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ABSTRACT
An automated glottal waveform estimation algorithm is pre-
sented that improves on a previous manual glottal extrac-
tion technique which produced excellent glottal waveform
estimates. The algorithm uses only basic approximations
of glottal closure regions and successive iterations to find
the best candidate for a glottal waveform estimate within
a speech frame. Visual comparisons of the glottal wave-
form estimates created by the algorithm and those gener-
ated from the use of glottal closure information provided by
an electroglottograph (EGG) reveal that the algorithm pro-
duced virtually identical estimates.

1. INTRODUCTION

One of the more complex processes in speech analysis is
the estimation of the glottal waveform. The primary prob-
lem in estimating the glottal waveform lies in the difficulty
of separating glottal and vocal tract characteristics in the
acoustic speech waveform. Performing closed-phase analy-
sis implies estimating vocal tract characteristics from a re-
gion of the speech signal where the vocal folds are assumed
closed and the interaction of the glottal and vocal tract dy-
namics are reduced. Essentially, this requires that the glot-
tal closure instants (GCI) be identified directly from the
acoustic speech signal. Various studies have investigated
identifying glottal closure instants (GCI) using techniques
based on dynamic programming [1], glottal input power
[2], formant stability [3], and residual energy [4]. However,
identifying glottal closure instants directly from the acous-
tic waveform is complicated by numerous factors including
speaking style and gender. Females tend to exhibit a higher
pitch than males requiring a more rapid motion of the glottis
which does not always yield complete closure. Vocal disor-
ders and emotional stress can affect the accuracy of identify-
ing specific instants of glottal closure, assuming that one ex-
ists. External sensors, such as Electroglottographs (EGG),
have been documented to correlate well with the mechan-
ics of glottal motion and therefore yield fairly accurate esti-
mates of glottal closure. However, it is necessary to collect

data from these sensors concurrently with the acoustic data
which is not desirable.

Due to the complexity of finding glottal closure instants
(GCI) for estimating the vocal tract, research in [5] pro-
posed a manual glottal extraction technique that produced
smooth and reliable estimates of the glottal waveform over
a wide range of speaking styles. The technique involved
manually sliding small windows across disjoint areas of es-
timated glottal closure in the speech signal in order to find
regions that would yield the best glottal waveform approxi-
mations. The process produced excellent glottal waveform
estimates, but was hampered by the necessity of manual in-
tervention. The algorithm in this paper borrows from the
principles used in [5] but provides improvements that enable
the process to be automated. The algorithm has been suc-
cessfully tested and implemented for work in [6] and shown
to be effective in producing smooth glottal estimates even
for singing voice.

2. THEORY

A useful model of speech production consists of a cascade
of linearly separable filters according to equation 1

S(z) = G(z)V (z)R(z) (1)

where S(z) represents the acoustic speech waveform (for
voiced speech), G(z) represents glottal waveform shaping
of the vocal folds, V(z) models the vocal tract configura-
tion, and R(z) represents the radiation at the lips. Given this
model assumption, an approximation of the quasi-periodic
glottal waveform (G(z)) could be estimated from the acous-
tic speech waveform if the effects of the vocal tract (V (z))
and lip radiation (R(z)) were “removed”. The effects of lip
radiation can be modelled with a first order zero (0.95 ≤
z0 < 1) in discrete-time. Closed phase analysis is often
used to estimate the vocal tract. Fig. 1 shows that the ideal
glottal flow consists of an open phase (i.e., maximum inter-
action with vocal tract) and a closed phase (i.e., minimal in-
teraction with vocal tract). Obtaining an accurate estimate
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Fig. 1. Glottal Waveform Example

of the vocal tract spectrum is critical since it must be re-
moved as completely as possible from the acoustic speech
signal to obtain an accurate estimate of the glottal flow. Lin-
ear prediction (LP) analysis models the vocal tract (V (z))
as an all-pole filter. The advantage of closed phase analy-
sis is that the LP analysis is able to model the vocal tract
almost exclusively since the glottal contribution is minimal.
Glottal inverse filtering (GIF) is used to extract an estimate
of the glottal waveform based on models of V(z) and R(z)
according to equation 2.

G(z) =
S(z)

V (z)R(z)
(2)

The primary problem of GIF is finding a section of the sig-
nal to obtain an accurate model of the vocal tract. Closed
phase analysis depends on finding where the vocal folds are
closed which may not always occur for some types vocal
disorders or emotional stress. In addition, females do not
always produce GCI even in normal speech. A manual glot-
tal extraction technique was described in [5] that made use
of small windows in disjoint regions of the speech signal
to create estimates of the vocal tract. These windows were
slide along areas of expected glottal closure (based on vi-
sual inspection) and the best glottal waveform estimate was
subjectively chosen. While this process yielded excellent
glottal waveform estimates the necessity of manual inter-
vention made it impractical outside of a research environ-
ment. One problem of the technique in [5] was the inability
to automatically choose the best glottal waveform estimate
from the regions under analysis. The algorithm presented
here borrows principles from [5] and improves on them by
implementing a decision structure that allows the best pos-
sible estimate of the glottal waveform for a speech frame to
be selected. The additional advantage of this algorithm is
that it does not require precise glottal closure information
which is difficult to obtain.

3. ALGORITHM

A block diagram of the algorithm is shown in Fig. 2. The
input sk[n] represented a single frame of speech covering
about 4-5 pitch periods. A pitch-synchronous linear pre-
diction (LP) analysis on the unprocessed acoustic speech
waveform provided an initial set of LP parameters (ap) with
model order P which was used to create a residual sig-
nal. The location of the most negative peaks in the resid-
ual signal represented an initial estimation of the locations
where the glottal waveform exhibited the steepest negative
slope, which occurs around the time of closure. The identi-
fied peaks were used as midpoints for an iterative procedure
with the actual starting points (c) determined by subtract-
ing the model order (P ) from the locations of the negative
peaks. An example of this is shown in Fig. 3. The large
dark circles indicate the starting points for the algorithm.
LP parameter estimates were made using multiple disjoint
windows (length=2P) located at the points specified in c.
The covariance method (stability of poles was verified and
reflected as necessary) was used due to the limited window
size. The LP estimates from each disjoint window within
the speech frame were averaged together to smooth the vo-
cal tract estimate for the current iteration. A total of 2P iter-
ations were conducted with the window locations in c being
updated by one sample producing a series of sliding win-
dows around the initial minimum peaks from the residual
signal. For each iteration, both the glottal derivative and LP
estimates were stored in matrices (G and A, respectively)
where the number of rows was equal to the number of iter-
ations.

The essential difference observed among the estimates
in G was that some exhibited very noise-like properties while
others where relatively smooth estimates. The method that
was adopted for choosing the best estimate(s) involved us-
ing a 1st order LP analysis (autocorrelation method) on each
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Fig. 2. Block Diagram Glottal Extraction Algorithm
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Fig. 3. LP Residual with algorithm starting points

glottal derivative estimate in G. The reason for this step was
based on the understanding that the first term of the LP anal-
ysis (a1) represented the ratio of the autocorrelation at lag 1
to the autocorrelation at lag 0 according to equation 3.

a1 =
−r(1)
r(0)

(3)

In essence, a1 represented to a certain extent how well two
consecutive samples were correlated to one another. Uti-
lizing this principle, smoother (i.e., less noisy) estimates
would exhibit values of a1 closer to 1 than an estimate that
was more noisy. The coefficients of a1 for each glottal es-
timate were stored in a vector (a1). The indices (e) of the
vector a1 that corresponded to the values closest to 1 were
chosen as the best glottal derivative estimates from G. As
can be seen for example in Fig. 4, values of a1 that are
closer to 1 are smoother in appearance than those who are
not. This is particularly noticeable for values close to zero
such as for |a1| = .056981 and |a1| = 0.16141. The in-
dices (e) representing the top 99th percentile (i.e., the val-
ues closest to one and greater than 99% of the other choices)
were used to average the best estimates of the glottal deriva-
tive waveform (G[e]) and LP coefficients (A[e]). The glottal
waveform estimate was obtained by integrating the resulting
glottal derivative estimate.

4. RESULTS

For the purpose of this paper, a subset of speech recordings
(fs = 8kHz) with the corresponding EGG data was cho-
sen to show glottal waveform estimates generated using this
algorithm compared to estimates created by using GIF with
the exact glottal closure information provided by the EGG.
A total of 4 subjects (2 males, 2 females) were used and
a sample of the glottal waveform estimates can be seen in
Figs. 5, 6, 7, and 8. In all the figures, part a. represents the
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Fig. 4. Glottal derivative approximations by iteration

glottal waveform estimate from the algorithm with an LP
order of P = 10 (i.e., 20 iterations) and part b. represents
the estimate obtained utilizing EGG data. In nearly every
case, it was observed that the estimates created by the al-
gorithm were virtually identical to the estimates generated
with the precise EGG glottal closure information.

5. CONCLUSION

This algorithm represents an improvement to the one in [5]
by virtue of providing a means of unsupervised implementa-

0 10 20 30 40 50 60

-0.5

0

0.5

1

0 10 20 30 40 50 60

-0.5

0

0.5

1

time (msec)

a.

b.

Fig. 5. Glottal Waveform Estimates for male 1: a.) Algo-
rithm Method b.) EGG Method
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Fig. 6. Glottal Waveform Estimates for male 2: a.) Algo-
rithm Method b.) EGG Method
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Fig. 7. Glottal Waveform Estimates for female 1: a.) Algo-
rithm Method b.) EGG Method
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Fig. 8. Glottal Waveform Estimates for female 2: a.) Algo-
rithm Method b.) EGG Method

tion. Essentially, the algorithm follows the same procedures
that were accomplished manually in [5] with the improve-
ment of automating the decision for the best glottal wave-
form estimate. In addition, this algorithm produces excel-
lent glottal waveform estimates without the added complex-
ity of finding precise GCI’s for analysis. No assumptions
about GCI’s are made beyond the assumption that they are
in the area of the negative peaks of the glottal waveform
derivative. Therefore, the algorithm is free to search for the
best “candidate” within each speech frame. This is an im-
portant point since the result produced by the algorithm is
almost always the best possible approximation of the glot-
tal waveform for a given speech frame. While it was once
thought that the results produced by the algorithm were due
to choosing the same estimation points as those identified by
the EGG data, experiments have shown this to not strictly
be the case as at times the algorithm will select points on
the closing phase and sometimes on the early stages of the
opening phase to find the smoothest estimate. The results
also suggest that while using multiple approximations of
glottal closure regions were necessary, finding precise glot-
tal closure instants was not.
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