
Physical Interaction Design for Music

Michael Gurevich, Bill Verplank, Scott Wilson
CCRMA, Department of Music

Stanford University
Stanford, California USA

{gurevich,verplank,rswilson}@ccrma.stanford.edu

Abstract

Teaching physical interaction design for music com-
bines aspects of embedded systems, sensors, electron-
ics, sound synthesis, design and HCI. CCRMA’s courses
in this area draw students with a variety of backgrounds
in these fields, and expose them to aspects of each. Stu-
dents learn about technology and design theory, from
the instructors and from each other. Multidisciplinary
team design projects to create physical interfaces for
music have resulted in a broad range of successful de-
vices that can be described by their situation along a
set of continua.

1 Introduction
CCRMA has offered courses focusing on human-

computer interaction every year since 1996. Presently,
there are two ten-week academic courses during the
fall and winter terms: Music 250A and Music 250B.
In addition, CCRMA now offers a two-week summer
workshop entitled Physical Interaction Design for Mu-
sic. Several aspects of the courses, including the stu-
dents’ varying backgrounds and levels of experience,
the range of topics covered, and the technology em-
ployed present unique educational challenges for the
instructors.

An overview of the goals and implementation of the
courses is provided along with case studies of several
recent projects. We propose a set of three descriptive
axes helpful in situating the projects discussed.

2 Courses

2.1 Music 250A
Music 250A is officially titled Human Computer

Interaction Theory and Practice: Designing New De-
vices. It is supported as a course in both the Music and
Computer Science Departments. Consequently, while
focusing primarily on interfaces for music, the course
tries to address broader issues of interaction design,
and some student projects do not deal exclusively with
music.

Goals. There are two main purposes of the course.
First, the students are exposed to important issues in
the design of physical interfaces. This is accomplished
by examining and thinking about existing devices, and
through exercises in building simple new devices. This
first part of the class covers a technological and the-
oretical background to interaction design so that the
students have at least a portion of both the skills and
knowledge they will need to design successful inter-
faces.

In the second part of the class, normally four weeks,
the students undertake a group project, in which they
design and build a physical interface. Here, the more
general term physical interface is deliberately used in
place of music controller not just to include non-musical
projects (of which there have been very few), but rather
to broaden the scope of kinds, styles or modes of in-
teractions that the projects employ. Where music con-
troller can have a very specific meaning, physical inter-
faces for music covers a broad range of devices from
toys to instruments to art installations. The project
enforces experiential learning, wherein the students’
project ideas provide motivation to acquire resources
and skills that would not otherwise be taught to them
in structured labs. The team nature of the project forces
students to manage group dynamics in the context of a
team design, as well as to draw on each group mem-
ber’s expertise. It is our hope that in addition to learn-
ing something about interfaces and design, each stu-
dent makes at least one ”discovery” by working with or
observing someone who has skills outside of their own
area of expertise. These discoveries can be as simple
as a programmer seeing the mechanical workings of
a tape measure or a musician wiring a microcontrol-
ler circuit from scratch. It is often the demystification
of some seemingly esoteric, yet relatively easy process
that is the most powerful accomplishment a student can
make. Such a discovery frequently opens a student’s
mind to new possibilities and is something that can oth-
erwise be quite difficult to teach.

Students. One of the course’s greatest strengths is in-
deed the diversity of experiences of the students who
make up the course. It not only allows students to learn
from each other, but for each to contribute in his or



her own way. The student body typically consists of
musicians, electrical engineers, product designers and
computer scientists. Project groups are ideally, but not
always, made up of one student from each field. This is
both a blessing and a curse for the class, and presents
one of the most frequent difficulties for the instruc-
tors. In an interdisciplinary team, it is natural for each
member to focus on his or her own area of expertise
to maximize productivity, but as a result it can be diffi-
cult for students to expand their skills outside of what
they already know. Brainstorming and discussion ses-
sions help promote sharing among group members as
well as between groups, but a consistently successful
method of encouraging the kinds of ”discoveries” dis-
cussed above is still elusive. The hands-on interdisci-
plinary nature of this course appears to be unique at
Stanford, where there are other largely theoretical in-
terdisciplinary design courses, and very practical but
discipline-specific courses in mechanical and electrical
engineering.

Practical Instruction In the first part of Music 250A,
we use lectures and lab assignments to get students
started with the theory and tools. Lectures focus al-
ternately on design theory and technology to support
the labs.

Lab exercises make up the practical portion of the
first six weeks of the course. Conceptually, the labs
are divided into two sets of three labs, the second set
being an iteration on the first, going into more detail
and with slightly different focus. This has a number
of effects. We try to dispense with the ”difficult”, yet
more mundane details of microcontroller architecture
and programming and circuit building early on to al-
low deeper thought into the nature of human-computer
interaction during the second iteration. This also im-
plicitly exposes students to the idea of iterating on a de-
sign and the importance of revisiting the first attempt.
By the third week, the students ”complete the chain” as
depicted in figure 1. By this, we mean understanding
the model of the technology we use:

Gesture− > Signal− > Sound,

and implementing a basic system that incorporates the
technology to complete this chain:

Human− > Sensor− > Microcontroller

− > PC− > Loudspeaker.

The second iteration on the lab exercises revisits the
components of the system, focusing more on how each
relates to human performance. For example, last year
students programmed and performed reaction time tests
using the microcontroller, and built signal conditioning
circuits to deal with issues of human and sensor band-
width. The final lab exercise combines all the elements,
where students build a simple controller (often sensors
taped onto an existing object) and demonstrate that it
makes music for the rest of the class.

Theoretical Instruction The theoretical portion of
the course deals with some ”design” lessons, two of
which we will address in detail. The first is to become
aware of the difference between handles and buttons,
the second is a framework or checklist of design con-
siderations.

Handles vs. Buttons. There are three questions for
interaction design: How do you do? How do you feel?
How do you know?. The first question is the one about
devices, not displays or conceptual models. Our first
exercise is to sketch two real controls (one a handle,
the other a button) and to comment on the difference.

Buttons give control over to the machine; handles
allow continuous manual control. With a button, the
user is normally forced into a sequence of presses; with
a handle, a sequence becomes a gesture. Buttons are
more likely symbolic; handles are analogic.

The realization, in the end, is always that we need
both. Buttons determine modes while handles control
whatever variable has been chosen. The button unlocks
the door, the handle allows me to open it. A mouse is a
two-dimensional handle with two buttons.

A Framework for Interaction Design. Successful
interaction design involves balancing a variety of con-
cerns using a variety of methods or representations.
These are not suggested as stages in a design process
but as a framework for checking, in the end, that all the
necessary concerns have been addressed. The frame-
work is illustrated in figure 1. Across the top are the
overviews, across the bottom are the details. Left to
right the columns are ”motivation, meaning, modes and
mappings” or ”observation, invention, engineering and
appearance”.

On the right is some input device or control and an
output display for showing the result (mappings). Next
to that is the task analysis that details the step-by-step
sequences that are organized by the mental model both
for implementers and users (modes). Next, is a set of
scenarios describing for whom you are designing and
a metaphor or two to connect your idea to the solution



Figure 1: Theoretical and Practical Tool Chain.

Figure 2: Interaction Design Framework

(meaning). At the left, is the original error or break-
down and the idea that must be there to notice some-
thing wrong (motivation).

Jeremy Faludi, Audrey Tsang, and Bradley Zim-
ring, for their project ”Dance-former-busta-movatron”,
have sketched (see figure 2) the eight aspects from un-
certain dancers dreaming of creating the music as they
dance to the details of control and auditory display. In
between, are the dream of dancing on stage while mak-
ing music like a DJ and conductor, and the task of mov-
ing while sending signals to a PC for making music.

They avoided the latency of camera sensing by at-
taching bend- and optical-sensors to the dancer.

2.2 Music 250B
Music 250B, ”HCI Performance Systems: Music

Controller Design and Development” is a ten-week con-
tinuation of 250A, that deals more with project devel-
opment. This course has been subject to external forces,
such as scheduling problems and changing degree re-
quirements that have prevented it from having a clear,
consistent focus from year to year. Music 250B is still
trying to find its niche after existing in a number of
different formats in the past few years. However, the
course is not unsuccessful and there are many positive
results that both the students and the instructors have

Figure 3: Framework Sketch Example

taken away from the course.

Goals. The primary educational goal of Music 250B
is for students to choose a project and excel at it. Though
it may seem somewhat simplistic, to define, plan, and
carry out an appropriate project in ten weeks can be
challenging. There is a tendency for students to choose
a more sophisticated engineering problem than they tack-
led in the first term, leading to varying degrees of suc-
cess. An added objective this year was to expose stu-
dents to more advanced topics, both technical and artis-
tic, as a source of knowledge, motivation and inspira-
tion, through a series of guest lectures.

Students. The diversity of students from Music 250A
is often maintained in the second course, but in smaller
numbers. This leads to more individual than group
projects, which fosters more discoveries and exposure
to fields outside the students’ respective areas of exper-
tise, but also leads to more isolation and an increased
risk of ”getting stuck”. Frequently lacking is a criti-
cal mass of students such that those doing interesting,
high-quality work provide an implicit motivation for
the other students to do the same. With a smaller num-
ber of students, there is a tendency for all to get in a rut



of mediocre work.

Topics / Labs. The instructional content of this course
does not add any new technologies to those learned in
the first term, but students are free to explore other
technologies on their own. A certain level of confi-
dence is gained in the first term that allows them to
do so. Lab exercises in the second course revisit some
of the earlier topics in more detail. This year, the se-
quence of labs dealt first with mappings (different ways
to assign gestures or signals to sounds); then with modes
(ways of dynamically altering mappings; and finally
with feedback and displays - how do you know what
state your controller is in? An additional lab dealt with
programming Pd external objects (externs) in C.

2.3 Summer Workshop
The two-week Physical Interaction Design for Mu-

sic summer workshop is essentially a condensed ver-
sion of the Music 250A course, focused more on ex-
posing the participants to the relevant technologies, and
motivating thought about interface design. Given the
short amount of time, student projects are not as sub-
stantial as those in the regular academic course, but
some are quite impressive nonetheless.

Unlike Music250A, most of the summer workshop
participants are musicians, but with varying degrees of
technological expertise. Some struggled with micro-
controller programming and architecture more than oth-
ers, but almost all were able to master the tools to a
reasonable extent. The overall level of musicality of
the student projects is quite impressive, in contrast to
Music 250A, where the biggest weakness of many of
the music-oriented projects is a lack of musical sensi-
tivity that most of the summer workshop participants
intuitively possessed. It is arguable whether or not this
sensitivity can only come from the training and expo-
sure that musicians have, but it has certainly alerted us
to the necessity of at least trying to concisely teach non-
musicians what is musically appropriate and viable in
the context of Music 250A. Due to the varying levels of
technical skills and short amount of time, the workshop
consisted of lectures for the whole group and smaller,
parallel tutorial sessions presenting topics like micro-
controller programming, circuits, sensors and synthesis
/ signal processing in Pd.

A recurring theme in our course has been ”Why Mi-
crocontrollers?”. In other words, why not give students
a black box that does 8 channels of A/D conversion on
0-5V signals and generates MIDI messages? The short
answer is pedagogical. Using a programmable micro-
controller allows the students to learn about computer
architecture, digital logic, programming, A/D conver-
sion and serial and parallel communication protocols.

In learning to program and use a microcontroller,
students develop these skills and intuitions in a prac-
tical, hands-on way that would be difficult with the-

ory alone. Furthermore, it gives students exposure to
the technology used in actual commercial products, de-
mystifying the world of embedded systems. In this re-
spect, our choice of hardware platform is significant.
The Atmel AVR series of microcontrollers is a profes-
sional, commercial-grade technology that is used in a
wide variety of existing commercial devices. Though
the technology can be daunting at first, both the hard-
ware and and software programming platforms sup-
porting the microcontroller are designed in such a way
that it can be used quite simply initially, without block-
ing the more advanced features for advanced students.
In a sense, this is an extension of the open source phi-
losophy into teaching HCI. The system behaves well
for the novice user, and advanced students’ innovations
or modifications can be incorporated into future ver-
sions. Students have without prompting become quite
enthusiastic about documenting and preserving their
work for the benefit of future students. In addition to
teaching more about technology, microcontrollers have
enabled students to produce innovative and highly suc-
cessful projects that would not otherwise be possible.

The choice of a platform programmable in C has
provided several benefits. There is both a wealth of
knowledge and existing free code to be found at CCRMA,
online, and in other fields. This code can be ported,
modified and used at will in the students’ projects. Us-
ing gcc as the compiler is advantageous because it pro-
vides a coherent transition from programming C in Linux
and Mac OS X, with which many students have facility
with, to programming for the microcontroller.

3 Project Case Studies
Of the many projects recently produced in the course,

we have identified several continua along which the
projects are situated. Three of these have been partic-
ularly useful in identifying the different kinds of inter-
actions the projects employ.

Group vs. Individual. Several of the projects can
be played by more than one individual simultaneously.
Such an approach to collaborative music making is sel-
dom found in traditional instruments.

Toy vs. Instrument. This distinction addresses the
difference between toy-like devices which cause mu-
sic to be generated in an incidental way, in the context
of some other interaction (such as juggling or riding
a bicycle) and interfaces that have deliberate musical
results. The latter play a similar role to traditional in-
struments.

Mode Change vs. Expressive Gesture The third
continuum identifies to what extent the player’s phys-
ical gesture is directly expressive on the instrument as
opposed to invoking mode changes at some granularity



Muggling

TMBeat
Matrix

Sound
Kitchen

COOL

Instrument

Toy

Mode 
Changes

Expressive 
Gestures

Solo
Controller

Group
Controller

Figure 4: Interaction type space

Figure 5: Beat Matrix

through contact with the device.

Figure 3 depicts these axes populated with the projects
we discuss below. Given these continua, it is signifi-
cant that we choose to use the term physical interface
and not music controller, as described above. Music
controllers would most likely be situated at one ex-
treme point of this space: devices that are individual in-
struments whose interactions consist of expressive ges-
tures. We have tried to open up this space for student
work, and the resulting projects of been quite diverse
and innovative.

Beat Matrix. The Beat Matrix, by David Lowenfels
and Gregor Hanuschak, is a MIDI drum sequencer us-
ing two 4x4 keypads in conjunction with our devel-
opment board. The goal was to create a 4 beat se-
quencer, using one 4x4 grid to represent the sixteenth
note subdivisions of the beats. This project’s success
lies in its self-contained nature, which was afforded by
the microcontroller. The controls and display are com-
pletely integrated into the device, relying on a com-
puter or synthesizer for sound generation only. Our
platform’s LCD is integral to the device, giving the
user immediate visual feedback for the controls, allow-

Figure 6: Muggling

ing the user to navigate through drum tracks, and dis-
playing the state of the sequencer. David and Gregor
learned to manage the microcontroller’s internal mem-
ory to create and store note sequences. They used in-
terrupts to effectively program the controls, the LCD
display, and MIDI communication to ensure the steady
timing essential for a sequencer. The students intend
to add features including external memory to store user
presets, which should be relatively easy with the cur-
rent platform and the AVRlib’s existing I2C support.

The Beat Matrix is similar in some respects to a tra-
ditional controller in that it is played by an individual,
and and is more like an instrument than a toy. But it is
different in that and it quite far toward the mode change
end of the third axis. This distinction is made because
interaction with the controller consists of making per-
sistent updates to the state of the system. These updates
are fine grained mode changes, altering the current and
future behavior of the system, rather than expressive
gestures.

Muggling. ”Muggling”, developed by Pascal Stang,
Jeff Bernstein and John McCarty, comes from ”musical
juggling”, describing their intention to instrument 3 jug-
gling balls to send signals that could be used to con-
trol musical parameters. The group successfully imple-
mented one ball as a remarkable proof of concept. The
ball contains 4 two-axis accelerometers, from which
linear and angular acceleration in the x, y and z planes
are calculated. Analog acceleration values are sam-
pled, low-pass filtered and interpolated to 14-bits on
an AVR323, then transmitted via a Linx wireless ra-
dio transmitter to a Linx base station receiver. The
portability of the AVRlib code used in class allowed the
group to easily switch to a more capable and substan-
tially smaller microcontroller in the same family with-
out any major code changes. The technology’s low cost
and small package size options allowed the accelerom-
eters, 3-color LEDs, microcontroller and radio trans-
mitter/receiver to be mounted inside a 3” diameter ball.

In contrast to the Beat Matrix, Muggling takes its
place at the opposite end of all three continua proposed
earlier. It is group friendly, permits direct gestural ex-
pression, and is much more a toy than an instrument.



SoundKitchen. Hiroko Shiraiwa, Vivian Woo, and
Rodrigo Segnini created the SoundKitchen, a collec-
tion of sensors designed to sense various parameters of
chemical reactions to create sound. Combinations of
reagents including orange juice, red wine, and baking
soda were mixed in vessels and the resulting voltages
were measured. The result was a set of continuous sen-
sors that were essentially wet cell batteries whose volt-
ages changed predictably as reagents were added to the
mix. The SoundKitchen was presented in a dramatic,
performative manner with a unique aesthetic that com-
bined mad-scientist wizardry and contemporary music
performance.

The characteristics of the chemical reactions used
were carefully worked out in advance. This determin-
ism allowed the group to score their actions and as
such, the SoundKitchen can be considered on the in-
strument end of the toy vs. instrument continuum. The
controller is by nature a group interface and while mode
changes do occur behind the sense, the interaction be-
tween the performers and the devices are quite expres-
sive.

Circular Optical Object Locator (COOL). Tim Han-
kins, David Merrill, and Jocelyn Robert describe the
COOL as follows:

The Circular Optical Object Locator is
a collaborative and cooperative music-making
device. It uses an inexpensive digital video
camera to observe a large rotating platter.
Opaque objects placed on the platter are
detected by the camera during rotation. The
locations of the objects passing under the
camera are used to generate music. (Han-
kins, Merrill, and Robert 2002)

The COOL is unique among the controllers pre-
sented here in that the object; the controller itself and
the act of making music with it are just as important,
if not more so than the musical result. Like the Beat
Matrix, interactions with the COOL can be considered
fine grained mode changes because the effects of the
interaction are persistent, remaining in effect until an-
other interaction is made to explicitly cancel or change
them. This controller falls between the end-points of
the toy vs. instrument continuum, and is most effective
when used collaboratively by more than one person.

Musical TM. The Musical TM (TapeMeasure / TroM-
bone / ThereMin) is an instrumented tape measure de-
signed by Becky Currano, Peter Solderitsch, and Unnur
Gretarsdottir. The TM group successfully used a found
object tape measure as the basis for their project by
fixing a ten turn potentiometer to the rotating cylinder
of the tape measure and digitizing the voltage across
the pot. The tape was mounted inside a piece of card-
board poster tube sized to a comfortable length for one

hand. The tube was outfitted with a series of force-
sensitive resistors positioned to be played by the sup-
porting hand, while the free hand “played” the tape by
sliding it in and out of the tube.

Drawing the tape out of the body of the TM gave
a very accurate and tactile continuous control that was
effective when used to control the pitch of synthesis
patches. In contrast to the previous examples, the TM
is a project that most closely follows the paradigm of
a traditional music controller. It is a solo instrument,
with a repertoire of expressive gestures.

4 Teaching Platform

4.1 Hardware
Our current hardware platform is based on the At-

mel AVR ATmega16 8-bit RISC microcontroller. We
use the processor on the AVRmini custom development
board (Stang 2003b) and program it in C from Linux,
Windows and Macintosh OS X operating systems. The
AVR series has a large active user base ranging from
professional embedded-systems designers to hobbyists.
One of the most important products of that community
has been the AVR’s inclusion as a standard build target
in the open source Gnu gcc compiler.

The Processor. The AVR ATmega16 microcontroller
has a maximum clock speed of 16MHz and the major-
ity of its instructions complete in a single cycle thus
providing assembly code performance near 16 MIPS1.
The ATmega16 has 16KB of flash program memory,
1KB of data SRAM, and 512 bytes of EEPROM mem-
ory2. The processor has several interrupt sources en-
abling a program to respond to a number of internally
and externally-generated events such as timer overflows
and the completion of ADC or serial communication
operations. The AVRlib (Stang 2003a) function library
allows us to package the handling of these interrupts in
a straightforward manner which the students quickly
learn to use.

Standard microcontroller features found on most of
the ATmega series of AVR microcontrollers include
an interrupt-controlled UART for serial communica-
tion and three independent hardware timers, one can be
synchronized to an external Real Time Clock (RTC) os-
cillator. The processor also supports up to three chan-
nels of pulse width modulation (PWM) output. The
ATmega processors support the I2C and SPI commu-
nication protocols facilitating the addition of external
peripheral ICs such as EEPROMs, programmable logic
devices (PLDs) and digital to analog converters (DACs).

1Million instructions per second
2The flash memory stores the compiled program code, the SRAM

holds run-time data, and the EEPROM is intended for storing calibra-
tion information or other data that must persist over power interrup-
tions.



Figure 7: Prototyping Kit

We chose the AVR series of processors for the cost,
memory size, and speed. Specifically we selected the
ATmega16 for its eight channels of integrated 10-bit
analog to digital conversion (ADC). The ADC support
is the most heavily used feature in many student projects.
Having integrated ADCs simplifies the task of reading
continuous sensor circuits. The processor provides sev-
eral choices of analog voltage reference for the ADC
including an external reference, simplifying the task of
scaling the sensor signals.

The Development Board - AVRmini. The AVRmini
development board (Stang 2003b) provides convenient
access to the I/O ports of the processor via blocks of
headers. The headers enable individual pins or entire
I/O ports to be exposed on a wireless prototyping board
using jumper cables. Sensors are also easily connected
directly to the pins of the AVRmini using jumpers. The
board protects all I/O pins with a series resistor in place
by default which can be bypassed as needed.

The AVRmini provides a header connection for an
industry-standard character LCD module using four or
eight I/O lines. The AVRlib (Stang 2003a) library pro-
vides several convenient options for output to the LCD.
A built-in set of four LEDs and four push-buttons on
the AVRmini may be connected via jumper cables to
any of the I/O ports. This functionality has proven
particularly useful in the early stages of learning about
the processor, the development board and basic push-
button and light circuits. The board provides an RTC
clock crystal for clocking the third timer which can be
enabled via jumpers.

Compiled code is downloaded to the microproces-
sor from a computer via an RS-232 serial connection.

The AVRmini provides two RS-232 connectors. Either
one may be patched to the UART so that the program-
ming interface and a serial communications link may
be kept connected simultaneously.

The AVRmini supports all 40-pin DIP and 64-pin
QFP processors in the AVR series providing flexibility
in choosing a processor with features suited to the spe-
cific application. Provision is also made for a bank of
external SRAM of up to 512KB. An efficient switching
voltage regulator prolongs battery life for autonomous
applications and a separate analog voltage reference
regulator may also be installed on the board.

4.2 Software.
We have used Linux almost exclusively for the pro-

gramming and performance of the instruments created
in these courses because CCRMA’s systems are nearly
all Linux-based. An IDE for the AVR exists for Win-
dows, and thanks to the open source tool chain built
around gcc, our development environment is usable from
all the common operating systems in use today.

Compiler and Loader. Programs for the micropro-
cessor are written in C with the addition of special pur-
pose macros for the AVR. A makefile automates the
process of compiling the AVR C code, linking it with
the standard C library and the AVRlib library, generat-
ing the memory map and hex code files, and upload-
ing them into the processor. The compiled code is up-
loaded to the processor using the command line utility
uisp.



Support Library - AVRlib. The AVRlib library of
C support routines (Stang 2003a) is extensive and in-
valuable for work on this platform. AVRlib includes
functions wrapping many of the standard features of
the AVR processors. These include support for man-
aging the timers, using the A/D converters, the UART,
SPI and I2C interfaces, and the PWM outputs. General
purpose code in the library provides bit and byte ori-
ented data buffers, an implementation of a convenient
C-style printf function, and terminal emulation facil-
ity. There is also support for specific peripherals in-
cluding character and graphical LCD modules, external
SRAM, GPS, USB, 400Mhz RF wireless transceivers,
ATA hard drives and an MP3 player! This monumen-
tal library continues to grow and improve as the author
uses it in his own teaching and personal projects.

Control Output. In an effort to provide the students
a flexible set of options for the output of their con-
trollers we support both MIDI and Open Sound Con-
trol (OSC). For MIDI, the standard MIDI output cir-
cuit is attached to the UART pin of the processor. A
series of MIDI-specific functions are provided which
encapsulate the standard UART library routines. OSC
support is provided by including a simplified imple-
mentation of the OSC message construction code and a
similar set of wrappers around the UART library func-
tions. The OSC messages were received on the Linux
computers via RS-232 serial. The OSC UDP receiving
object for Pd(Puckette 2003) was modified to create an
object called OSCSerial that receives messages from
the serial port rather than the network (Wilson 2002).
Students can send MIDI or OSC messages with a sin-
gle C function call, but have access to the libraries to
see exactly what is going on behind the scenes and cus-
tomize or extend the functions if necessary.

Pd is our software of choice for designing the musical
side of the projects because of its availability on several
platforms and its popularity at CCRMA. Students have
also used the MIDI output functionality to communi-
cate with Max, Pd, and commercial music gear.

5 Conclusions
CCRMA’s three human-computer interaction courses

expose an interdisciplinary group of students to techni-
cal and theoretical aspects of physical interaction de-
sign. The main pedagogical goals are that the students
achieve technical skills necessary to design and build
functioning physical interfaces, develop a vocabulary
and critical thinking skills with which to evaluate ex-
isting interfaces and build a conceptual framework in
which to design new ones, and to gain experience by
carrying out a team-based interdisciplinary design project.

The interdisciplinary nature of the students, and of
the subject of the courses themselves provides a set of
unique challenges. Our approach is to have all students,

regardless of their background individually tackle all of
the technical issues before breaking into more multi-
disciplinary project teams. This allows students to first
glean knowledge from fields other than their own, and
then provides them with an opportunity to shine in do-
ing what they do best. This approach also tries to en-
courage students to learn from one another. The em-
powerment of students who make simple discoveries
in new fields is quite striking. Student projects demon-
strate the technological and design mastery that can be
achieved in a short amount of time drawing on these in-
terdisciplinary groups, and provide us with useful con-
tinua for thinking about methods of interaction.

To support the courses, a powerful microcontroller-
based hardware platform is used that provides relatively
easy operation of basic tools for beginning students,
while advanced students still have access to powerful,
professional-level tools that promote portability, scala-
bility, and ample support for refinement and true inno-
vation in their projects.

6 Acknowledgments
Thanks to Max Mathews, Pascal Stang, Wendy Ju,

Stefania Serafin, Chris Chafe, Gary Scavone, Fernando
Lopez-Lezcano and the CCRMA and music department
administrators. Thanks to all of the participants in the
2002 summer workshop who were good sports as our
guinea pigs. Thanks to David Lowenfels, Vivian Woo,
Rodrigo Segnini, Hiroko Shiraiwa, Pascal Stang, John
McCarty, Jeffrey Bernstein, Gregor Hanuschak, David
Merrill, Tim Hankins, Jocelyn Robert, Becky Currano,
Peter Solderitsch, Unnur Gretarsdottir, Jeremy Faludi,
Audrey Tsang, and Bradley Zimring.

References
Hankins, T., D. Merrill, and J. Robert (2002). Circular op-

tical object locator. In NIME 2002.
Puckette, M. (2003, January). Pure data. http://

crca.ucsd.edu/˜msp/software.html.
Stang, P. (2003a, January). Avrlib: C function li-

brary code for atmel avr processors. http://www.
procyonengineering.com/avr/avrlib/.

Stang, P. (2003b, January). Avrmini: Homepage of
the diminutive atmel avr application/development
board. http://www.procyonengineering.
com/avr/avrmini/.

Wilson, S. (2002, August). Osc serial object.
http://www-ccrma.stanford.edu/
˜rswilson/OSCSerial.


