2,0) P~ (z,Q) = -Z§(z,Q) U (z,9) (1.103)

1 pc 1
£(g)  seo-s(y)

The inverse Fourier transform of Zy(z, Q) results in the time-domain impulse response of an anechoic

where

Zo (17 Q)

divergent conical bore,
ht(z,t) =

e )[é(t)— -Wx)te(t)] (1.105)

where €(t) is the Heaviside unit step function. Equation (1.105) represents the pressure response
at z produced by the introduction of a volume velocity impulse at z and ¢ = 0. The decaying
exponential term is a byproduct of the dispersive character of velocity waves in a cone. The impulse
response of an anechoic convergent conical bore cannot be determined from Zg(z, Q) because it has
no causal inverse Fourier transform. However, by analytic continuation, the z-transform Z5(z, 2)

can be constructed and inverted to obtain (Gilbert et al., 1990a)

h=(z,t) = —

% )[J(t)+ (c/”)te(t)]. (1.106)

Agull6 et al. (1992) also derived this expression using time-domain techniques. The growing pressure
exponential term appears to violate the assumed passivity of the conical bore, though a correspond-

ing decreasing volume velocity exponential guarantees conservation of power in the overall system.
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Also, a traveling wave cannot propagate indefinitely toward the apex of a physically realizable cone.
Whether the cone is complete or truncated, reflected traveling waves will combine to cancel the
growing exponential and ensure the complete system is passive. This point is underscored by the
previous analysis of input admittances in conical sections. It was found in Eq. (1.69), for exam-
ple, that the input admittance seen looking into a complete convergent cone is proportional to
[—J cot(kL) — 1/(jkL)], which when transformed to the time-domain, represents an infinite series
of impulses and their associated exponential wakes separated by 2L/c. For an initial volume ve-
locity impulse excitation at the wide end of the cone, the increasing exponential term associated
with the traveling-wave component of pressure propagating toward the cone tip and the inverted,
negatively increasing exponential term associated with the reflected pressure traveling-wave compo-
nent propagating away from the cone tip must therefore almost completely cancel out to produce
the sequence of impulses. Growing exponential wakes occur between the impulses because of the
delay L/c which occurs before the first reflection from the apex. The principal problem posed by
the expressions which contain growing exponentials does not affect the analysis of conical sections,
but rather time-domain procedures used to calculate the evolution of traveling wave components
within a bore composed of many conical sections. In particular, the discretization of variables for
calculations using computers introduces potential round-off and limit cycle errors which make exact
cancellation of exponential terms impossible. Further, the representation of growing exponentials
through the use of digital filters produces inherently unstable systems which cannot be realized in
finite precision.

Any discontinuity or nonzero curvature within a wind instrument bore, such as toneholes or
variations from perfect cylindrical or conical shape, causes traveling-wave scattering to some extent.
Each discontinuity can be characterized by a reflection function, so that the complete bore is de-
scribed by a series of cascaded reflection functions. This is similar to the cascading of transmission
matrices in the frequency-domain, with the important distinction that transmission matrices relate
observable wave variables while reflection functions are applied to individual traveling-wave compo-
nents. Time-domain reflection functions in series are convolved together in a process referred to as
maulticonvolution (Martinez et al., 1988). Digital waveguide techniques for discrete-time modeling
of acoustic systems, which are the focus of Chapter 3, closely parallel multiconvolution. For this
reason, further discussion of time-domain acoustic modeling issues will be deferred to the analysis
of Chapter 3.

1.4 Sound Radiation

The discussion thus far has been principally concerned with the propagation of sound waves within
musical instrument bores. When considering finite length ducts, the load impedance at the end

of the bore has generally been given by ideal, low-frequency approximations. In order that sound
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waves be heard, however, it is necessary that they escape from the bore and propagate into the
surrounding environment. The fact that sounds can be heard emanating from a perfect cylindrical
bore with an abrupt open end demonstrates the inadequacy of the ideal, Z; = 0, approximation. All
wind-blown musical instruments are dependent on a significant amount of sound wave reflection at
the end of their air columns, both for the establishment of bore resonances and for proper operation
of their self-sustaining excitation mechanisms. This is particularly important for low-frequency or
fundamental components. Thus, the wind instrument designer must seek a balance between sound
reflection to encourage stable regimes of oscillation and sound transmission for the distribution of
instrument sounds into the surrounding environment. Adjustment of bell and tonehole parameters
provides the principal means for controlling the sound radiation properties of a wind instrument.
The flare of a bell produces a specific impedance mismatch between the bore and the surrounding
air, and gives rise to a particular reflection and transmission characteristic. Toneholes not only
provide a means for bore length variation but also control sound radiation behavior according to
their radius, height, and if present, keypad location. The effect of a bell at the end of a tonehole
lattice is significant only at those times when all or most of the toneholes are closed. This section
first addresses the behavior of sound waves at the end of an open tube and within bells, followed by

an analysis of the sound radiating characteristics of woodwind instrument toneholes.

1.4.1 Non-Flaring Ends

Musical instruments which have no flare at the open end of their air column include organ pipes and
flutes. For such cases, it is necessary to determine the sound radiation characteristics at the open
end of a cylindrical pipe. The first theoretical results were obtained for a circular piston set in an
infinite wall (Lord Rayleigh, 1896; Morse, 1981; Olson, 1957). Assuming the wave front at the open

end of the pipe is planar, the load impedance of a cylinder fitted with an infinite flange at its end is

given by
Z=A+jB, (1.107)
where
(ka)?  (ka)* (ka)®
ol Zo[ 2 _22.3+22.32,4_"' 2 (1.108)
_ 2o [(2ka)® (2ka)® = (2ka)”
. 7'l'k'2a2[ 3 A E +32,52_7_"' s (1109)

a is the radius of the pipe, k is the propagation wave number, and Z, is the characteristic wave
impedance of the cylinder (Fletcher and Rossing, 1991). Levine and Schwinger (1948) obtained
a rigorous and explicit solution for the radiation of sound from an unflanged circular pipe. For
ka < 1, they found that the cylindrical pipe acts as if lengthened by a fraction of the radius. The
end correction in this limit for a cylindrical pipe with no flange is 0.6133 a, compared to 0.85 a for the

flanged pipe. Figure 1.19 shows the magnitudes and end corrections for the flanged and unflanged
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approximations, where the reflectance is given by

R = —|R|e~27¥, (1.110)
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Fig. 1.19. Reflectance magnitude and length correction (I/a) versus the frequency parameter ka
for a flanged and unflanged circular pipe.

Because the end correction is frequency dependent, high-frequency wave components experience
a longer effective tube length than low-frequency components. This effect causes a slight flattening of
higher normal mode frequencies and results in a rolloff of high frequency sound content during steady-
state excitation. Despite the frequency dependence of the end correction, however, it is common
to approximate the behavior of a cylindrical tube in the low-frequency limit by simply adding the
constant end correction term given above to the physical length of the pipe. The reflectance specifies
the reflective properties at the end of the bore. The corresponding transmission characteristics for
each case are given by a transmittance, which has the complementary relationship 7 = 1+ R. Both
reflectance magnitudes are seen to approach one as ka — 0. The results of Levine and Schwinger
are generally accepted as representing a better approximation to open-end radiation in musical
instruments. Due to the complexity of their solution, approximations are generally made by curve
fitting procedures for use in numerical calculations.

No explicit theoretical solution for sound radiation at the open end of a cone exists. For this
reason, the impedance at the open end of a cone is usually approximated by
Sp

ZR’ s Ss

Zp, (1.111)
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where S, is the cross-sectional surface area at the end of the cone, S; is the spherical-wave surface
area at the end of the cone, and Zg is the radiation impedance given by Levine and Schwinger for

a cylindrical pipe of cross-section S, (Caussé et al., 1984).

1.4.2 Horns

The bell at the end of a musical instrument attempts to form a smooth impedance transition from the
interior of the bore to the surrounding air. Whereas a stereo speaker cone is designed for maximum
sound transmission, a wind instrument bell needs to balance its sound reflection and transmission
properties. The bell is a significant component of brass instruments because all sound must radiate
through it. However, it is much less important in most woodwind instruments, where sound radiation
is principally achieved via the tonehole lattice. Nevertheless, two related methods of analysis have
been developed in conjunction with horns that can be used to approximate the slight flare near the
end of some woodwind instruments, as well as explore the effects of bore shape perturbations.

One method of analysis involves an approximate solution to the wave equation in an infinite
horn of general shape. It is assumed that one-parameter waves can exist and propagate within the
horn, that the wave fronts are normal to the horn walls, and that the area of such wave fronts
is known. In reality, one-parameter waves are possible only in rectangular, circular cylindrical,
and spherical coordinates, which correspond to pipes of uniform cross-section and conical horns,
respectively (Putland, 1993). However, wave propagation in horns for which the flare is not too
great can be approximated by a one-parameter solution with reasonable accuracy. Referring to
Fig. 1.20, the thin shell of air ABCD is considered to have an average surface area S(z), defined by
its intersection with the central axis of the horn, and a volume of S(z)dz. If this shell is displaced

a distance ¢, the volume of the new element A’B'C'D’ is given by
o}
S(z) da:-l-da:a—x(SE). (1.112)

Using Newton’s and Hooke’s laws, the wave equation becomes

10 Op 16%
== |S= ) =5=, 1.11
S Oz ( 03:) o* Ot* WAl
which is known as Webster’s equation (Webster, 1919). One-parameter waves represent iso-phase
surfaces propagating within a horn. Because the pressure is constant across these surfaces, a trans-
formation of the form p = 1S~!/2 can be made so that 1y is constant in magnitude throughout the
horn. By writing S in terms of a local equivalent radius a, such that § = ra2, Eq. (1.113) becomes
8%y

%2—'1' (kz—U)QP:O, (1.114)

where a sinusoidal time dependence of frequency © has been assumed. This form of Webster’s

equation was given by Salmon (1946a,b) for plane wave fronts and Benade and Jansson (19744)
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Fig. 1.20. Cross-section of a horn and the displacement of a volume element within it.

subsequently recast it for spherical wave fronts. The horn function U is given by

2
=12 (1.115)
and determines whether the wave is propagating or nonpropagating at any particular location z.
Benade and Jansson point out that Eq. (1.114) is equivalent to the one-dimensional Schroedinger
equation of quantum physics, and that U plays the same role in horn theory as does the potential
energy function in quantum theory. It is typical to use plane-wave approximations in conjunction
with Webster’s equation, as this allows analytic solutions for a variety of horn shapes. For horns
which flare rapidly, however, this approximation is clearly insufficient. Benade and Jansson (1974a,b)
show that the use of spherical-wave approximations produce more accurate results and more closely
resemble the wave fronts in flaring horns. Plane and spherical waves propagate only in cylinders and
cones, respectively, and thus the use of this equation remains an approximation. The determination
of horn radiation characteristics using Webster’s equation is not of principal concern in this study.
This subject, however, will be re-examined in Chapter 2, in conjunction with the effects of bore
shape perturbations.

In Section 1.3, a method was discussed for estimating and calculating the acoustical properties of
an air column of non-uniform shape using a series of cylindrical or conical sections. This technique
represents a discretization of the Webster equation approach. Results obtained using transmission
matrices will converge on any analytic solution of the Webster equation in the limit as the length of

each acoustic section approaches zero. While analytic solutions are possible for the so-called Bessel

horns and ezponential horns using a plane-wave approximation, such solutions are more difficult to
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achieve using the spherical-wave approach. Without a closed-form solution, the differential equations
must be solved using numerical methods. An alternative horn equation is derived by Keefe et al.

(1993) which addresses some of these issues.

1.4.3 Toneholes

The influence of open and closed toneholes on wave propagation within a musical instrument bore
greatly complicates the ideal behavior discussed for pure cylindrical and conical tubes in Section 1.3.
The easiest (and most incorrect) approximation that can be made is to assume that closed tone-
holes have no affect on wave propagation and that the bore is simply truncated at its first open
tonehole. Thus, all reflection and transmission of sound waves occurs at the first open tonehole and
the radiation properties of an unflanged end found in Section 1.4.1 can be directly applied to the
shortened tube. Unfortunately, the actual behavior is far from this simple. Benade (1960) presents
an analysis based on the assumption that the tonehole lattice (THL) of woodwind instruments can
be approximated by a sequence of uniformly spaced holes of equal size. This approximation begins
with the characteristic impedance and propagation wave number relationships for a cylindrical pipe
pierced by an infinite sequence of side branches of equal input impedance Z, and spacing 2s (Stewart
and Lindsay, 1930, p. 337)

= 1+ j(Zo/2Zs) tan(ks) 1/2
A <1 —j(Zo/2Z:)cot(ks)> ’ (1.116)
cosh(2I's) = cos(2ks) [1 + j (Zo/22b) tan(2ks)], (1.117)

where Zj is the wave impedance of the main air column. These equations are derived by assum-
ing continuity of volume flow and conservation of mass at the junctions of the main bore and side
branches, and are applicable to plane-wave propagation only. The side branch impedance for a closed
tonehole of length ¢ is approximated by that of an open-closed cylindrical section, —jZ cot(kt),
where Zyo is the real characteristic impedance of the tonehole, while the impedance for an open tone-
hole of effective length ¢, is approximated by that of an open-open cylindrical section, JZyo tan(kt,),
as derived in Section 1.3.1. For a lattice of closed toneholes, Benade shows that Egs. (1.116) and

(1.117) can be written in the low-frequency limit as

1/2
29 =2, (1+D@) ", (1.118)
and
(e) — s (
L 1.119)
* (1+D@)"

where D(©) = (1/2)(b/a)?(t/s), v,f,c) is the closed-THL phase velocity, a is the radius of the main
bore, and b is the radius of the toneholes. These equations imply that the closed THL has a larger

“effective” cross section and a lower phase velocity than that of a simple, unpierced cylindrical pipe
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of the same radius. The effect of the phase velocity variation can be viewed in terms of an equivalent
length correction. Similarly, the open-THL characteristic impedance and wave number are given in
the low-frequency limit by (Keefe, 1990)

Z{ = jZ,kC©), (1.120)
and
2 1/2
oI s = 24/ D) [1 — (a/b)%(2ks) (kt)(1 + 5D<°>)] ; (1.121)
where D(®) = (1/2)(b/a)?(s/t.) and
y 1+ D@\
C = 4 (T) (1.122)

is the open-hole lattice length correction. The characteristic impedance of Eq. (1.120) has the
form of an inertance, so that the open THL forms a “masslike” termination to a cylindrical bore.
The propagation wave number given by Eq. (1.121) is purely real in the low-frequency limit, so
that there is no wavelike propagation in the open-hole section of the bore. Rather, the pressure
variations along this portion of the air column are in phase and damped exponentially with distance
from the first open hole. The open THL behaves like a highpass transmittance filter and reflects
low-frequency sound waves back into the closed-hole portion of the bore. Benade (1960) offers a
variety of interesting observations regarding tonehole lattices, though his results are generally limited

to low-frequency characteristics.

3%

tw

Fig. 1.21. Basic tonehole geometry.

The largest single contribution to the theory of toneholes was made by Keefe (1981). His analysis
is principally concerned with a single tonehole, which can then be extended to a series of toneholes
by linear superposition. By separating the acoustic disturbance at the discontinuity into two parts,
corresponding to even and odd symmetry of the fundamental mode about the center of the tonehole,
a lumped circuit representation for a single tonehole discontinuity is shown to be
Po| 1 Z,
Uo | [ z;t 1 J

Py
v ] (1.123)
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in the limit |Z,/Z;| < 1. The elements Z; and Z, are referred to as the shunt and series impedances,
respectively, of the T section transmission-line model and their values depend on whether the tone-

hole is open (o) or closed (c) as follows

Z09 = Zy(a/b)? (jkt. +&.), (1.124a)
Z9 = —jZy(a/b)? cot(kt), (1.124b)
z) = —jZy(a/b)?ktl?, (1.124c)
zZ) = —jZ(a/b)’kt. (1.124d)

The tonehole height ¢ is defined such that its product with the cross-sectional area of the tonehole
is exactly equal to the geometric volume V}, of the tonehole (Keefe, 1990). For a typical tonehole

structure, such as shown in Fig. 1.21, ¢ is well approximated by
1
t =tw + gb(b/a) [1+0.172(b/a)?], (1.125)

where a is the radius of the main bore of the instrument, b is the radius of the tonehole, and t,, is
the shortest distance from the top of the tonehole to the main bore. The open-tonehole effective

length t. depends on the presence or absence of a pad above the hole. If no pad is present,

_ k! tan(kt) + b [1.40 — 0.58(b/a)?]

b 1 — 0.61kb tan(kt) ’ e
and if a pad of diameter 2R is placed an average height h above the tonehole, then
- k™! tan(kt) + b {0.61(R/b)*8(b/h)*% + (r/4) [1 — 0.74(b/a)?] } - (L.127)
1—0.61(R/b)%-18(b/h)0-39kb tan(kt)
The specific resistance £, of the open tonehole is given by
€ = 0.25(kb)® + at + (1/4)kd, In(2b/r.), (1.128)

where . is an effective radius of curvature of the external end of the tonehole wall, d, = 1/2n/(pw)
is the viscous boundary layer thickness in terms of the shear viscosity of air 5, and a is the real
part of the propagation wavenumber within the tonehole, as discussed in Section 1.3.3. The specific
resistance accounts for viscothermal losses along the tonehole walls and radiation at the open end.

The open and closed tonehole series equivalent lengths are

o) _ 0.47b(b/a)*

e = tanh(1.84¢/b) + 0.62(b/a)? + 0.64(b/a)’ (1.129)
o) — 0.47b(b/a)*

te) = coth(1.84t/b) + 0.62(b/a)? + 0.64(b/a)’ (1.130)

While these equations present a substantial increase in analytic complexity compared with that
of Benade, there are similarities between the two analyses. The closed tonehole shunt impedance is

just that of a cylindrical tube of length ¢ and radius b, and plays the same role as Zj, in Eq. (1.116).
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In the low-frequency limit, this reduces to a cavity impedance with volume V4. The open tonehole
shunt impedance is likewise similar to that used by Benade, though the tan(kt) factor is found in the
definition of ¢.. The other terms in ¢, express the acoustical inertance localized at the intersection
of the tonehole with the main bore and the radiation inertance localized just outside the tonehole.
In the low-frequency limit, this impedance term reduces to that of an acoustic inertance. The series
impedance terms are additions to the theory of Benade and represent negative length corrections to
the main bore length due to the presence of the tonehole. The tonehole is theoretically represented
by a lumped impedance located at the midpoint of the tonehole. The negative length correction
terms thus serve to offset the overestimated bore length parameters on both sides of the tonehole.
The predicted closed- and open-hole series length correction terms are of similar order.

The pressure and flow at the two ends of the combined main bore and tonehole system, shown

in Fig. 1.21, are related by
[ P ] [ cosh(TL)  Z.sinh(TL) ] l 1 Z ] l cosh(TL)  Z,sinh(T'L) ] l Py ]
|

Z;'sinh(TL)  cosh(T'L) 2 1 Z;'sinh(TL)  cosh(I'L) Uz
where the tonehole is exactly centered on the main cylindrical air column of total length 2L and

(1.131)

the lossy, complex propagation wave number I" and characteristic impedance Z, are determined as
discussed in Section 1.3.3. The analysis of an entire tonehole lattice using cascaded transmission
matrices can be carried out assuming that there are no interactions between the toneholes. The
tonehole discontinuity, however, results in the conversion of acoustical energy from the propagating
one-dimensional wave front to higher order evanescent modes. The evanescent modes decay over a
length approximately equal to a duct diameter for low frequencies (Keefe, 1983). Thus, if consecutive
tonehole edges are separated by less than two times the duct diameter, there will be an overlap of
tonehole disturbances, and the tonehole lattice can no longer be analyzed as a set of independent
tonehole units. Further, there is also the possibility of external interactions between open holes.
Keefe (1983) estimated the effects of such internal and external tonehole interactions and found
that they are most significant in woodwinds with large diameter holes and short tonehole chimneys,
such as found on saxophones and Boehm style flutes. An improved theory of external interactions
is given by Kergomard (1989). In general, the external interactions are much less significant than
those inside the bore and do not significantly change the effective length of the tonehole at low
frequencies.

Keefe’s derivation of the tonehole parameters is based on a symmetric T section, as shown in

Fig. 1.22. The resulting transmission matrix for this system is

[Pll . T Za/2H 1 0”1 Z,,/2][P2] (.5
U, _0 1 Zs_ll 0 1 U,

_ | a(d) | A (1.133)
Zs_l 1+§ZZ‘:— U,

-
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Fig. 1.22. T section transmission-line element representing the tonehole.

The transmission matrix given by Eq. (1.123) results for the assumption that |Z,/Z,| < 1. In (Keefe,

1990), an L section, such as shown in Fig. 1.23, is used to simplify the calculation process. This

o—— Za o
P P,
U, Zs U,

O O

Fig. 1.23. L section transmission-line element representing the tonehole.

structure is represented by

P r 5 1 o][~P
o= i (1.134)
U 0 1 Z71 1 U,
1+42« Z, P,
R Rt 2|, (1.135)
Z_g_1 1 U,

which still reduces to Eq. (1.123) for |Z,/Z,| < 1.

Figure 1.24 plots the input impedance magnitude and reflectance for the written note G4 on a
simple six-hole flute, calculated using L section tonehole transmission matrices. The dimensions
of the instrument are described in (Keefe, 1990). Both plots show significant departure from ideal
cylindrical bore behavior and offer some insight into the effects of both open and closed toneholes. In
particular, the sharp dip in the reflectance around 1200 Hz indicates the open-THL cutoff frequency.
Experimental measurements to verify the tonehole theory were conducted by Keefe for frequencies
below about 5 kHz, so that results above this limit are purely theoretical. Nonetheless, this formu-
lation contributes immensely to the determination of tonehole behavior in woodwind instruments.
Tonehole lattice approximations which incorporate the effects of the tonehole series impedance can

be obtained in terms of the single unit T section matrix coefficients of Eq. (1.131) (Keefe, 1981,
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Fig. 1.24. Input impedance magnitude (top), relative to the main bore wave impedance Z,, and
reflectance (bottom) for the written note G4 on a simple six-hole flute, as described in Keefe (1990).

1990). Such an analysis, however, offers little insight into tonehole lattice behavior beyond the re-
sults of Benade (1960). The tonehole theory described in this section has recently been improved
upon in the dissertation of Veronique Dubois (1996), Le Mans, France (Keefe, 1997).

1.5 The Nonlinear Excitation Mechanism

The single-reed and mouthpiece arrangement of clarinets and saxophones, as shown in Fig. 1.25,
acts as a pressure-controlled valve which allows energy into the instrument for the initialization
and maintenance of oscillations in the acoustic resonator. It plays the same role as the human lips
to brass instruments or the bow to stringed instruments. There are several nonlinear aspects of
this mechanism, one of which is demonstrated by the fact that DC pressure applied by a player
is converted into acoustic energy at a number of harmonically related frequencies. Single-reed
mechanisms are the primary focus in this section, though reference will be made when appropriate
to other excitation processes. Double-reeds have been scarcely studied to date and thus little is
understood about the complexities of their behavior (Hirschberg et al., 1995).

In the simplest terms, the reed movement is controlled by the pressure difference between the
player’s oral cavity and the pressure in the reed channel or inside the mouthpiece, pp = Poc—pPry, The
oral cavity pressure is typically assumed constant and tends to force the reed toward the mouthpiece
lay. Negative pressure in the mouthpiece tends to reinforce this action, pulling the reed toward the

lay, while positive pressure in the mouthpiece, if acting alone, tends to push the reed away from the
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Fig. 1.25. A single-reed woodwind mouthpiece.

mouthpiece lay. The reed itself is a damped mechanical oscillator, with a substantial portion of its
damping coming from the player’s lower lip. The single-reed valve is initially open but can be blown

shut against the mouthpiece lay by an appropriate pressure pa, as depicted in Fig. 1.26. This model

Ll
il

Fig. 1.26. The single-reed as a mechanical oscillator blown closed.

was first expressed by Worman (1971).

Some of the earliest research on musical instrument reeds was conducted by Helmholtz, who
concluded that pipes excited by inwardly striking reeds “of light material which offers but little
resistance” produce tones at frequencies corresponding to the resonant frequencies of the pipe,
which are much lower than the natural frequency of the reed itself (Helmholtz, 1954, p. 390). The
lowest resonance frequency of a typical clarinet reed falls approximately in the range 2-3 kHz, while
normal playing frequencies for clarinets are below 1 kHz. A mass-spring system driven at a frequency
well below resonance is said to be stiffness dominated and its displacement amplitude will approach
f/k, where k is the spring constant and f is the applied force. Thus, a common simplification for
woodwind instruments has been to neglect the effect of the mass altogether and to simply model the
reed system as a memory-less nonlinearity (Backus, 1963; Nederveen, 1969; McIntyre et al., 1983).
This is equivalent to assuming an infinite reed resonance frequency. Assuming the force on the reed
is equal to S, -pa, where S, is the effective surface area of the reed exposed to Pa, the displacement

of the reed from its equilibrium position y, is given by Hooke’s law as

S, -
ye=go— 8, (1.136)

The movement of the reed controls the volume flow through the reed channel and into the




1.5. THE NONLINEAR EXCITATION MECHANISM 47

mouthpiece, which is typically determined from the Bernoulli equation for steady flow (Backus,
1963; Worman, 1971; Wilson and Beavers, 1974; Thompson, 1979; Saneyoshi et al., 1987; Fletcher

and Rossing, 1991). The oral cavity is viewed as a large tank with essentially constant pressure po.

. = - mouthpiece
oral cavity g .- h pb
.. -7 amber
Uoc ’:t - %
o s — ZET mammm——— =
Pr ‘ Uy Pm = Pr g

Fig. 1.27. The volume flow and pressure relationships for a single-reed oral cavity/mouthpiece
geometry.

and zero volume flow u,.. By conservation of energy, Bernoulli’s equation gives

9pa\ /2
Up=wy (TA) sgn(pa), (1.137)

where y and w are the height and width of the reed channel, respectively, and p is the density of
air. Backus (1963) measured the volume flow through a reed aperture for known blowing pressures,

and proposed a modified version of Eq. (1.137) of the form
ur = vy*p}, (1.138)

where v is a constant dependent on the reed channel width and the density of air. He attributed the
differences in his results from Eq. (1.137) to the curvature of the lay and the flexibility of the reed tip.
Backus (1963) also determined expressions for the threshold blowing pressure necessary to set the
reed in motion and fractional frequency shifts due to reed channel height adjustments by a performer.
Hirschberg et al. (1990, 1994) point out that Eq. (1.137) is derived by assuming flow separation from
the wall at the end of the reed channel and formation of a free jet into the mouthpiece. The reed
channel itself is considered of uniform cross-section and pressure throughout its length. The free jet
is a region of high velocity bounded by shear layers. Rotational motion along these layers causes

the free jet to be inherently unstable, breaking down into vortical structures which are eventually
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dissipated by turbulence (Hirschberg et al., 1995, p. 314). In a turbulent region, viscous dissipation
of kinetic energy is dominant and the Bernoulli equation is not valid. Thus, it is reasonable to
expect that pressure will not be recovered in the mouthpiece region beyond the reed channel, as
might be presumed from the Bernoulli equation. Instead, the mouthpiece and reed channel pressures
are assumed equivalent and conservation of volume flow to hold in the mouthpiece chamber.

Much research has been conducted during the past decade on the aero-acoustics’ of musical
instruments. In the study of reeded organ pipes, Hirschberg et al. (1990) have shown the need to
account for friction due to flow reattachment in the reed channel. However, the present understand-
ing with regard to clarinet and saxophone geometries indicates that such friction is not significant in
these systems due to the shortness of the reed channel. Thus, Eq. (1.137) is a good first approxima-
tion. It appears that experimental measurements in the presence of unsteady flow are needed to gain
further understanding of the complex aero-acoustic relationships in these instruments (Hirschberg
et al., 1994).

Equations (1.136) and (1.137) may be combined to find the reed channel volume velocity in the

presence of a mass-less reed valve

S, - 2 1/2
o = o) (52)

pA 2pa 1/2
= wy (1 - —) (-——) sgn(pa), (1.139)
Pc P

where pc = kyo /S, is the pressure necessary to push the reed against the mouthpiece facing and
completely close the reed channel. Under normal playing conditions, steady-state pressure and flow
in the reed channel and mouthpiece will be made up of oscillating and non-oscillating components.
For the static or non-oscillating regime, pa can be approximated by p,. because the reed channel
pressure will be nearly zero. This is substantiated by the fact that the input impedance at zero
frequency in the bore, which results from thermoviscous losses only, is very small (Hirschberg et al.,

1995, p. 236). Under this approximation, the reed channel volume velocity for static flow is given by

p 2p 1/2
Upro = W Yo (1 - ﬂ) (—ﬂ) : (1.140)

bc p

Equation (1.139) can then be expressed in terms of its static and dynamic pressure components as
(Hirschberg et al., 1995, p. 237)

1/2
Uy = Upo (1 + p_r> ( i ﬁr_) if  poc > Pr > Poc — Pc, (11413)
Pc — Poc Poc

U = 0 if  pr<poc—pc, (1.141b)

t Aero-acoustics is the study of the coupling between a region in space where linear wave propagation prevails and
flow regions where nonlinear phenomena are essential and responsible for the transfer of energy to the acoustical flow
(Hirschberg et al., 1994).
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1/2
G B (1 & ——ﬁ"——) (3’— . 1) i pr> Poc. (1.141c)
Pc — Poc Poc

Figure 1.28 illustrates the nonlinear steady volume flow characteristic given by Eq. (1.140) for
0 < poc £ pc. An initial increase in the oral cavity pressure results in a rapid increase in .
However, a continued increase in p,. begins to force the reed toward the mouthpiece lay, resulting in
a decrease of volume flow. When p,. = pc, the reed valve is completely closed. Figure 1.29 displays
the nonlinear dynamic volume flow characteristic given by Egs. (1.141a)—(1.141c) for a constant oral
cavity pressure po./pc = 0.4. In this context, the oral cavity pressure can be understood to push
the reed some constant distance toward the mouthpiece lay. The dynamic flow then results from the
varying reed channel pressure p, inside the mouthpiece. For values of p,./pc < —0.6 in Fig. 1.29, the
volume flow is zero because p, < poc —pc. In this range, the reed channel pressure is negative, which
in conjunction with the positive oral cavity pressure, serves to pull the reed against the mouthpiece
lay and stop all volume flow. As p, increases in the range p,c > pr > Poc — Pc, the reed channel
volume flow increases rapidly, but then decreases as p, approaches p,. and a resultant pn = 0. When

the reed channel pressure exceeds the oral cavity pressure, negative flow into the mouth occurs.

Steady Volume Flow (u,)

0 Oral Cavity Pressure (poc) pc
Fig. 1.28. Steady flow (u,,) through a pressure controlled valve blown closed.

For dynamic regimes of flow, u, leaving the reed channel is divided into two parts, as shown in
Fig. 1.27. The flow u,, enters the mouthpiece chamber, while the motion of the reed surface results
in a flow u; = Sy(dy/dt). As mentioned above, the mouthpiece chamber pressure p,, is assumed
equal to the reed channel pressure p,. An additional Bernoulli flow-induced force on the reed was

proposed by Worman (1971), though Hirschberg et al. (1990) have pointed out that the existence
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Fig. 1.29. Dynamic flow through a pressure controlled valve blown closed for po./pc = 0.4.
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of such a force would violate the assumptions used to derive Eq. (1.137). Another modification to
the flow control equations involving nonlinearity of the reed stiffness has been discussed by Gilbert
et al. (1990b). Behavior of this sort seems reasonable because of the asymmetrical shape of the reed
and the magnitude of the reed displacement. However, experiments to determine the extent of this
possible effect have not been conducted.

The normal playing range of clarinets and saxophones is typically well below the first resonance
frequency of the reed, thus justifying the use of Eq. (1.136). However, extended range playing has
become increasingly common on these instruments, so that reed mass need be accounted for to
properly model reed motion at these high frequencies. Stewart and Strong (1980) and Sommerfeldt
and Strong (1988) modeled the reed as a damped, driven, nonuniform bar using a fourth-order
differential equation. In this way, changes in effective mass and stiffness with bending along the
curvature of the lay are automatically incorporated. For the purposes of this study, however, such
added complexity is unnecessary. Instead, the reed can be modeled as a simple damped harmonic
oscillator, and if desired, the reed parameters can be made functions of reed displacement to simulate
nonlinear effects due to the mouthpiece geometry and reed shape. The motion of a second-order

mass-spring system is given by

dy  dy
m—z HHo + k(Y — %) = —Spa(). (1.142)

where m is the equivalent reed mass, u is the damping factor, and k is the reed spring constant.
The natural frequency of the mass-spring system in the absence of damping and for constant reed

parameters is Q, = \/k/m. A closed-form solution to the volume flow relationships in the reed
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channel, such as given by Eq. (1.141a), is impossible when the reed motion is described as in
Eq. (1.142). However, modeling techniques can easily handle these equations as well as incorporate
time- and space-varying parameters, as will be discussed in Chapter 3.

Linear approximations to the operation of the reed have been made by assuming steady-state,
low amplitude oscillations, so that p,y, and u vary sinusoidally about equilibrium values. In this
situation, an approximate expression for the acoustic admittance can be derived that sheds some
intuitive light on the operation of the reed (Fletcher, 1979). If the reed generator admittance defined
from the mouthpiece is given by Y;. and the instrument bore admittance is Y}, then the conditions

for steady-state excitation are

RY,+Y;) = 0, (1.143a)
(Y, +Y) = 0. (1.143b)

The condition of Eq. (1.143a) corresponds to the equalization of radiation and thermoviscous losses
in the bore and energy input via the reed mechanism. The imaginary component of Y, is positive for
reeds blown closed, so that by Eq. (1.143b), (Y3) must be negative. This will occur at frequencies
Just below bore resonances, so that reed woodwind instruments should sound slightly flat compared

to their natural stopped-pipe normal modes.







Chapter 2

Acoustical Aspects of Woodwind

Design & Performance

“Posterity will never forgive you, Adolphe Sax!” (Shafer, 1950)

Despite the fairly detailed mathematical analysis of woodwind instrument acoustic principles pre-
sented in Chapter 1, the design and manufacture of musical instruments remains largely an empirical
art to this day. This is due in part to the lack of a thorough acoustic theory regarding composite mu-
sical instrument systems. That is, while the isolated behavior of individual components may be well
understood, the interaction of these components within the complete instrument is not. In this chap-
ter, the design and performance of single-reed woodwind instruments is studied in a semi-empirical,

semi-theoretical manner. Much of the acoustic behavior analyzed in Chapter 1 is reconsidered here in
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a more intuitive fashion. This discussion will provide insight into common instrument shortcomings
and possibly suggest means for their correction. This author has extensive professional performance
experience, particularly with regard to contemporary saxophone techniques, and is acutely aware
of the more subtle aspects of instrument performance. The insights gained from this experience,
combined with a solid foundation in acoustic principles, provide a unique perspective throughout
this study.

Both the designer and performer have control over the response and intonation of a musical
instrument. As will be seen, a variety of adjustments can be made during the design and manu-
facturing processes to a woodwind’s air column shape and tonehole parameters which have direct
consequences on the instrument’s resonance structure. The choice of a mouthpiece, particularly for
conical bored instruments, also is important in determining the overall tone quality. While playing,
the performer uses lip pressure and position adjustments, together with oral cavity manipulations,
to influence the behavior of the instrument.

The analysis of this chapter will be particularly oriented toward the frequency-domain character-
istics of a musical instrument. The position and magnitude of an instrument’s resonances provide an
accurate means for determining its response and intonation. The nature of the single-reed excitation
mechanism is such that if several of the air column resonances are aligned in integer multiple rela-
tionships, a stable regime of oscillation will result (Benade, 1976, p. 395). Conventional steady-state
sounds produced by wind instruments are quasi-periodic, which means that their spectral compo-
nents are related to the fundamental frequency by integer multiples. The nonlinear action of the reed
promotes the distribution of oscillatory energy among the higher harmonics of the fundamental mode
of vibration. Thus, it is desired that the normal modes of an instrument be properly aligned over
its complete range. When investigating the influences of various design perturbations or performer

controls, such considerations will form the basis of the analysis.

2.1 Woodwind Air Columns

The air column of a woodwind plays a crucial role in determining the overall quality of the instrument.
From the musician’s point of view, the instrument should “speak” easily at all dynamic levels and
be “in tune” with itself over its complete range. In addition to supporting sound production at a
particular fundamental frequency, the wind instrument bore can facilitate stable regimes of oscillation
by emphasizing frequencies which are aligned in integral multiples to the fundamental. The better
aligned the air column resonances are for a particular note, the easier that note will “speak.” It is
also necessary that the partial structure of the air column be independent of its length. In this way,
the bore length can be varied to produce a continuum of pitches without affecting the timbre or
tone quality of the instrument. As discussed in Chapter 1, the only useful bore shapes which meet

the above requirements are cylinders and cones.
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In evaluating the acoustical quality of a musical instrument bore, it is common to measure and/or
calculate the structure’s input impedance. For instruments which have pressure-controlled excita-
tion mechanisms, the impedance peak positions correspond to air column resonance frequencies.
The magnitudes of these peaks indicate the relative strength of such resonances. Because wind
instrument excitation mechanisms are dependent on feedback from their attached air columns for
proper operation, sound production is particularly favored at input impedance peaks. In the case
of single-reed woodwinds, the air column resonances essentially control the reed vibrations. For
small-amplitude vibrations, or at a piano (p) dynamic level, the reed will typically begin to oscillate
at the strongest air column resonance frequency. At louder playing levels, this regime will be further
supported by harmonically related higher air column modes. If the lower resonances are misaligned
in some way, response will be negatively influenced and/or the reed may find a more stable regime
based on a different fundamental frequency. Misalignment of high air column resonances will have

less affect on the stability of the sound, but will alter the resulting sound quality or timbre.

2.1.1 Cylinders and Cones

The axial normal modes of cylindrical and conical air columns are typically estimated by applying
ideal boundary conditions at each end of the tube and neglecting viscothermal losses along the walls.
In this sense, a closed end is assumed perfectly rigid and represented by an infinite impedance, while
an open end is approximated in the low-frequency limit by an impedance of zero. Such an approach
was taken in Section 1.3.1 and the resonance frequencies of a closed-open cylindrical pipe were found

forn=1,2,... to be
f(c_o) — (2n s l)C
4L "’

where c is the speed of sound in air and L is the length of the tube. Similarly, the resonance

(2.1)

frequencies of a complete cone are given for n = 1,2,... by
(2.2)

as determined in Section 1.3.2. The fundamental resonance frequency of a closed-open cylindrical
pipe has a corresponding wavelength equal to four times the pipe length and higher resonances oc-
curring exactly at odd integer multiples of the fundamental. The partials of a complete cone occur
at all integer multiples of the fundamental frequency, which has a corresponding wavelength equal
to two times the cone length. The resonances of an air column indicate frequencies at which exci-
tation is constructively supported, while excitation at an anti-resonance is destructively influenced.
Thus, single-reed musical instruments formed from a cylindrical bore produce steady-state sounds
principally comprised of odd harmonics. Further, the 1:3 ratio of the first two resonances in such
instruments indicate that they overblow at the twelfth. Instruments with conical bores produce
steady-state sounds having a complete harmonic spectrum and overblow at the octave, as implied

by the 1:2 ratio of their first two resonances.
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When cylindrical and conical air columns are analyzed in terms of more physically realistic
boundary conditions, however, variations from the above ideal behavior are found. Two theoretical
solutions for sound reflection/radiation at the open end of a cylindrical pipe were discussed in
Section 1.4.1. In both cases, the open end is represented by a frequency-dependent load impedance.
Figure 2.1 shows the open-end impedance magnitude, normalized by the wave impedance Z = pc/S,
as determined by Levine and Schwinger (1948) for an unflanged cylindrical pipe of radius 0.0075
meters (similar to that of a typical clarinet). Sound waves traveling from within the bore experience
an impedance change at the open end of the pipe which is greatest for low-frequency components,
as given in the figure by small ratios of radiation impedance to wave impedance. On the other hand,
high-frequency sound components are least affected by the open end, as indicated in Fig. 2.1 by
near-unity impedance ratios. The magnitude of the impedance change indicates the relative strength
of sound-wave reflection at the open end. In this way, low-frequency sound components are more
completely reflected back into the bore while high-frequency components are largely transmitted out
the open end of the tube. Seen from within the bore, this corresponds to a reduction in the strength
of high-frequency resonances because of radiation from the open end. Also associated with the
open end is a frequency-dependent length correction which causes high-frequency wave components
to “see” a longer effective bore than low-frequency components. Alternately, high-frequency wave
components can be considered to propagate farther out the open end before reflection than their
low-frequency counterparts. The bottom plot of Fig. 2.1 illustrates this frequency deviation in cents
versus frequency. As a result, open-end radiation/reflection causes the axial normal modes of a

cylindrical pipe to be slightly compressed from their ideal, harmonic frequency values.

Another source for both resonance damping and tuning deviation is thermoviscous losses along
the inner walls of the instrument bore, as discussed in Section 1.3.3. For common cylindrical bored
instruments, such as clarinets and flutes, such effects are more significant than those associated with
open-end radiation. However, radiation losses are greater than thermoviscous losses in air columns
with a large open-end radius. The attenuation of high-frequency sound components via boundary-
layer effects is dependent on the length of the bore. Thus, the resonances of shorter tubes will be
less effected than those of longer tubes. Thermoviscous effects also produce a frequency-dependent
phase velocity which is independent of tube length. Figure 2.2 plots the attenuation and tuning
deviation effects that result from thermoviscous losses as a sound wave travels over two lengths of a
cylindrical pipe of length 0.5 meters and radius 0.008 meters. As a result of viscous drag along the
tube walls, all air column resonances are “flattened” to some extent, though most significantly at

lower frequencies.

Air temperature fluctuations will affect the speed with which sound waves propagate. In general,
the speed of sound c increases with air temperature and is given for the range 290 K < T' < 310 K
as (Benade, 1968)

¢ = 347.23 (1 + 0.00166AT) m-sec™, (2.3)
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where AT = T —300 K (26.85°C). Changes in humidity and gas content will cause further variations
in the speed of sound. Homogeneous changes in ¢ will affect the resonance frequencies of a wind
instrument but will not detune the partial relationships. In other words, a lower speed of sound will
cause all of the resonance frequencies of an air column to be lowered in equal proportions. However,
it is reasonable to expect that air entering the instrument is somewhat near 37°C, or the body
temperature of the player, and that it quickly cools as it travels down the bore (Nederveen, 1969).
Temperature differences of 13°C between the top and bottom of woodwind bores are reported by
Benade (1963). As a result, the fundamental resonance of a clarinet can be flattened by up to 9
cents, whereas the second partial can be stretched by 8 cents. Temperature gradients in musical
instruments are difficult to estimate because of environmental dependencies. Throughout this study,
a mean homogeneous temperature of 26.85°C is assumed throughout the instrument, a value which
was measured by Coltman (1966) in flutes.

Several members of the woodwind family are constructed with bent tubes, including saxophones,
bassoons, and bass clarinets. While these bends permit compact key mechanisms and manageable
instrument proportions, they cause disturbances to propagating sound waves which may produce
noticeable frequency shifts in steady-state tones (Benade, 1976, p. 409). Measurements have shown
that the effective length of the bent tube is dependent on the standing-wave patterns within the air
column (Brindley, 1973). In general, a bent tube behaves as if slightly oversized, so that two straight
cylindrical tubes of equal diameter should be joined by a half-torus of slightly smaller diameter.

All of the effects discussed thus far in this section are equally applicable to conical bores as well
as cylindrical bores. While a theoretical analysis of open-end radiation from a conical bore has not
been determined to date, it is reasonable to assume that the effects are similar to those in a cylinder.

As discussed in Section 1.4.1, the impedance at the open end of a cone is typically approximated by

T = % Zn, (2.4)
where Zp is the radiation impedance of a cylinder of equal open-end radius, Sy is the cross-sectional
surface area at the end of the cone, and S; is the spherical-wave surface area at the end of the cone
(Caussé et al., 1984). The ratio Sp/S; is typically just slightly less than one, so that the impedance
mismatch at the open end is slightly greater in conical bores.

The analysis of air column resonances in conical bores is considerably more complicated than
that associated with cylindrical bores because of effects related to the truncation of the cone tip.
The perfectly harmonic alignment of partials in a conical bore mentioned at the opening of this
section applies only to a complete cone with ideal boundary conditions and rigid walls. In order
to make such a structure useful as a musical instrument, it is necessary to truncate the cone and
apply an excitation mechanism near its apex. The single-reed excitation mechanism effectively forms
a rigid termination at the truncation point. As discussed in Section 1.3.2, the partials of a conic

frustum closed at its small end are not related by integral multiples to its fundamental resonance.

Rather, the partials are stretched away from perfect harmonicity to an extent which is dependent on
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tube length and the size of the missing, truncated section. Figure 2.3 is repeated from Section 1.3.2

to illustrate the variation of partial alignment in closed-open conic frusta. The partial frequencies

o 1 | 1 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(complete cone) Jé; (closed-open cylinder)

1 1 1 1 1 1

Fig. 2.3. Partial frequency ratios for a closed-open conic section versus 3, the ratio of closed- to
open-end radii. The frequencies are normalized by fo, the fundamental resonance for an open-open
pipe of the same length as the frustum.

are plotted against 3, the ratio of closed- to open-end radii (or equivalently, the ratio of zo to
L, as defined in Fig 1.8). A complete cone is represented by 8 = 0 (left edge of plot) and has
modal frequencies aligned at exact integer multiples of the fundamental. A closed-open cylinder is
given by 8 = 1 (right edge of plot) and has axial normal modes aligned at odd integer multiples of
the fundamental. Between these extremes, the partials frequencies are non-harmonically aligned to
various extents. The modal frequencies in Fig. 2.3 are normalized by f,, the fundamental resonance
for an open-open pipe of the same length as the frustum. The dotted lines indicate exact integer
relationships above the first partial and serve only to make more apparent the stretching of the
partial ratios. The fundamental frequency of the conic frustum is most affected by truncation and
closure, as this resonance descends quickly toward the fundamental of the closed-open cylindrical
pipe. Figure 2.4 offers another perspective on the partial alignment in closed-open conic frusta. In
this plot, the partial frequencies are normalized by f., the fundamental resonance for the same conic
section complete to its apex. From this figure, it is evident that in the range 0 < B < 0.2, the
fundamental normal mode of a closed-open conic frustum behaves as though it were complete to its
apex. This point will become important in subsequent discussions in this chapter.

For woodwind instruments constructed with conical air columns, the size of the truncated section
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Fig. 2.4. Partial frequency ratios for a closed-open conic section versus 3, the ratio of closed- to
open-end radii. The frequencies are normalized by f., the fundamental resonance for the same conic
section complete to its apex.

is constant, while the length of the bore itself is typically varied through the use of toneholes.
Similarly, the bore radius at the point of truncation is constant, while the effective open-end radius
changes according to the opening and closing of toneholes. Thus, the parameter 3 fluctuates over
the range of the instrument, indicating a variation of the partial structure. Shorter tube lengths will
have an associated value of 3 which is greater than that for longer bore lengths, so that the extent
of the stretching of their partial structure away from integer multiples of the fundamental is larger
for shorter tube lengths. This point is illustrated in Fig. 2.5, which plots the partial frequency ratios
for a conic frustum of fixed angle and small-end radius versus length. Measurements were made on
a modern Selmer Paris® Super Action 80, Series II, Eb alto saxophone to estimate the 8 values of
various pitches produced on the instrument. The measured lengths are provided in Appendix B,
together with measurements given by Nederveen (1969) for comparison. Averaging these two sets
of data, estimated values of § for the written pitches D4 and B4' are 0.15 and 0.24, respectively.
Corresponding partial values, normalized by the first resonance frequency, for these 3 parameters
are listed in Table 2.1, indicating the extent of partial stretching for these particular tube lengths.
It is common that the fundamental resonance of long truncated cones be of weaker magnitude

than the second resonance. Such a feature is evident in Fig. 2.6, which plots the input impedance of

tThe written pitches D4 and B4 on an Eb alto saxophone correspond to the concert pitches F'3 and D4, respectively.
For reference, the concert pitch A4 is given by a frequency of 440 Hz.
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Fig. 2.5. Partial frequency ratios for a closed-open conic section versus frustum length, for a cone
of half angle 2° and small-end radius of 0.005 meters. The partial frequencies are normalized by fo,
the fundamental resonance for an open-open pipe of the same length as the frustum.

a closed-open conic frusta of length 0.5 meters, small-end radius of 0.005 meters, and half angle of
2°. Benade mentions that this is characteristic of long, conical woodwind air columns in which the
missing part of the cone at the apex is relatively short compared to the length of the body of the
instrument (Benade, 1976, p. 444). The input to a conical air column can be viewed as a parallel
combination of an acoustic inertance and a cylindrical waveguide, as discussed in conjunction with
Eq. (1.68). The inertance term grows in magnitude with proximity of the truncation point to the
cone apex. Thus, short truncation lengths produce an inertance which “short-circuits” low-frequency
excitations, but leaves high-frequency energy unaffected. When the air column length is short, the
first resonance frequency of the system is high enough to be unaffected by the inertance term. Long

air columns, however, will have an associated low-frequency first resonance which is destructively

Normalized Partial
Values for 8 =
0.15 I 0.24

1 1
2.04 2.12
3.13 3.32
4.25 4.55

Table 2.1. The first four partial frequency ratios, relative to the first resonance frequency, for
conical frusta defined by 3 equal to 0.15 and 0.24.
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influenced by the inertance. This effect may be the cause for the poor response of the lowest few
notes of saxophones. These pitches are typically difficult to produce at soft dynamic levels, and tend

toward entrainment at the second resonance, in agreement with the resonance structure of Fig. 2.6.
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Fig. 2.6. The input impedance magnitude, relative to Ry = pc/S at its input end, of a conical
frustum of length 0.5 meters, small-end radius 0.005 meters, and half angle of 2°.

In summary, the following effects produce deviations from perfect tuning in cylindrical-bored

woodwind instruments:

¢ Open-end radiation causes the resonance frequencies of an air column to be compressed from

perfect odd integer multiple relationships.

¢ Viscothermal boundary layer effects attenuate resonance peaks in proportion to frequency and

flatten resonance frequencies in a manner inversely proportional to frequency.

¢ Temperature gradient effects may lower fundamental resonance frequencies in long tube lengths

and raise higher partial frequencies.
Woodwind instruments with conical-bores will experience all of the above effects, and in addition:

e Effects related to truncation of the bore cause the resonance frequencies to be stretched from

perfect integer multiples relationships.

e Effects related to truncation of the bore may attenuate the fundamental resonance in long

tube lengths, so that excitation at the fundamental is detrimentally affected.
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2.1.2 Perturbations

Various acoustic phenomena were analyzed in Section 2.1.1 which cause deviations from perfect
tuning in musical instruments constructed from cylinders and cones. In this section, the effects of
air-column perturbations are explored in order to gain insight into methods for the adjustment of
misaligned resonances.

The resonance structure of a cylindrical bore can be modified in a well defined manner by making
the pipe slightly conical convergent or divergent. The right side of Fig. 2.3 indicates the partial
relationships for a nearly cylindrical, conical divergent air column. The fundamental resonance
frequency of such a structure is seen to be higher than the uniform pipe and its partials are slightly
compressed from exact odd integer ratios. Similarly, the resonances of a nearly cylindrical bore
which decreases in cross-section away from the closed end are slightly stretched from exact odd
integer multiples of the fundamental and the first resonance is lower than that of a uniform pipe
(Benade, 1959, 1977).

In Section 1.4.2, methods for the analysis of sound-wave behavior in flaring horns were briefly
discussed. While rapidly flaring horns, or bells, are a less significant component of woodwind
instruments, very gradual flares over part or all of an air column’s length may offer potential means
for the adjustment of resonance frequency ratios. The analysis techniques developed in conjunction
with flaring horns can thus be applied to woodwind bore shapes in this regard. In general, a one-
dimensional analysis is made which assumes the existence of one-parameter waves propagating along
the principal axis of the horn. As mentioned in Section 1.3, one-parameter waves are possible only in
pipes of uniform cross-section and conical horns, respectively (Putland, 1993). Thus, the solutions
obtained through these analyses are necessarily approximate. It is possible to estimate the acoustic
behavior of sound waves in flaring horns by assuming either plane or spherical wave front shapes.
While spherical wave fronts offer a better approximation to the actual wave front shapes in flaring
horns, plane-wave approximations are reasonably accurate for small flare rates and horns of small
cross-sectional area (Benade and Jansson, 1974a,b). It should be noted, however, that the plane-
wave theory will always give a higher estimate of the normal mode frequencies of a structure than
the spherical-wave approximation (Benade and Jansson, 1974a).

A family of horns whose cross-sectional radius is given by
a(z) = Cz~° 4+ Dz, for =z >0, (2.5)

is often studied because of its formal simplicity and because certain values of the constants €, C,
and D produce profiles which closely resemble sections of brass instruments. These horns are called
Bessel horns because solutions to Webster’s equation for such geometries, assuming planar wave

front s, are given by (Pyle, 1975)

p(z) = 21/? a~!(z) [AJ€+1/2(k:v) + BY 41 2(k2)], (2.6)
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where A and B are constants determined by boundary conditions and J and Y are Bessel functions
of the first and second kind, respectively. Benade (1959) discusses horn profiles in which the cross-
sectional radius is given by Eq. (2.5) for D = 0 and negative values of €. Included in this group are
cylindrical (¢ = 0) and conical bores (¢ = —1). For horns defined by € < —1, Benade shows that the
normal-mode frequencies are compressed from integer multiple ratios of the fundamental frequency.
Bessel horns complete to their apex and ideally terminated at their open end form the complete set
of possible wind instrument air column shapes which have normal-mode frequency ratios that are
independent of horn length, within the plane-wave approximation mentioned previously (Benade,
1959). As was the case with conical bores, however, truncation of such a Bessel horn near its apex
and application of a rigid termination will destroy this ideal behavior.

Another family of horns for which analytic solutions are relatively simple within the one-parameter
plane-wave approximation are referred to as exponential horns because their cross-sectional radius
is given by

a(z) = ape™”, (2.7)

where m is the exponential flare constant and ag is the horn radius at the origin. Sinusoidal,

steady-state solutions to Webster’s equation for such geometries are given by

Plz;t)=

. B . .

—jbz jbx Jot 2.8
@ tam -
where b = k% — m2. Using Eq. (1.33), the corresponding volume velocity is found to be

S(z) c x ik N _jbl it
U(z,t) = a(0)p0 [A(D—jm)e 7" — B (b+ jm)ei®®] /. (2.9)

From these expressions, the input impedance of an exponential horn, and thus its resonance fre-

quencies, can be determined within the constraints of the plane-wave approximation. Figure 2.7
illustrates the profiles for two exponential horns of differing flare rate. The y-axis of the plot is
magnified to make more apparent the horn flares; if viewed with equal grid spacings, these flares
are much less obvious. For m = 2 and a9 = 0.005 meters, the mouth and open-end radii of the
horn are similar to those of the conical bore of an Eb alto saxophone of length 1 meter. In Fig. 2.8,
the first four partial frequency ratios, relative to the fundamental frequency, are plotted for the two
horn flare rates. The partial ratios are clearly dependent on horn length and, in general, depart
significantly from integer multiples of the fundamental frequency. For horns of longer length, the
partial ratios are compressed from integer relationships to an extent which is proportional to flare
rate. In horns of short length, however, truncation effects dominate and cause the partials to be
stretched from integer multiple ratios. This effect is more obvious for smaller flare rates, where
the horn shape more closely resembles a cylindrical pipe. Just as the partial ratios of a cylindrical
bore are slightly compressed from odd integer multiples when the pipe is made slightly conical di-
vergent, so an additional slight flare will further compress these ratios. Figure 2.9 plots the partial

frequency ratios of the exponential horns normalized by the fundamental resonance of an open-open




2.1. WOODWIND AIR COLUMNS 65

0.15 T T T T T T
0.1} . .
P8
7
//
8 oost -7 .
[}
£
&
S
]
<]
(6]
{ =g ~
£ -0.05f ~ -
s o ~
~
\\
N
N
-0.1F h g
1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Horn Length (mefers)

Fig. 2.7. Exponential horn profiles for flare parameters of m =2 (=) and m = 3 (- -).
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Fig. 2.8. Partial frequency ratios, relative to the fundamental resonance, for exponential horns
defined by flare parameters of m = 2 (-) and m = 3 (- -).
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conic frustum of the same length. From this figure, it is easy to see that the fundamental resonance
is most affected by both the truncation and horn flare, while the higher partials vary to a much
lesser degree. Truncation effects cause the first resonance frequency to be lowered, corresponding
to a longer effective bore length. Flares cause the first resonance frequency to be increased, which

corresponds to a shorter effective bore length.
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Fig. 2.9. Partial frequency ratios, relative to the fundamental resonance of an open-open conic
frustum of the same length, for exponential horns defined by the flare parameters m = 2 (-) and
m=3 (--).

Flared horns improve sound radiation characteristics, relative to straight-sided pipes, by provid-
ing a gradual wave impedance transition from their mouth to the external environment. In this
sense, the abrupt impedance mismatch at the open end of a cylindrical pipe results in poor radia-
tion and high levels of sound wave reflection back into the bore. Low-frequency sound components
are most affected by the flare of a horn, being reflected at relatively early stages in the horn, as
compared to high-frequency components. Such behavior may be understood intuitively by assuming
that each point along the curve of a flaring horn can be approximated by a piecewise conical section
whose walls are tangent to the curve. In this way, a rapidly flaring horn section is represented by
a cone of large central angle and short distance to its respective apex, while a less flared region is
represented by a cone of smaller central angle and longer distance to its respective apex. As found

in Section 1.3.2, the wave impedance of a cone is frequency-dependent and given by

pc jkx
Zo(z) = (@) (m) ; (2.10)

where z is measured from the cone apex. Thus, the local wave impedance within a flared horn, as
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estimated using Eq. (2.10), is lower for low-frequency wave components at any particular location.
Frequency-dependent reflections occur when the change in wave impedance is excessively rapid from
one region of the flare to the next. As a result, the lowest normal modes of a flaring horn occur
at higher frequencies than those associated with unflared pipes of the same length. High-frequency
normal modes are less affected by the flared horn and will travel further along the horn axis before
being reflected, if at all. High-frequency partials are altered only slightly by the flaring horn and
the overall partial ratios, relative to the first resonance frequency, are compressed. When the horn
length is short, however, truncation effects may obscure such behavior. In this context and without
regard for the influences of toneholes and a mouthpiece, the length-dependent partial stretching
effects caused by truncation of a conical bore can be partially offset by incorporating a slight flare,
particularly along the upstream regions of the air column.

Localized perturbations of an air column’s cross section can be employed to modify distinct
resonance frequencies, as discussed by Benade (1976). Reducing the diameter of an air column
near a standing-wave pressure maximum will raise the pressure there and produce a greater local
impedance to air flow. If the corresponding flow is small, the stiffness of the air in this region will
increase and result in a higher frequency for this particular mode. Constricting an air column near
a volume velocity maximum will produce slightly less flow for a fixed pressure differential. The
inertance property of the air in this region will thus be increased, which corresponds to a decrease
in the standing-wave frequency. From these observations, it is straight-forward to deduce that “a
localized enlargement of the cross-section of an air column lowers the natural frequency of any mode
having a large pressure amplitude at the position of the enlargement and raises the natural frequency
of any mode having a pressure node at the position of the enlargement.” (Benade, 1976, p. 474)
By keeping track of various normal mode pressure distributions within an air column, modifications
to particular resonance frequencies can be achieved. To facilitate such a task, it is possible to
determine perturbation weight functions which indicate the effect of local bore diameter variations
on the various normal modes. In general, the upstream portion of a woodwind bore is common to all
modes, while the downstream segment is significant only for those tones produced by closing all or
most of the toneholes. Thus, attempts to modify an instrument’s resonance structure should begin
at the upper end of the bore and continue downward.

In summary, the following woodwind air column perturbations and their associated effects were

discussed:

e Making a cylindrical bore slightly conical divergent will raise its fundamental resonance and

compress the partial frequency ratios from odd integer multiples.

e Making a cylindrical bore slightly conical convergent will lower its fundamental resonance and

stretch the partial frequency ratios from odd integer multiples.

o If the walls of a conical frustum are flared, the partial frequency ratios of the flared structure
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will be compressed in comparison to those of the conical frustum. In particular, the funda-
mental resonance frequency is raised, while the higher partials are affected to a much lesser

extent.

e A localized enlargement of an air column will lower the natural frequency of any mode having

a standing-wave pressure maximum at the position of the enlargement.

o A localized enlargement of an air column will raise the natural frequency of any mode having

a standing-wave pressure minimum at the position of the enlargement.

2.1.3 The Saxophone’s “Parabolic” Cone

Having discussed the properties of woodwind air columns, as well as potential perturbations of such,
it is interesting to investigate Adolphe Sax’s invention of the saxophone and his curious bore shape

specification. An excerpt from the patent for the saxophone, as translated by Hemke (1975), reads:

Struck by these different drawbacks, I have looked for a means of remedying these
situations by creating an instrument, which by the character of its voice can be reconciled
with the stringed instruments, but which possesses more force and intensity than the
strings. This instrument is the Saxophone. The Saxophone is able to change the volume
of its sounds better than any other instrument. I have made it of brass and in the form of
a parabolic cone to produce the qualities which were just mentioned and to keep a perfect
equality throughout its entire range. The Saxophone embouchure uses a mouthpiece with
a single reed whose interior is very wide and which becomes narrower at the part which
is fitted to the body of the instrument (Hemke, 1975, p. 48).

It is nowadays assumed that the air column of a saxophone is principally conical in shape, but
for a few modifications at distinct points along its length to account for tuning errors. Thus, the
specification of a parabolic cone in the construction of the saxophone is surprising. Hemke pursues
this issue in detail and states that “Sax was profoundly concerned with acoustics and proportions
and this statement therefore exemplifies a relevant distinction in the mind of Adolphe Sax” (Hemke,
1975, p. 59). Unfortunately, Sax himself never provided a more detailed explanation of the parabolic
cone’s shape. As a result of Sax’s first court case (in defense of the saxophone patent), the selected

panel of experts reached the following conclusion on 2 November 1847:

... but above all the tube of the instrument, in place of being cylindrical as the clarinet
and the bathyphone, forms a cone of which the walls have a specific curvature and which
the Sax patent designates under the name of parabolic cone (Halévy et al., 1848).

Jaap Kool provides a more detailed explanation of the shape of the parabolic cone, while viewing

a saxophone built by Sax, as follows:

If we remove the mouthpiece and neck of an alto saxophone so that we could look
into the main tubing, it would easily reveal that the forward side of the inner wall (that
is, the side where most tone holes are found) is not entirely straight, but rather forms a
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curve. We cannot see the beginnings of the tone holes all at the same time, but by slowly
turning it upward, they successively appear. If we turn the instrument a quarter turn
on its own axis, we discover that an absolutely straight course leads into the interior.
This side wall thus widens downward in a straight line. Another quarter turn once again
shows an outward-running curve, while the next wall again reveals an absolutely straight
course. From this, it follows that the almost circular cross-section at the top of the tube
takes on a continuously more elliptical shape toward the bottom. Furthermore, the tone
holes do not lie in a straight line, but rather in a parabolic curve running outward. In this
way, the diameter of the bore does not increase uniformly, but rather by a continuously
smaller percentage (Kool, 1987, pp. 82-83).

Kool provides a sketch, similar to that of Fig. 2.10, that clarifies his description. The accuracy
of his analysis is unclear, however, as he made no detailed measurements to substantiate his obser-
vations. The last sentence of the above quotation and the sketch provided seem to indicate that the
diameter of the bore along the “parabolic” axis is always smaller than that along the straight-sided
axis. It seems likely that an air column constructed in this way would be made to form a circular
cross-section at the point where it meets the bow, and from there form a straight-sided cone for the

remainder of its length.

i

Fig. 2.10. The profile of an alto saxophone built by Adolphe Sax, in exaggerated proportions [after
(Kool, 1987)].

The term “parabolic cone” is itself misleading, as there is no known common geometric surface
given by this name. What is generally referred to as a “cone” is defined in terms of quadratic
surfaces as a circular cone, as shown in Fig. 2.11(a). The walls of this structure are straight and
of the same angle of inclination in both the  — 2z and y — z planes. Cross sections of the circular
cone in the  — y plane are always circular. An elliptic cone, Fig. 2.11(b), also has straight walls,
though the angle of inclination differs in the z — z and y — z planes. Cross sections of an elliptic
cone in the z —y plane are elliptic in shape. While Kool’s description of the parabolic cone indicates
straight walls in one plane, the distinguishing feature appears to be curved walls in the other plane.
Figure 2.11(c) illustrates a structure with curved walls which is called an elliptic paraboloid, though
this curvature is opposite to that described by Kool. Finally, there is a shape defined as a hyperboloid
of one sheet, Fig. 2.11(d), which has the correct curvature, but no straight walls. Thus, the parabolic
cone could be defined as tracing hyperbolas in one plane and lines which intersect at the “cone”
apex in the other. Since such a surface is not confocal, it does not fall into the easily representable
quadratic shapes shown in Fig. 2.11 and a concise mathematical formula to represent this surface is

not possible. Several views of a parabolic cone are shown in Fig. 2.12. These plots were obtained
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NPT R

(d)

Fig. 2.11. Quadratic surfaces: (a) Circular cone; (b) Elliptic cone; (c) Hyperboloid of one sheet;
(d) Elliptic paraboloid.

by modifying the equations of an elliptic cone, so that the focus along one plane is varying. This
particular structure was defined such that its cross section at z = 1 is circular, as shown in the
x — y cross section of Fig. 2.12. For 0 < z < 1, the cross sections are elliptical. Perhaps the term
“hyperbolic” cone would be more accurate, but because of its own deficiency together with the
historical precedent of Sax’s description, such a shape will continue to be referred to as a parabolic
cone in this study.

While Sax’s use of the term “parabolic cone” to describe the shape of the saxophone air column
is rightfully confusing, interpretations regarding the acoustical function of such a shape are a more

important issue to this study. Georges Kastner, in his early method book for the saxophone, wrote:

A foremost particularity of the saxophone rests in its cone being parabolic throughout
its entire length whereas the tubes of other instruments form a concave and generally
cylindrical cone throughout their greater length; in the saxophone the vibrations occur
along its entire length by means of undulations against the walls, but in the others
(ophicleide, trumpet, trombone) the undulations vibrate from one end of the tube to the
other (Kastner, 1846).

A similar interpretation is given by Henri Radiquer in the Lavignac Encyclopédie de la musique et

dictionnaire du Conservatoire.

Now the tube is a parabolic cone in which the vibrations do not behave as in the cylin-
drical tube of the clarinet and in the conical tube of the oboe, where they directly follow
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Fig. 2.12. Various views of a “Parabolic cone.”

the straight line of the interior of the tube. In the tube of the saxophone the vibrations
are reflected from one wall to the other and roll along as intersecting rings between the
two curved interior lines of the tube (Radiguer, 1931).

Kastner had worked on his book in collaboration with Sax to some degree between 1844 and 1845,
prior to the saxophone patent application (Hemke, 1975, p. 51). Given Sax’s skill as an instrument
builder and his reasonable understanding of acoustics for the time, it is unlikely that he himself
wrote that description. It is, of course, ridiculous to suggest that transverse oscillations between
the walls of the cone form the principal modes of vibration in this instrument. And while detailed
analysis of higher mode propagation in musical instrument air columns was yet to be carried out
in Kastner’s time, Sax designed the instrument for length changes along its length, rather than by
widening its bore width. What is clear, however, is that Sax considered the “parabolic” shape of
the cone to be an important and distinguishing aspect of the saxophone.

In his book of 1931, Jaap Kool “explains” Sax’s use of the parabolic cone.

Sax chose this parabolic shape intentionally. We know that the sound waves, exactly
as light waves (say, off a mirror), are reflected. From an echo, for example, we know,
that under certain circumstances the emitted sound is reflected back to its starting point.
This reflection is the greatest, that is, it is most complete when the sound is reflected
from the focal point of one parabolic body to the focal point of another parabolic body.
This means, in practice, that one can direct the course of sound waves in a desired
direction. ...Sax employed all these parabolic surfaces and their effects in the saxophone.
First of all, the parabolic inner walls operate like the convex mirror, diffusing the sound
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and, at the same time, reflecting it into the tube’s interior. This is how the uniquely
sonorous, mellow, and at the same time, somewhat hollow sound of the saxophone is
produced, which on inferior instruments is easily associated with a ventriloquial note.
Still dissatisfied, Sax put in three other small parabolic concave surfaces, or slight curves.
If we list the diameters of the tone holes in succession, it becomes obvious to us that
these diameters do not regularly increase as the gradually increasing diameter of the tube
would cause. On three occasions, we find that a lower tone requires a smaller tone hole
than the preceding higher tone. ... At these three places Sax once again employed small
parabolic bulges in the opposite direction of the overall curve, which extends across the
entire instrument. ...These inward-turning parabolic surfaces operate like the concave
lens, that is, they focus the sound. Since at the opposite wall — directly in the vertex of
the parabola — there is respectively a tone hole, these surfaces simultaneously effect an
easier escape of the sound waves.

American firms, as well as some European firms, are putting more and more inex-
pensive saxophones on the market, which often totally forego the parabolic shape. Such
instruments sound harsh and slightly raspy like a Jew’s harp. Strangely enough, by no
means does every reputable saxophone factory calculate the exact shape of the bodies of
their saxophones according to the scientific-acoustical laws (Kool, 1987, pp. 83-87).

While it may seem foolish to devote such space and energy to the writings of one obviously untrained
in the fundamental principles of acoustics, Jaap Kool’s statements remain, uncorrected in a recently
released translation, an accepted explanation of sound wave behavior in a parabolic cone and its
effect on saxophone tone quality. To this day, there are professional saxophonists that seek out old
saxophones constructed with the parabolic conical shape, claiming that they allow a more focused
sound and better flexibility of tone quality.

Using the acoustic observations discussed in previous sections, it should be possible to estimate
the effects that a parabolic cone, in contrast to a circular cone, has on the sound of the saxophone.
Based on the observations of Section 2.1.2, it is expected that the partial ratios of this structure will
vary with air column length. It is assumed that only the straight portion of the air column, between
its neckpipe and lower bow, is shaped as the parabolic cone. Within these limits, it is possible to
approximate the shape of a parabolic cone using an exponential horn of equal mouth and open-end
radii, as shown in Fig. 2.13. Remembering that the walls of the parabolic cone are curved along one
plane only, it is reasonable to expect that the actual acoustic behavior of this bore structure will
fall somewhere between that of the truncated cone and the exponential horn. Figure 2.14 plots the
partial frequency ratios of both the closed-open conical frustum and the combined cone /exponential
horn structure for various lengths, normalized by the fundamental resonance of an open-open conic
section of the same length. In general, the fundamental resonance frequency of the cone /exponential
horn structure is slightly lower than that of the closed-open conic frustum, while the upper partials
are only slightly affected by the wall curvature. To determine the resonance frequencies for Fig. 2.14,
the input impedance was calculated at the mouth of the neckpipe. Thus, the partial stretching
effects caused by truncation and closure at the mouth of the bore are overestimated. Under playing

conditions, a mouthpiece can potentially replace the missing cone section and greatly minimize, or
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Fig. 2.13. Profile of an alto saxophone bore, up to its lower bow. The bore section between the
neckpipe and lower bow is represented by a conical frustum (-) and an exponential horn (- -).
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conical frustum (- -). The dotted lines indicate exact integer multiple relationships to the first
closed-open conical frustum resonance.
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eliminate, the stretching of the resonances.

It appears that the parabolic conical bore prescribed by Adophe Sax produces negligible dif-
ferences in resonance frequency placement versus a pure conical bore. The acoustic behavior of a
woodwind instrument air column is greatly complicated by the presence of toneholes and a mouth-
piece. Thus, it is likely that the unique qualities associated with saxophones of this shape (and
era) are most attributable to other factors, as well as further possible bore deformities. In general,
saxophones which have the parabolic conical shape also have a “darker” tone quality. Such behavior
might be attributed to a misalignment of higher partials, preventing these harmonics from fully co-
operating in the regime of oscillation and thus creating a sound which has less high spectral energy.
It is difficult to determine the reasons an instrument might be considered to “focus” better, though
this quality could be associated with proper alignment of the lowest and strongest resonances of an
air column. In this case, an instrument design might sacrifice high harmonic alignment to achieve
better alignment of the lowest resonances. Beyond such speculation, it is clear that the shape of the

saxophone has evolved since its invention around 1840.

A check by the writer of various modern saxophones indicates these instruments follow
a well defined conical shape and the parabolic forms observed by Kool in the early Sax
saxophone have virtually been discarded. This modification of the bore resulted in a
change in the saxophone’s timbre, but the principle of its mode of vibration remained
the same, i.e. it operated as an open tube (Hemke, 1975, p. 67).

Given the above conclusion regarding the potential effects a parabolic cone might have on the
sound of the saxophone, it is interesting that Sax considered this component to be the primary

distinguishing feature of his instrument.
By consciously imposing parabolic curves on a conically formed instrument, Sax created
an entirely new instrument. He had searched for a particular instrument possessing
unique qualities — a new orchestral bass voice, an instrument with the particular ability
to reconcile the brass with the strings and a brass instrument with superior intonation.
Adolphe Sax invented an instrument which combined a single reed with a parabolic

conical tube. He did not invent, nor [did he] claim to have invented an instrument which
combined a single reed with a conical tube (Hemke, 1975, pp. 69-70).

2.2 Woodwind Toneholes

Toneholes are an essential and characteristic feature of all woodwind instruments, allowing varia-
tions of an air column’s length so as to produce a full scale of sounding pitches. Benade (1960) made
useful and accurate low-frequency observations of the behavior of woodwind toneholes by analyzing
them in terms of lattice structures, or as groups of open and closed holes. Keefe (1981) extended the
theory of toneholes by making accurate analyses of an individual tonehole, and then determining
the extent of tonehole interactions. His method allowed computer modeling of a complete tonehole

lattice, assuming that the tonehole interactions are minimal. The mathematical details of these
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approaches were discussed in Section 1.4.3. The present discussion is more oriented to the wood-
wind instrumentalist, seeking to define in general terms the acoustical behavior of toneholes. This
background sets the stage for a short course in practical tonehole alteration techniques. While not a
comprehensive discussion, several methods are outlined which have proven extremely useful over the
years for correcting tuning errors in woodwind instruments. Finally, the fundamental operation of
register holes is reviewed with an emphasis on their effect on saxophone intonation. These concepts

offer an opportunity to introduce issues related to oral cavity manipulation.

2.2.1 The Tonehole Lattice

Benade (1960) provided the first mathematical descriptions of the acoustic behavior of woodwind
toneholes which could potentially be used in the design of a complete woodwind instrument. As men-
tioned in Section 1.4.3, his analysis assumed that the tonehole lattice (THL) is adequately modeled
in terms of uniformly spaced holes of equal size. Within a lattice of closed holes along a cylindrical
pipe, Egs. (1.118) and (1.119) express low-frequency approximations to the wave impedance and

phase velocity. From these expressions, the closed-THL “effective” cross-sectional area is given by
S % 7a? |14+ =D 2.11
off & ma” |1+ 3 , (2.11)

for D(©) = 1(b/a)*(t/s) < 1, where a is the main bore radius, b is the tonehole radius, ¢ is the

height of the tonehole, and 2s is the interhole spacing. The length correction due to the slower

_ =l (o)
w = (e s

where r is the fractional length of the air column occupied by the closed side holes. It is also

phase velocity is

possible to estimate the length correction due to a single unit cell of the closed-hole THL. In the

low-frequency limit, this length is given by (Benade, 1960)
E~2s(V1+ D@ -1). (2.13)

In order to determine the length correction for an entire closed-hole lattice using Eq. (2.13), it is
necessary to sum the estimates for each of the closed toneholes. Despite the fact that the finger holes
of real musical instruments are not of uniform spacing and equal size, this approach remains valid
in the low-frequency limit if the parameter D(®) is constant, so that the wave impedance (or Seﬁ")
and phase velocity are the same when evaluated anywhere along the pipe. For a fixed air column
radius a and wall thickness ¢, this constraint sets up a necessary relationship between the interhole
spacing 2s and the hole radius b. The toneholes are typically spaced and sized to form a chromatic
scale. Semitones in the equal-tempered tuning system are related by the ratio 21/12 ~ 1.06, so to a
first approximation, 2s ~ 0.06L, where L is the position of the tonehole measured from the upper

end of the air column. In such an idealized instrument, the tonehole radii will necessarily increase




76 ~CHAPTER 2. ACOUSTICAL ASPECTS OF WOODWIND DESIGN & PERFORMANCE

with distance L to maintain a constant value of D(¢), Because the closed-hole lattice has an effective
cross-section which is greater than an unpierced pipe of the same radius, it might seem reasonable
to increase the radius of the top portion of the air column where no toneholes exist, in order to
maintain a constant effective wave impedance along the pipe.

Benade (1960) made the observation that only the first two or three open toneholes along a
woodwind air column have significant influence on the behavior of low-frequency sound waves. For
this reason, he was able to further apply lattice theory to the open-hole portion of a woodwind
instrument. In the low-frequency limit, the open-hole lattice forms a “mass-like” termination to a
set of closed holes, as discussed in conjunction with Eq. (1.120). Further, there is a cutoff frequency
below which the propagation wave number [Eq. (1.121)] in such a structure is real and above which
it is imaginary. Thus, low-frequency sound components are exponentially attenuated within the
open THL, while high-frequency components propagate through it with an imaginary wave number
approaching jk. The cutoff frequency can be determined from Eq. (1.121) by setting '@ =0, with

the result

c D)

Je= 5ns\| T4 2D (2.14)

where ¢ is the speed of sound and D(©) = 1(b/a)?(s/t.) (Keefe, 1990). At frequencies much higher
than cutoff, the characteristic impedance approaches Zj, or the wave impedance of a cylindrical
bore.

Keefe (1990) updated the results of Benade (1960) to account for the complex series impedance
component of a tonehole. For the tonehole structure of a typical clarinet, he found that the series
impedance produces an approximate 20% shift in closed-THL parameters versus only about 2% for
open-THL parameters. Thus, the series impedance terms are much more important for closed-hole
lattice calculations.

These closed-form solutions can be used as an aid in the design of musical instruments. Keefe
(1989) presents an approach developed by Benade and updated to include the series impedance ef-
fects. Using the closed-hole lattice constraints mentioned previously, initial estimates of the tonehole
dimensions can be made. These values, together with information regarding the excitation mecha-
nism and air column shape, are input to an iterative computer program which determines optimal
tonehole positions along the bore. Given reasonably accurate data regarding the effective length of
the excitation mechanism, this method can produce good instrument designs for pitches below the

THL cutoff frequency.

2.2.2 The Single Tonehole

The theory of the single woodwind tonehole, as determined by Keefe (1981, 1990), was presented in
Section 1.4.3. Because tonehole interactions are generally minimal, this theory can be applied by

linear superposition to an entire tonehole lattice as well. In this way, it is possible to calculate the
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acoustic behavior of a series of toneholes to reasonable accuracy. Furthermore, the effect of small

modifications to tonehole parameters may be carefully investigated.

On a more general level, the relationships derived in conjunction with tonehole lattices can
be used to determine the result of simple adjustments to a single tonehole. From the open-hole
lattice length correction [Eq. (1.122)] and D(©), it is apparent that an increase in the radius of the
first open tonehole will raise the frequencies of the corresponding air column resonances below the
cutoff frequency. Variations to the height ¢ of the first open tonehole have inverse effects on the
corresponding air column resonance frequencies. That is, an increase in the tonehole height lowers
the resulting fundamental frequency. Further, reducing the keypad height above the first one or two
open toneholes along an air column will lower the frequency of the corresponding first resonance. In
general, such modifications will have the greatest influence on low-frequency resonances and could

potentially produce unexpected consequences on higher-register behavior.

While the various air column and tonehole design issues discussed briefly in this chapter and
clearly stated by Benade (1976) may seem directed toward the instrument maker, it should be
pointed out that performers have the ability to make many simple, yet significant, mechanical
modifications to their instruments in order to improve response and intonation. Appropriate air
column perturbations, as well as direct alterations to the position and height of a tonehole, are
typically too difficult to be made by the performer. However, basic tonehole modifications are
reasonably straight-forward and make it possible to lower the pitch of most notes on a woodwind
instrument. Raising the pitch of a particular note via tonehole adjustments would entail removing
portions of the instrument and thus are not considered viable in this context. One particularly
effective technique involves the use of so-called tonehole liners (Caravan, 1979). A quarter-moon
shaped wedge of material, or a tonehole liner, can be cemented to the upstream side of a tonehole
to increase the effective length of the air column when that hole is open. Such a technique should
be used only when the notes produced by a particular first open hole are too high in frequency in
all registers, or when a tuning compromise between upper and lower registers is acceptable. The
tonehole liner, of course, also reduces the effective diameter of the hole, which produces the same
tuning result. Because tonehole liners form an extension of the air column wall, it is best to make
them from a rigid material to reduce potential boundary layer losses. That said, tonehole liners
are most commonly constructed from cork. Tonehole key heights can also be adjusted to make
tuning corrections. Moving a key pad closer to a tonehole increases the effective length of the
tonehole, which in turn, lowers the frequency of the note produced by the open hole. As mentioned
in connection with air column adjustment principles, these modifications should begin at the upper
end of a bore and progress toward its open end. An oversized tonehole liner or a very low key pad

height can cause a “stuffy” response.

Though slightly more ambitious, the response of a wind instrument may be improved by smooth-

ing any sharp edges within its air column (Benade, 1976; Hoekje, 1995). Sharp edges can cause
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increased turbulence at lower blowing pressures, which in turn produces more internal damping.
Rounding the corners of toneholes can significantly postpone and regularize the onset of turbu-
lence in a woodwind and allow the instrument to play well over an extended range (Benade, 1976,
pp. 500-501).

2.2.3 Register Holes

Most musical instruments have evolved or were designed in such a way as to take advantage of higher
axial modes of vibration in order to extend their playing range. The ability to select a particular
mode of oscillation is an inherent component of flute and brass instrument excitation mechanisms. As
discussed in Section 1.5, however, single- and double-reed excitation mechanisms operate well below
their resonance frequencies, and for this reason they are particularly subservient to the resonance
structure of the air column to which they are attached. In order to entrain oscillations in these
instruments at higher resonances, the normal mode structure of their air columns can be modified
so as to destructively influence fundamental mode operation, and thus indirectly force production
at higher, more stable resonance frequencies. The register hole is designed for this purpose. It is
also possible to use oral cavity manipulations and lip pressure variations to entrain oscillations at
higher air-column resonances, though such changes are more difficult to control. Register shifts are
greatly facilitated through the use of a register hole.

Benade (1976) states that a register hole, or vent, must fulfill two functions. At soft dynamic
levels, the hole must selectively reduce the magnitude of the air column’s first resonance peak
to a value less than that of the second resonance, and so encourage the reed to oscillate at the
frequency of the second resonance. At greater dynamic levels, however, the increased strength of
higher resonances may combine to support a regime of oscillation based on the first resonance, even
when the second peak is of greater magnitude. In this case, a register vent must shift the frequency
of the first resonance peak so that it is incapable of joining a regime of oscillation supported by
higher air-column resonances. In both cases, reed oscillations are emphasized based on the second
(or higher) axial mode of the air column.

In order to perform selective damping of first mode resonances, a register vent must be of very
small radius and short length, so that it behaves as an acoustic resistance. To execute its second
function, a register hole must be so proportioned that it behaves as an acoustic inertance. For
practical reasons, a single register hole is designed to meet both of these requirements. (Benade,
1976, p. 458) provides formulas that properly relate a register hole’s effective height ¢, and radius b

to the local bore radius a and length. In conical-bored instruments, this relationship is given by

(S)Z (tﬁ) = 3.253, (2.15)

where L is the length of the complete cone for the note of interest, while for cylindrical-bored
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(§'>2 (tﬁ) = 0.757. (2.16)

In general, the physical tonehole height ¢ (from which the effective tonehole height can be approx-

instruments,

imated as t. ~ t 4+ 1.5b) should be made as short as possible in order to give the register hole the
desired resistive properties.

A register hole must be so located that it has a significant effect on the first resonance of an air
column but little or no effect on the second resonance. Placing a register vent near a first-mode
standing-wave pressure antinode and at a second-mode standing-wave pressure node will meet these
requirements. Translating these conditions, the register hole should be located approximately one-
third of the distance from the excitation mechanism of a cylindrical-bored instrument to its first open
hole and approximately one-half the distance from the imaginary apex of a conical-bored instrument
to its first open hole.

The second register of all woodwind instruments encompasses at least a dozen semitones, and
so it would appear that these instruments should have an equal number of appropriately positioned
register vents. Practical considerations make such a scenario impossible, so that the instrument
designer must determine the optimal number and locations of register holes needed to produce
responsive and “in-tune” second register behavior. Assuming proper alignment of the first and
second resonances of an air column, a register hole will produce perfect octave or twelfth relationships
only for those notes used in its design. Other second register notes produced using the same register
hole will be raised in frequency by an amount proportional to the magnitude of the difference of the
ideal, desired frequency and the register hole design frequency.

Modern saxophones have two register holes which function for the written range D5 — G5 and
A5 — F6}, respectively. The notes D6 — F'6ff on all saxophones are produced with toneholes intended
for use only in the second register, so that the placement of these toneholes can be appropriately
modified to account for misplaced register-hole effects. Thus, the best tuning compromise that can
be made on such instruments is to design the register holes for proper operation at the notes F5
and BS5, respectively. Notes on either side of these values will be sharp to a certain extent. Because
the saxophone octave mechanism is automated to function with a single key, there appears to be
little reason an additional one or two register holes could not be integrated into the existing scheme,
without any inconvenience to the performer. The Loomis Double Resonance Alto Sazophone did
just this, incorporating an extra register hole on the saxophone neckpipe for the notes C6f — F6
(Cohen, 1991a,b). This instrument was primarily designed to eliminate all cross-fingerings within
the conventional range of the saxophone, but only six prototypes were built by Loomis in the 1920’s.
Other instrument manufacturers, such as Selmer, Conn, and Evette Schaeffer, experimented in the
first half of the twentieth century with as many as four saxophone register holes, though these

features never became standard (Cohen, 1991c¢,d).

It is nowadays common that single-reed woodwind instrumentalists develop the ability to extend
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the playing range of their instrument beyond the conventional fingering limits using third and higher
resonances of the air column. Because all register keys are designed for use in the second register
only, it is necessary that the performer find cross-fingerings which set up appropriate air column
resonance structures (Benade, 1976, pp. 460-462). In conjunction with these unconventional fin-
gerings, however, oral cavity manipulations are necessary to further emphasize desired regimes of
oscillation and properly control extended register notes’. These topics will be further discussed in

subsequent sections.

2.3 The Single-Reed Excitation Mechanism

In Section 1.5, the single-reed excitation mechanism was analyzed as a complete unit. In this
section, the mouthpiece and reed are evaluated separately. In particular, the mouthpiece cavity is
known to have significant control over an instrument’s sound spectrum, as well as its intonation
and response. Saxophone mouthpiece chamber geometries are of particular concern in this analysis.
Next, a variety of literature with regard to reeds is reviewed and commented upon. In general,
a professional performer’s insight, together with reasonable grounding in acoustic fundamentals, is

often necessary to winnow the wheat from the chaff.

2.3.1 Mouthpieces

The single-reed mouthpiece forms an extension of the woodwind air column which allows the at-
tachment of a wooden cane reed in such a way that it can function as a pressure controlled air valve.
The mouthpiece cavity does not form a uniform continuation to either a cylindrical or conical bore,
and as a result, propagating sound waves within the chamber are scattered in complex ways. The
inside geometry of the mouthpiece is critical in determining the response, timbre, and intonation of
the overall instrument. Most attempts to accurately determine the specific relationships between
geometric proportions and acoustical behavior, however, have failed. Benade and Richards (1983)
conducted an important analysis of oboe reed and staple proportions which has relevance for all
conical-bored instruments.

Benade (1959, 1977, 1976) estimated the influences of mouthpiece cavities on low-frequency
sound waves. When attached to a cylindrical pipe, the mouthpiece chamber effectively extends the
air column by an amount equivalent to its volume, to first approximation. Thus, a variation of

cavity size affects the lowest resonances in equal proportions and does not alter their ratios to any

tOral cavity manipulations of this sort are easily demonstrated with an Eb alto saxophone air column kindly donated
to this author by The Selmer Company, Inc. This instrument has no holes along its entire length, thus eliminating any
potential resonance structure modifications attributable to toneholes or register vents. Using a normal mouthpiece
and reed combination, it is possible to sound individually and with reasonable control any of the first ten to twelve
resonances of the air column, solely through oral cavity manipulations (no variation of lip tension).
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great extent. At higher frequencies, however, the mouthpiece length correction becomes frequency-
dependent and can have important consequence on tuning and tone color. That having been said,
mouthpiece proportions have greater influence on conical air column resonances than cylindrical air
column resonances.

The first known description of the saxophone mouthpiece was provided by Adolph Sax in his
patent letter of March 20th, 1846. “The Saxophone embouchure uses a mouthpiece with a single
reed whose interior is very wide and which becomes narrower at the part which is fitted to the body
of the instrument” (Hemke, 1975, p. 48). Early saxophones fitted with such a mouthpiece elicited

the following description by Hector Berlioz:

These newly gained orchestral voices have rare and valuable qualities. In the high
range they are soft yet penetrating. In the low range they are full and rich and in the
middle range they are very expressive. On the whole it is a timbre quite its own, vaguely
similar to that of the violoncello, the clarinet and the English horn with a half metallic
admixture which gives it an altogether peculiar expression. ...

The high tones of low saxophones have a plaintive and sorrowful character; their low
tones, however, have a sublime and as it were, priestly calm (Berlioz, 1856, p. 400).

The development of jazz in the 1930’s and the use of saxophones in dance bands stimulated
changes to the original saxophone mouthpiece design (Rascher, 1954; Leeson, 1960). Forced to
compete with the more powerful brasses, saxophonists sought out any means possible to improve the
dynamic range of their instruments. Modifications to the interior shape of the mouthpiece proved to
be the easiest and most effective way to produce the desired tone quality changes. By narrowing and
lengthening the mouthpiece chamber, a more strident, loud, and “edgy” tone quality was produced,
which had a more penetrating character. Today, a large variety of mouthpiece designs are available
to the saxophonist, though those intended for jazz use dominate the market. As a result, the full
tonal potential of the saxophone remains unknown to most audiences and produces delighted words
of praise when heard on such rare occasions.

In general, it is difficult to discuss musical tone quality without using subjective terms. The
problem stems from an attempt to specify timbre, or the features of the spectrum of a sound.
Further, terms such as “bright” and “dark” are comparative in nature and thus, they must be
based on some accepted reference or standard. Despite these difficulties, it is widely acknowledged
that a tone identified as “bright” will have more high-frequency spectral energy than a tone regarded
as “dark.”

The saxophone mouthpiece has been the focus of a great deal of conjecture and incompetent
“acoustic” analysis by performers. Though rather simple in its acoustic capacity, a more valu-
able study was conducted by Wyman (1972) to determine the effect of alto saxophone mouthpiece
chamber design on tone quality. His experiments consisted primarily of playing tests which were
subjectively rated by performers. Further, he analyzed radiated spectra to form a comparative basis

for his analysis. His first conclusion was:
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In comparing the five basic mouthpiece types used in this study, differences were
observed in the way tone quality varied with changes in dynamic level. At the pp level,
differences between mouthpieces are not pronounced. In mouthpiece chambers producing
a dark tone the upper harmonics appeared gradually as the dynamic level was increased.
In chambers producing a brighter tone a more abrupt increase in upper harmonic strength
was evident between pp and mf than between mf and ff (Wyman, 1972, p. 120).

(Benade, 1976, pp. 441-447) describes the behavior of the clarinet nonlinear excitation mechanism.
At very soft playing levels, the internal sound produced by a pressure-controlled reed valve is char-
acterized by very little harmonic energy above the fundamental component. Between pp and mf and
before the reed begins to beat against the mouthpiece lay, the amplitude p,, of the nth harmonic
will grow with respect to the amplitude p; of the fundamental by the formula p,, = ap?, where a
is a constant. Thus, the amplitudes of the higher resonances will grow quickly in this range. Once
the reed begins to beat, this relationship is no longer valid, and the higher harmonic amplitudes
will tend to grow in a way that parallels the growth of the fundamental. Conical bores generate
larger pressures on the reed than cylindrical bores, so that a saxophone reed begins to beat against
the mouthpiece lay at much softer dynamic levels. For very soft saxophone reeds, beating may
occur at all playing levels. Thus, the harmonic amplitudes will tend to grow in a way that parallels
the growth of the fundamental over most of a saxophone’s dynamic range. However, the internal
spectrum consists primarily of frequencies below the open tonehole-lattice cutoff frequency, so that

spectral content is essentially fixed at playing levels of mf and higher. Wyman further noted:

The amount of brightness in the tone is primarily controlled by the baffle shape. A
small baffle-to-reed angle tends to promote a bright tone. Since proper tuning requires
about the same chamber volume from all types, the brighter types with their low roof
contours tend to have longer chambers. Their smaller cross-section area necessitates
greater length in order to provide the proper volume. Within each of the five basic
chamber types the chamber length is directly proportional to the brightness of tone it
will produce.

When the side walls are flat rather than concave, the resulting constriction is similar
to that caused by the lowering of the roof height. Flat side walls usually necessitate
lengthening of the chamber. Even with flat side walls the tone quality can remain
quite dark if the volume of the chamber can be increased by some means other than
lengthening. Two of the test mouthpieces having flat sidewalls achieve this by using a
large baffle-to-reed angle and a high roof line. One of these two mouthpieces also has a
large inner chamber for added volume, allowing it to be still shorter in length.

Within each of the five basic types of chamber, the higher the maximum roof height
is, the darker the tone will be (Wyman, 1972, p. 121).

The various components of a single-reed mouthpiece are illustrated in Fig. 2.15. The contour
drawn represents a particularly “open” or wide cavity shape, similar to the original design of Adolphe
Sax. The baffle is considered that portion of the roof which extends a short distance from the inside
edge of the tip rail. In general, a short and open mouthpiece chamber is associated with a dark tone

quality, while a long and narrow chamber is associated with a relatively brighter tone quality.
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Fig. 2.15. An early saxophone mouthpiece design.

Benade and Richards (1983) conducted a theoretical analysis on the influence of reed and staple
proportion adjustments on the air column normal modes of an oboe. By approximating the reed
and staple with a cylindrical and conical section, respectively, they derived a closed-form solution
from which the effect of simple geometric variations could be determined. In particular, they found
that the reed and staple assembly should be so proportioned that its total volume is equivalent
to that of the missing conical section at the top of the instrument. This requirement is based on
the low-frequency behavior of the structure, since a cavity is characterized by its volume in the
long-wavelength limit but not by its particular shape. Further, the lowest natural frequency of the
assembly should match that of the missing conical tip so that their behaviors are comparable in the
vicinity of this frequency. When correctly proportioned, the reed structure functions in place of the
missing conical section and can correct some or most of the effects of conical bore truncation. The
motion of the reed, damping in the reed and lips, and oral cavity effects all make large contributions
to the effective volume of the reed assembly, which is much greater than its geometrical volume.
Thus, while the dimensions of the model assembly will not be directly applicable, these observations
can provide practical guidance in the adjustment of the reed structure of a real oboe.

Given the analysis of Benade and Richards (1983), it is reasonable to expect that a saxophone
mouthpiece which produces a characteristically “dark” tone quality destructively influences the
higher partials of the air column. In this sense, a long and narrow mouthpiece chamber may form
a better continuation of the conical bore to its apex, and allow more high harmonic participation in
the regime of oscillation.

To test this theory, transmission-line models of an alto saxophone mouthpiece and ideal conical
air column structure were developed, using techniques described in Sections 1.3.1 and 1.3.2. The

two hypothetical structures shown in Fig. 2.16 were used to approximate the shapes of a short, open
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saxophone mouthpiece and a long, narrow mouthpiece. Their dimensions were based on typical alto
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Fig. 2.16. Approximate saxophone mouthpiece structures: (top) Wide chamber design; (bottom)
Narrow chamber design.

saxophone mouthpiece and bore measurements and subsequently refined such that their geometric
volumes closely matched the volume of the missing conical tip. The calculations were intended
only to highlight the differences between the two mouthpiece structures, so that matching of their
first resonant frequencies to that of the missing conical section was not performed. The cylindrical
sections on the right of each structure correspond to the cylindrical portion of the neckpipe and
the cylindrical portion of the mouthpiece which fits over the neckpipe end. The slight increase in
diameter occurs at the point where the neckpipe ends inside the mouthpiece.

The calculated input impedances of the complete mouthpiece and air column structures are shown
in Fig. 2.17. Of particular interest, the resonance structure produced with the narrow chamber
mouthpiece has a significantly greater high-frequency emphasis. The mouthpieces appear to impose
formants on the air column resonant structure. Figure 2.18 illustrates the partial frequency ratios for
the mouthpieces and conical air columns of varying length. While the narrow mouthpiece provides
better normal mode tuning for shorter air column lengths, the tuning effect of these different designs
seems negligible. It is likely that the mouthpiece geometries could be modified to produce better
resonance alignment, though the purpose of this analysis was simply to determine any significant
differences between the two designs.

Of practical consequence to the saxophone performer, the constraints imposed on saxophone
mouthpiece designs imply proper proportioning between the mouthpiece and the neckpipe of the
instrument. Musicians typically adjust their mouthpiece position on the neckpipe for correct pitch,
but this adjustment also affects the overall partial alignment of the instrument. Thus, as Benade

points out, “Saxophone players would lead much easier lives if the mouthpiece cavities used on their
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Fig. 2.17. Theoretical mouthpiece and air column structure input impedances, relative to Ry =
pc/S at the input of the structure: (top) Wide chamber design; (bottom) Narrow chamber design.
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instruments were fitted as meticulously to their instruments as are the double reeds used by their

colleagues” (Benade, 1976, p. 472).

2.3.2 Reeds

The wooden cane reed used on reed woodwinds acts as a pressure-controlled air valve at the input of
the instrument. As discussed in Section 1.5, the reed is typically modeled as a second-order, linear
oscillator, an approximation which is reasonably accurate for small amplitude vibrations (Backus,
1963). For larger amplitudes, it is expected that nonlinearities occur. The resonance frequency of a
clarinet reed falls somewhere in the range 2-3 kHz and can be modified by the player via lip position
and lip pressure. Moving the lower lip away from the reed tip produces less damping. Greater lip
pressure forces the reed closer to the curved mouthpiece lay, reducing its effective vibrating mass
while at the same time, increasing its stiffness due to bending. All three factors will cause the
reed resonance frequency to rise. Because it is driven at frequencies much lower than its resonance
frequency, the reed is said to operate in a stiffness-dominated region where its motion is essentially
“in-phase” with the driving pressure.

Backus (1961) measured the vibrations of a clarinet reed under artificial blowing conditions. He
determined that for soft tones, the reed aperture does not close completely during the oscillatory
cycle and the reed motion is nearly sinusoidal. At loud dynamic levels, the aperture is almost
completely closed for about one-half cycle and completely open for the other half.

The resonance frequencies of an air column terminated by a compliant structure, or reed, are
lowered by the reed’s presence (Weber, 1830). If the reed formed a perfectly rigid termination, the air-
column resonance frequencies would be lowered yet a little further. Alterations to the reed’s natural
frequency produce small but parallel changes to the air-column modes well below this frequency, and
have greater impact on modes which lie near the reed resonance frequency. These effects, however,
are reduced by reed damping (Benade, 1976, p. 436).

The reed woodwind performer uses lip pressure variations to affect changes in the reed aperture
spacing, which in turn produce changes in the sounding frequency. Vibrato on single-reed woodwind
instruments is primarily achieved in this way. The player applies an initial lip pressure to set the
desired average reed aperture spacing, which is slightly smaller than the opening size when the
reed is untouched. Further lip pressure under playing conditions causes the sounding frequency to
increase, while less lip pressure lowers the sounding frequency. As one pushes the reed close to the
mouthpiece facing, flow is constricted and sound production is negatively affected, setting an upper
limit on the range of positive frequency variation. Likewise, the reed aperture can be opened only
as far as its initial rest position, which limits negative frequency variations. Negative frequency
shifts are easier to produce by lip pressure changes. Thus, vibrato is characterized by more negative
than positive frequency deviation from the unmodified frequency to which it is applied. The range

of frequency variation possible via lip pressure changes is typically on the order of a semitone or
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smaller. Bak and Dgmler (1987) explain the increase in sounding frequency produced by greater
lip pressure as resulting from a gradual “shortening” of the reed’s length when it is pushed against
the curved portion of the mouthpiece lay. This in turn reduces the reed’s flexibility and effectively
reduces the length of the air column. This phenomenon might also be explained as resulting from an
increase in the reed’s resonance frequency as it is bent toward the mouthpiece facing, in conjunction

with the behavior mentioned in the preceding paragraph.

Performers typically notice a decrease in sounding frequency with an increase in blowing pressure.
Bak and Dgmler (1987) analyzed this relationship under artificial blowing conditions and determined
that blowing pressure and frequency are positively correlated. Similar behavior in connection with
reed organ pipes is reported by Bouasse and Fouchée (1930) and Hirschberg et al. (1990). Bak
and Dgmler were led to conclude that a performer simultaneously (and unconsciously) reduces lip

pressure with an increase in blowing pressure, and as a result the sounding frequency decreases.

Thompson (1979) suggests that the reed woodwind performer adjusts the resonance frequency of
the reed to correspond to a harmonic of the fundamental in order to stabilize notes which have only
a single resonance peak below the air-column cutoff frequency. This author has noted a tendency
to gradually modify reed damping, via lip position changes, over the range of the saxophone, such
that less damping is used .for higher notes. For extreme high register playing, this technique is
often critical. However, while lower amounts of damping serve to increase the reed’s natural fre-
quency, it seems unlikely that a performer would make such modifications on a note-by-note basis.
Rather, tHe decrease in applied damping is believed to stabilize oscillations by keeping the reed
resonance sufficiently high that the reed continues to function in its stiffness-dominated operating
range. Thompson provides a series of “Musicians’ experiments” to support his analysis, though most

of these are unconvincing. One example, in particular, is highly questionable.

As a final example of the application of the ideas presented in this paper, many of
the saxophone mouthpiece facing designs prevalent in the 1920’s were such that the reed
frequency could not be raised much above the playing frequency of notes in the top of
the second register. The notes written at about D6 could be achieved as reed regimes,
but it was not possible to play many notes in the third register of the instrument. It was
also not possible to play the second register without opening the register hole, because
the reed frequency was too low to add energy to the oscillation at a higher component.
More recent mouthpiece facing designs have allowed the reed frequency to be raised to
a range analogous to that of the clarinet so that the third register is possible and the
second register can be played without the register hole (Thompson, 1979).

Given the fact that Adolphe Sax demonstrated a three octave range on the saxophone in the 1840’s
(Rascher, 1970), the validity of this example is unlikely. Further, this author has performed on
saxophone mouthpieces (and instruments) from the 1920’s and has never had difficulty achieving a

range of at least three and a half octaves.

Performers of reed woodwinds are typically affected by instrument response problems when they
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travel to locations of significant elevation difference from their normal place of practice. By con-
sidering the reed’s role as a pressure-dependent air valve, it is reasonable to expect variations in
reed response between different elevations. At high elevations, the ambient air pressure is lower.
Thus, the pressure variations within the air column will oscillate about a lower ambient pressure
value. Because the reed functions properly for a particular range of pressure differences across it
and because the average mouthpiece pressure will be lower (because of the lower ambient pressure),
the performer will need to compensate for these effects by producing a greater oral cavity pressure
than normal. In this sense, the reed behaves as if it were stiffer, which is the experience typically
described in such an environment.

The reeds of musical instruments are wet before they are played, in order to increase their
elasticity. Typically, these reeds are then allowed to dry after they have been used. As a result
of this continuous wetting and drying, reeds tend to warp and eventually crack or “wear out.”
Performers can make life a lot easier for themselves by not allowing their reeds to dry. This author
maintains an air-tight reed container in which a small sponge is kept wet. Warping problems are
avoided by fastening the reeds to small pieces of plexiglass. Mold growth is greatly reduced by
soaking the sponge in Listerine®, which has a high alcohol content. In this way, reeds have been

known to last over five years, as opposed to the more typical duration of a month or two.

2.4 The Oral Cavity

Wind instrument performers have long held that manipulations of their oral cavity play an important
role in the performance of their instruments. At the same time, those in the acoustics community
have generally ignored windway influences, or dismissed them as unimportant to the operation of
the instrument. During the 1980’s, however, such effects became the subject of great debate and a
variety of studies were conducted.

There are several reasons why the influence of the oral cavity, or the upstream air column, was
underestimated by acousticians. Benade (1985) shows that accurate analysis of wind instrument be-
havior is possible even when the oral cavity is ignored, due to symmetry of the upstream/downstream
systems. Further, controlled manipulations of the vocal tract require years of practice to master,
and in many instances, such techniques are beyond the ability of all but the professional musician.
Thus, even acousticians of solid musical competence might never realize the possibilities offered by
subtle oral cavity manipulations.

Many musicians have conducted studies themselves to show that windway variations are indeed
an integral part of their performance technique. In one such example, Clinch et al. (1982) made
X-ray fluoroscopic examinations of players’ vocal tract shapes under performance conditions to
determine the relationship between sounding frequency and vocal tract resonance frequencies. While

the pictures showed interesting tendencies on the part of the performer, the acoustic analysis was
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extremely limited. In general, Clinch et al. overestimated the role of the vocal tract, concluding
that the upstream resonance frequencies must match those of the downstream system. Inherent in
their conclusion, they incorrectly assumed that the reed drives the instrument air column. In fact,
both the upstream and downstream air columns control the reed operation.

Backus (1985) correctly understood the symmetry of the upstream and downstream systems,
stating that a player’s windway can have significant influence over the reed oscillations only if its
impedance is of similar or greater magnitude than that of the instrument air column. Based on
his measurements of the vocal tract impedance, however, he concluded that the oral cavity has
negligible effect on the tone of the instrument. It would appear that the swept-frequency mea-
surement technique employed by Backus was inappropriate for use on the highly variable windway
system. In an experiment with a clarinet under artificial blowing conditions, he found that effects
were evident when the upstream system had resonances of comparable magnitude, but the resultant
changes in sound quality were dismissed as insignificant. Had Backus explored these effects when
the downstream resonance structure was weaker, his conclusions might have been different.

Benade (1985) and Hoekje (1986) present the most systematic and convincing analysis of the ways
in which a player’s windway might have an influence on sound production in wind instruments. The
flow through the reed orifice can be expressed in terms of the upstream and downstream impedances
Zy and Zq, the upstream and downstream pressures on the reed P, and P, the reed impedance Z,.,

and the pressure difference across the reed Pn = Py — P,, as

= Pd PA

U = Za + Z,.’ (2.17a)
_ Pu PA

U = 7. + 7. (2.17b)

The first term on the right of each equation represents that component of the flow given by the
acoustic pressure at the entryway of each respective air column. The second term represents the
portion of the flow which fills the void left by the moving reed. Equations (2.17a) and (2.17b) can

be combined to form the relationship
Pr=U(Z,+ 2y) || Zv, (2.18)

which says that the pressure across the reed is proportional to the sum of the upstream and down-
stream impedances in parallel with the reed impedance. The reed impedance is typically very large
compared with the other impedances, so that its role in the oscillation process is less consequential.
Considerations of the nonlinear multicomponent regeneration process imply that, while a change
in either the upstream or downstream impedance has considerable influence on the resultant sound
spectrum on the same side of the reed, such a change has much less affect on the spectrum produced
on the opposite side of the reed (Benade, 1985; Hoekje, 1986).

Impedance measurements of a player’s windway made by Benade (1985), Hoekje (1986), and

Wilson (1996) demonstrate that it is possible to shape the windway in such a way as to create
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resonances that are significantly stronger than any of those found in a real instrument air column.
It is also possible to shape the windway in such a way that it has no important resonances, and
this shape is typically assumed by wind players in order to avoid undesired upstream effects. Thus,
several situations can arise in which the upstream impedance can have significant impact on the
reed oscillations and the radiated sound. In particular, when the downstream impedance structure
is characterized by only a single resonance peak, a strong upstream resonance can be used to create
multiphonic sounds. A strong windway resonance can also be used to stabilize a regime of oscillation,
or in some instances, to completely dominate the resultant sound spectrum.

Many contemporary saxophone techniques, such as “altissimo” register playing and delicate mul-
tiphonic regimes, require highly refined control of windway shape variations. One exercise for the
development of these skills calls for pitch bends via oral cavity manipulations. While high second
register notes, approximately above written B5, can be lowered in this way by up to a perfect fourth,
low register notes are largely invariable. Such behavior agrees well with the observations of Benade
and Hoekje, as low register notes on saxophones are supported by several instrument air column
resonances. In this case, the regime of oscillation is well entrained by the downstream system and
largely unaffected by upstream manipulations. The cutoff frequency for an alto saxophone, however,
is about 830 Hz, so that second (and higher) register notes are typically sustained by a single instru-
ment air-column resonance (Benade and Lutgen, 1988). For these notes, it is possible to arrange a
strong resonant peak in the player’s windway which can be used to take control of the oscillatory
regime and bend the sounding pitch via oral cavity shape changes. Similar behavior was measured
by Wilson (1996) in clarinet performance. Personal experience with this technique indicates that
upstream manipulations can only be used to lower the sounding pitch from its initial, downstream-
dominated frequency value. When started from high altissimo notes, the performer experiences
discontinuities in the pitch bend at locations of lower downstream air column resonances. Thus,
it would appear that upstream control and variation of the oscillatory regime cannot continuously
occur across a strong downstream resonance. Pitch bends which rise in frequency are achieved by
starting the note under the influence of an upstream resonance, which is subsequently increased in
frequency via vocal tract variation up to the downstream resonance peak frequency. Jazz “scoops,”
as well as the opening clarinet solo in the orchestrated version of George Gershwin’s Rhapsody in

Blue, are well known examples of this technique.

2.5 Contemporary Performance Techniques

During the second half of the twentieth century, composers and musicians have made use of a
variety of performance techniques which typically involve the creation of unconventional sounds and
effects on traditional acoustic instruments. For wind instruments, the use of multiphonics, extended

register playing, quarter tones, vocal sounds, and timbre variations has become commonplace in
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contemporary music performance. In several cases, the production of these effects is dependent on
oral cavity manipulations, as previously discussed. Several of these techniques are analyzed here in

terms of their acoustic behavior.

2.5.1 Multiphonics

The production of multiphonics using woodwind instruments became widespread in the 1960’s, and
pedagogic studies soon followed which provided various tables of fingerings and their associated
pitches (Bartolozzi, 1967; Caravan, 1974). Several detailed acoustical analyses appeared in the
1970’s, though there were discrepancies between their conclusions (Benade, 1976; Backus, 1978).
Caravan (1974) notes that, because most multiphonic fingerings involve an open tonehole high
on the air column and several closed holes below it, the resulting sounds can often be analyzed
in terms of two simultaneous bore lengths. Figure 2.19 indicates a clarinet multiphonic fingering
and the associated written notes that it produces. The written D4 is produced by the upper bore
length, which is terminated by the highest open hole on the air column. This fingering alone would
normally generate a written E4, but the presence of the lower closed holes flattens its pitch. The
highest open hole then functions as a register hole for the longer bore length, which is terminated
by the open holes near the bottom of the air column. The third, fifth, and seventh harmonics of
the longer air column length would approximately produce the notes D5, B5, and a slightly flat F'6,
respectively. Instead, the third harmonic sounds an F'5 because of the “misplaced” register hole,
while the seventh harmonic approximately sounds an E6. Caravan’s observations are essentially

related to the locations of the air column resonances, which are created by a vented, long tube

=

Fig. 2.19. A Bb clarinet multiphonic fingering and the corresponding written notes it produces.

length and an unvented shorter bore length.

eee|e0

(Benade, 1976, pp. 559-567) analyzes the spectral content of a multiphonic sound in terms of the
nonlinear, heterodyning action of the reed. Those components of the sound which contribute most
directly to the maintenance of oscillation have frequencies quite near the strongest input impedance
peaks. As these peaks are typically not harmonically aligned, due to the non-traditional fingering, the
reed is able to oscillate in several different regimes simultaneously. Heterodyned spectral components
may arise at frequencies where cooperation with an air column resonance is not favored.

Backus (1978) finds that multiphonic sounds can be well analyzed in terms of just two inde-
pendently generated main components, one associated with the lowest air column resonance and

the other with the third or fourth resonance. Through the action of the reed, oscillations based on
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the higher bore resonance are amplitude modulated by the lower resonance, producing heterodyne
components based solely on multiples of these two frequencies. Backus cites Benade’s work and
questions the complexity of his analysis, indicating that the same conclusions could be reached by
considering only two resonance frequencies.

Benade (1976) and Backus (1978) base their analyses of multiphonic sounds on the relationship
between measured input impedances and heterodyne components. Caravan’s analysis is certainly
less rigorous in terms of its acoustical basis, but it does lend an intuition to the situation not provided
by the others. It would appear that the two resonance approach of Backus, in combination with

that of Caravan, provides the best description of multiphonic sound production in woodwinds.

2.5.2 The Saxophone’s Altissimo Register

The saxophone, as designed by Adolphe Sax, had a conventional playing range extending from
written B3 to F'6 (Berlioz, 1856). However, an early article on the instrument indicates a three
octave range (Berlioz, 1842). Berlioz wrote this description after a visit by Adolphe Sax, in which
the inventor demonstrated his new musical instrument. Thus, it is clear that Sax made use of “non-
traditional” cross-fingerings to extend the range of his instrument, a technique commonly used on
most other woodwind instruments in those days. Nonetheless, it appears that this technique proved
difficult for early saxophonists to master and was largely discarded at a relatively early stage in the

saxophone’s development. A patent filed in 1880 by Sax, as translated by Hemke, reads:

The Eb alto saxophone - the most prevalent saxophone and the one most favorable
for military bands represents the viola part of a string quartet. Its lower range falls short
of the extreme low limit of the violin family by one tone. I have lengthened the tube in
order to gain two semitones, B3b and A3, which represent the transposed pitches of D3b
and C3.

Realizing that an analogous situation exists in the upper register, I have added keys
to play high F'6ff and high G6. F6f to be fingered with the right hand and high G6 with
the left. You should be able, nevertheless, if you prefer, to use the other fingerings. In
order to facilitate the production of the high notes, I employ a fourth octave key, which
contrary to the usual practice, is not fingered with the thumb, but operates through a
mechanism articulated to the upper register keys themselves. This method of operation
can be used for every high note! (Hemke, 1975, pp. 77-78).

Thus, Sax found it necessary to provide additional toneholes on the instrument in order to extend
its upper range, even though it was obvious to him that “other fingerings” existed for this purpose.

There is now evidence that several saxophonists from the first half of the twentieth century
ventured beyond the conventional F'6 limit, though most of these individuals did not seek to educate
or hand down their acquired skill (Rascher, 1970). Of notable exception, however, is the pioneering

saxophone virtuoso, Sigurd Rascher, who inspired some of the most prominent composers of his time

tThe third octave key was provided by Sax as an alternate method for producing the notes A4 — C54, based on the
second resonances of the longest tube lengths of the instrument. This hole was located near the left hand thumb.
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to produce a large repertoire employing the saxophone’s extended, or “altissimo” range. Through
his examples and writings, Rascher almost single-handedly brought about the changes necessary to
make extended register playing as accessible as it is today.

In general, cross-fingerings and oral cavity manipulations can be found to extend the Eb alto
saxophone’s upper range by another octave and a half. These notes are produced using third and
higher resonances of the instrument. Production and control of these notes, particularly above B6
on an alto saxophone, often requires the use of a stiff reed, which has a high resonance frequency.
In this way, the reed resonance can be sufficiently maintained above the fundamental frequency, as
discussed in Section 2.3.2. An alto saxophone reed has an estimated natural frequency range of
about 1-3 kHz. Henry Brant’s Concerto for Eb Alto Sazophone and Orchestra (1947) calls for a high
B7b, which has a corresponding frequency of 2.2 kHz. Playing experiments on most of the members
of the saxophone family indicate that all of their upper ranges are commonly limited to about 2 kHz.

As previously discussed, oral cavity manipulations play an important part in stabilizing extended
register notes. These notes have fundamental frequencies which are higher than the open-THL cutoff
frequency, so that the air column resonances on which they are based are not nearly as strong as
those used in the conventional playing range. Vocal tract influences are then used to stabilize such
oscillations, as well as the reed resonance. .

As might be expected, slurring among extended register notes is often difficult to control. A
little thought and experimentation should make it obvious that such slurs are reasonably easy when
attempted between notes produced using the same air column resonance, but nearly impossible when

changing resonances.

2.5.3 Additional Contemporary Techniques

The production of quarter tones on woodwind instruments is certainly not straight-forward, as
these instruments are provided with toneholes designed to produce only the conventional twelve-
tone octave. As a result, various non-traditional cross-fingerings and tonehole configurations must
be used to produce the desired sounding frequencies. It sometimes occurs that a particular quarter
tone fingering can not found, in which case the performer is forced to “lip down” the pitch by the
appropriate amount.

Timbre variations are commonly produced on woodwind instruments by closing toneholes below
the first open fingerhole. In effect, the performer is changing the open-THL cutoff frequency via
changes in the interhole spacing. These variations alter the resultant sound spectrum via modi-
fications to the upper sound components, but leave the fundamental frequency largely unaffected.
Timbre changes can also be created by alternating between traditional fingerings designed to produce
the same note.

Several extended performance techniques involve breath pressure modulations, or the superposi-

tion of higher frequency components over the steady breath pressure. Flutter tonguing, accomplished
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using either the tongue or uvula (velum), results in the addition of a 15 — 30 Hz signal to the breath
pressure stream. Growling and singing are produced by audio rate modulations of the breath pres-

sure.




Chapter 3

Digital Waveguide Modeling of
Single-Reed Woodwinds

A primary objective of this work is to detail the implementation of the acoustic principles de-
scribed in Chapters 1 and 2 using the discrete-time technique of digital waveguide modeling. Hirsch-
man (1991) considered many of these same issues, though that work was principally concerned with
the efficient synthesis of woodwind sounds and less so with the accuracy of results in comparison to
detailed acoustical studies of individual instrument components. A more recent study by Valimaki
(1995) dealt with several aspects of digital waveguide modeling of woodwind instruments, such as
fractional delays, toneholes, and the junctions between cylindrical and conical sections. The present
work combines the most current understanding of all single-reed woodwind instrument acoustic
principles in a complete model, suitable for use by physicists conducting detailed acoustic studies or

musicians wishing to perform real-time, virtual computer-music instruments.

The use of digital waveguides was first proposed by Smith (1985) for the efficient simulation of
reverberation. The modeling of musical instruments using this technique was subsequently described
in (Smith, 1986). Digital waveguide modeling is an efficient and accurate method for time-domain
simulation of one-dimensional wave propagation, which has gained increasing popularity in the field
of musical acoustics research since the publication of McIntyre et al. (1983). The theory of digital

waveguide modeling has been well summarized in (Smith, 19965).

The frequency-domain analysis of musical instrument acoustic behavior provides much informa-
tion regarding the linear components of these systems, as seen in Chapter 1. Nonlinear behavior,
however, is best examined and determined in the time-domain. Thus, for the development of com-
plete instrument models which include a nonlinear excitation mechanism, efficient and accurate
methods for time-domain simulation are necessary. Digital waveguide techniques can be used to

accomplish this task. Further, frequency-domain characterizations of instrument components, such

95
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as air-column junctions and toneholes, can be incorporated into a digital waveguide model in a
straight-forward manner. In terms of traditional methods for computer synthesis of musical instru-
ments, digital waveguides offer complete modularity and flexibility to an extent never before possible
with additive synthesis or sampling techniques. While the development of digital waveguide models
requires significant familiarity with musical instrument acoustic properties, the resulting “virtual”
instruments provide unsurpassed “physical” control of their behavior.

It is interesting to compare the digital waveguide approach with more traditional continuous-time
analysis methods, as briefly discussed in Section 1.3.4. A recent paper by Ayers (1996) presents a
continuous-time model of a brass instrument air column and lumped mouthpiece arrangement which
has direct parallels to digital waveguide methods. Because this theory is eventually discretized for
implementation and because the use of delay lines can drastically reduce computational costs, it

appears that Ayers (1996) could benefit by incorporating waveguide techniques.

3.1 Modeling Sound Propagation in One Dimension

This section reviews the fundamentals of digital waveguide modeling as related to wave propagation
in air, and is derived in large part from (Smith, 19964). Sound propagation in air was discussed in
Section 1.1 and the scalar wave equation for plane-wave pressure propagation in one dimension was

found to be
@p _ 19
Oz2 ~ c2 o2’

A variety of other plane-wave variables, including particle displacement and velocity, can be similarly

(3.1)

expressed in this form. D’Alembert published a general solution to Eq. (3.1) in 1747 of the form
p(e,t) = f(t - a/c) + g(t + z/c). (3.2)

The functions f(-) and g(-) are completely general and continuous and can be interpreted as arbi-
trarily fixed waveshapes that travel in opposite directions along the z-axis with speed c. This rep-
resentation of wave propagation is referred to as the traveling-wave solution to the one-dimensional
wave equation.

Digital waveguide modeling is based on the traveling-wave representation of one-dimensional
wave propagation. The individual traveling-wave amplitudes are sampled in both time and space.
The temporal sampling interval is T' seconds, which corresponds to a sampling rate fs 21 /T. The
spatial sampling interval is given most naturally by X &1 meters, or the distance traveled by
sound in one temporal sampling interval. In this way, each traveling-wave component moves left or

right one spatial sample for each time sample. Using the change of variables

T = Tmp=mX

t = t,=nT,
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Eq. (3.2) becomes

f(tn —2m/fc) + g(tn + zm/c)

f(nT —mX/c)+ g(nT + mX/c)

fl(n = m)T] + g[(n + m)T). (3.3)

p(tn,om)

This representation can be further simplified by suppressing T and defining
A _ A
pt (n, m) = f(TlT, mT) p (na m) = g(nT7 mT),

where the superscripts + and — denote wave travel to the right and left, respectively. The resulting

expression for total pressure at time n and location m is given as the sum of the two traveling-wave

components
P(tn,@m) =p* (n—m) +p~(n+m). (3.4)

pt(n) p*(n-1) p*(n-2) p*(n-3)

e 00 Z'] » Z'] > Z'I oo 0
p(0, nT) p(3X, nT)

p(n) p(n+l) p(n+2) p(n+3)

e o 0 < Z'I < Z'I Z'I o o o
(x=0) (x=¢T) (x =2¢T) (x = 3cT)

Fig. 3.1. Digital waveguide implementation of ideal, lossless plane-wave propagation in air [after
(Smith, 1996a)]. The z~! units represent one-sample delays.

Figure 3.1 depicts a digital waveguide section which implements the traveling-wave solution of
Eq. (3.4) using bi-directional delay lines. The upper delay line simulates the term pt(n —m) as
the output of an m-sample delay line with input p*(n). The lower delay line simulates the term
p~(n+m) as the input to an m-sample delay line with output p~ (n). The total or physical pressure
at any location in the waveguide is given by the sum of the upper and lower delay lines, as shown
for the points z = 0 and & = 3X. The model is exact at these sampling instants, to within the
numerical precision of the samples themselves, provided that the waveshapes traveling within the
structure are initially bandlimited to less than half the sampling frequency fs. To obtain an output
at non-integer values of X, a variety of spatial interpolation techniques are available using fractional
delay filters (Valimaki, 1995).

While sound propagation in air is typically analyzed and simulated in terms of pressure wave
components, as in the previous analysis, it is also possible to describe such motion in terms of

velocity or displacement wave variables. In general, the propagation of any wave variable can be
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simulated using digital waveguides, given that the wave equation can be expressed in terms of this

variable and that a traveling-wave solution exists.

This study is primarily concerned with one-dimensional wave propagation. It should be noted,
however, that two- and three-dimensional wave propagation can also be modeled using digital wave-
guide techniques. Two-dimensional waveguide modeling of acoustic structures was first reported
by Van Duyne and Smith (1993). A more recent paper (Van Duyne and Smith, 1996) summa-
rizes the simulation of wave propagation in three-dimensions using waveguide techniques. While
one-dimensional waveguide models perfectly simulate ideal, lossless wave propagation, higher di-

mensional waveguide structures exhibit direction-dependent dispersion characteristics.

3.2 Modeling Lumped Acoustic Systems

Digital waveguides provide a highly efficient means for the simulation of one-dimensional wave prop-
agation. Many acoustic phenomena however, such as wave propagation at the end of an open tube
or at the junction of a woodwind tonehole, are most easily simulated in terms of their lumped behav-
ior, as discussed in Section 1.2. That is, rather than attempt to simulate the complex interaction of
waves in these structures, it is more convenient to use a lumped impedance description that is only
concerned with the output of the system given a particular frequency-dependent input. In order
to incorporate such lumped elements in digital waveguide models, it is necessary to express these
lumped impedances in terms of traveling-wave parameters and then to convert such expressions to

discrete-time filters.

SRPARE . Pt(s)
P(s) | Z(s) R(s)
—o0— P~ (s)

(a) (b)

Fig. 3.2. Lumped impedance block diagrams [after (Smith, 19964)]: (a) Impedance representation;
(b) Digital waveguide representation.

Figure 3.2a shows the impedance representation of a general lumped series impedance Z (s),
where s = o + jQ is the Laplace transform frequency variable. For implementation within the
context of a digital waveguide simulation, this representation must be recast in terms of a traveling-
wave reflectance, as shown in Fig. 3.2b. The decomposition of pressure and volume velocity wave

variables into their traveling-wave components is written in the frequency domain for any fixed
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position as
P(s)= P*(s)+ P~ (s) U(s)=U*(s)+U(s). (3.5)

Pressure and volume velocity traveling-wave components are related for plane-wave propagation in

acoustic structures by
Pt(s)=ZyU*(s) P~ (s)=-2yU(s), (3.6)

where Zj is the real valued characteristic wave impedance in the structure. Using these relationships,

the impedance Z(s) of Fig. 3.2a can be transformed to a plane-wave pressure reflectance as

P(s) = Z(s)U(s)
P*(s)+P7(s) = Z(s)[U*(s)+U (s)]

- 29| b}
el e

This expression is similar to that found in Section 1.3.1 for the pressure wave reflectance in cylin-
drical bores. Spherical-wave pressure and volume velocity traveling-wave components in acoustic
structures are related by a space- and frequency-dependent characteristic impedance, as discussed

in Section 1.3.2. These relationships are given by
P*(z,8) = Zy(z, s) Ut (z,3) P~ (z,s) = -Z(z,s) U (z,s), (3.8)

where Zy(2, s) is the complex valued characteristic wave impedance and Z;(z, s) denotes the para-
conjugate of Zy(z,s). Thus, for structures in which spherical-wave propagation occurs, such as
conical bores, a lumped series impedance Z(z, s) can be transformed to a pressure wave reflectance

as

P(z,s) = Z(z,s)U(z,s)
Pt(z,s)+ P (z,8) = Z(z,s) [U*(z,s) + U (z,s)]

- wof5e3- 2

R(z,s) 2

P(z,5) _ [Z(:v,s)Zg(a:,s)—ZO(E,S)ZJ(‘”’S)]' (3.9)

Pt(z,s) | Z(2,8)Z(z,5) + Zo(z,5)Z(x, 5)
This expression is similar to that found in Section 1.3.2 for the pressure wave reflectance in conical
bores. It is common to simulate propagating pressure waves in reed-driven woodwind instruments,
because their excitation mechanism is pressure controlled. Instruments which are excited by an
air jet, however, are best simulated in terms of propagating volume velocity waves. Relationships

similar to the preceding reflectances result when derived in terms of volume velocity waves.
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For implementation of the reflectance in the digital domain, it is necessary to convert the
continuous-time filter to an appropriate discrete-time representation. A variety of techniques exist
for this purpose (Smith, 1983; Oppenheim and Schafei‘, 1989). In this study, use is generally made
of either the bilinear transform or an equation-error minimization technique which matches both
frequency response magnitude and phase.

The bilinear transform (Oppenheim and Schafer, 1989, pp. 415-430) is an algebraic transforma-
tion between the continuous-time and discrete-time frequency variables s and z, respectively. It is
therefore appropriate only when a closed-form filter representation in s exists. Using the substitution
1

1—=z2"

$= e T

(3.10)

the discrete-time counterpart to a continuous-time transfer function H.(s) is given by
Hy(z) = H. (a—i _: i_i) .

The bilinear transform maps the entire continuous-time frequency space, —oco < < oo, onto the
discrete-time frequency space —m < w < w. Continuous-time dc (2 = 0) maps to discrete-time dc
(w = 0) and infinite continuous-time frequency (Q = co) to the Nygquist frequency (w = m). Thus, a
nonlinear warping of the frequency axes occurs. However, since the jQ-axis in the s plane is mapped
exactly once around the unit circle of the z plane, no aliasing occurs. The constant « is typically
given by a = 2/T, where T is the discrete-time sampling interval. This parameter (a) provides one
degree of freedom for the mapping of a particular finite continuous-time frequency to a particular
location on the z-plane unit circle. The warping of frequencies is given for the discrete-time frequency
in terms of o and Q as

w = 2arctan(Q/a).

Because of the nonlinear compression of the frequency axis, use of the bilinear transformation should
be limited to filters with a single transition band (lowpass and highpass) or resonance (narrow
bandpass and bandstop).

Numerous methods exist for the design of digital filters based on a given system frequency
response. A technique based on equation-error minimization is used in several instances in this study,
particularly when a desired frequency response is known but a closed-form solution is impossible.
The theory of equation-error techniques is discussed in (Smith, 1983, pp. 47-50, 98-103). Given a
desired continuous complex spectrum H,(e’?), this method attempts to find a stable digital filter of
the form

Hy(z) &

(3.11)

where

By(2) 2 bo+b12_1+---+bnbz""”
Aa(z) = l4+az7 4o tay, 27",
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with ny and n, given, such that the L2 norm of the equation-error
| Aa(e’)He(e’?) — Ba(e?) |, = ||Aa(e?)]|, - || Ho(e’?) — Ha(e7Y)], (3.12)

is minimized with respect to the filter coefficients. Both spectral phase and magnitude are matched
while allowing arbitrary numerator and denominator orders. Smith (1983) points out that the
equation-error norm is equivalent to the norm ||Hc(ejQ) - Hd(ejﬂ)”2 , but weighted by the poles of
the filter to be designed. An equation-error method is implemented in MATLAB® by the function

inufreqz.

3.3 Modeling Woodwind Instrument Bores

The acoustic behavior of wind-instrument air columns has traditionally been described in the
frequency-domain, where such characteristics as normal-mode frequencies and decay rates and
tonehole-lattice cutoff frequencies are easily identifiable. The requirements for wind-instrument
bores, as discussed in Section 1.3, are also typically stated in terms of frequency-domain constraints.
Research on wind-instrument nonlinear excitation mechanisms and their complex coupling with the
air column, as well as interest in the simulation of a complete wind instrument, however, has led
to the development of time-domain models of wind-instrument sound production. The time-domain
analysis of woodwind bores was briefly explored in Section 1.3.4. The linear time-domain response
of an air column is represented by either its impulse response h(t) or its reflection function r(t).
The impulse response is the pressure response at the bore entrance to the introduction of a unit
volume velocity impulse. Because the entryway is represented by a closed end after the impulse is
introduced, h(t) is a slowly decaying function. The reflection function is the pressure response at
the entrance of the air column to the introduction of a unit pressure impulse. There are no reflec-
tions at the bore entryway for this response function, so that it decays to zero much more quickly
than the impulse response. Traditional computational methods for the simulation of time-domain
pressure propagation in a complete wind instrument involve the convolution of mouthpiece pressure
with an air column response function during each time sample period. In this respect, r(t) serves to
greatly reduce the number of mathematical operations necessary for calculation of the model output.
Digital waveguide modeling of wave propagation in wind-instrument air columns incorporates the
advantages of the reflection function approach, and further reduces computational requirements by
“pulling out” the delay inherent in r(t) and implementing it in the form of digital delay lines.

It was previously noted [Section 1.3] that the requirements for wind-instrument bores are perfectly
satisfied by one-parameter waves, which are possible only in rectangular, circular cylindrical, and
spherical coordinates, corresponding to pipes of uniform cross-section and conical horns, respectively
(Putland, 1993). Woodwind bores are mostly cylindrical or conical in shape, and variations from

these ideals can be approximated by cylindrical and conical sections. In this section, it will be
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shown that digital waveguides provide an efficient means for the simulation of one-parameter wave

propagation in cylindrical and conical bores.

3.3.1 Cylindrical Bores

In Section 1.3.1, the three-dimensional Helmholtz equation was solved in circular cylindrical co-
ordinates. By applying appropriate boundary conditions, it was found that for musical purposes,
wave motion in wind instruments with cylindrical bores is adequately represented by plane-wave
propagation along the length of the pipe.

The simulation of one-dimensional plane-wave propagation in cylindrical bores using digital
waveguides follows directly from the discussion of Section 3.1. The one-dimensional wave equa-

tion for plane waves, ,
2
% = ;15‘;75, (3.13)
accurately represents lossless wave propagation along the central axis of a cylindrical tube, subject
to the boundary conditions at both its ends. The discrete-time and -space traveling-wave simulation

of this wave propagation is then given by
P(tnsTm) =p+(n—m)+p‘(n+m) (3.14)

as previously shown. In Section 1.3.1, the behavior of a finite length cylindrical bore was approxi-
mated for low-frequency sound waves by assuming that pressure is equal to zero at the open end of
the tube. This boundary condition is met with an inversion of traveling-wave pressure components at
the open end, so that the sum of the left- and right-going waves is zero. Figure 3.3 represents the dig-
ital waveguide implementation of lossless plane-wave pressure propagation in an ideally terminated

cylindrical tube. The negative one multiplier at # = L implements the low-frequency, open-end

ptn) pt(n-1) p*(n-2)
B> Z'J » Z'I — ) —p Z']
(0, nT) N/ -1
p(n) p(n+l) p(n+2)
< Z-I < Z-I — oo 0 ] Z'I <€
(x=0) (x=cT) (x = 2cT) (x=L)

Fig. 3.3. Digital waveguide implementation of ideal, lossless plane-wave propagation in a cylindrical
tube. The z~! units represent one-sample delays.

approximation for traveling-wave pressure reflection. The system of Fig. 3.3 is a discrete-time and
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-space implementation of an ideal cylindrical bore reflection function. As derived in Section 1.3.1,
the reflectance seen from the entrance of a cylindrical tube of length L is given by

ZL(Q) —Zo] ’

ZL() ¥ Zo (3.15)

R = o~ 2FE [

where Zj is the real characteristic wave impedance of the cylindrical pipe, and Z () is the load
impedance at = L. For Z1(2) = 0, which corresponds to zero pressure at z = L, R(Q) = —e~2/kL,
The resulting continuous-time reflection function r(t) = —§(¢ —2L/c) is found as the inverse Fourier
transform of R(£2) when viscothermal losses are ignored. This time delay is realized in the digital
domain by the delay lines of Fig. 3.3. Digital delay lines are easily implemented in computer
software, requiring only a fetch, store, and pointer update at each time sample. Digital waveguide
implementations thus offer an extremely efficient means for the modeling of acoustic behavior within
a wind-instrument air column. The structure of Fig. 3.3 can be converted to that of a lattice digital
filter by commuting the delays of the upper delay line to the lower delay line. The lattice filter
scattering junctions are unnecessary in this case because of the uniform characteristic impedance
inside the ideal cylindrical bore.

The open end of a cylindrical pipe is poorly represented by a load impedance Z () =0, as
discussed in conjunction with sound radiation in Section 1.4.1. In general, the acoustic properties
of the end of the wind-instrument bore are characterized by a non-zero and complex valued load
impedance and this impedance can be expressed as a lumped traveling-wave reflectance, as given
by the bracketed term of Eq. (3.15) and described in Section 3.2. Figure 3.4 represents the digital
waveguide implementation of plane-wave pressure propagation in a cylindrical tube terminated by

the reflectance R (2). Thermal and viscous boundary layer losses are neglected in this model. The

pt(n)
> Z-m
y
p(0, nT) p(&, nT) RL(z)
p(n)
< zm <
(x=20) (x=§) (x=1L)

Fig. 3.4. Digital waveguide implementation of plane-wave propagation in a cylindrical tube, ne-
glecting viscothermal losses.

waveguide structure of Fig. 3.4 can be further simplified by limiting observation of physical pressure
to the input of the tube. Then, by linearity and time-invariance, the digital filter representing

RL(z) can be “pushed” through the lower delay line to its output and a single delay line used for
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the simulation, as shown in Fig. 3.5. In general, a digital waveguide model with a single observation
point can be implemented using one delay line as long as it is possible to “tap” into and out of any

point on the delay line.

p(0, nT)

»(F

pt(n) p(n)
> z2m P RL(2) >

Fig. 3.5. Simplified digital waveguide implementation of plane-wave propagation in a cylindrical
tube using a single delay line and neglecting viscothermal losses. The pressure observation point is
constrained to the entryway of the bore.

The impulse response h(t) of a wind-instrument air column, defined as the inverse Fourier trans-
form of its input impedance, implies an acoustic feedback loop because of the inherent closure of
the bore entryway after the introduction of a volume velocity unit impulse. The infinite termination
impedance of the closed end results in a non-inverting reflection of pressure, so that the waveguide
model of a closed-open cylindrical bore is as shown in Fig. 3.6. The waveguide “input impedance”
is found by calculating the system impulse response and transforming it to the frequency domain
using the discrete Fourier transform (DFT). If R 1 (z) is approximated for low-frequency sound waves
by a simple inversion, the impulse response of the feedback system of Fig. 3.6 will be periodic and
of infinite duration. The Fourier transform of the resulting infinite length periodic impulse train
will then simplify to jtan(kL), which is equivalent to the input impedance found analytically for a

closed-open cylindrical bore in Section 1.3.1.

Zp 8(n)

-m

+1 p(0, nT) pEnT)  |Ry(2)

-m

A

kb (x=E) (x=L)

Fig. 3.6. Digital waveguide model of a closed-open cylindrical bore.

In comparison to traditional time-domain bore simulation techniques, the digital waveguide bore

implementation offers high efficiency without sacrificing accuracy. The lumped open-end reflectance
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filter R1(2) is generally adequately implemented using a first- or second-order digital filter. Thus,
just a single short convolution/filtering operation is necessary in this model.

Evanescent transverse modes in cylindrical bores can dissipate energy if appropriately excited.
Within woodwind instruments, evanescent mode dissipation will most likely take place near bore
discontinuities, such as the excitation mechanism, toneholes, and bells. While such effects are gen-
erally insignificant, it is possible to develop three-dimensional waveguide mesh structures to account
for higher order mode behavior (Van Duyne and Smith, 1993, 1996; Savioja et al., 1994). At a
sampling rate of 44.1 kHz, the spatial sampling interval of a digital waveguide system is approx-
imately 7.87 millimeters. As previously noted in Section 1.3.1, the lowest two cutoff frequencies
for transverse modes in the cylindrical bore of a flute are approximately 11.96 kHz and 19.8 kHz.
Three-dimensional mesh structures provide frequency resolution only up to about a quarter of the
sampling rate (Van Duyne and Smith, 1996), so that a 3D bore mesh implementation should be
highly oversampled. The necessity for fractional delay interpolation and the resulting attenuation
could make such a model of minimal benefit. Further, wave dispersion in 3D mesh implementations
could interfere with the accuracy of the fundamental propagating mode, which does not occur in the

one-dimensional model.

3.3.2 Conical Bores

It was found in Section 1.3.2 that, for musical purposes, sound propagation in conical air columns
can be well modeled by one-dimensional spherical waves traveling along the length of the bore. The
one-dimensional wave equation for spherical pressure waves,

10%zp) _ 1%

z 0z 2o’ (3.16)

accurately represents lossless pressure wave propagation along the central axis of a conical tube,
subject to the boundary conditions at both its ends. The continuous-time traveling-wave solution

to this equation is

p(.’L‘,t) =

ft=afc)  g(t+a/c) , (3.17)

T
where the functions f(-) and g(-) are completely general and continuous and can be interpreted as
arbitrarily fixed waveshapes that travel in opposite directions along the z-axis with speed c. This
expression is similar to that for plane waves with the exception that spherical pressure traveling-
wave components are inversely proportional to their distance from the cone apex. As was shown in
Section 3.1, a solution of this form can be discretized in time and space and given by (Smith, 1991)

pt(n—m) " p~(n+m)
T = '

p(tn,m) = (3.18)

In Section 1.3.2, the behavior of a finite length conical bore was approximated for low-frequency

sound waves by assuming that pressure is equal to zero at the open end of the tube. This boundary
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condition is met with an inversion of traveling-wave pressure components at the open end, so that
the sum of the left- and right-going waves is zero. Figure 3.7 represents the digital waveguide
implementation of ideal, lossless spherical-wave propagation in an ideally terminated conical tube.

Aside from the 1/ scale factors, which are implemented at observation points, the cylindrical and

p*(n) p*(n-1) p*(n-2)
-] Z'] — e o o E— Z'I

p(xg, nT) YF -1
p(n+l) p(n+2)
z < Z'] e e o o < Z-I <
(x =xp) (x = xg +cT) (x = x9 +2cT) (x=xp+L)

Fig. 3.7. Digital waveguide implementation of ideal, lossless spherical-wave propagation in a conical
tube [after (Smith, 1996a)].

conical waveguide implementations are exactly the same. Further, if the system input and output
are measured at the same location, the 1/z scale factor is unnecessary. Differences between the two
systems, however, arise at discontinuities.

The system of Fig. 3.7 is an efficient discrete-time and -space implementation of the ideal pressure
reflection function for conical bores. As derived in Section 1.3.2, the pressure wave reflectance seen
from the entrance of a conical tube which is terminated with a load impedance Z1(Q) at z = L is

given by

(3.19)

R(z,Q) = e=24kL [ZL(Q)ZJ(L,Q) — Zo(L,Q)Z3(L, Q)} ,

Zp(Q2)Zo(L, Q) + Zo(L, ) Z3(L, Q)
where Zo(z,9Q) is the complex characteristic wave impedance of the cone. The waveguide imple-
mentation of Fig. 3.7 corresponds to Z(Q) = 0, for which R(z,Q) = —e~2*L, For a general (and
more physical) non-zero Zr(f2), however, the bracketed term of Eq. (3.19) specifies the lumped
traveling-wave reflectance of the load, as discussed in Section 3.2.

In Section 1.3.2, it was observed that pressure and volume flow traveling-wave components grow
increasingly out of phase as they approach the cone apex. This behavior is defined by the complex
characteristic impedance of conical air columns. The boundary condition imposed by a rigid ter-
mination requires that volume flow normal to the boundary equal zero. Where spherical volume
velocity traveling-wave components reflect with an inversion, so that their sum is zero, spherical
pressure traveling-wave components reflect with a phase angle 2 £ Z,(z, (). In the case of a complete
cone, £Zy(0,9) = 90°, and pressure traveling-wave components reflect from the cone apex with a
180° phase shift (or an inversion). The physical pressure at the cone tip for this case can be found

in the limit as 2 — 0 by I'Hopital’s rule. Expressing the pressure at position z in the bore in terms
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of sinusoidal traveling-wave components,
Pt . P . .
p(z,t) = [—e"'“: + —edke| eivt, (3.20)
T T
where PT and P~ are complex amplitudes and sinusoidal time dependence is assumed, p(0,t) is
found to approach 2jkP~ as  — 0 for all time. For use in musical instruments, however, conical

bores are always truncated to some extent. Figure 3.8 illustrates a divergent conical bore truncated

Fig. 3.8. Divergent conical section rigidly terminated by a spherical cap at .

and rigidly terminated at a distance z from its apex. The pressure reflectance at z, is found from

the boundary condition U(zg) = 0, such that

U+(.1:0)+U—(.’L'o) = 0
Pt(zg) B P~(zp)
Zo(wo)  Zg(wo)

s P*(xq,s) Zo(xo,8) _ jhxo—1
P—(zg,s) Zi(z0,8)  jkxzo+1

= °=¢ , (3.21)
Tos+c se=ible

where s is the Laplace transform variable and c is the speed of sound in air. As z9 — 0, the
reflectance approaches negative one as observed above. Using the bilinear transform, this expression

can be discretized as follows

P+ ey — =1
_(370,2) oy 2_ ’ (3.22)
£ (II)Q,Z) l1+az7!
where
_c—axy
a; = —-c+ e (3.23)

and «a is the bilinear transform constant which controls frequency warping. For proper phase match-

ing at low frequencies, a can be set equal to 2f,. Equation (3.22) is a first-order discrete-time allpass
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filter. This filter structure implements the 2 ZZ,(z, Q) frequency-dependent phase delay experienced
by pressure traveling-wave components reflecting from a rigid termination in a conical waveguide.
The upper plot of Fig. 3.9 illustrates the continuous-time phase response of the reflectance given by
Eq. (3.21) and the discrete-time phase response of the digital filter of Eq. (3.22). The lower plot of
Fig. 3.9 indicates the allpass filter coefficient value as a function of cone truncation. As zq — 0,
the filter becomes unstable because a; — 1 and the allpass pole falls on the unit circle. Thus, the
truncation filter cannot be used to simulate a complete cone, but in this case the reflectance is simply

negative one anyway.

| R | PO | e | OO, I e ORI Gt 3]
25k NG :|= = Continuous-Time Response i
e — Discrete-Time Response
8 ol N eeeeeeee— i
g
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o
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Fig. 3.9. The conical truncation reflectance: (top) Continuous-time and discrete-time filter phase
responses; (bottom) Digital allpass filter coefficient value versus z,.

The digital waveguide implementation of a closed-open conic section is shown in Fig. 3.10.
The cone truncation reflectance filter is represented by R,,(z). The waveguide “input impedance”
h(zo,n) for this system can be determined by calculating its response to a unit volume velocity
impulse and transforming it to the frequency domain using the DFT. The continuous-time pressure
response to a volume velocity impulse is given by the inverse Fourier transform of the characteristic

impedance Zo(,(?). This function was determined in Section 1.3.4 [Eq. (1.105)] as

pc C —(c/z)t
h+(z,t) = 30 [5(t)_ 2 g=le/e) e(t)], (3.24)

where €(t) is the Heaviside unit step function. It is necessary to determine a digital filter which
appropriately models the response of h*(z,t) in the discrete-time domain. The spherical-wave

characteristic impedance is given in terms of its Laplace transform as

H} (2,8) = Zy(z,8) = S/E;) <c-t_sxs> y (3.25)
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h*(xg n)
zm
xo/xg + &)
p(xg, nT) pixg+& nT) |Rr(2)
F <
(x =xq) (x=x9+E&) (x=x9+L)

Fig. 3.10. Digital waveguide implementation of a closed-open truncated conical section excited at
Tr = 2y.

where S(z) is the spherical-wave surface area at z. Using the bilinear transform, an equivalent

discrete-time filter is given by

stte= (£5) (c2) i

where « is the bilinear transform constant and a; is equal to the allpass truncation filter coefficient

given in Eq. (3.23). The impulse response h(zg,n) of a closed-open truncated cone is found from the
digital waveguide structure of Fig. 3.10 as the pressure response at @ = x to the impulse response
h*(zo,n). Because the cone is excited at & = z¢, output scale factors are appropriately weighted by
zo. Figure 3.11 is a plot of h(xo,n), calculated using a Levine and Schwinger model of the open-end
radiation and neglecting viscothermal losses.

Salmon (1946a) and Benade (1988) proposed a transmission-line conical waveguide model directly
analogous to that described above. Shown in Fig. 3.12, Benade’s model represents a conic section
by a cylindrical waveguide, a pair of “inertance” terms, and a transformer whose “turns ratio” is
equal to the ratio P,,/Pr. The digital waveguide truncated cone model implements the cylindrical
waveguide section using delay lines, as previously described, and the transformer operation wherever
a physical pressure measurement is taken. Benade derived the inertance terms from the analytic
expressions for input admittance, as seen from the small and large ends of the conic section. Both

inertances are of the form

Z(z,8)= M(x)s = (3.27)

pT
(@)
where S(z) is the surface area of the spherical wave front, z is the distance from the imaginary
cone tip, and p is the density of air, though M (L) seen looking into the large end of the cone is
negative. When the cone is fitted with a rigid spherical cap at = = =z, U,, is zero and the inertance

M(zo) terminates the bore. In this sense, a conical bore which is truncated and stopped at its

small end behaves like a cylindrical waveguide section terminated by a “masslike” impedance. The
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Fig. 3.11. Impulse response of conical bore closed at = z¢ and open at z = L. Open-end radiation
is approximated by a 2nd-order discrete-time filter and viscothermal losses are ignored.

corresponding pressure traveling-wave reflectance is given by

_ P(20,5)
U(zo, s)
_ P*(zo,5) + P~ (20,5)
Ut(zo,s) + U~ (0, s)
P*(zg,s) + P~ (20, 5)
P*(zq,s) — P~ (o, s)

Z(xo,8) = M(zo)s=

= —Ro(xo)

a P (x0,8) _ Z(x0,8) — Ro(wo)
R(CU(),S) - P+(.'II(),S) - Z(QJ(],S)-!-R()(IL‘(])
 PRECE (3.28)
ToS+ ¢
Py
UL
M (z0) Uniform Line Transformer M(L)

Fig. 3.12. Equivalent circuit of a conical waveguide [after Benade (1988)].
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where Ry(z) = pc/S(x) is the real, locally defined characteristic impedance of the cylindrical wave-
guide. The negative sign in the initial impedance relationship arises because volume velocity through
the inertance M (o) is flowing in the negative direction. This reflectance is the same as that found
in Eq. (3.21). If the open end of the bore is approximated by a low-frequency load impedance
Z1(s) = 0, the negative inertance M (L) will be short circuited. When a more physical, non-zero
load impedance is incorporated, the large end of the bore is terminated by the parallel combination
of Zp(s) and M(L). Rewriting M(L) as Ro(L)L/c, the pressure traveling-wave reflectance at the
large, open end of the bore is given in terms of the parallel impedance Z = Zp || (M(L)s) as
P~(L,s) _ Zj— (L)

P*(L,s)  Zy+ Ro(L)

LRy(L)Zys+ Ro(L)[cZy — LRy(L)s]

LRy(L)Zs — Ro(L)[cZL — LRy(L)s]

ZyRo(L)[Ls+ c]— R3(L)Ls

ZpRo(L)[Ls—c]+ R%(L)Ls

Z1Z§(L,s) — Zo(L,s)Zs (L, s)

e

R(L,s)

= Z120(L,5) = Z0(L,8)2:(L, 5)’ (3.29)
where .
Ro L LS
L s st i .
flet) =g (3.30)

is the complex characteristic impedance of a conical bore at * = L. This expression is equivalent
to the bracketed term of Eq. (3.19), or the spherical-wave reflectance for pressure. Benade’s conical
waveguide circuit thus provides an alternate interpretation of wave behavior in conical bores which

closely parallels the digital waveguide implementation.

3.3.3 Diameter and Taper Discontinuities

Cylinder a Cylinder b

Fig. 3.13. Junction of two cylindrical tube sections.

Diameter discontinuities are generally avoided in wind-instrument bore profiles, but sometime occur

at the junction of instrument sections, such as between the mouthpiece and neck of a saxophone.
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These discontinuities will also be encountered in the approximation of complex bore shapes using
cylindrical pipe sections. At the boundary of two discontinuous and lossless cylindrical sections,
Fig. 3.13, there will be a change of characteristic impedance which results in partial reflection and
transmission of traveling-wave components. Assuming continuity of pressure and conservation of

volume flow at the boundary,
PHQ)+ P () =P (Q)+ P, (Q) (3.31)

and
7 P @) = PL@)] = 5= [ (@) - Pr @), (3.32)

where Zo, is the characteristic impedance of cylindrical section a. Solving for P; () and P, () at

the junction,

_ ZOb i ZOa + 2Z()a -
= ot Q _— Q
P (®) (ZObJrZOa)Pa( )+(z0,,+z0,,)’°b( )
= Rap PF(Q) + (1 - Ra) P (D) (3.33a)

A = (gt ) i) - (G2 2e) pra)+

ZOb + ZOa ZOb =+ ZOa
= (14+Rw) P} - Rav Py (3.33b)
where Ry, is the reflectance for the junction of cylinders a and b. R, is given by
ZOb = Z()a
R = 0/ 3.34
i ZOb + ZOa ( )
Sa— S
= —_—, 3.35
Sa + Sb ( )

where S, is the cross-sectional area of section a. The relationships of Egs. (3.33a) and (3.33b) are
referred to as scattering equations. The reflectance R,; can also be obtained from Eq. (3.15) by
assuming an infinite length for section b, so that Z; = Zg,. Because R is real and frequency-
independent, the time-domain reflection function r,;(t) and the frequency-domain reflectance are
equal for cylindrical tube junctions. The scattering equations are implemented by the structure
shown in Fig. 3.14a, which was first derived for an acoustic tube model used in speech synthesis

(Kelly and Lochbaum, 1962). Equations (3.33a) and (3.33b) can also be written in the form
P Q) = P (Q)+Pa(2) (3.36a)
PH) = PFE)+Pu(B), (3.36b)
where
Pa(Q) = Ra [PF(Q) - P (Q)] .-
In this way, the Kelly-Lochbaum scattering junction can be implemented with a single multiply, as

shown in Fig. 3.14b (Markel and Gray, 1976). Smith (1987) points out that junction passivity is
guaranteed for —1 < rq;(t) = Rap(Q) < 1.




3.3. MODELING WOODWIND INSTRUMENT BORES 113

14rap
pi(n) py (n) pi(n) -

Py (n)

Tab —Tab

pa (n) Py (n) pa(n) Py (n)

1—rg
(a) (b)

Fig. 3.14. (a) The Kelly-Lochbaum scattering junction for diameter discontinuities in cylindrical
bores; (b) The one-multiply scattering junction [after (Markel and Gray, 1976)].

The digital waveguide implementation of lossless wave propagation in two discontinuous cylin-

drical sections is shown in Fig. 3.15. In this way, any combination of co-axial cylindrical sections

pE(n) pr(n—m) l+ra g (n) py (n—m)
—> AL L —>
Tab —Tab
pa (n) pa(n+m) 1—rg py (n) py (n+m)

Fig. 3.15. The digital waveguide model of two discontinuous cylindrical sections.

can be modeled using only digital delay lines and one-multiply scattering junctions. The hypothet-
ical non-uniform bore shape first illustrated in Section 1.3.1 is shown again in Fig. 3.16 with its
approximation by cylindrical sections. The input impedance of such a structure was previously cal-
culated using transmission-line matrices. The discrete-time input impedance Z (w) determined from

a cylindrical section digital waveguide approximation of the non-uniform bore is shown in Fig. 3.17.

It is possible to derive similar expressions for reflection and transmission functions at the junctions
of conical tubes, though the frequency and axial dependency of the characteristic impedance for
spherical waves complicates the results in comparison to the cylindrical tube case. At the boundary
of two discontinuous and lossless conical sections, Fig. 3.18, the abrupt change in diameter and rate

of taper will cause scattering of traveling wave components. Assuming continuity of pressure and
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1] |-
(a)

(b)

Fig. 3.16. (a) A non-uniform bore and (b) its approximation in terms of cylindrical sections.

T T T T T T T T T
358 e X bt g & i -
100} = vaies Y M R i e 2o %o st 2o T N & b ........ et — BT e
8ok ...... ......... B 2 ,,,,,,,, e e ......... ........ N i
2 :
e :
g 60_ ...... S e R R R R R A VR LA VR B S e e e die e s Wil
g 840
E :
5 : : :
E 40- Ak T X e ‘. B i ERERE AR § OIS SATE R BAER R NN ERE R SR W =
160 :
20_.. e T | R | R | B | S | RS -l

SN

600 800 1000 1200 1400 1600 1800 2000
Frequency (Hz)

0 ' i
0 200 400

Fig. 3.17. Input impedance magnitude, normalized by Z, at = 0, calculated using a digital
waveguide model of the cylindrical section structure shown in Fig. 3.16(b).
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Cone a Cone b

Fig. 3.18. Junction of two conical tube sections.

conservation of volume flow at the boundary,
PF(Q) + Py (Q) = BHQ) + P () (3.37)
and
P ()Y0a(Q) — P (Q)Y5(Q) = P (Q)Y0e(Q) — Py (Q)Y53(9), (3.38)
where Yj, is the characteristic admittance for section a at the boundary looking in the positive z
direction. The characteristic admittance for spherical waves in a cone is given by

1 S(z) 1 . 1 S(z) 1
e =gy = (1) W@9) e e () G

where Yy(z,Q2) applies to traveling-wave components propagating away from the cone apex in the
positive  direction and Yj*(z, ) to traveling-wave components propagating toward the cone apex

in the negative z direction. Solving for P; () at the junction,

The frequency-dependent scattering coefficient which relates P; (2) to P} (Q) is

Y0a(©2) — Yoo ()
I/()"‘a(gz) + Y()b(Q)
B-1 2By

= Byl BFDGATY)’ Lo

R =

where B is the ratio of wave front surface areas S,/S, at the boundary and + is given by

4 c Sa S
Lii Sa + Sh (130 B x_b) (342)

(Martinez and Agullé, 1988; Gilbert et al., 1990a). This reflectance is given a negative superscript
to indicate scattering in the negative z direction. The parameters x, and z; are measured from the

(imaginary) apices of cones a and b, respectively, to the discontinuity. R~ () could also have been
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found in terms of impedances from Eq. (3.19) by assuming an infinite length for conical section b

with a resulting load impedance equal to Zy,. Similarly, the expression for Pb+ () at the junction is

and the reflectance which relates Pt (Q) to P, (Q) is

Yo () = Y ()
Yoo () + Yo (2)
1-B 2y

T 1+B (1+B)(G0+q) Ry

RY(Q)

(Viliméki, 1995). This reflectance is given a positive superscript to indicate scattering in the positive

 direction. The scattering equations can then be expressed in terms of R~(Q) and R*(Q) as

P7(Q) = RT(QPFHQ)+[1+RT(Q)] P (Q) (3.45a)
PHQ) [1+R7(Q)] PH(Q) + R (Q)P; (). (3.45b)

It is possible to define transmittances which indicate scattering through the junction as 7+(Q) =
1+R7(©2) and T~ () = 1+R*(N). These expressions are equally valid when either acoustic section
is cylindrical, rather than conical. Replacing cone a by a cylindrical section, z, = co and S, is given
by the cylinder’s cross-sectional area at the discontinuity.

Whereas the junction scattering coefficients for cylindrical bore diameter discontinuities were real
and constant, these expressions are frequency-dependent and must be transformed to discrete-time
filters for time-domain implementation. Figure 3.19(a) illustrates the general scattering junction im-

plementation for diameter and taper discontinuities in conical bores. Because R~ (Q) and R*(Q) are

Pt (n) T+(2) P pE ) () R(2) v (n)

e R*(2)

pa(n) T-(2) P (n) pi(n) «—(F)s pi (n)

(a) (b)
Fig. 3.19. (a) The scattering junction for diameter and taper discontinuities in conical bores; (b)
The one-multiply scattering junction for a taper discontinuity only [after (Valiméki, 1995)].

different, the one-multiply form of the scattering junction implementation is not possible. However,
the wave front surface areas are often approximated by cross-sectional areas at the discontinuity,
which is reasonable only for small changes in taper rate and cross-section. By making this approxi-

mation, the reflectances R~ and R* become identical for a discontinuity of taper only. In this case,
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a one-multiply scattering junction implementation is possible, as shown in Fig. 3.19(b) (Valimaki,
1995). Strictly speaking, however, the propagating wave fronts in cones are spherical and thus R~
and R* will never be identical, even for a simple taper discontinuity.
Equation (3.41) can be transformed to the time domain, resulting in the reflection function
B-1 2B

T_(t) = md(t) o ‘(m’)’e—‘yt(:'(t), (346)

where §(t) is the Dirac impulse and €(t) is the Heaviside unit step function (Martinez and Agullé,
1988). An appropriate discrete-time filter is found by making the bilinear transform frequency

variable substitution in Eq. (3.41) with the result

R () = %—;—ié(n) = QB(VB/(f;’)” ( 11_+af;_1) : (3.47)

where J(n) is the unit sample sequence or discrete-time impulse, v is as given in Eq. (3.42), a is the

bilinear transform constant, and
& —
(o oy

is the first-order filter pole location in the z—plane. Unfortunately, R ~(z) is unstable for negative ~,

ay = (3.48)

which occurs any time cone b has a lower rate of taper than cone a. Equivalently, R~ (£2) has no causal
inverse Fourier transform for negative v. Agull6 et al. (1992) rederived expressions for the reflection
functions associated with conical discontinuities using time-domain analyses only to demonstrate
the validity of Eq. (3.46) for negative v as well. This corresponds to a growing exponential in
the reflection function 7 (¢). Much debate has been waged over the existence and/or passivity of
the growing exponential terms. The reflectance is a junction characteristic which is “blind” to the
boundary conditions upstream or downstream from it. Physically realistic boundary conditions in
such cases, however, will always limit the time duration over which the growing exponential can
exist. Experimental measurements of reflection functions due to discontinuities have verified this
general behavior (Agull6 et al., 1995). It should be noted, however, that limited exponential growth
of the reflection function or impulse response of a physically feasible system is dependent on the
summation of an infinite number of growing exponential terms. In other words, reflections at a
Junction for which + is negative must continue forever in order to guarantee stability of the system.

The implementation of an unstable digital filter to simulate an air column junction of decreasing
taper rate, as given by the theory above, is extremely problematic and generally impossible in a
synthesis environment. It is often possible to calculate the “impulsive” behavior of an acoustic system
containing growing exponentials in double-precision floating-point environments, though simulations
over longer time durations will tend to grow unstable due to precision limits in the digital domain.
Figure 3.20 illustrates two possible cylinder-cone section combinations. Because < is positive (or the
taper rate widens) for the junction in Fig. 3.20(a), the system reflection function will be characterized
by decreasing exponential terms. Figure 3.21 is a plot of the discrete-time reflection function and

impulse response of the cylinder-diverging cone structure illustrated in Fig. 3.20(a), as calculated
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Fig. 3.20. (a) Cylinder-diverging cone junction; (b) Cylinder-converging cone junction. All lengths
are in millimeters.

using digital waveguide techniques. The decaying exponential terms are obvious in both responses
and the reflection function is seen to decay much faster than the impulse response. Further, both

plots compare well to those of (Agullé et al., 1988, p. 1610). Figure 3.22 is a plot of the discrete-time
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Fig. 3.21. (top) Discrete-time reflection function r(n) and (bottom) discrete-time impulse response,
normalized by Zy of the cylinder, calculated using a digital waveguide model of the cylinder-diverging
cone structure shown in Fig. 3.20(a).

reflection function of the cylinder-converging cone structure illustrated in Fig. 3.20(b), as calculated
using digital waveguide techniques. The growing exponential terms are limited in time and the
overall response decays to zero within about 15 milliseconds. If this model is run for a long period
of time, however, internal state overflow and precision errors lead to unstable growth. The impulse
response of this system is of infinite duration in the absence of viscothermal losses and attempts to

calculate h(n) likewise result in unstable growth.
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Fig. 3.22. Discrete-time reflection function r(n) calculated using a digital waveguide model of the
cylinder-converging cone structure shown in Fig. 3.20(b).

It is obvious that alternative methods are necessary for the digital simulation of such a system.
While the individual reflection function characterization of the junction is problematic, the overall
response of the composite acoustic system is stable. Thus, it is possible to lump together several
acoustic sections to form a stable filter. This is done at the cost of model accessibility; that is,
the detailed behavior of wave propagation at locations within the lumped section is unknown. One
approach is to implement the reflection function of Fig. 3.22 with a finite impulse response (FIR)
filter. In this case, the filter coefficients are simply given by the discrete-time values of r(n) over its
non-zero length. At a sampling rate of 44.1 kHz, the FIR filter for this system could be truncated
to about 600 coefficients. The downside to such a solution, however, is its relative inefficiency with
respect to the digital waveguide implementation. Further, a reflection function description of this
sort is appropriate at the termination of a waveguide implementation, but not at points internal
to the model. Another potential solution involves zeroing out the internal states of the unstable
filters when reflection activity has decayed to negligible levels. This technique is based on the ob-
servation that filter instability tends to occur after signal levels have decayed away. The internal
reflections themselves tend to limit the growth of the filter states. This approach is reasonable
for determining short duration signals, such as air column reflection functions. The hypothetical
non-uniform bore shape first illustrated in Section 1.3.2 is shown again in Fig. 3.23 with its approx-
imation by conical and cylindrical sections. This structure has six internal junctions, of which those
between sections two and three, four and five, and five and six, are unstable. The bore shape as

a whole, however, represents a stable system because successive internal and open-end reflections
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(b)
Fig. 3.23. (a) A non-uniform bore and (b) its approximation in terms of conical and cylindrical
sections.

cancel out the growing exponential terms. The input impedance of this structure was previously cal-
culated using transmission-line matrices. The discrete-time input impedance Z(w) determined in a
double-precision, floating point environment from a conical and cylindrical section digital waveguide
approximation of the non-uniform bore is shown in Fig. 3.24.

For discrete- and real-time implementations, the use of unstable digital filters is unacceptable. A
solution to this problem is possible by lumping an unstable junction together with a stable one, to
produce a scattering junction characterized by stable digital filters. Such an approach is illustrated
in Fig. 3.25. The bore profile of Fig. 3.25a requires the implementation of unstable scattering
junction reflectance and transmittance filters if each junction is explicitly modeled. In particular,
the junction between the first divergent conical section and the cylindrical section is unstable in the
digital domain. However, if the overall taper rate of the composite system is increasing (that is, the
right-most section taper rate is greater than that of the left-most section), a lumped model for the
inner sections can be determined which is implemented by a single, stable scattering junction.

The cascading of digital waveguide reflectance and transmittance filters is nontrivial. Instead,
the approach used here is to express the bore profile in terms of its frequency-domain, transmission-
matrix representation. The appropriate matrices are then cascaded together and this representation
is transformed to waveguide coordinates. Finally, appropriate discrete-time filters are designed. The

inner bore profile of Fig. 3.25a is typically represented by a series of three transmission matrices, as
P, 1 aj b] as b2 as b3 P2
U 1 (64] d1 Cy d2 Cs d3 U- 2

A B P,
C D U,

(3.49)
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Fig. 3.24. Input impedance magnitude, normalized by Z at = 0, calculated using a digital
waveguide model of the conical and cylindrical section structure shown in Fig. 3.23(b).

Py P,
U U,

Fig. 3.25. (a) A bore profile which results in an unstable digital waveguide filter implementation
and (b) a lumped-section model which allows a stable digital waveguide filter implementation.
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where
A B

C D

3
i bi
! { Z ) ] (3.50)
i=1 1 i

Each matrix in Eq. (3.49) is given by the appropriate conical and cylindrical transmission-matrix
parameters, as discussed in Section 1.3. In order to avoid implementing the cylinder-conical section
junctions, it is necessary to include a short portion of the conical section lengths on either side of
both junctions in the overall lumped system. In this case, the complete cylindrical section will be
lumped together with short conical sections on both its ends. It is desireable to keep the lengths of
the conical sections short, so as to avoid unnecessary phase delay in the digital filters to be designed.

To render these relationships in the digital waveguide domain, it is necessary to transform the
spherical-wave transmission-matrix coordinates of pressure and volume velocity to waveguide coor-

dinates, as

P P+ P P, P + Py
v, || B | o, |=| 2o | (3:51)
L Zo1 ~ Zsy 2 Zoz Zz3,

where Zy, is the complex valued characteristic impedance determined at the input of the first conical

section and Zg, is its complex conjugate. Waveguide pressure variables on both sides of the junction

R- T~
gk B

are related by

P¥

; 3.52
P (3.52)

where

R- = Zgl (BZgz - DZOIZSZ -+ AZ02Z52 - CZ()1Z02Z(,;Z) (353&)
ZOIZSZ (B + DZ&‘I + AZys + CZ;1Z02)
" Z3 (AD — BC) (Zo1 202 + Z0123,)

T~ = o 02 3.53b

Z01Z5‘2 (B =+ .DZ(’;I + AZO2 + CZ31Z02) ( )
Z02 (Z51Z52 + Z01Z3,)

Tt = 3.53
Zo1 235 (B + DZg; + AZos + CZ3, Zoz) (3-58c)

Zoz (BZoy + DZp1 Z§, — AZo1Zgy — CZ01 Z§ Z,)

Zo1Z3y (B+ DZ3, + AZog + C 23, 202)

’RY =

(3.53d)

calculated using Eqgs. (3.49) and (3.51). Figure 3.25b illustrates the digital waveguide implementation
of the lumped inner sections, as well as the outer bore segments which are modeled by standard
waveguide techniques, as previously discussed. There is no need for additional conical waveguide
input and output “inertance” filters, as these terms are included in the lumped scattering junction
equations. This is based on the fact that there is no back-scattering at the junction of conical
sections of equal taper and diameter.

An implementation of this theory was made for a structure with approximate sectional lengths
of 0.2, 0.05, and 0.3 meters, each rounded to its nearest integer delay length of 25, 6, and 38 samples

at a sampling rate of 44.1 kHz, and sectional radii of 0.6, 1.3, and 2.7 centimeters. Conical sections
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of one delay each were lumped together with the cylindrical segment and modeled by appropriately
designed discrete-time scattering filters. For this purpose, the MATLAB® function invfreqz was
used with low-frequency weighting functions to design fourth-order transmittance and reflectance
filters based on the continuous-time responses of Eqs. (3.53a)—(3.53d). Figures 3.26 and 3.27 plot
the input impedance magnitudes and impulse responses for this bore profile, as calculated using
frequency-domain transmission-matrix and time-domain digital waveguide techniques. Low-order
scattering junction digital filters are somewhat difficult to design for the lumped section, in part
due to the phase delay associated with propagation along its length. However, this phase delay can
be extracted from the continuous-time transmittance responses and implemented by delay lines, in
series with lower-order, modified transmittance filters, as depicted in Fig. 3.28. It is important to
maintain the overall passivity of the scattering junction during the filter design process. That is,
design errors in the reflectance and/or transmittance filters may cause an inappropriate gain at a
particular frequency which destabilizes the junction behavior. The design process should thus be
checked by verifying that the sum of R~ and 7~ and the sum of R* and 7+ have magnitudes less
than or equal to the corresponding continuous-time functions for all frequencies. This problem can

be reduced by incorporating viscothermal losses in the cascaded transmission-matrix coefficients.
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Fig. 3.26. Input impedance magnitude, normalized by Ry = pc/S(z) at the bore input, calcu-
lated using (top) transmission matrices and (bottom) a lumped section digital waveguide model as
illustrated in Fig. 3.25(b).

The lumped section approach just discussed could also be derived by cascading waveguide matrix
coefficients, determined from the transmission matrix elements by the appropriate substitution of
waveguide variables. It is not possible, however, to cascade waveguide matrices which are in the
form of Eq. (3.52) (van Walstijn and de Bruin, 1995).
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Fig. 3.27. Impulse response, normalized by Ry = pc/S(z) at the bore input, calculated using
(top) transmission matrices and (bottom) a lumped section digital waveguide model as illustrated
in Fig. 3.25(b).

3.3.4 Fractional Delay Lengths

Sound propagates with an approximate speed of 347.23 meters per second at a temperature of
26.85°C (Benade, 1968). The spatial sampling interval at 44.1 kHz is thus approximately 7.87
millimeters. The distances between various component parts of musical instruments seldom fall
at perfect multiples of this interval, so that non-integer delay-line lengths are necessary for digital
waveguide models. A significant body of work has been generated on this topic (Laakso et al., 1994;
Véliméki, 1995). The most useful methods for achieving fractional delay lengths in the context of

digital waveguide modeling include Lagrange and allpass interpolation. Lagrange interpolation is

| T

R*(2)

e e 7"(2)

Fig. 3.28. The digital waveguide lumped section scattering junction with extracted linear phase
terms and modified reflectance and transmittance filters.
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typically implemented as either a first- or third-order finite impulse response (FIR) filter. The first-
order Lagrange interpolator performs simple linear interpolation between two consecutive samples.

The coefficients of the general Lagrange interpolator are given by

~ D-k
h(n) = H — forn=0,1,2,...,N (3.54)
k=0,k#n

where D is the fractional delay and NN is the order of the filter. Normalization of the coefficients found
using Eq. (3.54) is necessary to preserve unity gain at DC. In order to keep the filter gains at or below
unity over all frequencies, the delay and filter order should fall in the range (N—1)/2 < D < (N+1)/2
for odd N and (N/2) —1 < D < (N/2) + 1 for even N (Viliméaki, 1995). Further, for lowest error,
values in the range (N —1)/2 < D < (N + 1)/2 should be maintained for both even and odd order
filters. Figure 3.29 shows the frequency response and phase delay of first-order Lagrange interpolation

filters for delays in the range 0 < D < 1. Figure 3.30 provides the same information for third-order

0

]
o

Magnitude (dB)
[
o

20 i ) ; ! . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency
o I R sl e e e e s
o
o
E 08 ..........
©
(7]
= 0.6 .....................................................
)
204
[]
é? 0.2 - S SRS Y e Ssgzs et ovs o O g o
& : : " g :
0 ! 1 1 0 )
0 0.1 0.2 0.3 0. 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency

Fig. 3.29. Frequency response and phase delay of first-order, Lagrange interpolation filters for 11
delay values in the range 0 < D < 1 [after (Jaffe and Smith, 1983)].

filters and delay values in the range 1 < D < 2. The magnitude characteristics for both plots reveal
signal attenuation to some extent for all non-integer delay length Lagrange interpolators. The phase
characteristics further indicate dispersion at high frequencies. Even-order filters are also useful and
generally provide improved frequency response at the cost of nonlinear phase delay. However, for
dynamic fractional delay applications, the even order filters require switching at half sample points
to maintain delay values within the range given above, rather than on integer sample points (as with

odd order filters).

The use of allpass filters for achieving fractional delay in digital waveguide systems was first
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Fig. 3.30. Frequency response and phase delay of third-order, Lagrange interpolation filters for 11
delay values in the range 1 < D < 2 [after (Jaffe and Smith, 1983)].

discussed by Smith (1983). Allpass filters have unity gain over all frequencies but variable phase
delay properties. For this reason, they offer a means for achieving fractional delay with no frequency
magnitude distortion (as was present to some extent in the Lagrange filters). Allpass interpolation
is adequately performed using a first order allpass filter with a phase delay calculated to match the
desired spacing at a particular frequency. However, the allpass filter has an infinite impulse response
(ITR) and this response can affect desired time-domain performance. The coefficients of a general

order (V) allpass filter are given by (Laakso et al., 1992; Vilimiki, 1995)

N
D—-N+n
ay = { ( >HD Nohon rk=012...N (3.55)

where D is the desired fractional delay and

N N
( % ) = KN — k) (3.56)

is the binomial coefficient. In the first-order case, the allpass coefficient is thus found as

D-1

a; = ——D—+i‘.

(3.57)

Figure 3.31 shows the phase delay of first-order allpass interpolation filters for delays in the range
0 < D < 2. While it is possible to get a wide range of low-frequency delay values from an allpass
filter, it is best to limit this range around the order of the filter (in this case, D = 1). A delay range
of 0.5 < D < 1.5 corresponds to a coefficient range of 0.33 > a; > —0.2. With such values, the
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allpass filter displays maximally flat phase delay response together with the fastest decaying impulse
response, a desired characteristic when dealing with dynamic delay values and their associated

transient responses.
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Fig. 3.31. Phase delay of first-order, allpass interpolation filters [after (Jaffe and Smith, 1983)].

In general, the phase delay characteristic of allpass filters is less linear than that of Lagrange
interpolators. A nonlinear phase delay implemented within a digital waveguide feedback loop results
in inharmonicities among the higher system normal modes or harmonic attenuation in steady-state,
periodic waveforms. For this reason and because the impulse response of FIR filters is always much
shorter than that of IIR systems, the Lagrange interpolator is better suited for most digital waveguide
implementations. An exception to this rule, however, occurs for short string implementations, where
the flat magnitude frequency response of the allpass filter is more important than a flat phase delay

response.

Figure 3.32 displays the first 500 samples of an ideally terminated cylindrical waveguide bore
implementation, using fractional delay filters to approximate a bore length of 20.275 samples or
0.15964 meters at a sampling rate of 44.1 kHz. The ideal, continuous-time response would consist
of a single, negative unit impulse at a time of 0.9195 milliseconds, or the time necessary for the
pulse to travel to the open end of the bore and back, followed by alternating unit pulses at equal
time intervals. In the discrete-time simulation, the pulse is spread between the closest adjoining
samples to the desired delay length. The impulse response of the first-order Lagrange interpolated
bore is seen to decay over time, despite the absence of any dispersive element in the loop (aside from

the Lagrange interpolation filter). This is a result of the frequency magnitude characteristic of the
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Fig. 3.32. Impulse response of digital waveguide system using (top) first-order Lagrange interpo-
lation and (bottom) first-order allpass interpolation.

Lagrange interpolator. The impulse response of the allpass interpolated bore exhibits no attenuation,
however, the much longer impulse response of the IIR interpolation filter is obvious. Assuming the
bore model will incorporate loss filters, the allpass response will normally be quickly attenuated and
the transient response will not be aurally noticeable. However, Lagrange interpolation is better suited
for instances where visual comparison of time-domain response functions is made to continuous-time
waveforms.

Within a single digital waveguide model, a large number of fractional delay filters may be needed
to implement such discontinuities as toneholes. The combined effect of these “cascaded” filters can
be significant. Cook (1995) illustrates the worst-case magnitude and phase errors of a waveguide
flute model with eight toneholes. It should be noted that early reflections in such a model will be
less affected by the combined fractional delay losses than those portions of the signal that propagate
through many or all of the tonehole junctions. It may be possible to reduce the effect of these errors,

however, by commuting appropriate boundary-layer losses with the fractional-delay filters.

3.3.5 Boundary-Layer Effects

An analysis of viscous and thermal losses in rigid cylindrical tubes was provided in Section 1.3.3.
These effects were characterized by a modified wave propagation number k = Q /vp—j a, where vy, is
the phase velocity and a is an attenuation coefficient per unit length. The parameters v, and « vary
with frequency and duct radius (at a constant temperature) and are given in Section 1.3.3. In this

representation, the thermoviscous losses are distributed over the length of the pipe. Within a digital
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waveguide system, it is necessary to lump these effects by replacing each unit sample delay with a
digital filter designed to approximate the attenuation and phase delay incurred over the distance
cT'. The continuous-time filter H(Q2) which represents lossy wave propagation over this distance is

found as
H(Q) = e—-jk:c = e—acT e——chT/vP_ (358)

H() can be expressed in terms of the discrete-time frequency variable z as
H(z) = em*T 27/, (3.59)

The frequency response of H(z) is shown in Fig. 3.33. Except at low frequencies, the phase delay
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Fig. 3.33. Frequency response of the filter H(z) : Magnitude (top); Phase delay (bottom).

is close to that of a unit sample delay. The attenuation is minimal over the distance ¢T' , but does
become significant for distances on the order of woodwind instrument bore lengths. A digital filter
can be designed to approximate the ideal response of H(z) by commuting a linear phase attenua-
tion filter, representing the term e~*°T with an allpass filter which models the phase delay term
2 E%, Alternatively, an IIR filter can be designed to match both the phase delay and attenuation
characteristics. Thermoviscous losses over fractional delay lengths are similarly modeled by appro-
priately designed digital filters. However, the attenuation and/or dispersion inherent in fractional
delay interpolation techniques will usually be greater than the thermoviscous effects themselves.
The use of H(z) in a digital waveguide model is represented in Fig. 3.34. Each unit delay is
replaced by a separate implementation of H(z). By doing so, however, inaccuracies in the digital
filter approximation to H(Q) are compounded throughout the system. More importantly, the com-

putational performance of the model is completely destroyed because the efficiency of the digital
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p*(n) pt(n-1) p¥(n-2) p*(n-3)
s H(z) > H(z) > H(z) > e
p(0, nT) p(3X, nT)
p(n) p(n+l1) p(n+2) p(n+3)
. e H(z) < H(z) < H(z) s
(x=0) (x=c(w)T) (x = 2¢(0)T) (x = 3¢(0)T)

Fig. 3.34. Digital waveguide implementation of lossy plane-wave propagation in air [after (Smith,
1996a)]. The unit delays have been incorporated into H(z).

waveguide technique is dependent upon the use of delay lines to represent lossless wave propaga-
tion. Instead, linearity of the woodwind bore model allows the effects of thermoviscous losses to be
“lumped”or commuted together, as shown in Fig. 3.35. The filters H "(2) represent the commuted
losses only, or equivalently z™H™(z). Figure 3.36 shows the response of a 5th-order IIR filter, de-
signed using an equation-error minimization technique, versus the ideal response of H, 76(92), or the
commuted phase delay and attenuation over 76 unit sample delay lengths. The loss filter(s) can even
be commuted with other filters in the system, such as the open-end reflection filter R r(2), thereby
reducing computational complexity even further. Commutation of losses is simple when the desired
observation point is located at either end of the bore. However, when it is desired that an imple-

mentation allow an arbitrary observation point, the commuted losses need be carefully accounted

for.
pt(n)
™ > 1)
p(0, nT) Rr(z)
p(n)
< H'(2) [ 7
(x=10) (x=1L)

Fig. 3.35. Commuted thermoviscous losses in a digital waveguide cylindrical air column
implementation.

Boundary layer effects in conical bores may be estimated by dividing the conical bore into cylindri-
cal sections and deriving loss filters based on the average radius of each segment. For computational

efficiency, the loss filters can then be commuted as was done above.
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Fig. 3.36. Continuous-time filter HJ%(s) and 5th-order discrete-time filter H}®(z) responses.

3.4 Modeling Sound Radiation

In Section 1.4, the acoustic behavior of propagating sound waves in horns, near toneholes, and at
the ends of non-flaring cylindrical pipes was briefly discussed. Such structures completely define a
wind instrument’s sound radiation and internal reflection characteristics. Because the dimensions
of these acoustic elements are typically much smaller than the wavelengths of sound propagating
through them, they are well approximated by lumped responses. The efficiency of digital waveguide
techniques rests primarily in the simulation of lossless, one-dimensional traveling-waves. Within this
scheme, the lumped responses of acoustic sound radiating components are well modeled by FIR or
IIR digital filters.

3.4.1 Non-Flaring Ends

In most woodwind instruments, sound radiation is primarily accomplished via a tonehole lattice.
For this reason, the open ends of such instruments typically exhibit little or no flare. Two theoretical
models of sound reflection at non-flaring bore ends were discussed in Section 1.4.1. The results of
Lord Rayleigh (1896) were obtained by assuming an infinite flange at the end of the bore. Subse-
quently, Levine and Schwinger (1948) obtained an explicit solution for the radiation of sound from
an unflanged circular pipe.

For implementation within the digital waveguide context, it is necessary to design digital filters
which accurately model the continuous-time characteristics mentioned above. Good discrete-time

approximations to both solutions are best obtained using frequency-domain digital filter design
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methods. Figure 3.37 plots the continuous-time and discrete-time approximations to the frequency
magnitude and phase responses, respectively, of the Levine and Schwinger unflanged cylindrical duct
solution. The result is a digital filter of second order, obtained using the equation-error filter design
method discussed in Section 3.2. In this case, the filter was designed for a pipe radius of 0.008
meters, which falls near the typical dimensions of both clarinet and flute bores. Similar results can

be obtained for the Rayleigh solution but are not shown here.
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Fig. 3.37. Continuous-time and digital filter magnitude and phase characteristics for the Levine
and Schwinger reflectance in a cylindrical duct of radius 0.008 meters.

Open-end reflections in a digital waveguide model were previously represented by a general
reflectance filter R(z). From Fig. 3.37, this reflectance is characterized by a lowpass digital filter.
The corresponding open-end transmittance is given by 7(z) = 1 4+ R(z), which displays a highpass
filter characteristic. The open-end transmittance may be implemented in two ways, as depicted
in Fig. 3.38. These two schemes are equivalent, though the bottom representation of Fig. 3.38
is obviously a more efficient means for calculating the residual, transmitted sound. However, the
implementation of two separate filters may be desired in order to allow better control over model
output sound quality.

As mentioned in Section 1.4.1, an explicit theoretical solution for sound radiation at the open
end of a conical bore has yet to be derived. Caussé et al. (1984) suggest scaling the cylindrical pipe
open-end radiation impedance Zp by the ratio of plane- and spherical-wave surface areas (Sp/Ss)
at the end of the conic frusta. The resulting load impedance at the end of an open conical bore is

then given by
Sp
Ss

A corresponding conical bore open-end reflectance is determined by substituting Eq. (3.60) into

Zp =227, (3.60)
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Fig. 3.38. Sound radiation filter implementations in a digital waveguide cylindrical duct model:
(top) Complementary transmittance filter [after (Smith, 1986)]; (bottom) Residual sound output.

Eq. (3.9) as

Rarlaye) = [ZR'(WZ&W) — Zy(a, s)ZJ(w)J .

Zr(x,8)Zo(x,8) + Zo(z,8)Z§(z,s)

This is equivalent to determining the reflectance which results from the parallel combination of

(3.61)

Zp and the conical bore open-end inertance. In practice, however, the complex spherical-wave

characteristic impedance is nearly real at the end of a conical bore, so that the substitution

_ (8p/85)ZR(z,5) — Zo
(Sp/Ss)Zr(z,8) + Zo

is adequate in most contexts. Since the Levine and Schwinger solution is given in the form of a

R (z,s) (3.62)

plane-wave reflectance R g(s), the substitution

Y + Rr(s)
Rp(s) = ———~ 3.63
® () 1+ ~Rg(s) (358)
results, where
o Sp— Ss
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The explicit theoretical solution determined by Levine and Schwinger for sound radiation from an
unflanged cylindrical pipe is valid for frequencies in the range 0 < ka < 3.8. This range is often
inadequate for digital waveguide simulations involving large open-end radii, for such instruments
as saxophones, and standard digital audio sampling rates. Therefore, the Levine and Schwinger
solution was smoothly extended out to a range ka < 20, as shown in Fig. 3.39. The magnitude
extension was achieved by concatenating a scaled version of (ka)~™® to the tail of the theoretical
results. Similarly, the length correction extension was achieved by concatenating a scaled version of

(ka — 3)™2 to the tail of the corresponding theoretical results.

1

osk \. .|— Theoretical Values e s )

: -—-- Extended Values
o i i : >
_0.4 .................... =
02 .............. R L LTS FERREITS =
0 e . J 1L I 1 1
8 10 12 14 16 18 20
ka
0.8 T T T T T T T T T
s, ;
0 1 I T TN i AL 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
ka

Fig. 3.39. Levine and Schwinger unflanged open end reflectance magnitude and length correction
extensions.

3.4.2 Horns

Digital waveguides have been shown to efficiently simulate wave propagation described by the one-
dimensional wave equation. Plane waves in cylindrical bores and spherical waves in conical bores
are thus well modeled in this manner. Most wind instruments are not perfectly cylindrical or conical
throughout their length, though a major portion of their air columns are generally well approximated
by a single cylindrical or conical section. For regions in which an air column flares rapidly, however,
an alternative means is necessary to model the internal wave behavior. In Section 1.4.2, it was
mentioned that general horn shapes can be approximated with cylindrical and/or conical sections.
The use of cylindrical digital waveguide sections in this way was previously reported by Cook (1988).

The air columns of woodwind instruments are nearly uniform throughout most of their length.

Flared sections of short length sometimes occur near the end of woodwind bores, though significant
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sound propagation in these sections is generally limited to instances when all or most of the instru-
ment’s toneholes are closed. For these reasons, a detailed discussion of flaring horns will not be
presented in this study. Wave propagation in structures other than pipes of circular and rectangular
cross-section and cones is necessarily multi-dimensional (Putland, 1993), and digital waveguides do
not efficiently model this type of wave behavior. However, because horns are typically found only
at the end of bores which are mostly cylindrical or conical in shape, the horn characteristic can be
modeled by a lumped impedance or reflectance while wave propagation in the cylindrical or conical
section can be modeled using digital waveguides. A method for determining the reflectance of a

horn of general shape is discussed by Berners and Smith (1994).

3.4.3 Toneholes

The fundamental acoustic properties of toneholes were discussed in Chapter 1. The model described
by Keefe (1990) is the most current and accurate representation for a tonehole unit, assuming inter-
actions between adjacent toneholes are negligible. In this description, acoustic variables are related
by a transmission matrix of series and shunt impedance parameters. Keefe’s original derivation of
the tonehole parameters was based on a symmetric T' section, as shown in Fig. 3.40 (Keefe, 1981).

The series impedance terms, Z,, result from an analysis of anti-symmetric pressure distribution, or

o—— Za/2 .3 e
P] P2
Uy Zs U,
(o -0

Fig. 3.40. T section transmission line element representing the tonehole.

a pressure node, at the tonehole junction. In this case, volume flow is symmetric and thus equal
across the junction. The shunt impedance term, Z,, results from an analysis of symmetric pressure
distribution, or a pressure anti-node, at the tonehole junction. In this case, pressure is symmetric
and equal across the junction. The transmission matrix which results under this analysis is given by
P, 1 Z,/2 1 0 1 Z,/2 P,

o] - [l 20 L

Z, 2z,
_ |+ (v E) | [ R (3.64)
e 1+ & Uy
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Based on the fact that |Z,/Zs| < 1, Eq. (3.64) can be reduced to the form

HEES

which is the basic tonehole unit cell used by Keefe in transmission-matrix calculations. The values

P,

; 3.65
" (3.65)

of Z, and Z; vary according to whether the tonehole is open (o) or closed (c) and are repeated here

for convenience as

Z{ = Zo(a/b)? (jkte + &), (3.66a)
Z) = —jZy(a/b)? cot(kt), (3.66b)
Z?) = —jZy(afb)kt), (3.66¢)
Z© = —jZ(a/b)*kt. (3.66d)

Definitions and descriptions of the various parameters in Egs. (3.66a) — (3.66d) can be found in
Section 1.4.3.
To render these relationships in the digital waveguide domain, it is necessary to transform the

plane-wave transmission-matrix coordinates of pressure and volume velocity to waveguide coordi-

Pl _ P1++P1_ P2
U, zt (P -p) | Uz

where Z is the characteristic impedance of the cylindrical bore, which is equal on both sides of the

nates, as

(3.67)

P +P; }
zZ' (P -py) |7

tonehole. Waveguide pressure variables on both sides of the tonehole are related by

rl _ [=r 7[R

P; T+ Rt || Py
~ 1 42,2, + 22 — 422 B2y P
T (2204 Za) (220 + Za + 42,) 8Z0Z, 42,2,+ 22 -422 || Py |’
» 1 2.2~ ZF | 2E.%, <l (3.68)
T 22,4222+ 2% | 22,2, Z.2.-22 || Py '

calculated using Eqgs. (3.64) and (3.67) and then making appropriate simplifications based on the
fact that |Z,/Z,| < 1. Figure 3.41 depicts the waveguide tonehole two-port scattering junction in
terms of these reflectances and transmittances. This structure is analogous to the four-multiply
Kelly-Lochbaum scattering junction (Kelly and Lochbaum, 1962). It is interesting to note that

direct transformation of Eq. (3.65) to waveguide coordinates results in

3l 1 Bk.— 23 15(2.-2.) ] B+
Py ZoZ,4+220Z,+ Z2 | 22,7, ZoZ — 72 Py |’

(3.69)
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pi (n) T+(Q) 3 (n)
& R*(©)
pr(n) T-(Q) Py (n)

Fig. 3.41. Tonehole two-port scattering junction.

for which the two transmittances are unequal, indicating non-symmetric wave propagation at the
junction of the tonehole. However, by again assuming |Z,/Z,| < 1, the two transmission terms

converge, as expected from the original symmetric T' section derivation of the tonehole parameters.

It is necessary to derive appropriate digital reflectance and transmittance filters to model the be-
havior represented by Eq. (3.68). While the series impedance terms are easily expressed in terms of
the Laplace transform frequency variable, and subsequently can be transformed to the discrete-time
domain using the bilinear transform, the shunt impedance terms are given by distributed cotangent
and tangent factors which are not well represented in the Laplace domain. Consequently, the digital
waveguide tonehole reflectance and transmittance filters are best designed using general digital filter
design techniques. Figure 3.42 plots the continuous-time magnitude and phase characteristics of the
closed-hole reflectance, together with the response of a two pole/two zero digital filter approxima-
tion. The discrete-time filter was designed using the equation-error method previously discussed
in Section 3.2. Figure 3.43 plots the continuous-time magnitude and phase characteristics of the
open-hole reflectance, together with the response of a one pole/two zero digital filter approxima-
tion. The open-hole discrete-time filter was designed using Kopec’s method (Smith, 1983, p. 46),
in conjunction with the equation-error method. That is, a one-pole model I:Il(z) was first fit to
the continuous-time response, H(e’?). Subsequently, the inverse error spectrum, H (e/?)/H(ei%)
was modeled with a two-pole digital filter, Hy(z). The discrete-time approximation to H (e was
then given by fIl(z) /Hj(z). The first step of the design process captures the peaks of the spectral
envelope, while the second step models the “dips” in the spectrum. These particular calculations
were performed for a tonehole of radius b = 4.765 millimeters, minimum tonehole height t,, = 3.4
millimeters, tonehole radius of curvature r, = 0.5 millimeters, and air column radius a = 9.45 mil-
limeters. The results of Keefe (1981) were experimentally calibrated for frequencies less than about
5 kHz, so that the continuous-time responses evident in the figures are purely theoretical above this
limit. Therefore, the discrete-time filter design process was weighted to produce better matching at

low frequencies.
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Fig. 3.42. Two-port tonehole junction closed-hole reflectance, derived from Keefe (1981) shunt
and series impedance parameters [(—.—) continuous-time response; (—) discrete-time filter response].
(top) Reflectance magnitude; (bottom) Reflectance phase.
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Fig. 8.43. Two-port tonehole junction open-hole reflectance, derived from Keefe (1981) shunt
and series impedance parameters [(—.—) continuous-time response; (—) discrete-time filter response].
(top) Reflectance magnitude; (bottom) Reflectance phase.
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Figures 3.44, 3.45, and 3.46 plot the reflection functions calculated for a six-hole flute, as described
in (Keefe, 1990). The upper plots in each figure were calculated using continuous-time transmission-
matrix parameters, and the plotted reflection functions were determined as the inverse Fourier
transform of the corresponding reflectances. These responses are equivalent to those provided by
Keefe (1990), though scale factor discrepancies exist due to differences in open-end reflection models
and lowpass filter responses. The lower plots were calculated from a digital waveguide model using
two-port tonehole scattering junctions. Differences between the continuous- and discrete-time results
are most apparent in early, high-frequency, closed-hole reflections. The continuous-time reflection
functions were low-pass filtered to remove time-domain aliasing effects incurred by the inverse Fourier
transform operation and to better correspond with the plots of Keefe (1990). By trial and error, a
lowpass filter with a cutoff frequency around 4 kHz was found to produce the best match to Keefe’s
results. The digital waveguide results were obtained at a sampling rate of 44.1 kHz and then lowpass
filtered to a 10 kHz bandwidth, corresponding to that of Keefe (1990). Further lowpass filtering is
inherent from the Lagrangian, delay-line length interpolation technique used in this model (Valimaki,
1995). Because such filtering is applied at different locations along the air column, a cumulative effect
is difficult to accurately determine. The first tonehole reflection is affected by only two interpolation
filters, while the second tonehole reflection is affected by four filtering operations. This effect is most

responsible for the minor discrepancies apparent between the plots.
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Fig. 3.44. Reflection functions for note B (all six finger holes open) on a simple flute [see (Keefe,
1990)]. (top) Transmission-line calculation; (bottom) Digital waveguide implementation.

The Keefe tonehole model transforms directly into a two-port digital waveguide scattering junc-

tion. In such a form, however, sound radiation from the tonehole is not explicitly determined. For
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Fig. 3.45. Reflection functions for note G (three finger holes closed, three finger holes open) on
a simple flute [see (Keefe, 1990)]. (top) Transmission-line calculation; (bottom) Digital waveguide
implementation.
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Fig. 3.46. Reflection functions for note D (all six finger holes closed) on a simple flute [see (Keefe,
1990)]. (top) Transmission-line calculation; (bottom) Digital waveguide implementation.
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this, it is necessary to examine the restrictions implied at the junction of several acoustic pipes.
Smith (1987) discusses the constraints on a general N-port junction of acoustic tubes. According to

Kirchoff’s node equations, the junction is governed by conservation of volume flow,

N
Y U=, (3.70)
i=1

and pressure continuity,
P =P =...= Py, (3.71)

where P; is the junction pressure. Sound radiation at the junction can occur only from an open
tonehole, which is characterized by the shunt impedance term Z§°). Thus, it is possible to design
a tonehole pressure transmission filter from Z§°) through which the junction pressure P; can be
filtered to determine the radiated sound pressure.

A tonehole junction may also be represented by a lossless three-port junction, as shown in
Fig. 3.47. The three-port junction models sound wave interaction at the intersection of the air
column and tonehole, as determined by conservation of volume flow and continuity of pressure.
Wave propagation within the tonehole itself can subsequently be modeled by another waveguide and
the reflection/transmission characteristics at its end by an appropriate digital filter. This tonehole
model is then attached to the appropriate branch of the three-port junction. The bore characteristic
admittance Y} is equal on either side of the junction, while the real tonehole characteristic admit-

tance is Yo:n. Because this is a junction of three cylindrical pipes, and each pipe has a real and

Fig. 3.47. The three-port tonehole junction where a side branch is connected to a uniform cylindrical
tube [after (Valimaki, 1995)].

constant characteristic admittance, the scattering equations can be determined directly in the time-
domain. By expressing Eqs. (3.70) and (3.71) in terms of traveling waves of pressure, the pressure

traveling-wave components leaving the junction are given by

_ =Younp? (t) + 2Yop;, (t) + 2Younpy,(t)
i = y
pa (1) Yo + 2V, (3.72a)
2Yop? (t) — Younpy, (t) + 2Younpy, (t)

Yoiun + 2Yp

Py (t) (3.72b)
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2Yop# (t) + 2Yop, (t) + [Youn — 2Y0] py (1)

+

t] = 3.72¢
pth( ) YOth + 2}/0 ( )

The internal bore frequency-independent reflection coefficients are equal and given by

A —Yoin —Zo
o =g =105 = = i 3.73
e O e £ %, B+ %o, )
while the tonehole frequency-independent reflection coefficient is
— 2Y; Zy— 22

s Yotn 0 _ 2o Oh _ 19, (3.74)

= Yoer +2Yo  Zo+2Z0en

Using the reflection coefficient rg, the three-port scattering junction equations for pressure wave

components can be simplified as

pa(t) = ropf(t)+[1+ro]py, (t) — 2ropy,(t) (3.75a)
pr(t) = [14ro]pk(t)+ ropy (t) — 2rop;,(t) (3.75b)
Ph(E) = [L+ro]pd(8) + 1+ o] pj (t) = [1 + 2ro] 3 (8). (3.75¢)

(Valimaki, 1995, p. 47) states that a one-multiply form of the three-port scattering equations is
not possible, though this is probably due to errors in his corresponding equations. From the above

expressions, a one-multiply implementation is given by

pa(t) = p(t)+w (3.76a)
pi(t) = pit)+w (3.76b)
ph(t) = pE(t)+p; (t)—pi(t) +w, (3.76¢)
where
w = ro [pF (t) + py (¢) — 2p;,(¢)] - (3.77)

An implementation of these equations in shown in Fig. 3.48.

To complete the digital waveguide three-port tonehole implementation, it is necessary to deter-
mine an appropriate model for the tonehole section itself, and then attach this model to the junction.
The spatial sampling interval at a sampling rate of 44.1 kHz is approximately 7.87 millimeters. It is
thus possible to implement the tonehole structure as a short, fractional delay, digital waveguide and
apply an appropriate reflectance at its end. Depending on the tonehole geometry, the reflectance
at the end of an open tonehole may be approximated by either a flanged (Lord Rayleigh, 1896) or
unflanged (Levine and Schwinger, 1948) solution. When the tonehole is closed, an infinite impedance
(or a pressure reflection without inversion) is appropriate. Given typical tonehole heights, however,
a lumped reflectance model of the tonehole, which accounts for both the propagation delay and end
reflection, is more appropriate and easily implemented with a single low-order digital filter. In this
sense, incoming tonehole pressure p;, (t) is calculated from the outgoing tonehole pressure pfh(t) and

the tonehole reflection function, while the corresponding pressure radiated from the open tonehole
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Fig. 3.48. Tonehole three-port scattering junction implementation in one-multiply form.

is given by convolution of p, () with the tonehole transmission function. Vilimiki et al. (1993) ap-
proximated an open tonehole in the low-frequency limit by an acoustic inertance for implementation
in the context of digital waveguide systems. Unfortunately, these authors appear to have equated a
frequency-dependent input impedance description of the tonehole to the real and constant charac-
teristic impedance term Zy;;, in the equations above. The input impedance of the open finger hole,
seen from the main bore, is given in terms of an acoustic inertance as

t
Zun(s) = Ept_hs’ (3.78)

where p is the density of air, ¢ is the effective height [Eq. (1.125)], S;5 is the cross-sectional area of
the hole, and s = o + j is the Laplace transform frequency variable. The tonehole reflectance is

then given by

A P (s) _ Zwn(s)— Zon _ts—c

R S) = = p— ;
ek} Pt+($) Zin(8) + Zotn  ts+c

where c is the speed of sound. Equation (3.79) is easily transformed to a discrete-time filter using

(3.79)

the bilinear transform as

a; —z1

Runl#) = 7—— =1 (3.80)
where
ta —c
15 s (3.81)

and a is the bilinear transform constant which controls frequency warping. In this case, a low-
frequency discrete-time fit is achieved for a = 2f,. The discrete-time reflectance Rin(z) is a first-
order allpass filter, which is consistent with reflection from a “masslike” impedance. This model,
however, does not contain a real or resistive component which would correspond to radiation losses

from the open hole. Thus, the inertance model of the tonehole is lossless and is appropriate only
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for low sampling rate implementations. Figure 3.49 plots the reflection functions determined from a
digital waveguide three-port tonehole model of a flute using an inertance model of the open tonehole.

Closed toneholes were simply represented by the junction scattering coefficient and direct reflection.
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Fig. 3.49. Reflection functions for notes B (top) and G (bottom) on a six-hole flute, determined us-
ing a digital waveguide three-port tonehole junction implementation and an inertance approximation
for the tonehole driving-point impedance.

A more accurate model of the open finger-hole reflectance can be determined from a continuous-
time cylindrical tube model with open-end radiation, and a corresponding digital filter designed
by frequency response matching techniques. The results of Keefe (1981) can be incorporated by
designing this filter from the open-tonehole shunt impedance Z §°). An appropriate continuous-time

reflectance filter for the tonehole branch of the junction is found using Eq. (3.7) as

(0)
) ol s (3) e ZOth
R( ) b [Zgo)(s) + ZOth] ’ (382)

where s is the Laplace transform frequency variable. Figure 3.50 plots the continuous-time magni-
tude response of two tonehole branch reflectances, as determined from Eq. (3.82) and by explicit
calculation of the propagation and Levine and Schwinger open-end reflection characteristics. The
open-tonehole shunt impedance, ZE(,O), is based in part on an ideal open-end reflectance model, as
given by the tan(kt) factors in t.. Because of this, Z{? overestimates high-frequency reflections
at the open end of the tonehole, as seen in Fig. 3.50, in comparison with the explicit waveguide
model. Results from a digital waveguide implementation based on the explicit tonehole reflectance
model are shown in Fig. 3.51 and are seen to closely parallel the digital waveguide loaded two-port

implementation.
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Fig. 3.50. Continuous-time magnitude responses for two open-tonehole reflectance models.
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Fig. 3.51. Reflection functions for notes B (top) and G (bottom) on a six-hole flute, determined
using a digital waveguide three-port tonehole junction implementation and an explicit open cylinder
approximation for the tonehole driving-point impedance.
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The three-port tonehole junction reflection coefficient Ro(£2) used by Vélimaki et al. (1993) to

implement a finger hole in a digital waveguide system is given by

Zy

RO(Q) = _Z() n 2Zth(Q)’

(3.83)

where Z;,(12) is the driving-point impedance of the tonehole. While Ry({2) was incorrectly formu-
lated in the three-port context [compare with Eq. (3.73)], it is interesting to note that this expression
is equivalent to the two-port reflectance given by Eq. (3.68) when the series impedance Z, is ne-
glected. It turns out that a loaded two-port junction with a driving-point load admittance Y7, is
mathematically equivalent to an “unloaded” three-port junction in which one branch is characterized
by a complex characteristic admittance Y. Thus, the tonehole implementation of Vilimiki et al.

(1993) represents a loaded two-port tonehole model without series impedances.

The digital waveguide three-port tonehole junction implementation corresponds to the Keefe
model with series impedance terms neglected. In general, the series impedance terms are much
less critical to the model performance than the shunt impedance. Further, the series terms have
more influence on closed-hole results than those for open-holes. These impedances represent negative
length corrections, to account for the dimensions of the tonehole in relation to the pipe lengths around
it. In other words, when modeled by a simple shunt impedance, the tonehole theoretically exists at
a dimensionless point along the bore. A low-frequency approximation to this length correction can
be easily incorporated in a digital waveguide system by subtracting the length correction from the
waveguide bore lengths on either side of the tonehole. Frequency-dependent length corrections can

be implemented by appropriately designed allpass digital filters along the waveguide (Smith, 1996a).

A theoretical model of tonehole closure has not been developed. The open and closed models
proposed by Keefe (1981) are mutually exclusive. That is, a single mathematical representation
of these two states is not possible under this theory. In a digital waveguide context, it is possible
to design simple digital filters for which the coefficients may be slowly varied in time to capture
the basic behavior of a closing tonehole. This is particularly straight-forward when the closed-hole
behavior is modeled by simple reflection without phase delay (Vilimiki et al., 1993). Further, it is
possible to implement cross-fading techniques between the open and closed filters to simulate the
real behavior. Clearly, however, a new theoretical model is needed which captures the behavior of
the two states together. One such model is discussed in Section 4.1.1 in conjunction with register
holes. The open hole is modeled by an inertance, in series with a time-varying resistance. As the
hole is closed, the resistance increases to infinity and perfect reflection results. This effect may also
be simulated by varying the acoustic mass parameter of the tonehole inertance, such that perfect

reflection occurs as the mass approaches infinity.
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3.5 Modeling the Nonlinear Excitation Mechanism

Musical instruments are most clearly distinguished from one another by their transient character-
istics, which in turn are defined primarily by a particular method of excitation. Such wind-blown
instruments as saxophones, trumpets, and flutes, for example, are discerned by their various pressure-
driven excitation methods. Thus, in the computer generation of music instrument sounds, the success
of a given model is most dependent on the nonlinear excitation mechanism. Unfortunately, research
regarding air-driven reed mechanisms is at a relatively early stage and much is not understood about
their operation.

The basic operation of the nonlinear excitation mechanism in single-reed woodwind instruments
was discussed in Section 1.5. Summarizing, the reed acts as a pressure controlled valve which allows
energy into the instrument for the initialization and maintenance of oscillations in the acoustic
resonator. The movement of the reed controls the volume flow through the reed channel and into

the mouthpiece, which is typically determined from the Bernoulli equation for steady flow. The oral
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Fig. 3.52. The volume flow and pressure relationships for a single-reed oral cavity /mouthpiece
geometry.

cavity is viewed as a large tank with essentially constant pressure Poc and zero volume flow u,.. By

conservation of energy, Bernoulli’s equation gives

2pa 1/2
Up=wy (T) sgn(pa), (3.84)

where y and w are the height and width of the reed channel, respectively, and p is the density of air.
Because the lowest reed resonance is typically much higher than fundamental playing frequencies

in clarinets and saxophones, a single-reed system is often modeled as a memory-less nonlinearity.




148 CHAPTER 3. DIGITAL WAVEGUIDE MODELING OF SINGLE-REED WOODWINDS

This is equivalent to assuming the mass of the reed is zero or the reed resonance frequency is infinity.
Assuming the force on the reed is equal to S, - pa, where S, is the effective surface area of the reed
exposed to pa, the displacement of the reed from its equilibrium position y, is given by Hooke’s law

Y=1yo— Sr.%- (3.85)
Figure 3.53 is repeated from Section 1.5 and illustrates the nonlinear dynamic volume flow charac-
teristic which results by combining this expression and Eq. (3.84) for a constant oral cavity pressure
Poc/Pc = 0.4, where pc is the pressure necessary to push the reed against the mouthpiece facing
and completely close the reed channel. The volume flow is initially zero because Pr < Poc — PcC-
In this range, the reed channel pressure is negative, which in conjunction with the positive oral
cavity pressure, serves to pull the reed against the mouthpiece lay. As p, increases in the range
Poc > Pr > Poc — Pc, the reed channel volume flow increases rapidly, but then decreases as p,
approaches po. and a resultant py = 0. When the reed channel pressure exceeds the oral cavity

pressure, negative flow into the mouth occurs.

1.5 T T T T T T T T T

pr/pc

Fig. 3.53. Dynamic flow through a pressure controlled valve blown closed for Poc/pc = 0.4.

This section discusses three nonlinear excitation techniques for use within the context of digital
waveguide modeling. The first two methods are based upon ideas originally presented by Mcln-
tyre et al. (1983), which were then formulated in terms of traveling-wave components for efficient
implementation using digital waveguides (Smith, 1986; Cook, 1991). The final method is based on
a dynamic model of the reed and directly incorporates the volume flow relationships discussed in
Section 1.5.
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3.5.1 The Pressure-Dependent Reflection Coefficient

McIntyre et al. (1983) discussed the time-domain synthesis of clarinet sounds and incorporated
a nonlinear volume flow characteristic similar to that of Figure 3.53. Their procedure assumed
continuity of volume velocity at the reed/bore junction and involved the simultaneous solution of
a linear equation relating pressure to volume flow in the bore and a nonlinear approximation to
Eq. (3.84), which related pressure to volume flow through the reed. As an efficient alternative to
this process within the context of digital waveguide modeling, Smith (1986) proposed modeling the
reed/bore boundary with a memory-less reflection coefficient that varies in response to the difference
in oral cavity (poc) and bore pressures (p;). In this way, the essential nonlinear behavior of the reed
is attained using an extremely simple calculation, though “higher order” dynamic reed behavior is
sacrificed.

The reed system is represented by a lumped acoustic impedance Z,.(pa ), over which the pressure
Pa acts. In this sense, Z,.(pa) roughly corresponds to the impedance represented by the reed opening,
whose size varies with pressure drop pa across the reed. The volume flow through the reed opening

is then given by

pa
ur(pA) = Z (pA). (3-86)
The volume flow in the bore is
tp = b, :
: Zob (387)

where Zy, is the characteristic impedance of the air column at the reed/bore intersection, p;f is
the outgoing pressure traveling-wave component, and p; is the incoming pressure traveling-wave
component from the bore. Assuming continuity of volume velocity at the reed/bore junction,

Pa  _ PL'- — Dy
Zr(PA) Zop ’

(3.88)

where
A -
PA = Poc — [PEL +py ] . (389)

Equation (3.88) can be solved for the outgoing pressure traveling-wave component, with the result
(Smith, 1986)

Zr(pa) — Zob] = [ Zob }
+
= N & + Tt N ow oc
Po [Zr(PA) + Zos Py Z,-( p
1 —r(pa)
2 Poc
poc] pOC

WMW—7+7@ (3.90)

= r(pa)p, +

where the pressure-dependent reflection coefficient is defined as

é Zr(pA) = ZOb

Zo(pa) T Zos’ (3.91)

r(pa)
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A solution to Eq. (3.90) is difficult because r(pa) is dependent on pa, which itself is a function
of p:. It is possible, however, to use the dynamic volume flow characteristic shown in Fig. 3.53 to

define the behavior of Z,.(pa) as
Pa
Zp(pa) = —, 3.92)
( A) Ur(PA) (
which in turn defines r(pa) via Eq. (3.91). Figure 3.54 plots several pressure-dependent reflection

coefficient curves for various values of reed stiffness and equilibrium tip opening. These plots are

1 1 1 1
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Pressure Difference (pa)

1
-0.2 0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8
Pressure Difference (pa)

Fig. 3.54. Pressure-dependent reflection coefficient curves versus reed stiffness (top) [reed reso-
nances of 2500 Hz (-), 3000 Hz (- -), 3500 Hz (-)] and equilibrium reed tip opening (bottom) [y, =
1.5 mm (-), 1.0 mm (- -), 0.5 mm (-)].

based on a normalized value of pc, or the pressure necessary to close the reed channel. Values of J N
greater than one indicate beating of the reed against the mouthpiece lay and complete reflection of
incoming bore pressure. For pa = 0, the reflection coefficient approaches negative one, corresponding
to pressure traveling-wave inversion at an open-tube end. When pa < 0, the bore pressure is
greater than the oral cavity pressure, and negative flow through the reed channel results. These
reflection coefficient curves result from the assumption that reed channel pressure and mouthpiece
chamber pressure are equivalent, due to kinetic energy losses in the turbulent region just beyond
the reed channel (Hirschberg et al., 1995, p. 314). If the reed channel and mouthpiece junction were
modeled by two cylindrical sections and conservation of pressure were assumed, positive reflection
coefficient values generally greater than 0.5 would result. Thus, use of the reflection coefficient
curves of Fig. 3.54 requires proper modeling of the mouthpiece chamber taper in order to form

an appropriate transition between the narrow reed channel and the main air column. Given this
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reflection coefficient characteristic, it is only necessary to find an approximation to pa. In a recursive,
discrete-time calculation, it is possible to approximate pa(n) by pa(n — 1) or to calculate pa(n)
using pZ’ (n — 1). Further, current values of either quantity could be extrapolated from previous
values. For sufficiently high sampling rates and because the pressure traveling-wave components in
the bore are lowpass filtered by the open-end reflectance and tonehole filters, such approximations
prove reasonably accurate. In this way, the new outgoing pressure traveling-wave component (p;f)
is determined from Eq. (3.90).

Smith (1986) proceeds with a solution to Eq. (3.90) by defining a function G(pa) 2 Zu ur(pa) =
paZov/Zr(pa), and the term pf 2 Poc/2 — py , so that Eq. (3.88) can be written

G(pa) = 20X — pa- (3.93)

By plotting G(pa) and 2pZ — pa on the same graph and finding their point of intersection G(p} ),
the outgoing pressure traveling-wave component is found as pb+ = Poc — Py — Pa-
For efficient synthesis in the digital waveguide context, Smith (1986) implements a table lookup

technique containing
#(px) = r(PaPk)), (3.94)
such that the outgoing pressure traveling-wave component is found from Eq. (3.90) as

N p
pZ’ = —r(pZ)pZ + —‘2)-9- (3.95)

A digital waveguide implementation of this expression is shown in Fig. 3.57a. Because an appropriate
table of f(pZ) values can require a significant amount of memory, it is sometimes desirable to express
the reflection coefficient in terms of a simple mathematical expression. Realistic woodwind sounds

have been generated using (Smith, 1986)

t = { 1+ m(pf —pc), pk <pc (3.96)

1, PZ ZPC

Figure 3.55 displays a sample reflection coefficient table that has been used in synthesizing clarinet
sounds, together with the corresponding reed volume flow @,(p}), as determined from Eqs. (3.86)
and (3.91). This particular table is based on normalized oral cavity pressure. The pressure necessary
to close the reed channel (p¢) is equal to one. Values of pz greater than one indicate beating of the
reed against the mouthpiece lay and complete reflection of incoming bore pressure. Corresponding
reed volume flow is equal to zero for values of pZ > pc. Values of differential pressure less than
one correspond to partial reflection of p,” at the junction and partial transmission of p,. into the
bore. When pz < 0, the bore pressure is greater than the oral cavity pressure, and negative flow
through the reed channel results. For this particular table, the desired “negative resistance” region

of operation occurs for 0.5 < pZ <1l
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Fig. 3.55. An example reflection coefficient table f'(pZ) (top), and the corresponding reed volume
flow @,(pk) (bottom).

PE(t) py (t)

Poc(t)

py (t)

Fig. 3.56. The reed/bore scattering junction.

3.5.2 The Reed-Reflection Polynomial

Another approach to the implementation of a nonlinear excitation mechanism in the context of
digital waveguide modeling of wind instruments is referred to as the reed-reflection polynomial
(Cook, 1992). This technique is similar in concept to the pressure-dependent reflection coefficient,
in that the reed/bore is modeled by a pressure-dependent scattering junction, though in this case
the junction reflection and transmission properties are assumed to depend on p}, — p; , rather than
the more physical pa defined in Eq. (3.89). The polynomial model is derived by considering the
reed/bore junction as shown in Fig. 3.56. Because the volume flow through the reed is small, the
reed/bore junction represents a large impedance. When the reed is closed, perfect non-inverting
pressure reflections occur on both sides of the junction, so that p}, — p; = poc/2 — p; = pX,
as defined in the previous section. Continuing with this crude approximation, the portion of p,”

reflected back into the bore is given by p," - r(pZ), while the portion of the oral cavity pressure which
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is transmitted into the bore is given by pZ, [1 - r(pZ)] . Then pj is given by
Py =r8— [Pl —py ] r(pd)- (3.97)
Approximating r(p}) by a second order polynomial function, Eq. (3.97) simplifies to
Py =l = [0l = py) + e2(pde = pp)* + ea(pl —p7)°] (3.98)

A digital waveguide implementation of this expression is shown in Fig. 3.57b.

Poc/2 py Poc/2 i
O

» + o

Polynomial
-1 Function

(a) (b)

Fig. 3.57. (a) The pressure-dependent reflection coefficient digital waveguide implementation; (b)
The reed-reflection polynomial digital waveguide implementation.

This reed implementation method has proven efficient and effective for real-time DSP synthesis
(Cook, 1992; Scavone, 1995). Unfortunately, the process of determining appropriate polynomial
coefficients is rather arbitrary. It is possible, however, to relate the polynomial coefficients to a
polynomial approximation of the pressure-dependent reflection coefficient through a matrix trans-
formation (Cook, 1991).

3.5.3 The Dynamic Woodwind Reed Model

pPa —> m - ﬁ

Fig. 3.58. The single-reed as a mechanical oscillator blown closed.

In contrast to the reed models previously discussed, all of which ignored the mass of the reed, the

dynamic reed model seeks to accurately model the motion of the reed and its beating against the
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mouthpiece lay. In functioning as a pressure controlled valve, the position of the reed at any instant
governs the volume flow that is injected at the reed/bore junction. The reed is represented by a
linear mass-spring-damper system which is acted upon by the difference in oral cavity and bore
pressures, as shown in Fig. 3.58. The relationship between applied force and the resulting reed
displacement, and the corresponding Laplace transform are given by
dy | dy 2

m—g tuogy +hy = fr(t) <= [ms®+pus+k]Y(s)=F(s), (3.99)
where the reed equilibrium position is redefined from Section 1.5 as y = 0 and displacement toward
the mouthpiece facing is positive. Both the oral-cavity and the bore pressures act upon the reed, so

that the resultant force on the reed is
F.(s) =S, Pa(s) = Sy [Poc(s) = P(s)], (3.100)

where S, is the effective surface area of the reed exposed to Pa. The surface area S, is typically
bounded by the width of the reed at its tip and the distance from the reed tip to the player’s lower
lip.

The transfer function that relates reed displacement to applied force is found from Eq. (3.99) as

Y(s) A _ 1
F.(s) He(s) = ms? + us + k
1/m

101
s? + (u/m) s + w§ (3.101)

where w? = k/m is the natural frequency of the mass-spring system in the absence of damping.
Using the bilinear transform to convert from continuous to discrete time, the digital transfer function
results
(1+2271+272)
(k+a?m+ap)+2(k—a?m)z"1 + (k+a?m — au) 272’
(142271 +272)

= 3.102
(mw? + a?m + ap) + 2m (W} —a?)z71 + (mwd + a?m — ap) z=2° ( )

H.(z) =

where a is the bilinear transform constant used to control frequency warping. The bilinear transform
performs a nonlinear warping of the continuous-time frequency axis to the discrete-time frequency
space. The constant a can be set to match any particular finite continuous-time frequency to a
specific location on the z-plane unit circle as

a= mn(ﬂm' (3.103)
In this case, a should be determined using the reed resonance frequency. The displacement found by
passing S,.-pa(n) through this biquad section is subtracted from the equilibrium tip opening (yo) to
produce the aperture spacing. Inelastic beating of the reed is assumed, such that the reed is forced

against the lay and held there until the driving force decreases below k - yo, the force necessary to
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hold the spring stretched by yo. Hirschman (1991) implemented a variable elastic beating model
within the reflection coefficient scheme. The reed filter H,(z) must be reset with the appropriate
initial conditions each time this occurs. Figure 3.59 represents a transposed direct form II biquad
filter structure that could be used to implement the reed filter. The appropriate internal state values
to be used when the reed first begins to separate from the lay can be determined by inspection of
the filter structure, given that the previous filter inputs and outputs are assumed to be k- yo and

Yo, respectively. In this case, the initializing values for the filter’s internal states should equal

s = k‘yo (bl +b2)+y0 (a1 +a2) = Yo (1-—kb0) (3104&)
Sy = k-yo-b2+yo~a2=y0(kb2 +a2). (3104b)
fr(n) bo y(n)
Force O— -+ > Reed
on Reed Displacement
z-—l
by a
-1
bz as

Fig. 3.59. Second-order reed filter H,(z).

As discussed in Section 1.5, the Bernoulli flow equation provides a reasonable approximation to
the volume flow through the reed channel of a single-reed woodwind instrument. By conservation

of energy and assuming an oral cavity volume flow of zero,

up(t) = wiyo —y(¥)]-v(t)

w[yo — y(t)] - [3”%@] ’ (3.105)

where w is the width of the reed channel, y(t) is the time-varying height of the reed aperture, and
p is the density of air.

The flow through the reed channel is assumed to separate from the wall and form a free jet into
the mouthpiece, as noted by Hirschberg et al. (1994, 1995) and discussed in Section 1.5. The free
jet is inherently unstable and breaks down into vortical structures which are eventually dissipated

by turbulence. In the turbulent region, viscous dissipation of kinetic energy is dominant, so that
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pressure recovery is not expected in the mouthpiece region beyond the reed channel. Instead, the
mouthpiece pressure is assumed equal to the reed channel pressure and conservation of volume flow
to hold in the mouthpiece chamber. For dynamic regimes of flow, u, leaving the reed channel is
divided into two parts, u,s and u,,, as shown in Fig. 3.52. The flow u,, enters the mouthpiece
chamber, while the motion of the reed surface results in a flow u,s = S.(dy/dt). The reed surface
flow component u,s is easily implemented in discrete time by a digital differentiator. Using a “leaky”

differentiator, the appropriate filter is given by

Uws(2) o 1=271
P = STy (3.106)

where g = 0.999. Subtracting the output of this filter from the reed channel flow, the volume flow
at the mouthpiece/bore junction is

py (t) — p, (t)

U (t) = up(t) — ups(t) = up(t) = uf (t) + u; (t) = 7 :

(3.107)

where Zg, = pc/Ss is the constant acoustic characteristic impedance of a cylindrical bore of cross-
sectional area Sj. pZ'(t) represents the traveling-wave component of pressure entering the bore
from the reed channel while p, (t) represents the traveling-wave component of pressure entering

the reed/bore junction from the bore. Solving for p; (t) and substituting from Eq. (3.105),

pz-(t) = Zo- [ur(t) - urs(t)] +p1:(t)
= wlyo —y(t)] - Zos - [gg%@] — Zo urs(t) + py (t), (3.108)

where u,4(t) is determined as the output of the differentiator of Eq. (3.106). This calculation
can be simplified for real-time DSP implementation by the use of a look-up table. In order to
implement Eq. (3.108) in discrete time, it is necessary to use an approximation to pa (n) because of
its dependence on p; (n). Given sufficiently high sampling rates and the fact that the bore oscillations
are lowpass filtered by the open-end reflectance and tonehole filters, a reasonable approximation that
has produced acceptable results when implemented is pa(n) = poe(n) — [pf (n — 1) + p; (n — 1)].
Figure 3.60 plots the onset of oscillations in a simple digital waveguide clarinet using the various
excitation models discussed in this section. The air column is modeled as a pure cylinder without
toneholes and incorporates a discrete-time Levine and Schwinger open-end reflection implementation.
In comparison to the first two excitation methods, the dynamic reed model takes longer to reach its
steady-state oscillatory regime. This model also exhibits undesireable initial transient behavior when
the oral cavity pressure s first applied. This behavior can be attributed to the lack of “back pressure”
in the bore during initial “blowing” conditions. The model of Eq. (3.108) is based on steady-state air
column and flow relationships. For an inital pressure disturbance, the air column appears anechoic
and the input impedance at zero frequency is given by the bore wave impedance, instead of its small

steady-state value. As a result, the dynamic reed model is plagued by an unphysical gain factor



3.5. MODELING THE NONLINEAR EXCITATION MECHANISM 157

when the excitation is first initiated. This excitation model also requires the use of an appropriately
designed mouthpiece chamber taper, to provide proper scaling of pressure between the turbulent

region just beyond the reed channel and the main bore, as discussed in conjunction with Fig. 3.54.
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Fig. 3.60. Oscillation onsets for digital waveguide clarinet implementations: (top) Pressure-
dependent reflection coefficient; (middle) Reed-reflection polynomial; (bottom) Dynamic reed model.

3.5.4 Excitation Mechanisms Attached to Truncated Cones

All of the nonlinear excitation techniques discussed thus far have assumed the input bore section to
be of cylindrical shape. If the excitation mechanism is attached to a truncated conical section, then
the bore characteristic impedance at the input is complex, rather than purely real and constant.
Considering the derivation of the dynamic woodwind reed model, Eq. (3.107) is then rewritten in

the frequency domain using the Laplace frequency variable s = o + j{) as

Pf(@,5) Py (z.s)

Um(s) = Ur(s) — Urs(s) = Us(x, 5) = Ut (z,8) + Uy (2,8) = Zo2,3)  Zan(w.9) (3.109)
where
_ _pe ( s
Zop(z,8) = 5,(2) <c+ ws) (3.110)

is the complex characteristic impedance of a conical bore at a distance z from its imaginary apex,
c is the speed of sound in air, and Sy(z) = 27z?(1 — cos6) is the surface area of a spherical wave
front at position x in a cone of half-angle 6. Solving for Pb+ (z,s),

Zos( ) P, (z,s)

Pi(s) = Zon(a,s)-[Unls) = Unelo)) + 72 25
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Sf(cm) ( = ) [Un(s) = Uns(s)] + (“ — C) Py (x,s). (3.111)

c+ s rs+c

This continuous-time expression is easily transformed to discrete time using the bilinear transform
as

-1

P = g () Ty 00 - U+ (T222

— | Py 3.112
c+ azr 1+alz‘1 1+a1z——1) b (E’Z)’ ( )

where « is the bilinear transform constant and

CcC— Qaxr

a; = .
c+ az

For both filters, a good fit a low frequencies can be attained by setting the bilinear constant o = 2f,,
where f; is the discrete-time sampling rate. Thus, the conical bore excitation mechanism requires
an additional two first-order filtering operations. The filter multiplying P, (z,z) is the first-order
allpass filter previously derived in conjunction with conical bore truncation and results from the
“masslike” load at the cone truncation point. Since |a;| <1V ¢ > 0,a > 0, and = > 0, the filters

are always stable.



Chapter 4

Digital Waveguide Model

Extensions and Calibration

The first part of the chapter offers a few extensions to conventional digital waveguide models
that are inspired in part by the analysis of Chapter 2. In particular, the digital waveguide tonehole
implementations presented in Section 3.4.3 offer an effective and efficient means for modeling wood-
wind register holes. Issues regarding placement and proportions of register vents are discussed, as
well as a means for simulating the closing of the hole (which can also be applied to toneholes). The
discussion in Section 2.3.1 regarding single-reed woodwind mouthpieces, together with the lumped-
section modeling technique presented in Section 3.3.3, offer a means for modeling specific mouthpiece

designs in the context of digital waveguide systems.

The use of physical models, as implemented using digital waveguide techniques, in new computer-
music compositions and performances is becoming increasingly common. With this interest, new
demands are being made for increased model flexibility. A recent paper (Scavone, 1996) that ad-
dresses some of these demands is included in the middle of this chapter. Several of the contemporary
performance techniques briefly discussed in Section 2.5 are implemented in real-time digital wave-
guide models. Issues regarding the control of such expression using electronic musical controllers are

then discussed.

The last part of this chapter is concerned with the calibration of digital waveguide models based
on acoustical measurements. In general, most of the acoustic theory presented in Chapter 1 has been
experimentally validated by frequency-domain measurement techniques. While it has been shown
throughout this study that frequency-domain characterizations are easily incorporated into digital
waveguide models, it is interesting to compare the time-domain responses of musical instruments
to the results of time-domain simulations. The measurement of instrument air-column time-domain

behavior has been gaining interest in recent years (Agullé et al, 1995; Keefe, 1996). A study

159
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previously conducted to investigate both linear and nonlinear instrument responses (Scavone and

Cook, 1994) is reviewed at the end of this chapter.

4.1 Extensions to Digital Waveguide Models of Woodwinds

Chapter 3 presented digital waveguide modeling techniques for the most essential components of
woodwind instruments. Virtual instruments implemented in that way produce convincing results
and display a variety of behavior characteristic of their “real-world” counterparts. Several subtle
refinements to these models are offered in this section. In particular, the implementation of register
holes should provide more realistic behavior based on second air-column resonances. The choice of
mouthpiece design, which is of such importance to real instrument performers, offers a means for

shaping the overall timbre of the waveguide instrument.

4.1.1 Register Holes

Woodwind register holes were briefly discussed in Section 2.2.3. These holes are designed to function
both as an acoustic inertance and an acoustic resistance. Proper register hole proportions to achieve
this behavior are indicated in Section 2.2.3, as determined by Benade (1976). They are ideally placed
about one-third of the distance from the excitation mechanism of a cylindrical-bored instrument to
its first open hole and approximately one-half the distance from the imaginary apex of a conical-bored
instrument to its first open hole. Sound radiation from a register hole is negligible.

Virtual instruments offer the ability to implement ideally positioned register holes for all second
register notes, thus avoiding the necessary compromises made by woodwind instrument designers
when deciding on the number and position of octave vents. The digital waveguide register hole
is implemented by means of either a two-port or three-port scattering junction, as discussed with
regard to toneholes in Section 3.4.3. For real-time implementations, it may be too computationally
expensive to continually modify the air-column delay-line lengths on both sides of the junction, so
that fixed junction locations may need to be specified, as on real instruments. Assuming that the
stability of the second register note is not excessively affected by a slightly misplaced register hole
Junction, intonation problems can be compensated for by appropriate delay-line length adjustments
for each particular note.

The open register hole is best modeled as a simple inertance in series with an acoustic resistance.
In this case, the input impedance of the register hole, seen from the main bore, is given by

z9(s) = Sp—ts+5, (4.1)

rh
rh

where p is the density of air, ¢ is the effective height [Eq. ( 1.125)], Syp is the cross-sectional area of
the hole, ¢ is the acoustic resistance, and s = o + j is the Laplace transform frequency variable.

The series impedance terms associated with toneholes are insignificant for register holes and can be
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neglected. Thus, the register hole is represented in transmission-matrix form by

= _ 1 0
U, Zs_1 1

where the shunt impedance is given by the input impedance of the open register hole, Ziz). In

P,

o | (4.2)

waveguide coordinates, this expression is written

_ R- T~

- T+ R+

_ 1 —-Zy 27, Pt (4.3)
Zo+2Zs | 22, -2, || Py | '

The reflectances and transmittances are equivalent at this junction for wave components traveling

Pr
Py

Py
P 2_

to the right or to the left. As 7 = 1+7R, a one-filter form of the junction is possible, as diagrammed
in Fig. 3.19b. An appropriate discrete-time filter implementation for R can be obtained using the

bilinear transform substitution, with the result

S _ c(1+271)
FO=FO= e v man 44

where

C=c+2S5&/p and Y = 2Spt/Srh, (4.5)

Sy is the cross-sectional area of the main air column, and « is the bilinear transform constant which
controls frequency warping. In this case, a low-frequency discrete-time fit is achieved for a = 2f,.
The register hole can also be implemented in the form of a three-port scattering junction. The

appropriate register-hole branch reflectance is then given by

P (s) _ Zﬁi’(s) — Zorh _ ts +ESyn/p—c
P (s) Z»EZ)(S) + Zopn tSHESm/p+c

Ron(s) 2 (4.6)
where ¢ is the speed of sound. Equation (4.6) can be transformed to a discrete-time filter using the

bilinear transform as
_(tat+y—c)—(ta—y+c)z7!
T (ta+y+c)=(ta—vy—c)z1

Rrn(z) (4.7)

where
_ f S rh

p
and a is given as above for a good low-frequency fit. The discrete-time reflectance R,4(2) is a

gl (4.8)

first-order digital allpass filter when € = 0, or when the register hole is characterized as an inertance
only. For positive values of &, however, R,,(z) takes on a highpass character. The three-port
junction register-hole implementation requires a one-multiply scattering junction and one filtering
operation for the register-hole branch. The two-port junction implementation requires a single

filtering operation, and thus is more efficient.
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It is interesting to note that the resistive term ¢ in Zi(;l) can be taken to infinity to simulate the
closing of the hole. In this case, the two-port reflectance smoothly goes to zero. In the limit as
§ — oo, the two-port reflectance digital filter pole approaches negative one. However, the filter gain
is sufficiently reduced for a pole location just inside the unit circle to allow acceptable simulation
of a closed-hole state. Alternately, the filter pole position can be left constant and the filter gain
smoothly ramped to zero to simulate the closing of the hole. This technique avoids transients which
result when a filter pole is varied over time. The three-port register-hole branch reflectance suffers
the same pole instability in the limit as £ — oo, and is more difficult to use for simulation of the
closing hole. Hole closure can also be simulated by increasing the acoustic mass of the register hole
inertance. In this case, both the two-port and three-port reflectance filter poles approach positive
one. Ramping the two-port filter gain to zero, as mentioned above, simulates this effect as well.

These techniques are also applicable to toneholes.

4.1.2 Mouthpiece Models

Issues regarding single-reed woodwind instrument mouthpieces were discussed in Section 2.3.1. It
was seen there that mouthpiece geometry variations can have significant influence on the timbre and
intonation of a musical instrument. It is possible to model a mouthpiece in the digital waveguide
domain by approximating it with cylindrical and conical sections, in a manner similar to that of
Section 2.3.1. A saxophone mouthpiece of narrow chamber design is approximated in this way in

Fig. 4.1. Such an approximation using digital waveguide techniques requires the implementation of

o1
'ch .—Lcm .-Lcm

|<—>|<-— Scm ———————)'4—)'(— 25cm —>{

0.5cm 1cm

Fig. 4.1. A cylindrical and conical section approximation to a narrow chamber saxophone mouth-
piece structure.

a scattering junction for each section junction. Further, at least one unstable scattering junction
invariably occurs from this approximation, as would result at the conical-cylindrical section junction
in Fig. 4.1. These problems can avoided by incorporating the “lumped section” technique discussed
in Section 3.3.3. In this way, part or all of mouthpiece structure is modeled by a single lumped-section
scattering junction, as illustrated in Fig. 4.2. A scattering junction scale factor a can be “pulled
out” of the transmittance terms and is given by the ratio of input to output wave front surface areas
of the lumped section. It is associated with the transformer component of conical waveguides or

similarly, the spreading of pressure across an expanding wave front surface area. In comparison to
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Fig. 4.2. (a) A saxophone mouthpiece and air column profile approximated by cylindrical and
conical sections and (b) a lumped-section model which allows a stable digital waveguide filter
implementation.

the mouthpiece profiles of Fig. 2.16, a short cylindrical section has been added at the input of the
mouthpiece model to allow a stable lumped filter approximation. As was discussed regarding this
technique in Section 3.3.3, stable lumped-section scattering filters can only be achieved when the
taper rate of the right-most section is greater than that of the left-most section. Without the short
cylindrical section, this condition is not met. Given the approximations already inherent in the
sectioned-mouthpiece profile, the addition of this section is considered to have negligible influence
on the overall behavior of the lumped model. Further, the various dimensions of the model can be
modified in order to “fine-tune” the complete instrument intonation.

As discussed in Section 3.3.3, the lumped-section approach begins in the frequency domain. The
appropriate transmission matrices which correspond to the individual sections are cascaded to pro-
duce a single, lumped transmission matrix characterization. These parameters are then transformed
to waveguide coordinates via the substitutions documented throughout this study. It is particu-
larly important that the wave impedance for spherical traveling-wave components be conjugated for
propagation toward the cone apex. When the input and/or output of the lumped section is given
by a cylindrical segment, the relationships of Egs. (3.53a)-(3.53d) can be simplified, in that Zy and
Zg are equivalent for cylindrical pipes.

The scattering junction reflectance and transmittance frequency responses that result from these
calculations can potentially be very difficult to approximate with discrete-time filters. The com-
plexity of these filters grows with the number of sections and the inherent delay in the lumped
structure. It is best then to lump as few sections as necessary to eliminate the unstable junction. In

the case of the structure of Fig. 4.1, the three left-most sections can be lumped to obtain a stable
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implementation and the remaining sections modeled individually using standard digital waveguide
techniques. In this case, both the input and output sections are cylindrical, so that the expressions
of Egs. (3.53a)—(3.53d) reduce to

R- = B - DZ()1 + AZog - CZ()1Z02 (4 ga)
B+ DZy + AZys + CZy1 Zoa .

_ Zo1 (2AD - 2BC)

T = 4.9b
B+ DZm + AZys + CZOIZOZ ( )

27
+ _ 02 4.9

T B+ DZo1 + AZo3 + CZ01 Z02 (4:9<)
B+ DZy, — AZyy — CZy1 Zyo

Rt = . 4.9d
B+ DZy, + AZys + CZo1 202 ( )

The lumped-section forward reflectance R frequency response and a 13th-order discrete-time ap-

proximation are shown in Fig. 4.3. The pole and zero locations in the z-plane for R*(z) are shown in
Fig. 4.4. In order to obtain good discrete-time approximations, it is generally necessary to “pull out”
the inherent phase delay of the structure and implement it using delay lines in series with the filter,
as illustrated in Fig. 3.28. For this particular case, phase delay was extracted from the reflectance
responses, as well as the transmittances. The transmittance characteristics are well approximated

by an 1lth-order IIR filter, but are not shown here.  The theoretical impulse response for the
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Fig. 4.3. Continuous- and discrete-time frequency responses for the forward reflectance R* deter-
mined by lumping the three left-most sections of the mouthpiece shape of Fig. 4.1.

complete structure of Fig. 4.2 is shown in Fig. 4.5, as determined using transmission matrices and a
lumped-section digital waveguide implementation. The right-most conical bore section was modeled

for a length of 0.3 meters and an open-end radius of 0.018 meters. All section lengths, aside from
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Fig. 4.4. Forward reflectance R*(z) discrete-time filter approximation zero and pole locations in
the z-plane.
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Fig. 4.5. Impulse response, normalized by Zy = pc/S at the bore input, calculated using (top)
transmission matrices and (bottom) a lumped section digital waveguide model as illustrated in
Fig. 4.2(b).
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those that were lumped, were rounded to the nearest integer delay at a sampling rate of 44.1 kHz.
The lumped-section mouthpiece implementation demonstrated here demands high-order digital

filters to accurately model. For real-time digital waveguide implementations under current computer

processor capabilities, it is unclear whether the benefits of such mouthpiece design flexibility are

worth the added computational cost.

4.2 Performance Expression in Digital Waveguide Woodwind
Models

Acoustical issues of woodwind instrument contemporary performance techniques were briefly dis-
cussed in Section 2.5. There is a growing demand by composers and musicians to use physical
models in new compositions and performance settings. For these situations, the existing models
need more flexibility so as to produce a wide variety of sounds, both similar to real instruments
and sounds which would be physically impossible in the real world. This section is derived largely
from a previously reported study (Scavone, 1996). The first part of this section presents methods
for achieving such flexibility within the context of digital waveguide modeling. The control of these
extensions using MIDI controllers is discussed in the second part of this section. The implementa-
tion of performance expression within the context of digital waveguide stringed-instrument models
was previously discussed by Jaffe and Smith (1995), but issues of real-time MIDI control were not

considered.

4.2.1 Implementation Issues

The expressive controls discussed here fall into three principal categories — attack variation, breath
pressure modification, and bore manipulation. The attack or onset of sound generation in musi-
cal instruments is a particularly important aspect of instrument performance and offers enormous
expressive flexibility to both the composer and performer. Further, this attack information is a
critical element in distinguishing different instruments from one another. Breath pressure modifica-
tions, such as flutter tonguing, growling, and singing into the instrument, are possible in all wind
instruments, though they are a more common element of woodwind instrument performance. The
production of multiphonics, achieved by non-traditional fingerings, is particular to woodwind bores

with tonehole lattices.

Attack Variation

A variety of attack styles are possible in woodwind instruments, ranging from breath attacks to
extremely percussive, “slap tongue” effects. Most models typically implement only breath-like styles

of attack. Hard tonguing effects are achieved by using the tongue to briefly push the reed against
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the mouthpiece facing, stopping the reed vibrations and air flow into the mouthpiece. The rapid
increase in pressure and air flow into the mouthpiece upon removal of the tongue from the reed,
together with noise produced by this highly turbulent initial air flow, produces the resulting attack
sound. Lighter tonguing effects are created by briefly interrupting the reed vibrations with the
tongue and lesser degrees of flow interruption. The upper half of Fig. 4.6 represents a common
method for implementing a breath attack. The breath noise scaler controls the level of noise present
in the steady-state sound. A tongued attack is implemented with an additional burst of DC pressure
and noise, as shown in the lower half of Fig. 4.6. The tonguing envelope controls the magnitude
and duration of the attack and should have a shape of the form ze~%. Scaling of the tonguing
envelope corresponds to “hardness” of attack and provides an important performance expression
control parameter. The relative degree of air flow stoppage is controlled with the tonguing noise

scaler.

Typical Breath Attack Implementation

| 1
1 Breath |
I Pressure D !
I Envelope !
! Breath :
: Noise |
i Scaler |
| Breath 1
;  Noise 7 l7 k I
| 1

__________________________ — - Breath
Pressure
Output

Tonguing

Noise
. Scaler
Tonguing
Envelope ll .\
Switch Closed for
Keyboard Control

Fig. 4.6. A digital waveguide system for implementing tonguing variation.

Slap tonguing is an effect whereby the reed is pulled away from the mouthpiece lay using a
suction force between the reed and tongue. When the elastic restoring force of the reed becomes
greater than the suction force between the tongue and reed, the reed separates from the tongue and
“slaps” against the mouthpiece lay. Varying amounts of breath pressure are then added to produce
a range of effects from dry to fully sounding. Implementation of this effect can be accomplished in
several ways. One method involves the recording of a dry slap with the mouthpiece removed from
the instrument. This signal is then added to the normal breath pressure signal and input to the

instrument’s nonlinear excitation. This effect can also be achieved by approximating the slap with
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a predetermined filter impulse response, which is added to the breath pressure signal.

Breath Pressure Modulation

Several extended performance techniques involve the superposition of higher frequency components
with the DC breath pressure applied to the instrument. This type of modification is referred to
here as modulation, though not in the strict sense of amplitude or frequency modulation. Flutter
tonguing, accomplished using either the tongue or the uvula (velum), simply amounts to the addition
of a 15 — 30 Hz signal to the breath pressure. Growling and singing are audio rate modulations of
breath pressure. One interesting non-physical extension possible in the digital domain is modulation

with speech signals, particularly fricative sounds.

Typical Breath Attack Implementation
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Fig. 4.7. A digital waveguide system for implementing breath pressure modulation.

Modulator
Frequency

A\T

Oscillator

The implementation of these effects can be achieved using the system depicted in Fig. 4.7. A
sinusoidal signal of some desired modulation frequency is added to the original breath pressure and
the modulation frequency is randomly varied around its mean to attain a more realistic modulation
signal. Modulation of breath pressure with speech can be achieved using recorded signals, though
memory considerations in real-time DSP implementations often make this prohibitively expensive.
A more desirable implementation provides real-time digital input via a microphone, which can be
scaled and added directly to the breath pressure signal. As discussed later in conjunction with wind
controllers, a breath pressure sensor sampled in the range of 2 kHz would be ideal for breath pressure

control and eliminate the need for most of the system in Fig. 4.7.
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Multiphonics and Pitch Bending

Multiphonics are a common element of contemporary woodwind performance technique, as discussed
in Section 2.5. Acoustically speaking, non-traditional fingerings produce air column resonances which
are not harmonically related, but which are strong enough to entrain simultaneous inharmonic reed
oscillations. The resulting tone is heard as comprised of two or more synchronous and distinct
pitches, or as a tone with a rough and beating quality.

The most accurate method of modeling this phenomenon is to implement a full series of toneholes
which exactly reconstruct the real instrument behavior. Unfortunately, the complexity of such a
model would make real-time performance difficult to achieve under current technology. An efficient,
though non-physical, technique for generating multiphonics is to add more bores to the model, each
of different length. In terms of digital waveguide modeling, this corresponds to the addition of more
delay lines and a summing operation for feedback to the excitation mechanism, as shown in Fig. 4.8.
Each delay line represents a particular resonance and set of partials, while the input scalars roughly

control their relative strengths.

Delay Line
Input Scalers

Delay Line

Breath Nonli
Pressure O—3p{ o0 near Delay Line —>
Input Excitation
pu
A

Reflection
Filter

Fig. 4.8. An efficient digital waveguide system for implementing multiphonic tones.

Another performance technique is pitch bending. On single reed instruments, equilibrium reed
position can be manipulated by the performer’s lower jaw, allowing the sounding pitch to be lowered
by as much as a quarter tone. Some increase in pitch is possible by tightening the embouchure
but this effect is much less significant. Oral cavity manipulations allow a further lowering of pitch,
the magnitude of which varies over the range of the instrument and can be greater than a fifth.
This effect is most easily implemented in a digital waveguide context using a smooth delay line
interpolation method. Linear and Lagrangian interpolation techniques produce no transients due
to filter coefficient changes, but care must be taken to avoid signal discontinuities when changing
delay lengths. For the small incremental delay length changes necessary for pitch bend, these

techniques generally work well without producing audible discontinuities. Allpass interpolation can
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prove troublesome because of the transients associated with coefficient modifications in a recursive
filter structure. Two methods exist for minimizing these transients in waveguide models (Valimiki

et al., 1995; Van Duyne et al., 1996).

4.2.2 Control Issues

Improving technology and the efficiency of digital waveguide techniques are resulting in synthesis
models of unsurpassed flexibility. Unfortunately, it is quickly becoming obvious that such flexibility is
difficult to control. Implementation of the expressive techniques discussed above is straight-forward
and intuitive within the physical modeling context. Finding ways to control these behaviors in real
time is far from simple given current MIDI standards and controller technology. It is obvious that
MIDI was not designed to handle extended techniques. Is it possible to adequately control these
parameters without inventing a new protocol? The clear choice for controlling woodwind synthesis
models is a MIDI wind controller. However, the few wind controllers commercially available offer
only basic features and prove inadequate for the control of most of the extended techniques previously
discussed. The MIDI keyboard is also far from ideal in this context, but it must be supported for
historical and pragmatic reasons. The limitations of the keyboard are sometimes circumvented by
providing wind-like controllers, such as the breath pressure controller supplied with Yahaha’s VL1
synthesizer. In order to accommodate the advantages and disadvantages of these two controller

types, different control schemes are necessary for each.

Wind Controller Issues

Flexible attack control requires two degrees of freedom and can be achieved using both breath
pressure and velocity MIDI messages. The breath pressure messages control the breath pressure
envelope while velocity controls the tonguing noise level, or tonguing noise scaler in Fig. 4.6. In this
way, a wide range of combinations of breath attack and tonguing level are possible. The Yamaha
WX series of wind controllers generate both breath pressure and velocity MIDI messages via the
pressure sensor in its mouthpiece. It is unclear how the velocity messages are determined in the
WX controllers, though playing experiments show precise control of this parameter to be difficult.
Of all the wind controllers commercially available at present, those of Yamaha are the only ones
which generate breath-dependent velocity messages. Physically relevant breath velocity messages
can be obtained, however, by differentiating the breath pressure signal, so that velocity control using
controllers without MIDI velocity output can still be possible if implemented onboard the synthesizer
or computer.

The performance techniques based on modulation of the breath pressure signal present significant
challenges in developing a realistic means of control. The most physically accurate solution would
incorporate a breath pressure sensor that is sensitive enough to detect the modulations in the

performer’s breath input. Audio rate modulations, however, would require pressure sensor sampling
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rates on the order of 2 kHz. Under current MIDI standards, message rates can theoretically run as
high as 1.5 kHz using running status and 2-byte messages, but such a strategy would be inefficient
and hinder control of other aspects of the model. A more ideal solution would be to output breath
sensor readings on a separate data line for real-time digital breath pressure input to the instrument
model. Under the limitations of current wind controller technology, one possible scheme for the
control of flutter tonguing and growling provides the performer with a foot switch mechanism that

allows control of the modulation rate.

Multiphonics present an even greater control problem when using a wind controller. Poten-
tially, non-traditional fingerings could be detected and output with special MIDI parameter values.
The Synthophone wind controller provides this flexibility, allowing non-standard fingerings to be
programmed with particular parameter values. However, the Yamaha WX and Akai EWI wind con-
trollers output a standard MIDI key number for all fingerings without allowing the key combinations
to be reprogrammed. This limitation might potentially be circumvented by using a particular MIDI
program change message to control a “multiphonic” mode of operation, but any control scheme
developed under this scenario would only function as a poor substitute to the desired behavior.
Clearly, the programmable environment offered by the Synthophone should serve as a model for

future wind controller development.

Keyboard Controller Issues

The mapping of MIDI keyboard control mechanisms to wind instrument expressive parameters is
less obvious than when using a wind controller. However, the keyboard provides more flexibility than
current wind controllers when used in conjunction with a breath pressure sensor. This is largely due
to the fact that only one hand is needed to play the keys of the keyboard, leaving the other hand free
to modify additional parameters. Without a breath pressure sensor, attack control via the keyboard
is completely dependent on key velocity messages, resulting in significant loss of flexibility. In this
context, low velocity values might be made to correspond to soft breath attacks and high velocity
values to loud, hard tongued attacks. Lost in this scheme would be such effects as strong breath
and lightly tongued attacks. The addition of a breath controller gives the keyboard musician much
of the same attack flexibility enjoyed by users of wind controllers equipped with breath sensitive

velocity detection.

As previously mentioned, natural control of breath pressure modulation requires a high breath
pressure sampling rate. Until new controller technologies make this possible, the system of Fig. 4.7
can be implemented and the various modulation parameters can be assigned to such keyboard
controllers as modulation wheels or foot pedals. In this instance, the keyboard’s wide array of

controllers give it more flexibility than the wind controller.

Control of the multiphonic implementation of Fig. 4.8 using a keyboard can be achieved by
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depressing multiple keys at the same time and assigning the various delay line lengths by the corre-

sponding key numbers.

4.2.3 Summary

Physical models of woodwind instruments provide flexible control over a wide range of performance
expression techniques. The implementation of these effects is reasonably straight forward because of
the one-to-one correspondence between the model elements and physical elements. Unfortunately,
control of these techniques is less straight forward, even when using a MIDI wind controller. With
current technology, schemes can be developed which allow control of performance expression using
both wind controllers and keyboards, though such control is not always intuitive or natural. The
flexibility of physical modeling should result in the future development of new controller technologies

that make such control more natural.

4.3 Calibrating Digital Waveguide Woodwind Models

The modeling of the various components of single-reed woodwind instruments using digital wave-
guide techniques, as discussed in Chapter 3, was based largely on theoretical studies described in
acoustical reports. In most cases, however, acoustical measurements have been made to validate
the theory. In the past, most acoustic theory was based in the frequency domain, and thus, most
experimental measurements were made of air column impedances or other frequency-domain char-
acteristics. As was seen in Chapter 3, frequency-domain descriptions of acoustic components are
as easily incorporated into digital waveguide models as time-domain characterizations. That said,
there is an increasing movement to measure wind instrument responses in the time domain, in order

to verify time-domain theories.

4.3.1 Measuring Woodwind Instrument Responses in the Time Domain

Recent studies by Agull6 et al. (1995) and Keefe (1996) have presented methods for the measurement
of time-domain reflection functions, either associated with individual air-column discontinuities or
complete instrument systems. The study of Agull6 et al. (1995) was initiated for the purpose of
verifying the reflection function theory of cylindrical-conical junctions. Their experimental setup
was designed as shown in Fig. 4.9 such that an initial wide bandwidth, short duration pressure dis-
turbance was initiated within a long cylindrical extension tube and reflections from the discontinuity
could be measured by the microphones before reflections from either the conical section open end
or the source reached the microphones. Deconvolution operations are critical to the success of such
approaches and are the largest source of error, aside from achieving a reasonable excitation signal.
Agullé et al. (1995) performed two deconvolution operations. The first was done to remove the re-

sponse of the non-ideal driver from the excitation signal, while the second operation was performed
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Fig. 4.9. The experimental setup of Agullé et al. (1995).

to determine the actual reflection function initiated by the non-ideal, bandlimited excitation. It
would appear that only a single deconvolution was necessary for this procedure. Results of this
study showed reasonable verification of the theory.

Keefe (1996) presented a slightly modified approach to the time-domain measurement of wind
instrument air column response functions. This technique did not require the use of a cylindrical
extension tube, but rather, a long calibration tube of similar diameter to that of the measured
instrument bore. Use of the calibration tube eliminates the need to explicitly determine the driver
response, and allows a calculation that requires only a single deconvolution operation. In this
context, the measured reflection functions characterize the entire instrument air column and all of
the various discontinuities within it. The measured responses are limited in duration to that of the

calibration tube round-trip travel time.

4.3.2 Periodic Prediction for the Determination of Linear and Nonlinear

Instrument Behavior

A study was conducted to investigate a wind instrument’s linear and nonlinear behavior using
periodic prediction techniques (Scavone and Cook, 1994). Central to this approach is the simplified
model of a general wind instrument as given by Fig. 4.10, where the system observation point

is defined at the output of the nonlinear element. The nonlinear element, or reed mechanism in

energy
source nonlinear

element

v

linear
element

Fig. 4.10. A general wind instrument represented by linear and nonlinear elements in a feedback
loop.
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reed-woodwind instruments, excites a passive linear element, such as a cylindrical or conical bore.
Feedback from the air column subsequently influences the operation of the excitation mechanism.
In general, the linear element is characterized in the time domain by a reflection function or in
the frequency domain by a frequency-dependent reflection coefficient or reflectance, as discussed
in Section 1.3.4. For this study, the linear element is assumed to be a uniform waveguide with
only a single discontinuity at its open end. Under this assumption, it is possible to “pull out” a
propagation delay term from the time-domain reflection function which is roughly equivalent to the
time necessary for sound waves to travel to the end of the air column and back. For a propagation

delay of L seconds, the instrument system can then be represented as shown in Fig. 4.11. The
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source nonlinear

N element

v

linear
element

delay;,

Fig. 4.11. A general wind instrument represented by linear, nonlinear, and delay elements in a
feedback loop.

linear component now represents only the attenuation and phase delay associated with open-end
radiation and thermoviscous losses to the tube walls, assuming the air column is a perfectly uniform
cylinder. If the given air column is conical, then this term would further include the effects of mass
loading at the input to the conical frustum. The nonlinear element represents the nonlinear action
of the excitation mechanism only. Nonlinear acoustic phenomena which take place downstream from
the mouthpiece and reed assembly are thus ignored or assumed negligible. It is well known that
a clarinet air column acts as a quarter-wave resonator, such that an initial pressure disturbance
in the mouthpiece must propagate along its length four times before completing a full period of
oscillation. The air column of conical-bored instruments acts as a half-wave resonator. From this
perspective, the linear and nonlinear filters are each applied once or twice per oscillatory period
of the instrument output. A “pseudo-clarinet” was constructed as shown in Fig. 4.12 that roughly
corresponds to the system of Fig. 4.11. Under blowing conditions, the internal pressure signal was
recorded in the mouthpiece cavity and considered to be the output of the nonlinear element. This
pressure actually represents the sum of the outgoing and returning traveling-wave components in
the bore. For the purpose of this study, an assumption was made that this pressure is roughly
proportional to the outgoing component only, given that the clarinet reed assembly is characterized
by a reflection coefficient of negative one while the reed is closed against the mouthpiece facing. In
practice, this assumption proved to be the “weak link” in the approach.

An attempt to identify linear and nonlinear characteristics in quasi-periodic steady-state musical
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Fig. 4.12. An experimental “pseudo-clarinet” instrument.
tones is problematic because period to period variations are generally minimal. This is evident

in Fig. 4.13, which shows a portion of a steady-state waveform measured inside the clarinet-like

experimental instrument. All musical instruments capable of sustained oscillations operate in an
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Fig. 4.13. Steady-state waveform measured inside the “pseudo-clarinet” instrument.

equilibrium condition set up between an excitation source, a passive nonlinear control mechanism,
and a passive linear “lossy” element. A reed, for example, acts as a nonlinear pressure-controlled
control valve, allowing energy supplied by a performer into the system to compensate for losses
to its surrounding environment. As a result, the action of these two components “offset” one
another and make attempts to simultaneously identify their individual characteristics difficult at
best. Such a task is further complicated by the fact that during steady-state regimes, the linear
and nonlinear elements generally function in only a limited subspace of their full operating range.
Previously, Cook (1991) attempted to identify an instrument’s nonlinear characteristic assuming
that the system’s linear characteristic can be ignored. The approach in this study was to first

identify the instrument’s linear characteristic in the absence of its nonlinear excitation mechanism.
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This was done by applying an impulsive or white-noise excitation source to the system and using
linear periodic prediction on the resultant “impulse response.” The instrument was then “played”
under normal conditions and an internal pressure signal was recorded. The previously identified
linear filtering characteristic was removed from a delayed version of the measured output by inverse

filtering to form the input signal used when performing the nonlinear periodic prediction.

Adaptive Linear Periodic Prediction

The difficulty in identifying a musical instrument’s linear filtering characteristic in the presence of
the nonlinear element was previously mentioned. Thus, it is necessary to excite the system via an
external, impulsive source and measure the associated system “impulse response” in the absence
of the nonlinear element. If the excitation signal is applied at the same point that the associated

response is measured, the system of Fig. 4.14 results. In this case, the measured response is given

Tn > Yn
impulsive measured
excitation hxy,_p response

linear
delay, < element <
h

Fig. 4.14. A general wind instrument air column represented by delay and lumped linear elements
in a feedback loop.

by

Yn =Tn + [h*yn-1], (4.10)

where the subscript n denotes the nth time step. It is clear that an impulse excitation signal will
cause the linear filter’s impulse response to appear at the output L samples after it is introduced.
This impulse response is then repeatedly convolved with itself as it propagates through the feedback
loop. Most linear estimation techniques that have been applied to wind instrument air columns
(Agulld et al., 1995; Keefe, 1996) involve the generation of a known input signal and subsequent
deconvolution of this signal from the measured output. The periodic prediction technique, however,
avoids the deconvolution step and its inherent inaccuracies, and only requires that the excitation
signal be wideband and of shorter duration than the roundtrip delay time L. Using the measured
output L samples in advance as the desired signal (i.e. using periodic prediction), the linear element
can be approximated by FIR filter coefficients. The structure of Fig. 4.15 represents the single-input,
adaptive processor implemented for this purpose. The least-mean-square (LMS) algorithm was used
to adapt the filter weights (Widrow and Stearns, 1985).
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T O

Fig. 4.15. An adaptive linear periodic forward predictor.

Adaptive Nonlinear Periodic Prediction

177

Several assumptions regarding the reed excitation mechanism were made for this analysis. The

nonlinear element was first considered to be memory-less and essentially time-invariant in its steady

state. Secondly, it was assumed that the nonlinearity is a function of the difference between breath

pressure and returning bore pressure z,, as defined in Fig. 4.16. Finally, the breath pressure was

assumed constant during a steady-state excitation, so that the nonlinearity could be approximated

by a polynomial function of z,.

P, o »| nonlinear
breat] element > Un
reath 5
F(Pp,zy,) measured
pressure
response
z z linear
L
= delayy, Pl a4 element
h

Fig. 4.16. The assumed wind instrument model used for the nonlinear prediction experiment.

To identify the nonlinear characteristic from the experimental instrument internal pressure signal,

the influence of the linear element is first removed. Under normal operation, the input to the

nonlinear function is given by

Tpn = Yn—1 * h.

(4.11)

An inverse filter is determined from the extracted linear predictor weights and applied to a delayed

version of the measured output y,,_ . This signal then forms the input to the nonlinear predictor,



178 CHAPTER 4. DIGITAL WAVEGUIDE MODEL EXTENSIONS AND CALIBRATION

for which the desired response is given by the unfiltered y,. Thus, the nonlinear predictor produces
an approximation to y, given an input of x,, = y,_p * h~L.

To perform the nonlinear prediction, a single-input, transversal filter was modified in order to
create a nonlinear, periodic, forward predictor. This was accomplished by replacing the transversal
filter’s delay elements with multiplicative units, so that each adaptable weight is operating on a
successive power of the input. This structure is shown in Fig. 4.17. Because it is assumed that the

nonlinearity of the input signal is memory-less, no delay units are included. The adaptive nonlinear

P Py Py o o o

T O

Fig. 4.17. An adaptive nonlinear periodic forward predictor.

predictor produces a least-mean-square approximation to y, given an input of z, = y,_r x h™! by
adapting coefficients of an Nth order polynomial.
Following a discussion similar to that of Widrow and Stearns (1985), the input-output relationship

which results from this configuration is
N .
Yk = winal, (4.12)
j=0

where N is the nonlinear predictor polynomial order. An input column vector to the adaptor can

be written as
T
Xe=[1 ax o} - o) | . (4.13)

As seen in Fig. 4.17, wo, is a bias weight with an input equal to z; raised to the power zero (equal

to one over all time). The corresponding weight vector is given by

W, = [ Wop Wik vt WNE }T, (4.14)
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so that Eq. (4.12) can be written in vector notation as
Y = X{Wk = W,{Xk. (4.15)

The desired signal is denoted by di. For convenience, the subscript k is dropped from the weight

vector W, because adaptation of the weights is not being considered at this point. The error is then

given by
ex = dp— Yk (4.16)
= dp - XITW =d;, - WTX,, (4.17)
and the instantaneous squared error is
et =di + WX XTW — 24, XTW. (4.18)

With the assumption that ¢, dy,, and X, are statistically stationary, the expected value of Eq. (4.18)
is

E[s}] = E[d}] + WTE[X XT|W — 2E[d, XT]W. (4.19)

Let R be defined as the square matrix

1 T z? Ty
N+1
T v, al x} vt
R=EX X[ =F| . , . (4.20)
N N+l N+2 IN
.'Lk :ljk :Lk .o _'L'k

While the main diagonal terms of this matrix are the mean squares of the input components, R is
not an “input correlation matrix,” as is the case for the standard linear transversal filter. R is a
symmetric, Hankel matrix which is constant along its anti-diagonals, singular, and of rank 1. The
characteristic equation of this matrix is: a(s) = det(sI — R) = s"~!(s — A), where A is the only
possibly nonzero eigenvalue of R and n is the matrix dimension. The single nonzero eigenvalue of
R is given by its trace, which in this case is the sum of the squares of the input vector Xj.

Let P be defined as the column vector
T
P = E[d;X)] = E[ di  dray - dral ] . (4.21)

This vector is the set of cross correlations between the desired response and the input components.
The mean-square error in Eq. (4.19) can be designated by £ and expressed in the terms of Eqgs. (4.20)
and (4.21) as

¢ = E[}] = E[di] + WIRW — 2PTW, (4.22)
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Adaptation of the weights is performed using the LMS algorithm, whereby &2 itself is taken as an

estimate of £. At each iteration in the adaptive process, the gradient estimate is of the form

ocf Dey
dwg dwg
@k = E = 25’(: E = -—2€ka. (4.23)
e Dey
dwn dwyn
The weight adjustment is given by
Wit1 = Wi —uVy
= Wi+ 2ue Xy, (4.24)

where p is a gain constant which regulates the speed and stability of adaptation. Convergence is

guaranteed only if

0<pu< (4.25)

Amax
with

N
j=0

as indicated earlier.

Relating Nonlinear Predictor Weights to General Nonlinear Functions

In reference to Fig. 4.16, the measured response y, is the output of the nonlinear element. As
previously mentioned, it is assumed that the instrument nonlinearity can be approximated by a

general polynomial function of its input z,, such as the third-order fit
F(z,) = ap + a1z, + agz? + azz3. (4.27)

It is further assumed that the nonlinearity is a function of the difference between the input mouth
pressure P, and the returning pressure from the bore z,,, which for constant P, during a steady-state

tone results in the relationship

Yn = F(Pn,2n)
= F(P-uz,)
X ao+a)(P—zn)+ax(P—xz,)? 4 a3(P - z,)?
= (a0 +a1P+azP? + a3P®) — (a; + 2a, P + 3a3 P?)z,, + (as + 3a3P)2? — asa’.(4.28)

The nonlinear predictor produces a least-mean-square approximation to y, given an input z, by
adapting coefficients of an Nth-order polynomial. In terms of the predictor weights, this is repre-
sented by the relation

Yn = wo + wiT, + szi + wya?. (4.29)
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Thus, the weights of the nonlinear predictor are related to the coefficients of a nonlinear function of

the differential pressure at the reed by

Wy =a0+a1P+a2P2+a3P3

w); = —a; — QGQP - 3(13P2

(4.30)
wy = as + 3agP
w3 = —as,
or in matrix form as
wo 1 P P? pP3 ag
0 -1 —2P -3P?

R “a (4.31)
Wy 0 0 1 3P an
w3 0 0 0 -1 as

This transformation assumes that the nonlinearity is identified from a steady-state tone, which
is produced by a constant input mouth pressure level. In real wind-driven musical instruments,
the nonlinearity will be dependent on the input mouth pressure level. For the purpose of sound
synthesis, however, it is often convenient to ignore this dependence and implement a single nonlinear
characteristic. If the input breath pressure is normalized and it is assumed that P = 1 in the steady

state, the transformation matrix in Eq. (4.31) reduces to a Pascal triangle

Wo 1 1 1 1 Qg
0 -1 -2 -3
R “ (4.32)
wo 0 0 1 3 as
w3 0 0 0 -1 as

From the extracted weights, it is then possible to determine the polynomial coefficients of a nonlinear

function of the differential pressure at the reed by inverting Eq. (4.32) as

agp 1 1 1 1 wo
a 0 -1 -2 -3
b= o (4.33)
a9 0 0 1 3 wa
as 0 0 0 —1 w3

It is possible to further represent this characterization of the excitation mechanism nonlinearity
in terms of a pressure-dependent reed reflection coefficient r(pa ), as discussed in Section 3.5.1. The
coupling of the mouthpiece/reed and instrument bore is modeled in terms of a two-port junction,
with associated reflection and transmission coefficients. In terms of Fig. 4.16, y,, is formed by the
partial reflection of z,, and the partial transmission of P at the junction of the instrument excitation
mechanism and air column. The portion of z, that is reflected back into the air column is given
by z,7(pa) while the portion of the breath pressure which is transmitted through the junction and

into the bore is given by P[1 —r(pa)]. The net output from the nonlinear junction is given by

Yn = P—r(pa)-[P -z (4.34)
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The pressure-dependent reed reflection coefficient can then be approximated by a third-order poly-

nomial function of the pressure difference at the reed, pa = P — z,, as
r(P—zn)=co+ci(P—ay)+ca(P—2,) +c3(P—z,) (4.35)
Using this form of the reed reflection coefficient and substituting into Eq. (4.34)

Yo = (P—coP —ciP? —c3P? —c3P*) + (co + 2¢1 P + 3¢a P? + 4c3 PP,
—(c1 + 3c2 P + 6c3P?)2? + (cg + 4cz P)a® — ezt (4.36)
which for P = 1 simplifies to
Yn = (l=co—c1—cy—c3)+(co+2c1 +3co+4ez)xn — (c1 + 3¢ + 6cs)z?
+(c2 + 4ez)a — caat. (4.37)

The weights of the nonlinear predictor are related to the polynomial coefficients of r by comparing
Eqgs. (4.29) and (4.37) as

- - - - - -

wy 1 -1 -1 -1 -1 1
wyq 0 1 2 3 4 Co
we | =0 0 -1 =3 -6 c |- (4.38)
w3 0 0 0 1 4 co
L wy | |0 0 0 0 -1/ | cs |

Inversely, a polynomial approximation to the pressure-dependent reed reflection coefficient can be

determined from the nonlinear predictor weights by

(1] 11 1 1 1 7[ w]
Co 01 2 3 4 w1
¢ | =100 -1 -3 -6 wey | - (4.39)
Cy 0 0 0 1 4 w3

| c3 ] 00 0 0 -1]| wy |

By comparing Eqgs. (4.36) and (3.98), the nonlinear predictor weights are seen to determine the
coefficients of the reed reflection polynomial, as discussed in Section 3.5.2, for a constant breath
pressure.

As an example of these concepts, the top graph of Fig. 4.18 displays a sample piecewise, nonlinear
pressure-dependent reflection coefficient table effective in synthesizing clarinet-like sounds, together
with a third-order polynomial approximation. Assuming normalized parameters, the input breath
pressure P can range between zero and one and the incoming air column pressure z, between
negative one and one. Thus, the pressure difference is confined to the range 0 < P —z, < 2.

For P — z,, > 1, the reflection coefficient output is one, which corresponds to having the reed
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closed against the mouthpiece facing and full reflection of the incoming air column pressure. The
third-order polynomial approximation to r can be transformed into a general fourth-order nonlinear
function of z,, by the transformation of Eq. (4.38), assuming a constant breath pressure P = 1. The
resulting function is shown in the lower plot of Fig. 4.18, together with that obtained by directly
transforming the piecewise reflection coefficient using Eq. (4.34). For negative values of incoming
air column pressure z,,, the nonlinear function output y,, is equal to its input z,, corresponding to
a closed reed and no addition of mouth pressure into the system. For most positive pressure levels,
the function output is slightly greater than its input, corresponding to an open reed and a partial
input of mouth pressure into the system. When z,, = 1, the nonlinear function output consists
solely of transmitted breath pressure. The polynomial approximation to r is seen to transform
fairly accurately, though with a slight negative bias at z, = 0. The nonlinear predictor identifies
a characteristic similar to that of the lower plot of Fig 4.18. Using Eq. (4.39), these weights can
be transformed into a polynomial approximation of a pressure-dependent reflection coefficient for

implementation in a digital waveguide single-reed instrument model.

— Piecewise Expression 1
— — Polynomial Approximation

0‘6 1 1 1 1 T T
0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2

Pressure Difference (P — z,,)

1 T T T T T T T T T

Nonlinearity
Output (yn)
o

_1/ 1 1 1 1 1 1

1 1 1
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1
Incoming Air Column Pressure (z,,)

Fig. 4.18. An example piecewise reflection coefficient table and its polynomial approximation (top),
and the corresponding general nonlinear function responses (bottom).

Linear Element Experimental Setup and Measurements

The objective of the first experiment is to obtain a system excitation response in the absence of
the nonlinear element. It is also necessary that only a single propagation period be present in the

measured signal, so that the periodic prediction technique can be applied. For these experiments, the
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excitation signal and microphone were placed at either the same or at opposite ends of the instrument
air column. The period of the recorded signal is then roughly equal to the time necessary for sound
to propagation along two tube lengths. The only constraint on the excitation signal is that it contain
significant energy over the frequency range of interest. In this case, results between about 100-5,000

Hz are completely acceptable.

The setup for this experiment is shown in Fig. 4.19. The clarinet mouthpiece was removed
from the PVC tube and a cork stopper was placed at one end, through which an % in. Panasonic
microphone and earplug transmitter were inserted. The transmitter was driven by a square-wave
generator, resulting in a sequence of alternating positive and negative impulse-like pressure signals
somewhat proportional to the derivative of the square wave. The square-wave width and frequency
were adjusted so that pulse reflections within the tube decayed below the surrounding noise level
before a subsequent negative or positive edge was reached. The condenser microphone output was

fed into a Singular Solutions A/D 64x analog-to-digital converter and the digital signal was recorded

on a NeXT computer. Details regarding the equipment are provided in Appendix C.

Signal Generator

O O JUL

0.5 in. (i.d.) PVC Tube

Fig. 4.19. Linear element experiment setup.

As will be shown, the air column response obtained by the procedure described above decayed
rather rapidly and was of short duration. Therefore, another measurement was made by striking
the palm of a hand against one end of the tube while recording the response at the other end with
an external microphone. In this case, the palm was held against the tube, forming a closed end and
the microphone recorded the tube response at its open end.

Figure 4.20 shows the recorded tube response given a single square wave input. The first group
of reflections results from the positive edge of the pulse, while the second set is triggered by the
pulse’s negative edge. The positive and negative impulse separation is approximately 4083 samples,

corresponding to an impulse frequency of about 10.8 Hz or an input square-wave frequency of 5.4
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Fig. 4.20. Recorded response of the PVC tube.

Figure 4.21 shows the reflections resulting from the negative impulse only. That part of the
signal contained within the first 200 samples represents the input fed directly by the transmitter.
The greater signal strength of the first reflection relative to the input signal is attributable to the
fact that the transmitter extends farther into the bore than the microphone. The expected inversion
experienced by each subsequent reflection of the pressure signal at the PVC tube’s open end is clearly
visible in this figure. Figure 4.22 illustrates the tube response to the “palm-strike” excitation. As
previously mentioned, the duration of this signal is significantly greater than than generated with

the square-wave input signal.

Linear Periodic Prediction Results

A single-input, adaptive, periodic, transversal filter was implemented in MATLAB® for this portion
of the study. The transmitter input signal, as measured by the internal microphone, and its spectral
magnitude are shown in Fig. 4.23. As seen in the spectrum plot, the signal energy is mainly con-
centrated within the first 5000 Hz, with the highest components between about 1500-3000 Hz. The
frequency peaks around 2800, 8400, and 14000 Hz are likely due to the resonance of the small pipe
directing the signal into the PVC tube. The length of this pipe is approximately 3.1 cm, correspond-
ing to a propagation distance of 12.4 cm given its one open end. An attempt to accurately identify
a linear characteristic outside the input signal frequency range is useless because the accuracy of the
adaptation process is directly related to the input signal energy in any particular frequency region.

Therefore, the recorded signal was downsampled from 44.1 kHz to 9.9 kHz. This unconventional
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Fig. 4.21. Single pulse response in the PVC tube.
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Fig. 4.22. Pulse response in the PVC tube via a palm-strike.
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final sampling rate was chosen so that the signal period fell close to an integer value.

T T T T T T T T T
\f

Normalized Pressure Level

40 60 80 100 120 140 160 180
Samples (fs = 44100 Hz)

o

T T T

Normalized Magnitude (dB)

0 ; ot i
0 5 10 15 20
Frequency (kHz)

Fig. 4.23. Measured input signal: (top) Time domain; (bottom) Frequency domain.

Because the excitation response is of such short duration and also because it decays so rapidly,
the predictor was configured to iterate through the data a specified number of times. For this signal,
it was found that 50 iterations were necessary for the learning process to converge adequately. Seven
weights were specified and the constant of adaptation was set to 0.04. The frequency response of
the linear predictor weights is shown in Fig. 4.24. Thermal and dispersive losses in tubes increase
with frequency, as well as radiation from the open end, and such a lowpass characteristic is evident
in this figure. Not obvious from the magnitude plot is a 180 degree phase shift, or inversion, in the
predicted response.

Linear periodic prediction was also performed on the “palm-strike” response of Fig. 4.22. Though
this method of excitation was less rigorous than that using a signal transmitter, it proved effective
in producing a longer duration and higher amplitude tube response. The first pulse in this signal,
which represents the direct, palm generated excitation, is shown in Fig. 4.25, together with its
associated frequency content. Before prediction was performed, the signal was somewhat arbitrarily
downsampled to 11.025 kHz. Because this signal is of longer duration and magnitude than that of
Fig. 4.23, the periodic predictor was able to adapt faster, and only 20 iterations were performed.
The predicted linear characteristic using this response, as determined with 15 weights, is shown in
Fig. 4.26.

The linear characteristics of Fig. 4.24 were determined to inaccurately represent the true linear
filtering characteristic of the PVC tube, due largely to the high attenuation levels predicted. The

cork stopper, through which the probe microphone and transmitter were inserted, represents just
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Fig. 4.25. Direct palm strike signal: (top) Time domain; (bottom) Frequency domain.
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Fig. 4.26. Frequency response magnitude of the predicted linear weights using the palm strike
excitation.

one likely source for extra losses in the system. Thus, the linear characteristic predicted from the

“palm-strike” excitation was that used when performing the inverse filtering operation.

Nonlinear Element Experimental Setup and Measurements

The signal necessary as input to the nonlinear predictor is one obtained in the presence of the
nonlinear excitation source. Thus, for this measurement the mouthpiece was re-attached to the
PVC tubing and an Endevco 8510B-1 piezoresistive pressure transducer was used to measure the
internal pressure signal. The setup for this experiment is shown in Fig. 4.27. In order to obtain
a signal which might approximate the output of the reed nonlinearity, it was desired to have the
microphone as close to the mouthpiece/reed as possible. Thus, the microphone was inserted through
the reed near the back of the mouthpiece facing, in an area where reed vibrations are negligible. The
pressure transducer output was fed into a Singular Solutions A/D 64x analog-to-digital converter
and the digital signal was recorded on a NeXT computer. Figure 4.28 shows a portion of the signal
recorded while the instrument is excited under normal reed operation. The signal period varies
somewhat over the course of the recorded sound, but generally ranges between 402-403 samples, or

about 9.1 ms.
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Fig. 4.28. Internal pressure signal in PVC tube under normal blowing conditions.

Nonlinear Periodic Prediction Results

A single-input, adaptive, periodic, nonlinear predictor was implemented in MATLAB® for this
portion of the study. A simple digital waveguide clarinet model was developed based on the system
diagram of Fig. 4.16 to test the nonlinear prediction procedure. The pressure-dependent reflection
coefficient nonlinear excitation characteristic shown in Fig. 4.18 was used for this implementation.
The resulting extracted nonlinear characteristics, as functions of the predictor weights, are shown
in Figs. 4.29 and 4.30. In each case, the nonlinear predictor was iterated 15 times through the data,

which was first inverse filtered to remove the effects of the linear element.

As seen in the figures, the nonlinear predictor was able to extract the nonlinear characteristic

with reasonable accuracy. It should be noted, however, that the synthesized sounds were generated
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Fig. 4.29. Nonlinear polynomial function extracted from a synthesized sound.
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Fig. 4.30. Nonlinear reflection coefficient, as determined using nonlinear predictor weights which
were extracted from a synthesized sound.
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from a fixed nonlinear characteristic, and that the breath pressure was ramped up from zero to one
during synthesis. Once a steady state regime is reached with these synthesis models, it is common
for the nonlinear function to be significantly excited in only two small regions, as the signal is very
“square-like.” By predicting through the transient portion of the synthesized signal, the nonlinear
predictor was provided with more “information” about the nonlinearity and so it was better able
to accurately adapt. As was mentioned previously, the nonlinear characteristic in real musical
instruments changes with breath pressure. Thus, attempting to predict through transients in real
sound recordings will theoretically not result in better nonlinear approximations.

The signal recorded under normal reed operation was sampled at a rate of 44.1 kHz. Its period
was found to increase slightly from the beginning to the end of the sound. To apply an inverse
filter designed from the previously determined linear characteristic, it was necessary that it be
downsampled. Further, it was desired to perform the prediction separately using a transient portion
and a steady-state section of the recorded sound and thus, in order that each portion’s respective
period fell as close as possible to an integer value, the sound was downsampled to both 10.73 kHz
and 10.691 kHz. The nonlinear polynomial functions predicted after inverse filtering are shown in

Fig. 4.31, and their respective reflection functions in Fig. 4.32.

1 T T T T T T T T T

— Using Transient Signal
0.8f |- — Using Steady-State Signal b

o o o
N > o
T T T

Nonlinear Function Output: y(n)
=)
T

-0.6r

1 1 1 1 1
-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1
Normalized Input Pressure: x(n)

Fig. 4.31. Nonlinear polynomial functions extracted from the internal pressure signal measured in
the experimental instrument.

All of the predicted nonlinear polynomial functions demonstrate unexpected results. From the
discussion of Fig. 4.18, negative pressure levels of the input z,, were expected to produce an equal
output level y,, which corresponds to total reflection of the incoming bore pressure back into the
bore. This would produce a function slope of positive one for negative values of z,. Instead,

most of the functions show a positive gain (y,/z,) greater than one somewhere in this region,
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Fig. 4.32. Nonlinear reflection coefficient, as determined using nonlinear predictor weights which
were extracted from the internal pressure signal measured in the experimental instrument.

implying an increase of negative pressure into the system (though the mouth pressure is positive).
This is also evident in the reflection functions, corresponding to a reflection coefficient greater
than one. Further, positive pressure levels of z, were expected to produce an increased output
level y, due to the addition of mouth pressure into the system (and a corresponding gain greater
than one). The histograms of Fig. 4.33 offer one clue to these behaviors. It is clear that the
input is significantly isolated around just two regions, and never at a level exceeding 0.9. Thus,
the polynomial approximations in these regions of low excitation cannot be assumed accurate. It
is interesting to note that in the regions where the input signal contains significant energy, the
predicted characteristics converge on a common result. It was seen that the polynomial function
output level at z,, = 1 represents the breath pressure level (total transmission of bore pressure
out the mouthpiece and total transmission of mouth pressure into the bore). All the predicted
polynomial approximations at this point are greater than one, most likely the result of insufficient
excitation energy. Thus, these characteristics do not obey the conservation of energy principles
assumed of a two-port junction, and the polynomial reflection coefficient transformation relation
is rendered invalid. In this case, it is necessary to perform the transformation using Eq. (4.34),
evaluating the polynomial at individual points between negative one and positive one to obtain a

respective reflection function.
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Fig. 4.33. Histograms of the transient (top) and steady-state (bottom) portions of the recorded
signal.

Summary

The technique pursued in this project for extracting the linear characteristic of a musical instrument
offers a fairly simple method for determining an FIR filter approximation to the behavior of a single
air-column discontinuity. The accuracy of this approach, however, is largely dependent on the quality
of the equipment used in the experiments. The results obtained in this study were generally valid,

but would most likely improve with the acquisition of better measurement /excitation devices.

The approach investigated in this study for nonlinear prediction using musical instrument record-
ings involves inherent assumptions which hinder its accuracy. As mentioned previously, predicting
through transient signals while assuming a constant breath pressure is also theoretically inaccurate,
though it might result in some type of “mean” nonlinear characteristic. On the other hand, assuming
that an accurate linear characteristic has been obtained, to what should its inverse be properly ap-
plied? The synthesized test signals were generated using a digital waveguide implementation based
on the theoretical model of Fig. 4.16. Because the nonlinear prediction scheme was itself based on
this same model, the nonlinear predictor was able to well identify the model nonlinear characteristic.
In real musical instruments, however, any measurement of internal pressure represents the sum of
left- and right-going traveling waves. It was hoped that by placing the microphone as close to the
reed boundary as possible, the resulting signal would form an approximation to the output of the
nonlinearity. In fact, it represents the sum of the output from and the input to this element. Thus,
the system of Fig. 4.34 is a better approximation to the experimental instrument and its measured

response. Ultimately, the nonlinear prediction approach is valid if a single traveling-wave compo-
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Fig. 4.34. A revised wind instrument model that might better correspond to the experimental
instrument.

nent can be measured and/or isolated in steady-state sounds. While this is theoretically possible

via measurements with two microphones, it proves extremely difficult in practice.






Chapter 5

Conclusions and Future Research

5.1 Summary and Conclusions

In general, this study provides a comprehensive review of single-reed woodwind instrument acoustic
principles and then details a methodology for implementing this theory in the digital waveguide
domain. As a result, efficient time-domain simulations of complete instrument systems are possible
which incorporate the best available acoustic theory. Of particular importance, the “lumped-section”
approach presented in Section 3.3.3 offers an efficient and stable means for implementing conical air
column discontinuities that are characterized by growing exponentials and their associated unstable
discrete-time filter approximations. Likewise, the two-port scattering junction model of a woodwind
tonehole directly integrates the results of Keefe (1981, 1990) for efficient time-domain simulation.
The three-port tonehole model offers a one-multiply, one-filter implementation which produces accu-
rate results as well. Closure of the finger hole is best simulated in this form via time-varying control
of the open hole resistance and/or acoustic mass parameters.

Further contributions of this study include mouthpiece and register-hole extensions to digital
waveguide woodwind models. The tonehole discussion of Section 3.4.3 was directly applicable to
the implementation of a woodwind register hole. Further, the series resistance and inertance model
of the register hole has direct application to tonehole theory for efficient simulation of hole closure
and open-hole radiation. Mouthpiece geometry variations and their associated timbral effects can be
explored and implemented in a stable form using the “lumped-section” approach. It is interesting to
note from such an implementation that the mouthpiece can potentially impose a “Helmholtz” mode
on the overall air column resonance structure. Performance expression is easily implemented in the
digital waveguide domain, in part because of the one-to-one correspondence between real instrument
and model components.

The discussion of Chapter 2 was primarily motivated by the desire to compare woodwind in-

strument behavior, as predicted by acoustic theory, with intuition gained from years of professional
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performance experience. The contributions of such an analysis are perhaps more relevant to the per-
formance community, though collaborations between acousticians and performers will gain increasing
importance in the development and refinement of the science of musical instrument acoustics.

This thesis lays the foundation for the development of complete woodwind instrument computer
models based on current acoustic theory for time-domain, discrete-time simulations. The under-
standing of woodwind acoustic principles is reaching a point where it can aid in the design of real
instruments. The computer models described here thus offer a practical means for testing acous-
tic theory and hold the potential to someday play a role in the computer-aided design of musical

instruments.

5.2 Suggestions for Future Research

The “lumped-section” technique discussed in Sections 3.3.3 and 4.1.2 was developed in the late
stages of this study. While this approach offers a practical solution for the implementation of
conical air column discontinuities which are characterized by growing exponentials and unstable
discrete-time filter approximations, further theoretical analysis is needed. In particular, it should be
possible to determine a closed-form solution which explicitly demonstrates the stability of the lumped
solution despite its unstable internal component. The frequency-domain transmission matrices can
be expressed in terms of digital waveguide matrices (van Walstijn and de Bruin, 1995), which can
then be cascaded to produce closed-form solutions.

Further aero-acoustic studies of the single-reed excitation mechanism are necessary. Current
models are based, in part, on steady-state theory and display undesirable transient behavior. In
particular, it appears that analyses of the nonlinear excitation in the presence of unsteady flow are
warranted.

With the development of more accurate acoustic theory regarding nonlinear excitation mecha-
nisms, digital waveguide models offer a potential means for the study of oral cavity influences on
wind instrument acoustic behavior. Cook (1990) developed an articulatory model of the human
vocal tract using digital waveguide techniques. It is reasonable to expect that this model can be
“attached” to a digital waveguide wind instrument model to explore upstream influences.

Vortex shedding and flow turbulence near the nonlinear excitation mechanism of wind instru-
ments produce noise in the resultant instrument sound. Such effects were not discussed in detail in
this study, but are a necessary component of any instrument model. In practice, it is common to
add white noise to the breath pressure stream to simulate turbulence within the system. This is
clearly inadequate, however, and studies of pulsed and vortex noise (Chafe, 1990, 1995; Cook et al.,
1990) should be incorporated in these models.

The three-port tonehole implementation presented in Section 3.4.3 efficiently and accurately mod-

eled the shunt impedance component of the Keefe (1981) tonehole model. Attempts to incorporate
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the series impedance in the three-port scheme, however, have thus far been plagued by unstable
digital filter scenarios, which result from the negative inertance characterization of Z,. It may be
possible to combine the frequency-dependent negative length correction associated with Z, with an
adjacent delay, in order to recast it as a positive inertance, and thus obtain a stable discrete-time

implementation.






Appendix A

The Surface Area of a Spherical

Wave Front in a Cone

Throughout this study, reference is made to the surface area of a spherical wave front in a conical
frustum. This surface area can be determined in many ways. One method involves projecting an

area S given by the surface z = f(z,y) onto a closed region R in the z — y plane, such that (Anton,

1984)
s= [ (Z) (&) +10n a1

In rectangular coordinates, a sphere of radius « is given by z = V7% — 2% — y2, so that the partial
derivatives in Eq. (A.1) are given by

9z = — 7 (A.2a)
Ox VA2 — 22 — 2
o= _ =y (A.2b)
oy /4% — 22 — g2

The surface area S is then found as
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2 (72 =772 = ~?sin’ 6 ) = 27? (1 — /1 —sin%4, )

= 27v%(1 = cosby), (A.3)

where a is the cross-sectional radius at the open end of the cone and ¢ and 8y are defined in Fig. A.1.

Cross-section
Fig. A.1. A conical section in spherical coordinates.

Benade (1988) provides a different expression for the spherical wave front surface area,

s = orq 120 (A.4)

sin? 6,

which is equivalent for a = 7 sin 6.



Appendix B

Saxophone Air Column

Measurements

Approximate measurements were taken from a modern Selmer Paris® Super Action 80, Series II,
alto saxophone (serial number 438024). These values are listed below, together with measurements

given by (Nederveen, 1969, p. 106) for comparison.

Estimated Selmer | Schenkelaars
Distances (m) Alto Alto
Reed tip to cone apex 0.12 0.14
Reed tip to A4f-B4 hole | 0.41 0.40
Reed tip to C'4-D4 hole 0.79 0.76
B for A4-B4 hole 0.23 0.26
B for C'4-D4 hole 0.13 0.16

Table B.1. Air column measurements and estimated truncation ratios (3) for Selmer and Schenke-
laars alto saxophones.

The estimated distance from reed tip to cone apex was determined by smoothly projecting the
neck taper out to its intersection. From the neck end, this distance is approximately equal to 0.18
meters. The mouthpiece provides an additional length of approximately 0.06 meters to the neck,
so that the reed tip to apex distance is given by 0.12 meters. Saxophone mouthpieces come in a
multitude of shapes and sizes, so that these proportions will vary to great extent. The mouthpiece
used in this study was custom built by Ronald L. Caravan, and would be considered to be slightly
shorter than an average alto saxophone mouthpiece. The toneholes are given by their written note
values, and correspond to the pitches produced when those holes are closed—open. That is, when
the C'4-D4 hole is closed, a written C4 is produced, while a written D4 is sounded when the hole is

open. Tonehole measurements were made to the center of the tonehole.
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Appendix C

Experimental Equipment

This appendix provides detailed information about most of the equipment used for linear and

nonlinear prediction study.

1.

Piezoresistive Pressure Transducer, Endevco Corporation, Model 8510B-1, Serial # AFE79

The Endevco Model 8510B-1 is a rugged, miniature, high sensitivity piezoresistive pressure
transducer. With its high resonance frequency (55000 Hz), wide frequency response (+ 0.5 dB
to 4000 Hz, £ 5 dB to more than 16000 Hz), high sensitivity, small dimensions, and resistance
to moisture, this unit can handle the difficult task of measuring the high sound pressure levels

found inside “wind-blown” musical instruments.

. Electret Condenser Microphone Cartridge, Panasonic, Panasonic Part No. WM-063T

The Panasonic WM-063T is a cheap and small (6.0 x 5.0 mm) electret condenser microphone.

Its reported frequency range is 20-20000 Hz with a sensitivity of -64dB+3dB.

. Signal Transmitter, Radio Shack

This was a cheap “ear plug” style transmitter. The poor frequency response of this unit

hindered the accuracy of this study’s results.

- Regulated Power Supply, SRC Division/Moxon Electronics, Model 3564, Serial #13363
. Pulse Generator, Interdesign Inc., Model 1101, Serial #233

. Analog to Digital Converter, Singular Solutions, Model A/D 64x, Serial #AD 01067
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Appendix D

MATLAB Code

The following MATLAB® functions and scripts demonstrate many of the model techniques dis-
cussed in this thesis. The function openpipe determines a discrete-time reflectance filter approxima-
tion to the Levine and Schwinger unflanged open pipe radiation solution. The function boundary
determines a discrete-time filter approximation to the thermoviscous losses along the walls of a cylin-
drical pipe. The function openhole is used to design two-port scattering junction reflectance and
transmittance discrete-time filters for an open tonehole. Similarly, the function closhole is used to
design two-port scattering junction reflectance and transmittance discrete-time filters for a closed
tonehole. The function branch is used to design a three-port scattering junction open tonehole
branch discrete-time reflectance filter. The script clarinet is an example digital waveguide clar-
inet implementation that demonstrates the use of the above mentioned functions. The nonlinear

excitation is modeled using the pressure-dependent reflection coefficient method.

D.1 openpipe.m

function [b,al=openpipe(nb,na,ra,fs,display)
#OPENPIPE Discrete filter least squares fit to Levine & Schwinger
yA unflanged cylindrical bore reflectance.

% [B,A] = OPENPIPE(NB,NA,RA,FS,DISPLAY) gives real numerator and

%  denominator coefficients B and A of orders NB and NA respectively,
% where RA is the radius of the cylinder (in meters) and FS is the

%  desired sampling rate (in Hz). This function calls INVFREQZ with
% an omega”(-2) weighting function for the filter design process. A
h  reference temperature of 26.85 degrees celsius (80 F) is assumed.

% If the value of DISPLAY is 1, the continuous-time and

%  discrete-time reflectance magnitude and phase responses will be

%  plotted.
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% By Gary P. Scavone, CCRMA, Stanford University, 12 March 1997.

if nargin”=5,
error (’Number of arguments is incorrect.’);
return

end

% Physical constants and evaluation frequencies

n = 1024; % Number of evaluation frequencies
omega = pi/n:pi/n:pi;
c = 347.23;

k = omega*fs/c;

% The Levine & Schwinger results were calculated by numerical
% integrations out to the limit k*a <= 3.8. The following

% sixth-order polynomial approximations were then made to the
% reflectance magnitude and end correction terms. For values
% of k*a > 3.8, the reflectance magnitude and end corrections
% are approximated by smooth extensionms.

rPoly = [-0.00121212308521, 0.01893693792170, -0.12135001867818, 0.39739947149894,
-0.61154450497445, 0.01320529396146, 1.00000000000000] ;

loaPoly = [-0.00134446448269, 0.01444668268791, -0.06220104767324, 0.136922621132,
-0.16112693515620, -0.01536258568872, 0.61000296711212];

z = k*ra;
if max(z) <= 3.8,
r = polyval(rPoly,z);
loa = polyval(loaPoly,z);

else
i=1;
while z(i) <= 3.8,
i=1i+1;
end

z1 = z(1:i-1);
z2 = z(i:length(z));
scale = polyval(rPoly,z(i))*z(i)"~(3);
r = [polyval(rPoly,z1),scale./z2.73];
loa = polyval(loaPoly,zl);
scale = polyval(loaPoly,3.8)*0.872;
loa = [loa, scale./(z2 - 3).72];

end

R = -r.*exp(-2*j*z.*loa);

% Design digital filter using method described in JOS thesis,
% pp. 47-50 & 101-103.

% Weighting to help fit at low frequencies

wt = 1./omega."2;
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[b,a] = invfreqz(R,omega,nb,na,wt);
% Check filter stability %

ps = roots(a);
if length(ps)>0,
for j=1:length(ps),
if abs(ps(j)) >= 1.0,
disp(’Filter is unstable ... change design parameters!’);
end
end
end

% Plot responses ¥

if display==1,
h = freqz(b,a,omega);
clf
subplot(2,1,1)
plot(omega,abs(R) ,omega,abs(h));
legend(’Continuous-Time Response’,’Discrete-Time Response’);
title(’Open Pipe Reflectance’);
ylabel(’Magnitude’);
xlabel(’Discrete-Time Radian Frequency’)
grid
axis([0 pi 0 1.1])
subplot(2,1,2)
plot(omega,angle(R),omega,angle(h));
ylabel(’Phase (radians)’);
xlabel(’Discrete-Time Radian Frequency’)
grid
axis([0 pi 0 pil)
disp(’Paused ... hit any key to continue.’)
pause

end

D.2 boundary.m

function [b,a]=boundary(nb,na,ra,fs,nz,display)

%#BOUNDARY Discrete filter least squares fit to the attenuation

% and phase delay characteristic of viscous and thermal

% losses along the walls of a rigid cylindrical duct.

h

% [B,A] = BOUNDARY(NB,NA,RA,FS,NZ,DISPLAY) gives real numerator and
%  denominator coefficients B and A of order NB and NA respectively,
%  where RA is the duct radius (in meters), FS is the system

%  sampling rate (in Hz), and NZ is the number of unit sample delays
% for which the boundary losses are modeled. This function calls

%  INVFREQZ with an omega”(-2) weighting function for the filter
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% design process. A reference temperature of 26.85 degrees celsius
% (80 F) is assumed. If the value of DISPLAY is 1, the continuous-
%  time and discrete-time reflectance magnitude and phase responses
%  will be plotted.

%

% By Gary P. Scavone, CCRMA, Stanford University, 12 March 1997.

if nargin™=6,
error (’Number of arguments is incorrect.’);
return

end

% Physical constants and evaluation frequencies

n = 1024; % Number of evaluation frequencies ¥
omega = pi/n:pi/n:pi;

c = 347.23;

rho = 1.1769;

eta = 1.846%10"(-5);

k = omega*fs/c;

% Duct characteristic impedance

Ro = rhox*c/(pi*ra~2);

% Duct Losses (approximations for 300 K)
rv = ra*(rhoxfs*omega/eta).~(0.5);

alpha = k.*(1.045%rv."(-1) + 1.08%rv."(-2) + 0.75%rv.~(-3));
vpinv = (1 + 1.045%rv."(-1))./c;

% Desired Filter Response
H = (exp(-j*omega.*(c.*vpinv - 1) - c*alpha/fs)). nz;

% Design digital filter using method described in JOS thesis,
% pp. 47-50 & 101-103.

% Weighting to help fit at low frequencies
wt = omega." (-2);
[b,al = invfreqz(H,omega,nb,na,wt);
% Check filter stability Y%
ps = roots(a);
if length(ps)>0,
for j=1:length(ps),

if abs(ps(j)) >= 1.0,
disp(’Filter is unstable ... change design parameters!’);



D.3.

end

OPENHOLE.M

end
end

% Plot responses %

if display==1,

end

h = freqz(b,a,omega) ;

clf

subplot(2,1,1)

plot(omega,abs(H) ,omega,abs(h));
legend(’Continuous-Time Response’,’Discrete-Time Response’);
title(’Boundary-Layer Losses’);
ylabel(’Magnitude’);
xlabel(’Discrete-Time Radian Frequency’)
grid

axis([0 pi 0 1.1])

subplot(2,1,2)

plot (omega,angle(H) ,omega,angle(h));
ylabel(’Phase (radians)’);
xlabel(’Discrete-Time Radian Frequency’)

grid

axis([0 pi -pi 0])

disp(’Paused ... hit any key to continue.’)
pause

D.3 openhole.m

function [br,ar,bt,at]=openhole(ra,rb,tw,rc,fs,display)
hOPENHOLE Discrete filter least squares fit to the open tonehole

h

two-port reflectance and transmittance, as derived from
Keefe (1990).

(BR,AR,BT,AT] = OPENHOLE(RA,RB,TW,RC,FS,DISPLAY) gives real
numerator and denominator reflectance coefficients BR and AR

for a two-zero/one-pole filter, and transmittance coefficients
BT and AT of order two, where RA is the main bore radius, RB is
the tonehole radius, TW is the tonehole wall height, RC is the
tonehole radius of curvature, and FS is the model sampling rate
(in Hz). All length values should be given in meters. The
discrete-time transmittance filter is designed using INVFREQZ
with an omega”(-2) weighting function. The discrete-time
reflectance filter is designed by Kopec’s method, in conjunction
with INVFREQZ. A reference temperature of 26.85 degrees celsius
(80 F) is assumed. If the value of DISPLAY is 1, the continuous-
time and discrete-time reflectance magnitude and phase responses
will be plotted.
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RB can be a vector of tonehole radii, in which case the B’s and
A’s are matrices of corresponding filter coefficients. Only the
first tonehole reflectance responses will be plotted.

By Gary P. Scavone, CCRMA, Stanford University, 12 March 1997.

argin®=6,
error (’Number of arguments is incorrect.’);
return

ysical constants and evaluation frequencies

1023; % Number of evaluation frequencies Y%
a = pi/n:pi/n:pi;

347.23;

= 1.1769;

1.846%10°(-5);

omega*fs/c;

sqrt(2*eta ./ (rho*omegaxfs));

re and Tonehole characteristic impedances

rho*c/(pi*ra~2);
= rhoxc./(pi*rb."~2);

al part of propagation wavenumber in tonehole %

a = (3%107(-5)./rb) **sqrt (omega*fs/(2*pi));

nehole geometric height

tw + (rb/8) .*(rb/ra).*(1 + 0.172%(rb/ra)."~2);

en tonehole effective length and specific resistance
(ones(size(rb’))*(1./k).*tan(t’*k) + ...

rb’.*(1.4 - 0.58%(rb/ra)."~2) ’*ones(size(k))) ./ ...

(1 - 0.61*rb’*k.*tan(t’*k));

= 0.25%(rb’*k)."2 + (t’*ones(size(k))).*alpha + ...
(ones(size(rb’))*(0.25%k.*dv)) .*((log((2/rc)*rb’))*ones(size(k)));

en tonehole series equivalent length

= 0.47*rb.*(rb/ra)."4./(tanh(1.84%t./rb)
+ 0.62%(rb/ra).”2 + 0.64*(rb/ra));

en Tonehole Shunt & Series Impedances

Rho’ * ones(size(k)).* (j*ones(size(rb’))*k.*te + xie);
(-j*Rho.*tao) .’ * k;
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% Open Tonehole Reflectance & Transmittance %

rop = (Zso.*Zao - Ro~2) ./ (Zso.*Zao + 2*Ro*Zso + Ro"2);
top = 2#Ro*Zso ./ (Zso.*Zao + 2¥Ro*Zso + Ro"2);

% The Matlab function invfreqz() doesn’t do a good job fitting

% zeros for the reflectance. Thus, the filter is designed using
% Kopec’s method (JOS thesis, pg. 46-47). A single pole is

% first fit to rop(w) and the resulting response is divided out
% of rop(w) to get D2(w). Two poles are then fit to 1./D2(w).

% These poles become the zeros of the final discrete-time filter.

na = 2; % poles %
nb = 2; % zeros Y

% Weighting to help fit at low frequencies

wt =1 ./ omega.” 2;

br = zeros(length(rb),nb+1);
ar = zeros(length(rb),2);

bt = zeros(length(rb),nb+1);
at = zeros(length(rb),na+1);

for i=1:length(rb),
[b1,al1] = invfreqz(rop(i,:),omega,0,1,wt);
temp = freqz(bl,al,omega);
[b2,a2] = invfreqz(temp./rop(i,:),omega,0,2,wt);
br(i,:) = bl*a2/b2;
ar(i,:) al;
br(i,:) = -abs(rop(i,1))*sum(ar(i,:))*br(i,:)/sum(br(i,:));
[bt(i,:),at(i,:)] = invfreqz(top(i,:),omega,nb,na,wt);

% Check filter stability Y%

psr = roots(ar(i,:));
pst = roots(at(i,:));
if length(psr)>0,
for j=1:length(psr),
if abs(psr(j)) >= 1.0,
disp(’Filter is unstable ... change design parameters!’);
end

end
end
if length(pst)>0,
for j=1:length(pst),
if abs(pst(j)) >= 1.0,
disp(’Filter is unstable ... change design parameters!’);
end
end
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end
end

% Plot responses ¥

if display==1,
h = freqz(br(1,:),ar(1,:),omega);
clf
subplot(2,1,1)
plot (omega,abs(rop(1,:)),omega,abs(h));
legend (’Continuous-Time Response’,’Discrete-Time Response’);
title(’Open Tonehole Reflectance’);
ylabel(’Magnitude’);
xlabel(’Discrete-Time Radian Frequency’)
grid
axis([0 pi 0 1.1])
subplot(2,1,2)
plot(omega,angle(rop(1,:)),omega,angle(h));
ylabel(’Phase (radians)’);
xlabel(’Discrete-Time Radian Frequency’)

grid

axis([0 pi -pi pil)

disp(’Paused ... hit any key to continue.’)
pause

end

D.4 closhole.m

function [br,ar,bt,at]l=closhole(ra,rb,tw,fs,display)

%CLOSHOLE Discrete filter least squares fit to the closed tonehole

yA two-port reflectance and transmittance, as derived from
% Keefe (1990).

%

% [BR,AR,BT,AT] = CLOSHOLE(RA,RB,TW,FS,DISPLAY) gives real

MATLAB CODE

% numerator and denominator reflectance coefficients BR and AR and

% transmittance coefficients BT and AT of order two, where RA is
% the main bore radius, RB is the tonehole radius, TW is the

%  tonehole wall height, and FS is the model sampling rate (in Hz).
%  All length values should be given in meters. This function calls

% INVFREQZ with a 1/omega”2 weighting function for the filter

%  design process. A reference temperature of 26.85 degrees celsius
% (80 F) is assumed. If the value of DISPLAY is 1, the continuous-
% time and discrete-time reflectance magnitude and phase responses

% will be plotted.

% RB can be a vector of tonehole radii, in which case the B’s and

% A’s are matrices of corresponding filter coefficients. Only the

% first tonehole reflectance responses will be plotted.
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% By Gary P. Scavone, CCRMA, Stanford University, 12 March 1997.

if nargin”=5,
error(’Number of arguments is incorrect.’);
return

end

% Physical constants and evaluation frequencies

n = 1024; % Number of evaluation frequencies %
omega = pi/n:pi/n:pi;

c = 347.23;

rho = 1.1769;

k = omegaxfs/c;

% Bore and Tonehole characteristic impedances

Ro = rho*c/(pi*ra~2);
Rho = rho*c./(pi*rb."2);

% Tonehole geometric height

t = tw + (rb/8).*(rb/ra).*(1 + 0.172*%(rb/ra)."2);

% Closed tonehole series equivalent length

tac = 0.47*rb.*(rb/ra)."4./(coth(1.84*t./rb) + 0.62*(rb/ra)."2 + 0.64*(rb/ra));
% Closed Tonehole Shunt & Series Impedances Y%

Zsc = -j*Rho.’ * ones(size(k)) .* (cot(t’*k) + (t.*(0.25%(rb./t)."2 ...

+ 0.58%(rb/ra).”2 - pi*rb ./ (4%t)))’*Kk);
(-j*Rho.*tac).’ * k;

Zac

% Closed Tonehole Reflectance Y

(Zsc.*Zac - Ro"2) ./ (Zsc.*Zac + 2*Ro*Zsc + Ro"2);
2xRo*Zsc ./ (Zsc.*Zac + 2%Rox*Zsc + Ro"2);

rcl
tcl

% Design digital filter using method described in JOS thesis,
% pp. 47-50 & 101-103.

na = 2; % poles ¥
nb = 2; % zeros %

/ Weighting to help fit at low frequencies
wt =1 ./ omega.” 2;

br
ar

zeros(length(rb) ,nb+1);
zeros(length(rb) ,na+1);
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bt
at

zeros(length(rb) ,nb+1);
zeros(length(rb) ,na+1);

for i=1:length(rb),
[br(i,:),ar(i,:)]
[bt(i,:),at(i,:)]

invfreqz(rcl(i,:) ,omega,nb,na,wt);
invfreqz(tcl(i,:),omega,nb,na,wt);

% Check filter stability %

psr = roots(ar(i,:));
pst = roots(at(i,:));
if length(psr)>0,
for j=1:length(psr),
if abs(psr(j)) >= 1.0,
disp(’Filter is unstable ... change design parameters!’);
end
end
end
if length(pst)>0,
for j=1:length(pst),
if abs(pst(j)) >= 1.0,
disp(’Filter is unstable ... change design parameters!’);
end
end
end
end

% Plot responses

if display==1,
h = freqz(br(1,:),ar(1,:),omega);
clf
subplot(2,1,1)
plot(omega,abs(rcl(l,:)),omega,abs(h));
legend(’Continuous-Time Response’,’Discrete-Time Response’);
title(’Closed Tonehole Reflectance’);
ylabel(’Magnitude’);
xlabel(’Discrete-Time Radian Frequency’)
grid
axis([0 pi 0 1.1])
subplot(2,1,2)
plot(omega,angle(rcl(l,:)),omega,angle(h));
ylabel(’Phase (radians)’);
xlabel(’Discrete-Time Radian Frequency’)

grid

axis([0 pi -pi pil)

disp(’Paused ... hit any key to continue.’)
pause

end
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D.5 branch.m

function [br,ar]=branch(ra,rb,tw,fs,display)

4#BRANCH Discrete filter least squares fit to an open tonehole

% reflectance for use in a 3-port waveguide model.

pA

% [BR,AR] = BRANCH(RA,RB,TW,FS,DISPLAY) gives real numerator

% and denominator reflectance coefficients BR and AR of order
% one, where RA is the main bore radius, RB is the tonehole

% radius, TW is the tonehole wall height, and FS is the model
% sampling rate (in Hz). All length values should be given in
% meters. This function calls INVFREQZ with an omega”(-2)

% weighting function for the filter design process. A reference

% temperature of 26.85 degrees celsius (80 F) is assumed. If

% the value of DISPLAY is 1, the continuous-time and discrete-time
pA reflectance magnitude and phase responses will be plotted.

A By Gary P. Scavone, CCRMA, Stanford University, 12 March 1997.

if nargin~=5,
error (’Number of arguments is incorrect.’);
return

end

% Physical constants and evaluation frequencies

n = 1024; % Number of evaluation frequencies
omega = pi/n:pi/n:pi;

c = 347.23;

k = omegax*fs/c;

% Tonehole geometric height
t = tw + (rb/8).*(rb/ra).*(1 + 0.172%(rb/ra)."2);

% The Levine & Schwinger results were calculated by numerical
% integrations out to the limit k*a <= 3.8. The following

% sixth-order polynomial approximations were then made to the
% reflectance magnitude and end correction terms. For values
% of k*a > 3.8, the reflectance magnitude and end corrections
% are approximated by smooth extensions.

rPoly = [-0.00121212308521, 0.01893693792170, -0.12135001867818, 0.39739947149894,

-0.61154450497445, 0.01320529396146, 1.00000000000000] ;

loaPoly = [-0.00134446448269, 0.01444668268791, -0.06220104767324, 0.136922621132,

-0.16112693515620, -0.01536258568872, 0.61000296711212];

z = k*ra;
if max(z) <= 3.8,
r = polyval(rPoly,z);
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loa = polyval(loaPoly,z);
else
i=1;
while z(i) <= 3.8,
i=1i+1;
end
zl = z(1:i-1);
z2 = z(i:length(z));
scale = polyval(rPoly,z(i))*z(i)"(3);
r = [polyval(rPoly,zl),scale./z2."3];
loa = polyval(loaPoly,z1);
scale = polyval(loaPoly,3.8)%0.8"2;
loa = [loa, scale./(z2 - 3).°2];
end
R = -r.xexp(-2%j*z.*loa);

% Open Tonehole Reflectance ¥
rop = R.*¥exp(-2*j*kx*t);

% Design digital filter using method described in JOS thesis,
% pp. 47-50 & 101-103.

na = 1; % poles ¥
nb 1; % zeros Y%

% Weighting to help fit at low frequencies
wt =1 ./ omega.” 2;

br
ar

zeros(1,nb+1);
zeros(1,na+1);

[br,ar] = invfreqz(rop,omega,nb,na,wt);
% Check filter stability %

ps = roots(ar);
if length(ps)>0,
for j=1:length(ps),
if abs(ps(j)) >= 1.0,
disp(’Filter is unstable ... change design parameters!’);
end
end
end

% Plot responses Y%
if display==1,

h = freqz(br,ar,omega);
clf
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subplot(2,1,1)

plot(omega,abs(rop) ,omega,abs(h));
legend (’Continuous-Time Response’,’Discrete-Time Response’);
title(’Open Tonehole Reflectance’);
ylabel(’Magnitude’);
xlabel(’Discrete-Time Radian Frequency’)
grid

axis([0 pi 0 1.1])

subplot(2,1,2)

plot(omega,angle(rop) ,omega,angle(h));
ylabel(’Phase (radians)’);
xlabel(’Discrete-Time Radian Frequency’)

grid

axis([0 pi -pi pi])

disp(’Paused ... hit any key to continue.’)
pause

end

D.6 clarinet.m

% clarinet.m

% This matlab script implements a digital waveguide clarinet model.

% Two toneholes are implemented with two-port scattering junctions,

% and a third tonehole is implemented with a three-port junction.

% An open-end reflectance filter based on the solution of Levine

h & Schwinger is used, and boundary-layer losses are modeled for the
% longest air column length only. The nonlinear excitation is

% implemented by the pressure-dependent reflection coefficient method.

% By Gary P. Scavone, CCRMA, Stanford University, 12 March 1997.
% **x Signal Parameters **x ¥

fs = 44100; % sampling rate
N = 15000; % number of samples to compute

% **x*k*xx* Air Column Parameters ***x*** Y

c = 347.23; % speed of sound in air (meters/second)
ra = 0.0189/2; % radius of bore (meters)

tw = 0.0034; % shortest tonehole height (meters)

rc = 0.0005; % tonehole radius of curvature (meters)

% ***xxxx* Tonehole Radii (meters) #x*x**x Y
rb = [0.00953, 0.00794, 0.00953]/2;

% FINGERING: Fill in the vector below to indicate the tonehole
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finger
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fingering. Each element in the vector corresponds to
the tonehole given by the tonehole radii vector (rb)
above. For each element, a "0" indicates an open hole
and a "1" indicates a closed hole.

[1 0 0];

% **xx*x¥x Distances From Excitation To Toneholes & End (m) #kkkk*x pA

L =1[0.6 0.65 0.7 0.8];

% **¥xkxx Rounded Distances Between Elements (samples) **xk**x 9

D = round(fs*[L(1) L(2:length(L))-L(1:length(L)-1)]1/c);

% **kkkkk Tonehole Filter Coefficient Vectors xxx¥x*x 9

% The first two toneholes are implemented using two-port scattering
% junctions. The last tonehole is implemented using a three-port

% junction.

br_th
ar_th
bt_th
at_th

zrup_th
ztup_th
zrdn_th
ztdn_th

zeros(length(rb-1),3);
zeros(length(rb-1),3);
zeros(length(rb-1),3);
zeros(length(rb-1),3);
= zeros(length(rb-1),2);
= zeros(length(rb-1),2);
= zeros(length(rb-1),2);
= zeros(length(rb-1),2);

% ***xx*x* Closed Tonehole 2-Port Filter Coefficients #¥**x*x* %

for i=1:2,
if finger(i)==1,

end

end

[br_th(i,:),ar_th(i,:),bt_th(i,:),at_th(i,:)] = ...
closhole(ra,rb(i),tw,fs,1);

% **xxxxx*x Open Tonehole 2-Port Filter Coefficients ***xxxx 9

for i=1:2,
if finger(i)==0,

end

end

[br_th(i,:),ar_th(i,1:2),bt_th(i,:),at_th(i,:)] = ...
openhole(ra,rb(i),tw,rc,fs,1);

% *¥*xxxxx Three-Port Junction Scattering Coefficient **kkx*x %

r0 =

-rb(3)°2 ./ (rb(3)"2 + 2%ra"2);
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% **xx*x*x Three-Port Branch Filter Coefficients *¥x**xx Y

if finger(3)==0,
b_branch = [0 1];
a_branch = [1 0];
else
[b_branch,a_branch] = branch(ra,rb(3),tw,fs,1);
end
z_branch = [0];

% ***xx*kx Open-end Reflectance Filter *x*x¥*x ¥

[b_open,a_open] = openpipe(1,2,ra,fs,1);
z_open = [0 0];

% **kxkxkx Boundary-Layer Losses ¥x¥x¥x* ¥,

% The air column lengths between toneholes are short, so that losses
% will be small in these sections. Further, such losses can be

% commuted with fractional-delay filters (which are not incorporated
% here). In this model, boundary-layer losses are only included for
% the first, long cylindrical bore section.

[b_boundary,a_boundary] = boundary(2,2,ra,fs,D(1),1);
z_boundary = zeros(2,2);

% **kxxxx Initialize delay lines *kkkkx* 9

y = zeros(1,N); % initialize output vector
dl1l = zeros(2,D(1));

d12 = zeros(2,D(2));

d13 = zeros(2,D(3));

d14 = zeros(2,D(4));

ptr = ones(length(rb)+1);

upin2pt = zeros(size(rb-1));

dnin2pt = zeros(size(rb-1));

upin3pt = 0;

dnin3pt = 0;

p-branch = 0; % 3-port tonehole branch pressure
p-oc = 0; % initial oral cavity pressure
pinc = 0.01; % oral cavity pressure increment

Yo otk ok ok ok ok ok ok ok ok o ok ok K K K K KoK KK KK KRRk ok kK ok kR ok
o o

% A
% Delay Line %
h [====mmm e h
h B h
% pointer %
h h
% >>--- pointer increments --->> %
h %

% 3 %k 3k 3k ok 5k %k 3k %k 3k 3k ok 5k 5 5k 3k Xk 3k ok 3k %k 5k %k 5k %k %k ok 3k %k 5k %k 5k % %k %k % % % % %
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yA

% The pointer initially points to each delay line output.
% We can take the output and calculate a new input value
% which is placed where the output was taken from. The
% pointer is then incremented and the process repeated.

% **x*x*kx Run Loop Start *x*x*x*
for i = 1:N,

pbminus = d11(2,ptr(1));

upin2pt = [d11(1,ptr(1)), dl12(1,ptr(2))]1;
dnin2pt = [d12(2,ptr(2)), d13(2,ptr(3))];
upin3pt = d13(1,ptr(3));
dnin3pt = d14(2,ptr(4));

% #**¥x*xx*xx Boundary-Layer Loss Filter Calculations #*¥*¥*x
[upin2pt (1) ,z_boundary(1,:)] = ...
filter(b_boundary,a_boundary,upin2pt(1),z_boundary(1i,:));
[pbminus,z_boundary(2,:)] = ...
filter(b_boundary,a_boundary,pbminus,z_boundary(2,:));
% ***x*x*x Open-end Filter Calculations **¥¥i*x

[d14(2,ptr(4)),z_open] = filter(b_open,a_open,dl4(1,ptr(4)),z_open);

% **xx** First Tonehole Calculations: Two-Port ****x Y

[templ,zrup_th(1,:)] filter(br_th(1,:),ar_th(1,:),upin2pt(1),zrup_th(1,:));
[temp2,ztdn_th(1,:)] = filter(bt_th(1,:),at_th(1,:),dnin2pt(1),ztdn_th(1,:));
d11(2,ptr(1)) = templ + temp2;
[templ,zrdn_th(1,:)] = filter(br_th(1,:),ar_th(1,:),dnin2pt(1),zrdn_th(1,:));
[temp2,ztup_th(1,:)] filter(bt_th(1,:),at_th(1,:),upin2pt(1),ztup_th(1,:));
d12(1,ptr(2)) = templ + temp2;

% *xx*x* Second Tonehole Calculations: Two-Port *x**x Y

[templ,zrup_th(2,:)] = filter(br_th(2,:),ar_th(2,:),upin2pt(2),zrup_th(2,:));
[temp2,ztdn_th(2,:)] filter(bt_th(2,:),at_th(2,:),dnin2pt(2),ztdn_th(2,:));
d12(2,ptr(2)) = templ + temp2;
[templ,zrdn_th(2,:)] = filter(br_th(2,:),ar_th(2,:),dnin2pt(2),zrdn_th(2,:));
[temp2,ztup_th(2,:)] = filter(bt_th(2,:),at_th(2,:),upin2pt(2),ztup_th(2,:));
d13(1,ptr(3)) = templ + temp2;

% ***x*%* Third Tonehole Calculations: Three-Port *x*** Y

[p_branch,z_branch] = filter(b_branch,a_branch,p_branch,z_branch);
templ = rO*(upin3pt+dnin3pt-2*p_branch);

d13(2,ptr(3)) = templ + dnin3pt;

d14(1,ptr(4)) = templ + upin3pt;
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h

h

p-branch = templ + dnin3pt + upin3pt - p_branch;
sxxxxk*kx Excitation Calculations ***x*x*x ¥

p-delta = 0.5%p_oc - pbminus;
*x**k* Pressure-Dependent Reflection Coefficient *xx¥*x 7

refl = 0.7 + 0.4*p_delta;
if refl > 1.0
refl = 1.0;
end
d11(1,ptr(1)) = 0.5%p_oc - p_delta*refl;

The system output is determined at the input to the air
column. The oral cavity is incremented until it reaches
the desired value.

y(i) = pbminus + d11(1,ptr(1));
if p_oc < 1,

p-oc = p_oc + pinc;
end

*xx*x*%* Increment Pointers & Check Limits ****xxx

for j=1:4,
ptr(j) = ptr(j) + 1;
if ptr(j) > D(J),
ptr(j) = 1;
end
end

end

h

Clear Figure Window, Plot, and Play

clf

plot(y)

title(’Internal Air-Column Signal’)
xlabel(’Samples’)

ylabel(’Signal Level’)

sound(y,fs)
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