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The beer warms a bit as you pound the remote control. Again and again, temper fraying, 
you click the “channel up” key until the TV finally rewards your efforts. But it turns out 
channel 345 is playing Jeopardy so you again wave the remote in the general direction of 
the set and continue fiddling with the buttons.  
 
Some remotes work astonishingly well, even when you bounce the beam off three walls 
before it impinges on the TV’s IR detector. Others don’t. One vendor told me reliability 
simply isn’t important as users will subconsciously hit the button again and again till the 
channel changes. 
 
When a single remote press causes the tube to jump two channels, we developers know 
lousy debounce code is at fault. The FM radio on my sailboat has a tuning button that 
advances too far when I hit it hard. The usual suspect: bounce.  
 
When the contacts of any mechanical switch bang together they rebound a bit before 
settling, causing bounce. Debouncing, of course, is the process of removing the bounces, 
of converting the brutish realities of the analog world into pristine ones and zeros. Both 
hardware and software solutions exist, though by far the most common are those done in 
a snippet of code. 
 
Surf the net to sample various approaches to debouncing. Most are pretty lame. Few are 
based on experimental bounce parameters. A medley of anecdotal tales passed around the 
newsgroups substitute for empirical evidence. 
 
Ask most developers about the characteristics of a bounce and they’ll toss out a guess at a 
max bounce time. But there’s an awful lot going on during the bounce. How can we build 
an effective bounce filter, in hardware or software, unless we understand the entire event? 
During that time a long and complex string of binary bits is hitting our code. What are the 
characteristics of that data? 
 
We’re writing functions that process an utterly mysterious and unknown input string. 
That’s hardly the right way to build reliable code. 
 

The Data 
So I ran some experiments. 
 
I pulled some old switches out of my junk box. 20 bucks at the ever-annoying local Radio 
Shack yielded more (have you noticed that Radio Shack has fewer and fewer 
components? It’s getting hard to buy a lousy NPN transistor there).  Baynesville 
Electronics (http://www.baynesvilleelectronics.com), Baltimore’s best electronics store, 
proved a switch treasure trove. Eventually I had 18 very different kinds of switches. 
 
My desktop PC always has a little $49 MSP430 (TI’s greatly underrated 16 bit 
microprocessor) development board attached, with IAR’s toolchain installed. It’s a matter 
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of seconds to pop a little code into the board and run 
experiments. Initially I’d planned to connect each switch to 
an MSP430 input and have firmware read and report bounce 
parameters. A bit of playing around with the mixed signal 
scope (MSO) showed this to be an unwise approach.   
 
Many of the switches exhibited quite wild and unexpected 
behavior. Bounces of under 100 nsec were common (more on 
this later). No reasonable micro could reliably capture these 
sorts of transitions, so I abandoned that plan and instead used 
the scope, connecting both analog and digital channe ls to the 
switch. This let me see what was going on in the analog 
domain, and how a computer would interpret the data. A 5 
volt supply and 1k pull-up completed the test jig. 
 
If a sub-100 nsec transition won’t be captured by a computer 
why worry about it? Unfortunately, even a very short signal 
will toggle the logic once in a while. Tie it to an interrupt and 
the likelihood increases. Those transitions, though very short, 
will occasionally pervert the debounce routine. For the sake 
of the experiment we need to see them. 
 
I tested the trigger switches from an old cheap game-playing 
joystick (the three yellow ones in the  picture), the left mouse button from an ancient 
Compaq computer (on PCB in upper left corner), toggle switches, pushbuttons, and slide 
switches. Some were chassis mount, others were to be soldered directly onto circuit 
boards. 

 
Switches tested. The upper left is switch A, with B to its right, working to E (in red), and 

then F below A, etc. 

I gave up regular 
oscilloscopes long 
ago; now my Agilent 
54645D MSO is a 
trusty assistant that 
peers deep into 
electronic systems. An 
MSO is both logic 
analyzer and o-scope, 
all in one. Trigger 
from either an analog 
channel or a digital 
pattern to start the 
trace. The MSO 
shows, like no other 
instrument, the 
relationship between 
the real world and our 
digital instantiation of 
it. 
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I pressed each switch 300 times, logging the min and max amount of bouncing for both 
closing and opening of the contacts. Talk about mind-numbingly boring! I logged every 
individual bounce time for each actuation into a spreadsheet for half the switches till my 
eyes glazed over and gentle wife wondered aloud if I was getting some sort of Pavlovian 
reward. 
 
The results were interesting. 
 

Bounce Stats 
So how long do switches bounce for? The short answer: sometimes a lot, sometimes not 
at all. 
 
Only two switches exhibited bounces exceeding 6200 µsec. Switch E, what seemed like a 
nice red pushbutton, had a worst case bounce when it opened of 157 msec – almost a 1/6 
of a second! Yuk. Yet it never exceeded a 20 µsec bounce when closed. Go figure. 
 
Another switch took 11.3 msec to completely close one time; other actuations were all 
under 10 msec. 
 
Toss out those two samples and the other 16 switches exhibited an average 1557 µsec of 
bouncing, with, as I said, a max of 6200 µsec. Not bad at all. 
 
Seven of the switches consistently bounced much longer when closed than when opened. 
I was amazed to find that for most of the switches many bounces on opening lasted for 
less than 1 µsec – that’s right, less than a millionth of a second. Yet the very next 
experiment on the same switch could yield a reading in the hundreds of microseconds.  
 
Identical switches were not particularly identical. Two matching pairs were tested; each 
twin differed from its brother by a factor of two. 
 
Years ago a pal and I installed a system for the Secret Service that had thousands of very 
expensive switches on panels in a control room. We battled with a unique set of bounce 
challenges because the uniformed officers were too lazy to stand up and press a button. 
They tossed rulers at the panels from across the room. Different impacts created (and 
sometimes destroyed, but hey, it’s only taxpayer money after all) quite an array of 
bouncing. So in these experiments I tried to actuate each device with a variety of 
techniques. Pushing hard or soft, fast or slow, releasing gently or with a snap, looking for 
different responses. F, a slide switch, was indeed very sensitive to the rate of actuation. 
Toggle switch G showed a 3 to 1 difference in bounce times depending on how fast I 
bonked its lever. A few others showed similar results but there was little discernable 
pattern. 
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Bounce times in microseconds, for opening and closing each switch (number A to R). 

Switch E was left out, as its 157 msec bounces would horribly skew the graph. 
 
 
I was fascinated with the switches’ analog behavior. A few operated as expected, yielding 
a solid zero or 5 volts. But most gave much more complicated responses.  
 
The MSO responded to digital inputs assuming TTL signal levels. That means 0 to .8 
volts is a zero, 0.8 to 2.0 is unknown, and above 2 a one. The instrument displayed both 
digital and analog signals to see how a logic device would interpret the real-world’s 
grittiness.  
 
Switch A was typical. When opened the signal moved just a bit above ground and 
wandered in the hundreds of millivolt s range for up to 8 msec. Then it suddenly snapped 
to a one. As the signal meandered up to near a volt the scope interpreted it as a one, but 
the analog’s continued uneasy rambles took it in and out of “one” territory. The MSO 
showered the screen with hash as it tried to interpret the data.  
 
It was if the contacts didn’t bounce so much as wiped, dragging across each other for a 
time, acting like a variable resistor. 
 
 



Page 5                                                                                            A Guide to Debouncing 
 

 
Switch A at 2 msec/div. Note 8 msec of unsettled behavior before it finally decides to 

open. 
 
Looking into this more deeply I expanded the traces for switch C and, with the help of 
Ohm’s Law, found the resistance when the device opened crawled pretty uniformly over 
150 µsec from zero to 6 ohms, before suddenly hitting infinity. There was no bouncing 
per se; just an uneasy ramp up from 0 to 300 mV before it suddenly zapped to a solid +5. 
 
 

 
Switch C – 50 µsec/div and 200 mV/div.  

 
Another artifact of this wiping action was erratic analog signals treading in the dreaded 
no-man’s land of TTL uncertainty (0.8 to 2.0 volts), causing the MSO to dither, tossing 
out ones or zeroes almost randomly, just as your microprocessor would if connected to 
the same switch. 
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Switch B – note how the analog peak to the right didn’t quite trigger the logic channel. 

 
The two from the el cheapo game joystick were nothing more than gold contacts plated 
onto a PCB; a rubber cover, when depressed, dropped some sort of conductive elastomer 
onto the board. Interestingly, the analog result was a slow ramp from zero to five volts, 
with no noise, wiping or other uncertainty. Not a trace of bounce. And yet… the logic 
channel showed a msec or so of wild oscillations! What’s going on? 
 
With TTL logic, signals in the range of 0.8 to 2.0 volts are illegal. Anything goes, and 
everything did. Tie this seemingly bounce-free input to your CPU and prepare to deal 
with tons of oscillation – virtual bounces. 
 
 

 
Switch K at 5 msec/div – which slowly ramps up and down when actuated. Cool! 

 
 
My assessment, then, is that there’s much less whacking of contacts going on than we 
realize. A lot of the apparent logic hash is from analog signals treading in illegal logic 
regions. Regardless, the effect on our system is the same and the treatment identical. But 
the erratic nature of the logic warns us to avoid simple sampling algorithms, like 
assuming two successive reads of a one means a one. 
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Anatomy of a Bounce 
So we know how long the contacts bounce and that lots of digital zaniness – ultra short 
pulses in particular - can appear. 
 
But what happens during the bounce? Quite a lot, and every bounce of every switch was 
different. Many produced only high speed hash till a solid one or zero appeared. Others 
generated a serious pulse train of discernable logic levels like one might expect. I was 
especially interested in results that would give typical debounce routines heartburn.  
 
Consider switch E again, that one with the pretty face that hides a vicious 157 msec 
bouncing heart. One test showed the switch going to a solid one for 81 msec, after which 
it dropped to a perfect zero for 42 msec before finally assuming its correct high state. 
Think what that would do to pretty much any debounce code! 
 

 
Switch E again, at 50 msec/div. Do you have blood pressure problems? You will after 

writing code to debounce this! 
 
 
Switch G was pretty well behaved, except that a couple of times it gave a few 
microsecond one before falling to zero for over 2 msec. Then it assumed its correct final 
one. The initial narrow pulse might escape your polled I/O, but would surely fire off an 
interrupt, had you dared wire the system so. The poor ISR would be left puzzled as it 
contemplates 2 msec of nothingness. “Me? Why did it invoke me? Ain’t nuthin’ there!” 
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Switch G. One super narrow pulse followed by 2 msec of nothingness. A sure-fire ISR 

confuser. 
 
O is a very nice, high quality microswitch which never showed more than 1.18 msec of 
bouncing. But digging deeper I found it usually generated a pulse train guaranteed to play 
havoc with simple filter code. There’s no high speed hash, just hard-to-eliminate solid 
ones and zeroes. One actuation yielded 7 clean zeroes levels ranging in time from 12 to 
86 µsec, and 7 logic ones varying from 6 to 95 µsec. Easy to filter? Sure. But not by code 
that just looks for a couple of identical reads. 
 
 

 
Switch O, which zaps around enough to confuse dumb debouncers. 

 
 
 



Page 9                                                                                            A Guide to Debouncing 
 

 
Switch Q – when released, it goes high for 480 µsec before generating 840 µsec of hash, 

a sure way to blow an interrupt system mad if poorly designed. 
 
 
What happens if we press the buttons really, really fast? Does that alter the bouncing in a 
significant way? It’s awfully hard for these 50 year old fingers to do anything particularly 
quickly, so I set up a modified experiment, connecting my MSP430 board to a sizeable 3 
amp four pole relay. Downloading code into the CPU’s flash let me toggle the relay at 
different rates.  
 
Bounce times ranged from 410 to 2920 µsec, quite similar to those of the switches, 
presumably validating the experiment. The relay had no noticeable analog effects, 
banging cleanly between 0 and 5 volts.  
 
The raucous clacking of contacts overwhelmed our usual classical fare for a few hours as 
the MSO accumulated bounce times in storage mode. When the relay opened it always 
had a max bounce time of 2.3 to 2.9 msec, at speeds from 2.5 to 30 Hz. More variation 
appeared on contact closure: at 2.5 Hz bounces never exceeded 410 µsec, which climbed 
to 1080 µsec at 30 Hz. Why? I have no idea. But it’s clear there is some correlation 
between fast actuations and more bounce. These numbers suggest a tractable factor of 
two increase, though, not a scary order of magnitude or more. 
 

Conclusion 
In the bad old days we used a lot of leaf switches which typically bounced forever. 
Weeks, it seemed. Curious I disassembled a number of cheap consumer products 
expecting to find these sort of inexpensive devices. None found! Now that everything is 
mounted on a PCB vendors use board-mounted switches, which are pretty darn good little 
devices. 
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PCB switches in a cheap coffee maker. 

 
 
I admit these experiments aren’t terribly scientific. No doubt someone with a better 
education and more initials following his name could do a more reputable study for one 
of those journals no one reads. But as far as I know there’s no data on the subject 
available anywhere, and we working engineers need some empirical information.  
 
Use a grain of salt when playing with these numbers. Civil engineers don’t really know 
the exact strength of a concrete beam poured by indolent laborers, so they beef things up 
a bit. They add margin. Do the same here. Assume things are worse than shown. 
 
 

Hardware Debouncers 
Figure 1 shows the classic debounce circuit. Two cross-coupled NAND gates form a very 
simple Set-Reset (SR) latch. The design requires a double-throw switch. Two pull-up 
resistors generate a logic one for the gates; the switch pulls one of the inputs to ground. 
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Figure 1: The SR debouncer 

 
The SR latch is a rather funky beast, as confusing to non-EEs as recursion is to, well, just 
about everyone.  
 
With the switch in the position shown the upper gate’s output will be a one, regardless of 
the value of the other input. That and the one created by the bottom pull-up resistor drives 
the lower NAND to a zero… which races around back into the other gate. If the switch 
moves between contacts, and is for a while suspended in the nether region between 
terminals, the latch maintains its state because of the looped back zero from the bottom 
gate.  
 
The switch moves a rather long way between contacts. It may bounce around a bit, but 
will never bang all the way back to the other contact. Thus, the latch’s output is 
guaranteed bounce-free. 
 
The circuit suggests an alternative approach, a software version of the same idea. Why 
not skip the NAND pair and run the two contracts, with pull-ups, directly to input pins on 
the CPU? Sure, the computer will see plenty of bounciness, but write a trivial bit of code 
that detects any assertion of either contact… which means the switch is in that position, 
as follows: 
 

if(switch_hi())state=ON; 
if(switch_lo())state=OFF; 

 
switch_hi and switch_lo each reads one of the two throws. Other functions in the 
program examine variable state to determine the switch’s position.  
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This saves two gates but costs one extra input pin on the processor. It’s the simplest – and 
most reliable – debounce code possible. 
 
The MC14043/14044 chips consist of four SR flip flops, so might be an attractive 
solution for debouncing multiple switches. A datasheet can be found at 
http://www.radanpro.com/el/dslpro.php?MC14043.pdf. 
 
 

An RC Debouncer 
The SR circuit is the most effective of all debouncing approaches… but it’s rarely used. 
Double-throw switches are bulkier and more expensive than the simpler single-throw 
versions. An awful lot of us use switches that are plated onto the circuit board, and it’s 
impossible to make DP versions of these. So EEs prefer alternative designs that work 
with cheap single-throw switches. 
 
Though complex circuits using counters and smart logic satisfy our longing for pure 
digital solutions to all problems, from signal processing to divorce, it’s easier and cheaper 
to exploit the peculiar nature of a resistor-capacitor (RC) network. 
 
Charge or discharge a capacitor through a resistor and you’ll find the voltage across the 
cap rises slowly; it doesn’t snap to a new value like a sweet little logic circuit. Increase 
the value of either component and the time lag (“time constant” in EE lingo) increases.  
 

 
Figure 2: An RC debouncer 

 
Figure 2 shows a typical RC debouncer. A simple circuit, surely, yet one that hides a 
surprising amount of complexity. 
 
Suppose our fearless flipper opens the switch. The voltage across the cap is zero, but it 
starts to climb at a rate determined by the values of R1, R2 and C. Bouncing contacts pull 
the voltage down and slow the cap’s charge accumulation. If we’re very clever in 
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selecting the values of the components the voltage stays below a gate’s logic one level till 
all of the whacking and thudding ceases. (If the time constant is too long, of course, the 
system won’t be responsive to fast switch actuations). 
 
The gate’s output is thus a pristine bounce-free logic level. 
 
Now suppose the switch has been open for a while. The cap is fully charged. Snap! The 
user closes the switch, which discharges the cap through R2. Slowly, again, the voltage 
drools down and the gate continues to see a logic one at its input for a time. Perhaps the 
contacts open and close a bit during the bouncing. While open, even if only for short 
periods, the two resistors start to recharge the cap, reinforcing the logic one to the gate. 
Again, the clever designer selects component values that guarantee the gate sees a one 
until the clacking contacts settle. 
 
Squalid taverns are filled with grizzled veterans of the bounce wars recounting their 
circuits and tales of battles in the analog trenches. Most will puzzle over R2, and that’s 
not entirely due to the effects of the cheap booze. The classic RC debouncer doesn’t use 
this resistor, yet it’s critically important to getting a thwack-free output from the gate. 
 
R2 serves no useful purpose when the switch opens. R1 and C effectively remove those 
bounces. But strange things can happen when suddenly discharging a capacitor. The early 
bouncing might be short, lasting microseconds or less. Though a dead short should 
instantly discharge the cap, there are no pristine conditions in the analog world. The 
switch has some resistance, as do the wires and PCB tracks that interconnect everything.  
 
Every wire is actually a complex circuit at high speeds. You wouldn’t think a dull-headed 
customer flipping the switch a few times a second would be generating high-speed 
signals, but sub-microsecond bounces, which may have very sharp rise times, have 
frequency components in the tens of MHz or more. Inductance and stray capacitance 
raises the impedance (AC resistance) of the closed switch. The cap won’t instantly 
discharge. 
 
Worse, depending on the physical arrangement of the components, the input to the gate 
might go to a logic zero while the voltage across the cap is still one- ish. When the 
contacts bounce open the gate now sees a one. The output is a train of ones and zeroes – 
bounces.  
 
R2 insures the cap discharges slowly, giving a clean logic level regardless of the storm of 
bounces. The resistor also limits current flowing through the switch’s contacts, so they 
aren’t burned up by a momentary major surge of electrons from the capacitor. 
 
Another trick lurks in the design. The inverter cannot be a standard logic gate. TTL, for 
instance, defines a zero as an input between 0.0 and 0.8 volts. A one starts at 2.0. In 
between is a DMZ which we’re required to avoid. Feed 1.2 volts to such a gate and the 
output is unpredictable. But this is exactly what will happen as the cap charges and 
discharges. 
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Instead use a device with “Schmitt Trigger” inputs. These devices have hysteresis; the 
inputs can dither yet the output remains in a stable, known state.  
 
Never run the cap directly to the input on a microprocessor, or to pretty much any I/O 
device. Few of these have any input hysteresis. 
 
 

Doing The Math 
The equation for discharging a cap is: 
 

)( RC
t

initialcap eVV
−

=  
 
where 

capV  is the voltage across the capacitor at time t, 

initialV  is the voltage initially on the cap, 
t  is the time in seconds, 
R and C are the values of the resistor and capacitor in ohms and farads, 
respectively. 

 
The trick is to select values that insure the cap’s voltage stays above thV , the threshold at 
which the gate switches, till the switch stops bouncing. It’s surprising how many of those 
derelicts hanging out at the waterfront bars pick an almost random time constant. “The 
boys ‘n me, we jest figger sumpin like 5 msec”. Shortchanging a real analysis starts even 
a clean-cut engineer down the slippery slope to the wastrel vagabond’s life. 
 
Most of the switches I examined last month had bounce times well under 10 msec. Use 
10 to be conservative. Now increase that by the bounce duty cycle. Thumping contacts 
will slow the capacitor’s charge. My data shows we can expect about a 50% duty cycle, 
giving us 20 msec. 
 
Rearranging the time constant formula to solve for R (the cost and size of caps vary 
widely so it’s best to select a value for C and then compute R) yields: 
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Though it’s an ancient part, the 7414 hex inverter is a Schmitt Trigger with great input 
hysteresis. The AHCT version has a worst case thV for a signal going low of 1.7 volts. 
Let’s try 0.1 µF for the capacitor since those are small and cheap, and solve for the 
condition where the switch just closes. The cap discharges through R2.  If the power 
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supply is 5 volts (so initialV  is 5), then R2 is 185 kO. Of course, you can’t actually buy that 
kind of resistor, so use 180 kO. 
 
But… the analysis ignores the gate’s input leakage current. A CMOS device like the 
74AHCT14 dribbles about a microamp from the inputs. That 180 kO resistor will bias the 
input up to .18 volts, uncomfortably close to the gate’s best-case switching point of 0.5 
volt. Change C to 1 µF and R2 is now 18 kO. 
 
R1 + R2 controls the cap’s charge time, and so sets the debounce period for the condition 
where the switch opens. The equation for charging is: 
 

)1( RC
t
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−

−=  
 
Solving for R: 
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finalV  is the final charged value – the 5 volt power supply. thV  is now the worst-case 
transition point for a high-going signal, which for our 74AHCT14 a peachy 0.9 vo lts. R1 
+ R2 works out to 101 kO. Figure on 82 kO (a standard part) for R1. 
 
 

 
Figure 3: An RC debouncer that actually works in all cases 

 
 
The diode is an optional part needed only when the math goes haywire. It’s possible, with 
the wrong sort of gate where the hysteresis voltages assume other values, for the formulas 
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to pop out a value for R1 + R2 which is less than that of R2. In this case the diode forms a 
short cut that removes R2 from the charging circuit. All of the charge flows through R1. 
The previous equation still applies, except we have to account for drop across the diode. 
Change finalV  to 4.3 volts (5 minus the 0.7 diode drop), turn the crank and R1 pops out.  
 
Be wary of the components’ tolerances. Standard resistors are usually ±5%. Capacitors 
vary wildly - +80/-20% is a common rating for electrolytics. Even small ceramics might 
vary ±30%. 
 

Other Thoughts 
Don’t neglect to account for the closed resistance of oddball switches. Some conductive 
elastomer devices exceed 200 ohms. 
 
Two of the elastomer switches I examined last month didn’t bounce at all; their output 
smoothly ramped from zero to +5 volts. The SR and RC debounce circuits are neither 
necessary nor effective. Better: run the switch directly into a Schmitt Trigger’s input.  
 
Never connect an undebounced switch to the clock of a flip-flop. The random bounce 
hash is sure to confuse the device. A 74HCT74 has a max rise and fall time spec of 6 nsec 
– easily exceeded by some of the data I acquired from the 18 switches tested. 
 
The 74HC109 requires a minimum clock width of 100 nsec. I found pulses shorter than 
this in my experiments. Its higher-tech brother, the 74HFC109 actually has a Schmitt 
Trigger clock input – it’s a much safer part to use when connected to real-world events. 
 
Similarly, don’t tie undebounced switches, even if Schmitt Triggered, to interrupt inputs 
on the CPU. Usually the interrupt pin goes to the clock input of an internal flip flop. As 
processors become more complex their datasheets give less useful electrical information; 
they’re awash in programming data but leave designers adrift without complete timing 
specs. Generally we have no idea what the CPU expects as a max rise time or the min 
pulse width. Those internal flops aren’t perfect, so don’t flirt with danger by feeding them 
garbage.  
 
The MC14490 is a cool chip that consists of 6 debouncers. A datasheet is at 
http://engineering.dartmouth.edu/~engs031/databook/mc14490.pdf. But in August of 
2004 Digikey wants $5.12 each for these parts; it’s cheaper to implement a software 
debounce algorithm in a PIC or similar sub-$1 microcontroller. 
 
Always remember to tie unused inputs of any logic circuit to Vcc or ground.  
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Software Debouncers 
 
Software debounce routines range from the utterly simple to sophisticated algorithms that 
handle multiple switches in parallel. But many developers create solutions without 
completely understanding the problem. Sure, contacts rebound against each other. But the 
environment itself can induce all sorts of short transients that mask themselves as switch 
transitions. Called EMI (electromagnetic interference), these bits of nastiness come from 
energy coupled into our circuits from wires running to the external world, or even from 
static electricity zaps induced by shuffling feet across a dry carpet. Happily EMI and 
contact whacking can be cured by a decent debounce routine… but both factors do affect 
the design of the code. 
 
Consider the simplest of all debouncing strategies: read the switch once every 500 msec 
or so, and set a flag indicating the input’s state. No reasonable switch will bounce that 
long. A read during the initial bounce period returns a zero or a one indicating the 
switch’s indeterminate state. No matter how we interpret the data (i.e., switch on or off) 
the result is meaningful. The slow read rate keeps the routine from deducing that bounces 
are multiple switch closures. One downside, though, is slow response. If your user won’t 
hit buttons at a high rate this is probably fine. A fast typist, though, can generate 100 
words per minute or almost 10 characters per second. A rotating mechanical encoder 
could generate even faster transitions. 
 
But there’s no EMI protection inherent in such a simple approach. An application 
handling contacts plated onto the PCB is probably safe from rogue noise spikes, but one 
that reads from signals cabled onto the board needs more sophisticated software, since a 
single glitch might look like a contact transition. 
 
It’s tempting to read the input a couple of times each pass through the 500 msec loop and 
look for a stable signal. That’ll reject much or maybe all of the EMI. But some 
environments are notoriously noisy. Many years ago I put a system using several Z80s 
and a PDP-11 in a steel mill. A motor the size of a house drawing thousands of amps 
drove the production line. It reversed direction every few seconds. The noise generated 
by that changeover coupled everywhere, and destroyed everything electronic unless 
carefully protected. We optocoupled all cabling simply to keep the smoke inside the ICs, 
where it belongs. All digital inputs still looked like hash and needed an astonishing 
amount of debounce and signal conditioning. 
 

Debounce Policy 
Seems to me there are some basic constraints to place on our anti-contact-clacking 
routines. Minimize CPU overhead. Burning execution time while resolving a bounce is a 
dumb way to use processor cycles. Debounce is a small problem and deserves a small 
part of the computer’s attention.  
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The undebounced switch must connect to a programmed I/O pin, never to an interrupt. 
Few microprocessor datasheets give much configuration or timing information about the 
interrupt inputs. Consider Microchip’s PIC12F629 (datasheet at 
http://ww1.microchip.com/downloads/en/DeviceDoc/41190c.pdf). A beautiful schematic 
shows an interrupt pin run through a Schmitt Trigger device to the data input of a pair of 
flops. Look closer and it’s clear that’s used only for one special “interrupt on change” 
mode. When the pin is used as a conventional interrupt the signal disappears into the 
bowels of the CPU, sans hysteresis and documentation. However, you can count on the 
interrupt driving the clock or data pin on an internal flip flop. The bouncing zaniness is 
sure to confuse any flop, violating minimum clock width or the data setup and hold times. 
 
Try to avoid sampling the switch input at a rate synchronous to events in the outside 
world that might create periodic EMI. For instance, 50 and 60 Hz are bad frequencies. 
Mechanical vibration can create periodic interference. I’m told some automotive vendors 
have to avoid sampling at a rate synchronous to the vibration of the steering column. 
 
Finally, in most cases it’s important to identify the switch’s closure quickly. Users get 
frustrated when they take an action and there’s no immediate response. You press the 
button on the gas pump or the ATM and the machine continues to stare at you, dumbly, 
with the previous screen still showing, till the brain-dead code finally gets around to 
grumpily acknowledging that, yes, there IS a user out there and the person actually DID 
press a button.  
 
Respond instantly to user input. In this fast-paced world delays aggravate and annoy. But 
how fast is fast enough? 
 
I didn’t know so wired a switch up to the cool R3000 starter kit Rabbit Semiconductor 
provides. This board and software combo seems targeted at people either learning 
embedded programming or those of us who just like to play with electronical things. I 
wrote a bit of simple code to read a button and, after a programmable delay, turn on an 
LED. Turns out a 100 msec delay is quite noticeable, even to these tired old 20/1000 
eyes. 50 msec, though, seemed instantaneous. Even the kids concurred, astonishing since 
it’s so hard to get them to agree on anything. 
 
So let’s look at a couple of debouncing strategies. 
 

A Counting Algorithm 
Most people use a fairly simple approach that looks for n sequential stable readings of the 
switch, where n is a number ranging from 1 (no debouncing at all) to seemingly infinity. 
Generally the code detects a transition and then starts incrementing or decrementing a 
counter, each time rereading the input, till n reaches some presumably safe, bounce-free, 
count. If the state isn’t stable, the counter resets to its initial value. 
 
Simple, right? Maybe not. Too many implementations need some serious brain surgery. 
For instance, use a delay so the repetitive reads aren’t back to back, merely microseconds 
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apart. Unless your application is so minimal there are simply no free resources, don’t 
code the delay using the classic construct: for(i=0;i<big_number;++i);. Does 
this idle for a millisecond… or a second? Port the code to a new compiler or CPU, 
change wait states or the clock rate and suddenly the routine breaks, requiring manual 
tweaking. Instead use a timer that interrupts the CPU at a regular rate – maybe every 
millisecond or so – to sequence these activities. 
 
Listing 1 shows a sweet little debouncer that is called every CHECK_MSEC by the timer 
interrupt, a timer- initiated task, or some similar entity.  
 
 

Listing 1: A simple yet effective debounce algorithm 
 
 

#define CHECK_MSEC    5    // Read hardware every 5 msec 
#define PRESS_MSEC    10   // Stable time before registering pressed 
#define RELEASE_MSEC  100  // Stable time before registering released 
 
// This function reads the key state from the hardware. 
extern bool_t RawKeyPressed(); 
 
// This holds the debounced state of the key. 
bool_t DebouncedKeyPress = false; 
 
//   Service routine called every CHECK_MSEC to 
// debounce both edges 
void DebounceSwitch1(bool_t *Key_changed, bool_t *Key_pressed) 
{ 
    static uint8_t Count = RELEASE_MSEC / CHECK_MSEC; 
    bool_t RawState; 
    *Key_changed = false; 
    *Key_pressed = DebouncedKeyPress; 
    RawState = RawKeyPressed(); 
    if (RawState == DebouncedKeyPress) { 
        // Set the timer which allows a change from current state. 
        if (DebouncedKeyPress) Count = RELEASE_MSEC / CHECK_MSEC; 
        else                   Count = PRESS_MSEC / CHECK_MSEC; 
    } else { 
        // Key has changed - wait for new state to become stable. 
        if (--Count == 0) { 
            // Timer expired - accept the change. 
            DebouncedKeyPress = RawState; 
            *Key_changed=true; 
            *Key_pressed=DebouncedKeyPress; 
            // And reset the timer. 
            if (DebouncedKeyPress) Count = RELEASE_MSEC / CHECK_MSEC; 
            else                   Count = PRESS_MSEC / CHECK_MSEC; 
        } 
    } 
} 
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You’ll notice there are no arbitrary count values; the code doesn’t wait for n stable states 
before declaring the debounce over. Instead it’s all based on time and is therefore 
eminently portable and maintainable.  
 
DebounceSwitch1() returns two parameters. Key_Pressed is the current 
debounced state of the switch. Key_Changed signals the switch has changed from open 
to closed, or the reverse. 
 
Two different intervals allow you to specify different debounce periods for the switch’s 
closure and its release. To minimize user delays why not set PRESS_MSEC to a 
relatively small value, and RELEASE_MSEC to something higher? You’ll get great 
responsiveness yet some level of EMI protection. 
 

An Alternative 
An even simpler routine, shown in figure 2, returns TRUE once when the debounced 
leading edge of the switch closure is encountered. It offers protection from both bounce 
and EMI. 
 
 
 
 
 
 
 
 
 
 
 

Listing 2: An even simpler debounce routine 
 
Like the routine in listing 1, DebounceSwitch2() gets called regularly by a timer 
tick or similar scheduling mechanism. It shifts the current raw value of the switch into 
variable State. Assuming the contacts return zero for a closed condition, the routine 
returns FALSE till a dozen sequential closures are detected.  
 
One bit of cleverness lurks in the algorithm. As long as the switch isn’t closed ones shift 
through State. When the user pushes on the button the stream changes to a bouncy 
pattern of ones and zeroes, but at some point there’s the last bounce (a one) followed by a 
stream of zeroes. We OR in 0xe000 to create a “don’t care” condition in the upper bits. 
But as the but ton remains depressed State continues to propagate zeroes. There’s just the 
one time, when the last bouncy “one” was in the upper bit position, that the code returns a 
TRUE. That bit of wizardry eliminates bounces and detects the edge, the transition from 
open to closed. 
 
Change the two hex constants to accommodate different bounce times and timer rates. 

// Service routine called by a timer interrupt 
bool_t DebounceSwitch2() 
{ 
static uint16_t State = 0; // Current debounce status 
State=(State<<1) | !RawKeyPressed() | 0xe000; 
if(State==0xf000)return TRUE; 
return FALSE; 
} 
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Though quite similar to a counting algorithm this variant translates much more cleanly 
into assembly code. One reader implemented this algorithm in a mere 11 lines of 8051 
assembly language. 
 
Want to implement a debouncer in your FPGA or ASIC? This algorithm is ideal. It’s 
loopless and boasts but a single decision, one that’s easy to build into a single wide gate. 
 

Handling Multiple Inputs 
Sometimes we’re presented with a bank of switches on a single input port. Why 
debounce these individually when there’s a well-known (though little used) algorithm to 
handle the entire port in parallel? 
 
Figure 3 shows one approach. DebounceSwitch(), which is called regularly by a 
timer tick, reads an entire byte-wide port that contains up to 8 individual switches. On 
each call it stuffs the port’s data into an entry in circular queue State. Though shown as 
an array with but a single dimension, a second loiters hidden in the width of the byte. 
State consists of columns (array entries) and rows (each defined by bit position in an 
individual entry, and corresponding to a particular switch).  
 

 
Listing 3: Code that debounces many switches at the same time 

 
A short loop ANDs all column entries of the array. The resulting byte has a one in each 
bit position where that particular switch was on for every entry in State. After the loop 
completes, variable j contains 8 debounced switch values. 
 

#define MAX_CHECKS 10  // # checks before a switch is 
debounced 
uint8_t Debounced_State;   // Debounced state of the switches 
uint8_t State[MAX_CHECKS]; // Array that maintains bounce status 
uint8_t Index;   // Pointer into State 
 
// Service routine called by a timer interrupt 
void DebounceSwitch3() 
{ 
    uint8_t i,j; 
    State[Index]=RawKeyPressed(); 
    ++Index; 
    j=0xff; 
    for(i=0; i<MAX_CHECKS-1;i++)j=j & State[i]; 
    Debounced_State= j; 
    if(Index>=MAX_CHECKS)Index=0; 
} 
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One could exclusive OR this with the last Debounced_State to get a one in each bit 
where the corresponding switch has changed from a zero to a one, in a nice debounced 
fashion. 
 
Don’t forget to initialize State and Index to zero. 
 
I prefer a less computationally- intensive alternative that splits DebounceSwitch() 
into two routines; one, driven by the timer tick, merely accumulates data into array 
State. Another function, Whats_Da_Switches_Now() ANDs and XORs as 
described, but only when the system needs to know the switches’ status.  
 

Summing up 
All of these algorithms assume a timer or other periodic call that invokes the debouncer. 
For quick response and relatively low computational overhead I prefer a tick rate of a 
handful of milliseconds. One to five msec is ideal. Most switches seem to exhibit under 
10 msec bounce rates. Coupled with my observation that a 50 msec response seems 
instantaneous, it seems reasonable to pick a debounce period in the 20 to 50 msec range. 
 
Hundreds of other debouncing algorithms exist. These are just a few of my favorite, 
offering great response, simple implementation, a no reliance on magic numbers or other 
sorts of high-tech incantations.  
 
Thanks to many, many people who contributed suggestions and algorithms. I shamelessly 
stole ideas from many of you, especially Scott Rosenthal, Simon Large, Jack Marshall 
and Jack Bonn.  
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Here is what some 
of our attendees 

have said: 

If you can’t take the time to travel, we can present this seminar 
 at your facility. We will train all of your developers and focus on the challenges 

unique to your products and team. 
 

 
 Thanks for the terrific seminar here at ALSTROM yesterday!  

It got rave reviews from a pretty tough crowd. 
Cheryl Saks, ALSTROM 

 
Thanks for a valuable, pragmatic, and informative lesson in embedded systems design. 

  All the attendees thought it was well worth their time. 
Craig DeFilippo, Pitney Bowes 

 
I just wanted to thank you again for the great class last week.  With no exceptions, all of the feedback from the 

participants was extremely positive.  We look forward to incorporating many of the suggestions and observations into 
making our work here more efficient and higher quality. 

Carol Bateman, INDesign LLC 
 

Here are just a few of the companies where Jack has presented this seminar:  
Sony-Ericsson, Northup Grumman, Dell, Western Digital, Bayer, Seagate, Whirlpool, Cutler 
Hammer, Symbol, Visteon, Honeywell, Kodak and Western Digital. 

  

Did you know that… 
 
… doubling the size of the code results in much more than twice the work? In this seminar you’ll learn ways unique 

to embedded systems to partition your firmware to keep schedules from skyrocketing out of control. 
 
… you can reduce bugs by an order of magnitude before starting debugging? Most firmware starts off with a 5-

10% error rate – 500 or more bugs in a little 10k LOC program. Imagine the impact finding all those has on the 
schedule! Learn simple solutions that don’t require revolutionizing the engineering department. 

 
… you can create a predictable real-time design? This class will show you how to measure the system’s performance, 

manage reentrancy, and implement ISRs with the least amount of pain. You’ll even study real timing data for 
common C constructs on various CPUs. 

 
… a 20% reduction in processor loading slashes development time? Learn to keep loading low while simplifying 

overall system design. 
 
… reuse is usually a waste of time? Most companies fail miserably at it. Though promoted as the solution to the 

software crisis, real reuse is much tougher than advertised. You’ll learn the ingredients of successful reuse. 
 
What are you doing to upgrade your skills? What are you doing to help your engineers succeed?  Do you 

consistently produce quality firmware on schedule?  If not . . .  what are you doing about it?  
 

Contact us for info on how we can bring this seminar to your company. 
e-mail: info@ganssle.com or call us at 410-496-3647. 


