Aesthetics of Computer Music Software
Design (part 1)

Ge Wang
CCRMA | Fall 2010

Stanford University
Music 256a / CS 476a

10/4/10

“the purpose of a computer is do
something else.”

- Mark Weiser

The old computing is about what
computers can do...

the new computing is about what
people can do.

(Ben Shneiderman)

The old computing is about what
computers can do...

the new computing is about
what people can do.

(Ben Shneiderman)

“aesthetics”

mindset

behavior

10/4/10

feel

new ways of
doing things

A History of
Programming and Music

“Supposing, for instance, that the fundamental relations of
pitched sounds in the science of harmony and of musical
composition were susceptible of such expression and
adaptations, the engine might compose elaborate and
scientific pieces of music of any degree of complexity or
extent.”

(Ada Lovelace, 1843)

Age of Mainframes

¢ 1950’s to late 1970’s
* Computing power and access severely constrained
* 1957 hourly cost of computing: $200

10/4/10

Rise of MUSIC-N Early MUSIC-N

* Max Mathews « MUSIC I to V (Mathews)

* Unit Generator « MUSIC IV-B (Winham and Howe)
* MUSIC-10 (Chowning, Moore)

« MUSIC 11 (PDP-11)

* MUSIC 360 (Vercoe)

* Cmusic (F. Richard Moore)

* Patches
¢ Orchestra vs. Score

Modern Environments

Max/MSP (Puckett, Zicarrelli)
— graphical patching

Nyquist (Dannenberg)

— LisP, combines orc + sco
SuperCollider (McCartney)

— Smalltalk/C, client/server

Csound (Vercoe et al.)
y Common Lisp Music (Schottstaedt)

~ ,"\‘\\\\\\:\\\\\\\\\\\

R « 1 7

pulse trigger

Distro’s and Libraries

[send™ filter
formant filters
[Feoeive™ Tifter | [Fessive fiter | [Feceive™ fitter |
§ poe]

¢ CARL (Computer Audio Research Lab)
— “UNIX for Music”, open-source

¢ Cmix (Lansky)
— Flexible library for mixing audio, DSP, MINC

« Synthesis Toolkit (Cook and Scavone)
— C++, Physical Modeling, Real-time

H
i
i
i
i
i
i
H —
e eson” 0.5 26"

50 75

glottal pulse shape

o [prepend set
8. [stop |

Languages for Music

¢ Formula (Anderson and Quivila)
— Forth Music Language
— Control signals
— Warpable time-mechanism
« Haskore (Hudak et al)
— Modules in Haskell

— For describing music (mostly western), not sound

10/4/10

Post-modern Environments
(rise of homebrew software, live coding)

* Proliferation of programming environments
— Lower barriers of entry
— End users => developers => end users
¢ TOPLAP
— Temporary organization for proliferation of live audio
programming

e JITLIB, Impromptu, feedback.pl, Fluxus...
— Many more

ChucK

J:‘j; %" A4 k//,
On-the-fly
Programming

-_— N
visuag —Do / enables
(] s ¥

N IR

On-the-fly
Programming

ChuckK

RER s
SN

motivates

Audicle

Flexibility, readability trumps
flexibility

readability performance

25

10/4/10

== HCI Device

Code == Musical instrument

=> syntax
« simple chuck: x => y;
¢ chainchuck: w => x => y => z;

* nestedchuck: w => (x =>y) => z;

e un-chuck: x =< y =< z;
e up-chuck: x =~ y =* z;

29

Controlling Time

Impulse i => dac;

// infinite time loop
while(true)
{
// set the next sample
1.0 => i.next;
// advance time
1::ms => now;

demo 0

ChucK Timing Constructs

* dur is a native type
— units:
samp, ms, second, minute, hour, day, week
— arithmetic:
l::second + 200::ms => dur quarter;
* time is a native type
— now keyword holds current chuck time

— arithmetic:
5::second + now => time later;
while(now < later) {... }

31

10/4/10

Advancing Time

ChucK time stands still until you “advance” it
two semantics for advancing time
— chuck to now
1::second => now;
— wait on event
event => now;
you are responsible for keeping up with time
timing embedded in program flow
time == sound

Concurrent
Audio Programming

Impulse i => BiQuad f => dac;

7N

0.0 => float t;
while(true) while(true)

{ {

// impulse train

// time loop

// sweep center freq
Math.sin(t) => f.freg;
t + 0.01 => t;

100::ms => now;

1.0 => i.next;
80::samp => now;

33

Concurrency

implemented using “shreds”

— resemble non-preemptive threads
automatically synchronized by time!

possible to easily write truly parallel, sample-
synchronous audio code
can work at low and high level

— fine granularity == power and control

— arbitrary granularity == flexibility and efficiency
a solution to the control-rate issue

ChucK Concurrency + Timing

« “strongly-timed”
« no loss of generality (any ugen any time)
« staying “in the language”
— express more from within the language
— greatly reduce need for externals
« provides natural modularity for on-the-fly programs

35

ChucK Virtual Machine

10/4/10

ChucK Virtual Machine

On-the-fly Shreduler

compiler

Chuck
Virtual
Machine

Audio
Engine

1/0
Manager

37

Audio Computation

« controlled by shreds

« computes audio outside of shreds

— traverses the global UGen graph from well-known
sinks, such as ‘dac’

» UGens and UAnae cache the latest computation

On-the-fly Programming

(coding while running with scissors)

39

on-the-fly programming:

(n.) the act of modifying
the logic and structure of a program
during runtime, for the purpose of rapid
experimentation, and exerting expressive
control. (also live coding)

The League of Automatic Composers (1974) B

On-the-fly programmers (2004)

On-the-fly programmers (2008)

10/4/10

Power Tools Can Maim

power to spork many, many, many shreds
power to precisely synchronize shreds
edit and re-spork

query for status...

But, Oops...
which shred is which?
which version of the edited code did I save?
who is using all the processor cycles?
what is the relative timing of the shreds?
who is clipping?

The Audicle

a7

L
o

Debugger . Compiler
AN

VM

VM

Compiler

10/4/10

The Audicle

+ visualization (audio, runtime stats, shreduling, etc.)
+ insight into real-time, live programs
« different views of programs
— syntax (code, objects)
— concurrency (shreds)
- time and timing (time, timing)
— semantics (type, coming soon)
- different view of programming process
— “Program monitoring as performance art” - Andrew Appel
+ new way of thinking about real-time and live audio
programming

in this space

Mrrything goes

Analyze
Sinusoidal analysis

Transient detection
can bo contrllably simiar
10 source sounds or
Transform combinations of greatly
Vast frequency-warp and time-stretch transformed components.
' X
‘Wavelet-tree parametric reconstruction 73
(on stochastic background) v
‘Standard spectral warping
(on transients)
Event density and periodicity i (e 2O SNy

v
Synthesize
Sinusoidal resynthesis
Wavelet-tree synthesis
Group/granular modeling

0)
7@

\
20000} fireworks l
iﬁa@ﬁ- oo
E)

bird

