Soundfield Microphones: Design and Calibration
soundfield microphones

• the goal:
 - we have a number of microphone capsules arranged in space
 - they feed a “black box” that does some processing
 - the output of which is the ambisonics components of the soundfield the capsules are immersed in
soundfield microphones

- the building blocks:
soundfield microphones

- the building blocks:
 - microphone capsules
soundfield microphones

- the building blocks:
 - microphone capsules
 - two types:
soundfield microphones

- the building blocks:
 - microphone capsules
 - two types:
 - omnidirectional (closed diaphragm, pressure)
 - figure of eight (open diaphragm, velocity)
soundfield microphones

• the building blocks:
 - microphone capsules
 - two types:
 • omnidirectional (closed diaphragm)
 • figure of eight (open diaphragm)
 - or a linear combination of the above:
 • cardioid (partially open back of diaphragm)
soundfield microphones

- the building blocks:
 - omnidirectional
 - much easier to build
 - low frequency down to earthquakes if you want
 - lower noise
soundfield microphones

- the building blocks:
 - cardioid (partially open back of diafragm)
 - much more difficult to build
 - captures velocity instead of pressure
soundfield microphones

- the building blocks:
 - microphone capsules
- spatial arrangement of capsules
soundfield microphones

- the building blocks:
 - microphone capsules
- spatial arrangement of capsules
 - to sample the sphere uniformly
 - use platonic solids
 - use other equal spacing schemes (t-designs, etc)
soundfield microphones

• the building blocks:
 ¬ platonic solids

<table>
<thead>
<tr>
<th>Polyhedron</th>
<th>Vertices</th>
<th>Edges</th>
<th>Faces</th>
<th>Schläfi symbol</th>
<th>Vertex configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>tetrahedron</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>{3, 3}</td>
<td>3.3.3</td>
</tr>
<tr>
<td>cube</td>
<td>8</td>
<td>12</td>
<td>6</td>
<td>{4, 3}</td>
<td>4.4.4</td>
</tr>
<tr>
<td>octahedron</td>
<td>6</td>
<td>12</td>
<td>8</td>
<td>{3, 4}</td>
<td>3.3.3.3</td>
</tr>
<tr>
<td>dodecahedron</td>
<td>20</td>
<td>30</td>
<td>12</td>
<td>{5, 3}</td>
<td>5.5.5</td>
</tr>
<tr>
<td>icosahedron</td>
<td>12</td>
<td>30</td>
<td>20</td>
<td>{3, 5}</td>
<td>3.3.3.3.3</td>
</tr>
</tbody>
</table>
soundfield microphones

- number of capsules determines
 - order of spherical harmonics that can be sampled without aliasing
soundfield microphones

- number of capsules determines
 - order of spherical harmonics that can be sampled without aliasing
- spatial arrangement
 - uniform for optimal sampling with minimal error
soundfield microphones

• how do we arrange the capsules?

first approach:

• uniform spacing on the surface of an open sphere
• using pressure microphones (omni)
soundfield microphones

\[p(k, r', \theta', \phi') \approx \sum_{n=0}^{N} \sum_{m=-n}^{n} \frac{j_n(kr')}{j_n(kr)} p_{nm}(k, r) Y_n^m(\theta', \phi'). \]

from “Fundamentals of Spherical Array Processing”, Rafaely (Springer) (eq 4.2, or derivation that leads to 2.48)
soundfield microphones

\[p(k, r', \theta', \phi') \approx \sum_{n=0}^{N} \sum_{m=-n}^{n} \frac{j_n(kr')}{j_n(kr)} p_{nm}(k, r) Y_n^m(\theta', \phi'). \]

(pressure somewhere based on pressure somewhere else)
soundfield microphones

\[p(k, r', \theta', \phi') \approx \sum_{n=0}^{N} \sum_{m=-n}^{n} \frac{j_n(kr')}{j_n(kr)} p_{nm}(k, r) Y_n^m(\theta', \phi'). \]
soundfield microphones

- open sphere, omni capsules
 - zeroes in Bessel functions determine frequencies at which we cannot really calculate the sampling
 - decrease of functions towards the origin places a limit on the low frequency response of the array
 - spatial aliasing determines the upper working frequency limit

(also, might be difficult to build...)
soundfield microphones

- rigid sphere, omni capsules
 - incident field + scattered field
 - no nulls in denominator
soundfield microphones

- rigid sphere, omni capsules
 - incident field + scattered field
 - no nulls in denominator
 - easier to build (there is a 32 capsule rigid sphere array at ccrma!)
 - tradeoff: we need a large sphere for low frequency operation but that is not desirable for other reasons
soundfield microphones

- rigid sphere, omni capsules:
 eigenmike (32 capsules)
soundfield microphones

- rigid sphere, omni capsules:
 zylia (19 capsules)
soundfield microphones

- open sphere, cardioid capsules
 - again, no nulls
 - 1st order: no low frequency drop
soundfield microphones

- open sphere, cardioid capsules
 - again, no nulls
 - even better low frequency performance (theory)
 - but: inherent higher noise at low frequencies
 - but: deviation from cardioid pattern will affect sampling accuracy
soundfield microphones

- open sphere, cardioid capsules (1st order)
soundfield microphones

• open sphere, cardioid capsules (partial 2nd order)
soundfield microphones

- multiple open spheres, omni capsules
 - nulls for one sphere do not happen for the other
 - just imagine building one...

(might be the only solution for extended frequency range capture of higher order components...)

(C) Fernando Lopez-Lezcano 2015-21
Sound in Space 2021
soundfield microphones

- spherical arrays are not the only topology being explored
soundfield microphones

- spherical arrays are not the only topology being explored
 - “Acoustically hard 2D arrays for 3D HOA”, Svein Berge, 2019
soundfield microphones

- spherical arrays are not the only topology being explored
 - “Acoustically hard 2D arrays for 3D HOA”, Svein Berge, 2019
 - pressure-sensitive sensors on both sides of an acoustically hard plate (solid state MEMS capsules)
 - multiple radius array!
soundfield microphones

• “Acoustically hard 2D arrays for 3D HOA”, Svein Berge, 2019
soundfield microphones

- “Acoustically hard 2D arrays for 3D HOA”, Svein Berge, 2019
soundfield microphones

- back to first order Ambisonics microphones
 - created in the ‘70s by Gerzon
 - open sphere with cardioid capsules
 - tetrahedral configuration
soundfield microphones

• first order Ambisonics microphones
soundfield microphones

• first order Ambisonics microphones
 - how do you calibrate them?
 (why do you calibrate them?)
 • there are plenty of papers but manufacturers do not tell you what they do (in detail)

“The Design of Precisely Coincident Microphone Arrays for Stereo and Surround Sound”, Gerzon, 1975

- how to make them?
soundfield microphones

- end of 2014, start of the SpHEAR project
 (Spherical Harmonics Ear)
soundfield microphones

• goals:
 – 3d printed Ambisonics microphone
 • printable on “cheap” 3d printers (what we have)
 • precise and repeatable mechanical design
 – interface electronics, PCB (printed circuit board) design and fabrication
 – calibration: measurements and software
 • automatic calibration with (almost) no manual intervention
soundfield microphones

• goals:
 - everything accessible and open (GPL + Creative Commons)
 - design and build using only Free Software components
soundfield microphones

• goals:
 - students in Music222 should be able to build their own microphones!
soundfield microphones

• goals:
 – students in Music222 should be able to build their own microphones!
 – how hard can it be?
soundfield microphones

• goals:
 - students in Music222 should be able to build their own microphones!
 - how hard can it be?
 (turns out it is pretty hard...)
soundfield microphones

• mechanical design:
 – models written in OpenScad, free software language based 3d modeling software
 – using Cura as the slicer
 – printing on an Ultimaker 3d printer (filament extrusion printer)
soundfield microphones

• mechanical design:
 - start from a classical 4 capsule tetrahedral design – print capsule holders flat, then assemble as in a 3d puzzle
soundfield microphones

• mechanical design:
 - start from a classical 4 capsule tetrahedral design – print capsule holders flat, then assemble as in a 3d puzzle
soundfield microphones

- mechanical design:
 - start from a classical 4 capsule tetrahedral design – print capsule holders flat, then assemble as in a 3d puzzle
soundfield microphones

- mechanical design:
 - this same concept can be scaled up to more capsules (Octathingy by Eric Benjamin)
soundfield microphones

• mechanical design:
 – or, of course, to other platonic solid designs
soundfield microphones

- mechanical design:
 - or, of course, to other platonic solid designs
soundfield microphones

- mechanical design:
 - the first prototype was very simple but functional
soundfield microphones

- electronic design:
 - the first prototype used a very simple interface, one capacitor and one resistor (fits into the shell of an XLR connector!
soundfield microphones

- electronic design:
 - the first prototype used a very simple interface, one capacitor and one resistor (fits into the shell of an XLR connector!
 - not balanced
 - any phantom power supply noise leaks into the signal -> very bad low frequency noise performance
soundfield microphones

• electronic design:
 - the proper design has to be balanced and supply the proper current to the capsule
soundfield microphones

- electronic design:
 - the proper design should be balanced and supply the proper current to the capsule
soundfield microphones

- electronic design (Kicad):
 - a much simpler version of this was selected (the zapnspark variant)
soundfield microphones

- electronic design (Kicad):
 - a much simple version of this was selected (the zapnspark variant)
 - a PCB was designed and built
soundfield microphones

- mechanical design:
 - a full microphone houses four PCBs and the capsule array (and a 12 pin DIN connector)
soundfield microphones

- calibration (Heller, 2007, unpublished)

 one capsule:

 \[T_F = T_{F_0} \cdot (1 + \cos \vartheta) \]

 response is pressure plus velocity vector

 \[R(x) = p + x \cdot v, \]
• calibration (Heller, 2007, unpublished)

in matrix notation:

\[R = \begin{bmatrix} 1 & x_x & x_y & x_z \end{bmatrix} \begin{bmatrix} p & v_x & v_y & v_z \end{bmatrix}^T \]

we have four unknowns, so we need at least four measurements (more is better, equally spaced is better)
soundfield microphones

- calibration (Heller, 2007, unpublished)

 our measurements can be expressed as:

 \[R = \begin{bmatrix} r_1 & \ldots & r_i & \ldots & r_n \end{bmatrix}^T, \]

 and the directions of the measurements is:

 \[X = \begin{bmatrix} 1 & x_{1x} & x_{1y} & x_{1z} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{nx} & x_{ny} & x_{nz} \end{bmatrix}, \]
soundfield microphones

• calibration (Heller, 2007, unpublished)

finally our unknowns:

\[
M = \begin{bmatrix} p & v_x & v_y & v_z \end{bmatrix}^T
\]

in matrix form:

\[
R = XM.
\]
\[
M = X \backslash R.
\]
soundfield microphones

- calibration (Heller, 2007, unpublished)

so, we need to invert our measurement matrix, multiply by the measurement directions and we obtain our unknowns (pressure and velocity vector)

\[M = X \backslash R. \]
soundfield microphones

- measurements, we need:
 - anechoic chamber (we do not have one)
 - calibrated reference microphone
 - single driver full range speaker
 - software:
 - impulse response measurement system (aliki)
soundfield microphones

• measurements
 - we measure 16 impulse responses, equally spaced around the microphone (in the horizontal plane only for simplicity)
soundfield microphones

• measurements
 - we measure 16 impulse responses, equally spaced around the microphone (in the horizontal plane only for simplicity)
soundfield microphones

• measurements:
 - anechoic chamber
 • stage – truncate response up to first reflection
soundfield microphones

- measurements:
 - stage – truncate response up to first reflection
soundfield microphones

- measurements:
 - process reference microphone IR through DRC, we get a calibration filter
soundfield microphones

• measurements:
 - process all measurements through the calibration filter and get calibrated IRs
soundfield microphones

• calibration:
 – finally, we have 16 x 4 calibrated impulse responses and we can read them into the R matrix
 – load them, select a frequency range for the measurement, measure average power, create R matrix
soundfield microphones

- calibration:
 - first check that the measurements make sense
soundfield microphones

- calibration:

 our R matrix is (1200-2400Hz):

 octave:26> R
 R =

 8.6777e-03 8.3897e-03 1.3729e-03 1.8104e-03
 1.0270e-02 6.5737e-03 2.8724e-03 6.0254e-04
 1.0931e-02 4.4959e-03 4.6878e-03 4.5029e-04
 1.0635e-02 2.3798e-03 6.8391e-03 4.7192e-04
 9.5783e-03 8.5023e-04 8.6717e-03 1.2031e-03
 7.8287e-03 9.0888e-04 9.9395e-03 2.7618e-03
 5.5557e-03 1.2590e-03 1.0423e-02 4.6166e-03
 3.3196e-03 9.8501e-04 1.0119e-02 6.5521e-03
 1.3707e-03 1.0175e-03 9.0047e-03 8.3059e-03
 4.5652e-04 2.4863e-03 7.1918e-03 9.6371e-03
 8.3075e-04 4.4803e-03 5.1928e-03 1.0204e-02
 6.6883e-04 6.5091e-03 3.1869e-03 9.9829e-03
 4.6598e-04 8.3659e-03 1.5999e-03 8.9923e-03
 2.1404e-03 9.5069e-03 9.1296e-04 7.4267e-03
 4.2097e-03 9.9636e-03 1.0366e-03 5.4693e-03
soundfield microphones

• calibration:
 - our A2B matrix is (1200-2400Hz):

```
octave: 28> A2B
A2B =
     0.71284  1.01213  1.02693  1.00245
     0.80923  1.28540 -1.01623 -1.09799
     0.75494 -1.17778  0.99558 -1.08737
     0.74171 -1.04177 -1.10261  1.13505

octave: 29> COND
COND = 1.5376
```
soundfield microphones

- calibration:

 let's try it, get a BF signal from AF with this matrix
soundfield microphones

- calibration:
 - let's try it, get a BF signal from AF with this matrix
soundfield microphones

• calibration:
 - let's try it, get a BF signal from AF with this matrix

(C) Fernando Lopez-Lezcano 2015-21
Sound in Space 2021
soundfield microphones

• calibration:
 - so we see how the array behaves well up to 3.4KHz and then deviates from theory
 - we can use this calculated response to see what shape a filter should have to try to correct for the problem (Gerzon)
soundfield microphones

- calibration:
 - we average some of the measurements to derive our filter shapes
 - principal directions
 - diagonal directions
 - all directions

which option we choose is a design compromise that affects the “sound” of the microphone
soundfield microphones

- calibration:
 - average “principal” directions
soundfield microphones

• calibration:

 - design minimum phase FIR filters based on those shapes

 (we do not have data for Z, but because of symmetry we assume an average of X and Y will do)
soundfield microphones

• calibration:
 - now see if it works, ship the AF signals through the A2B matrix and then through the four W, X, Y and Z minimum phase FIR filters
soundfield microphones

- calibration:
 - WXY at 0 degrees
soundfield microphones

- calibration:
 - WXY at 45 degrees
soundfield microphones

- calibration
 - WXY at 90 degrees
soundfield microphones

- calibration:
 - another view of the same data
soundfield microphones

- calibration:
 - polar patterns (horizontal plane)

600Hz

5KHz

10KHz

(C) Fernando Lopez-Lezcano 2015-21
Sound in Space 2021
soundfield microphones

• calibration:
 – the final step is to write a simple Faust program that implements the A2B matrix and the four FIR filters…
 – or transform into a 4x4 matrix compatible with Tetraproc
 – that is our A format to B format encoder (the “black box”
questions?